aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp
blob: 24c00b8a10ece5d3fe8da96bdd15462963ef1521 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
//===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file VarLocBasedImpl.cpp
///
/// LiveDebugValues is an optimistic "available expressions" dataflow
/// algorithm. The set of expressions is the set of machine locations
/// (registers, spill slots, constants) that a variable fragment might be
/// located, qualified by a DIExpression and indirect-ness flag, while each
/// variable is identified by a DebugVariable object. The availability of an
/// expression begins when a DBG_VALUE instruction specifies the location of a
/// DebugVariable, and continues until that location is clobbered or
/// re-specified by a different DBG_VALUE for the same DebugVariable.
///
/// The output of LiveDebugValues is additional DBG_VALUE instructions,
/// placed to extend variable locations as far they're available. This file
/// and the VarLocBasedLDV class is an implementation that explicitly tracks
/// locations, using the VarLoc class.
///
/// The canonical "available expressions" problem doesn't have expression
/// clobbering, instead when a variable is re-assigned, any expressions using
/// that variable get invalidated. LiveDebugValues can map onto "available
/// expressions" by having every register represented by a variable, which is
/// used in an expression that becomes available at a DBG_VALUE instruction.
/// When the register is clobbered, its variable is effectively reassigned, and
/// expressions computed from it become unavailable. A similar construct is
/// needed when a DebugVariable has its location re-specified, to invalidate
/// all other locations for that DebugVariable.
///
/// Using the dataflow analysis to compute the available expressions, we create
/// a DBG_VALUE at the beginning of each block where the expression is
/// live-in. This propagates variable locations into every basic block where
/// the location can be determined, rather than only having DBG_VALUEs in blocks
/// where locations are specified due to an assignment or some optimization.
/// Movements of values between registers and spill slots are annotated with
/// DBG_VALUEs too to track variable values bewteen locations. All this allows
/// DbgEntityHistoryCalculator to focus on only the locations within individual
/// blocks, facilitating testing and improving modularity.
///
/// We follow an optimisic dataflow approach, with this lattice:
///
/// \verbatim
///                    ┬ "Unknown"
///                          |
///                          v
///                         True
///                          |
///                          v
///                      ⊥ False
/// \endverbatim With "True" signifying that the expression is available (and
/// thus a DebugVariable's location is the corresponding register), while
/// "False" signifies that the expression is unavailable. "Unknown"s never
/// survive to the end of the analysis (see below).
///
/// Formally, all DebugVariable locations that are live-out of a block are
/// initialized to \top.  A blocks live-in values take the meet of the lattice
/// value for every predecessors live-outs, except for the entry block, where
/// all live-ins are \bot. The usual dataflow propagation occurs: the transfer
/// function for a block assigns an expression for a DebugVariable to be "True"
/// if a DBG_VALUE in the block specifies it; "False" if the location is
/// clobbered; or the live-in value if it is unaffected by the block. We
/// visit each block in reverse post order until a fixedpoint is reached. The
/// solution produced is maximal.
///
/// Intuitively, we start by assuming that every expression / variable location
/// is at least "True", and then propagate "False" from the entry block and any
/// clobbers until there are no more changes to make. This gives us an accurate
/// solution because all incorrect locations will have a "False" propagated into
/// them. It also gives us a solution that copes well with loops by assuming
/// that variable locations are live-through every loop, and then removing those
/// that are not through dataflow.
///
/// Within LiveDebugValues: each variable location is represented by a
/// VarLoc object that identifies the source variable, the set of
/// machine-locations that currently describe it (a single location for
/// DBG_VALUE or multiple for DBG_VALUE_LIST), and the DBG_VALUE inst that
/// specifies the location. Each VarLoc is indexed in the (function-scope) \p
/// VarLocMap, giving each VarLoc a set of unique indexes, each of which
/// corresponds to one of the VarLoc's machine-locations and can be used to
/// lookup the VarLoc in the VarLocMap. Rather than operate directly on machine
/// locations, the dataflow analysis in this pass identifies locations by their
/// indices in the VarLocMap, meaning all the variable locations in a block can
/// be described by a sparse vector of VarLocMap indicies.
///
/// All the storage for the dataflow analysis is local to the ExtendRanges
/// method and passed down to helper methods. "OutLocs" and "InLocs" record the
/// in and out lattice values for each block. "OpenRanges" maintains a list of
/// variable locations and, with the "process" method, evaluates the transfer
/// function of each block. "flushPendingLocs" installs debug value instructions
/// for each live-in location at the start of blocks, while "Transfers" records
/// transfers of values between machine-locations.
///
/// We avoid explicitly representing the "Unknown" (\top) lattice value in the
/// implementation. Instead, unvisited blocks implicitly have all lattice
/// values set as "Unknown". After being visited, there will be path back to
/// the entry block where the lattice value is "False", and as the transfer
/// function cannot make new "Unknown" locations, there are no scenarios where
/// a block can have an "Unknown" location after being visited. Similarly, we
/// don't enumerate all possible variable locations before exploring the
/// function: when a new location is discovered, all blocks previously explored
/// were implicitly "False" but unrecorded, and become explicitly "False" when
/// a new VarLoc is created with its bit not set in predecessor InLocs or
/// OutLocs.
///
//===----------------------------------------------------------------------===//

#include "LiveDebugValues.h"

#include "llvm/ADT/CoalescingBitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/TypeSize.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <map>
#include <queue>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "livedebugvalues"

STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");

/// If \p Op is a stack or frame register return true, otherwise return false.
/// This is used to avoid basing the debug entry values on the registers, since
/// we do not support it at the moment.
static bool isRegOtherThanSPAndFP(const MachineOperand &Op,
                                  const MachineInstr &MI,
                                  const TargetRegisterInfo *TRI) {
  if (!Op.isReg())
    return false;

  const MachineFunction *MF = MI.getParent()->getParent();
  const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
  Register SP = TLI->getStackPointerRegisterToSaveRestore();
  Register FP = TRI->getFrameRegister(*MF);
  Register Reg = Op.getReg();

  return Reg && Reg != SP && Reg != FP;
}

namespace {

// Max out the number of statically allocated elements in DefinedRegsSet, as
// this prevents fallback to std::set::count() operations.
using DefinedRegsSet = SmallSet<Register, 32>;

// The IDs in this set correspond to MachineLocs in VarLocs, as well as VarLocs
// that represent Entry Values; every VarLoc in the set will also appear
// exactly once at Location=0.
// As a result, each VarLoc may appear more than once in this "set", but each
// range corresponding to a Reg, SpillLoc, or EntryValue type will still be a
// "true" set (i.e. each VarLoc may appear only once), and the range Location=0
// is the set of all VarLocs.
using VarLocSet = CoalescingBitVector<uint64_t>;

/// A type-checked pair of {Register Location (or 0), Index}, used to index
/// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int
/// for insertion into a \ref VarLocSet, and efficiently converted back. The
/// type-checker helps ensure that the conversions aren't lossy.
///
/// Why encode a location /into/ the VarLocMap index? This makes it possible
/// to find the open VarLocs killed by a register def very quickly. This is a
/// performance-critical operation for LiveDebugValues.
struct LocIndex {
  using u32_location_t = uint32_t;
  using u32_index_t = uint32_t;

  u32_location_t Location; // Physical registers live in the range [1;2^30) (see
                           // \ref MCRegister), so we have plenty of range left
                           // here to encode non-register locations.
  u32_index_t Index;

  /// The location that has an entry for every VarLoc in the map.
  static constexpr u32_location_t kUniversalLocation = 0;

  /// The first location that is reserved for VarLocs with locations of kind
  /// RegisterKind.
  static constexpr u32_location_t kFirstRegLocation = 1;

  /// The first location greater than 0 that is not reserved for VarLocs with
  /// locations of kind RegisterKind.
  static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30;

  /// A special location reserved for VarLocs with locations of kind
  /// SpillLocKind.
  static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation;

  /// A special location reserved for VarLocs of kind EntryValueBackupKind and
  /// EntryValueCopyBackupKind.
  static constexpr u32_location_t kEntryValueBackupLocation =
      kFirstInvalidRegLocation + 1;

  LocIndex(u32_location_t Location, u32_index_t Index)
      : Location(Location), Index(Index) {}

  uint64_t getAsRawInteger() const {
    return (static_cast<uint64_t>(Location) << 32) | Index;
  }

  template<typename IntT> static LocIndex fromRawInteger(IntT ID) {
    static_assert(std::is_unsigned<IntT>::value &&
                      sizeof(ID) == sizeof(uint64_t),
                  "Cannot convert raw integer to LocIndex");
    return {static_cast<u32_location_t>(ID >> 32),
            static_cast<u32_index_t>(ID)};
  }

  /// Get the start of the interval reserved for VarLocs of kind RegisterKind
  /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1.
  static uint64_t rawIndexForReg(Register Reg) {
    return LocIndex(Reg, 0).getAsRawInteger();
  }

  /// Return a range covering all set indices in the interval reserved for
  /// \p Location in \p Set.
  static auto indexRangeForLocation(const VarLocSet &Set,
                                    u32_location_t Location) {
    uint64_t Start = LocIndex(Location, 0).getAsRawInteger();
    uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger();
    return Set.half_open_range(Start, End);
  }
};

// Simple Set for storing all the VarLoc Indices at a Location bucket.
using VarLocsInRange = SmallSet<LocIndex::u32_index_t, 32>;
// Vector of all `LocIndex`s for a given VarLoc; the same Location should not
// appear in any two of these, as each VarLoc appears at most once in any
// Location bucket.
using LocIndices = SmallVector<LocIndex, 2>;

class VarLocBasedLDV : public LDVImpl {
private:
  const TargetRegisterInfo *TRI;
  const TargetInstrInfo *TII;
  const TargetFrameLowering *TFI;
  TargetPassConfig *TPC;
  BitVector CalleeSavedRegs;
  LexicalScopes LS;
  VarLocSet::Allocator Alloc;

  const MachineInstr *LastNonDbgMI;

  enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore };

  using FragmentInfo = DIExpression::FragmentInfo;
  using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;

  /// A pair of debug variable and value location.
  struct VarLoc {
    // The location at which a spilled variable resides. It consists of a
    // register and an offset.
    struct SpillLoc {
      unsigned SpillBase;
      StackOffset SpillOffset;
      bool operator==(const SpillLoc &Other) const {
        return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset;
      }
      bool operator!=(const SpillLoc &Other) const {
        return !(*this == Other);
      }
    };

    /// Identity of the variable at this location.
    const DebugVariable Var;

    /// The expression applied to this location.
    const DIExpression *Expr;

    /// DBG_VALUE to clone var/expr information from if this location
    /// is moved.
    const MachineInstr &MI;

    enum class MachineLocKind {
      InvalidKind = 0,
      RegisterKind,
      SpillLocKind,
      ImmediateKind
    };

    enum class EntryValueLocKind {
      NonEntryValueKind = 0,
      EntryValueKind,
      EntryValueBackupKind,
      EntryValueCopyBackupKind
    } EVKind = EntryValueLocKind::NonEntryValueKind;

    /// The value location. Stored separately to avoid repeatedly
    /// extracting it from MI.
    union MachineLocValue {
      uint64_t RegNo;
      SpillLoc SpillLocation;
      uint64_t Hash;
      int64_t Immediate;
      const ConstantFP *FPImm;
      const ConstantInt *CImm;
      MachineLocValue() : Hash(0) {}
    };

    /// A single machine location; its Kind is either a register, spill
    /// location, or immediate value.
    /// If the VarLoc is not a NonEntryValueKind, then it will use only a
    /// single MachineLoc of RegisterKind.
    struct MachineLoc {
      MachineLocKind Kind;
      MachineLocValue Value;
      bool operator==(const MachineLoc &Other) const {
        if (Kind != Other.Kind)
          return false;
        switch (Kind) {
        case MachineLocKind::SpillLocKind:
          return Value.SpillLocation == Other.Value.SpillLocation;
        case MachineLocKind::RegisterKind:
        case MachineLocKind::ImmediateKind:
          return Value.Hash == Other.Value.Hash;
        default:
          llvm_unreachable("Invalid kind");
        }
      }
      bool operator<(const MachineLoc &Other) const {
        switch (Kind) {
        case MachineLocKind::SpillLocKind:
          return std::make_tuple(
                     Kind, Value.SpillLocation.SpillBase,
                     Value.SpillLocation.SpillOffset.getFixed(),
                     Value.SpillLocation.SpillOffset.getScalable()) <
                 std::make_tuple(
                     Other.Kind, Other.Value.SpillLocation.SpillBase,
                     Other.Value.SpillLocation.SpillOffset.getFixed(),
                     Other.Value.SpillLocation.SpillOffset.getScalable());
        case MachineLocKind::RegisterKind:
        case MachineLocKind::ImmediateKind:
          return std::tie(Kind, Value.Hash) <
                 std::tie(Other.Kind, Other.Value.Hash);
        default:
          llvm_unreachable("Invalid kind");
        }
      }
    };

    /// The set of machine locations used to determine the variable's value, in
    /// conjunction with Expr. Initially populated with MI's debug operands,
    /// but may be transformed independently afterwards.
    SmallVector<MachineLoc, 8> Locs;
    /// Used to map the index of each location in Locs back to the index of its
    /// original debug operand in MI. Used when multiple location operands are
    /// coalesced and the original MI's operands need to be accessed while
    /// emitting a debug value.
    SmallVector<unsigned, 8> OrigLocMap;

    VarLoc(const MachineInstr &MI, LexicalScopes &LS)
        : Var(MI.getDebugVariable(), MI.getDebugExpression(),
              MI.getDebugLoc()->getInlinedAt()),
          Expr(MI.getDebugExpression()), MI(MI) {
      assert(MI.isDebugValue() && "not a DBG_VALUE");
      assert((MI.isDebugValueList() || MI.getNumOperands() == 4) &&
             "malformed DBG_VALUE");
      for (const MachineOperand &Op : MI.debug_operands()) {
        MachineLoc ML = GetLocForOp(Op);
        auto It = find(Locs, ML);
        if (It == Locs.end()) {
          Locs.push_back(ML);
          OrigLocMap.push_back(MI.getDebugOperandIndex(&Op));
        } else {
          // ML duplicates an element in Locs; replace references to Op
          // with references to the duplicating element.
          unsigned OpIdx = Locs.size();
          unsigned DuplicatingIdx = std::distance(Locs.begin(), It);
          Expr = DIExpression::replaceArg(Expr, OpIdx, DuplicatingIdx);
        }
      }

      // We create the debug entry values from the factory functions rather
      // than from this ctor.
      assert(EVKind != EntryValueLocKind::EntryValueKind &&
             !isEntryBackupLoc());
    }

    static MachineLoc GetLocForOp(const MachineOperand &Op) {
      MachineLocKind Kind;
      MachineLocValue Loc;
      if (Op.isReg()) {
        Kind = MachineLocKind::RegisterKind;
        Loc.RegNo = Op.getReg();
      } else if (Op.isImm()) {
        Kind = MachineLocKind::ImmediateKind;
        Loc.Immediate = Op.getImm();
      } else if (Op.isFPImm()) {
        Kind = MachineLocKind::ImmediateKind;
        Loc.FPImm = Op.getFPImm();
      } else if (Op.isCImm()) {
        Kind = MachineLocKind::ImmediateKind;
        Loc.CImm = Op.getCImm();
      } else
        llvm_unreachable("Invalid Op kind for MachineLoc.");
      return {Kind, Loc};
    }

    /// Take the variable and machine-location in DBG_VALUE MI, and build an
    /// entry location using the given expression.
    static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS,
                                 const DIExpression *EntryExpr, Register Reg) {
      VarLoc VL(MI, LS);
      assert(VL.Locs.size() == 1 &&
             VL.Locs[0].Kind == MachineLocKind::RegisterKind);
      VL.EVKind = EntryValueLocKind::EntryValueKind;
      VL.Expr = EntryExpr;
      VL.Locs[0].Value.RegNo = Reg;
      return VL;
    }

    /// Take the variable and machine-location from the DBG_VALUE (from the
    /// function entry), and build an entry value backup location. The backup
    /// location will turn into the normal location if the backup is valid at
    /// the time of the primary location clobbering.
    static VarLoc CreateEntryBackupLoc(const MachineInstr &MI,
                                       LexicalScopes &LS,
                                       const DIExpression *EntryExpr) {
      VarLoc VL(MI, LS);
      assert(VL.Locs.size() == 1 &&
             VL.Locs[0].Kind == MachineLocKind::RegisterKind);
      VL.EVKind = EntryValueLocKind::EntryValueBackupKind;
      VL.Expr = EntryExpr;
      return VL;
    }

    /// Take the variable and machine-location from the DBG_VALUE (from the
    /// function entry), and build a copy of an entry value backup location by
    /// setting the register location to NewReg.
    static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI,
                                           LexicalScopes &LS,
                                           const DIExpression *EntryExpr,
                                           Register NewReg) {
      VarLoc VL(MI, LS);
      assert(VL.Locs.size() == 1 &&
             VL.Locs[0].Kind == MachineLocKind::RegisterKind);
      VL.EVKind = EntryValueLocKind::EntryValueCopyBackupKind;
      VL.Expr = EntryExpr;
      VL.Locs[0].Value.RegNo = NewReg;
      return VL;
    }

    /// Copy the register location in DBG_VALUE MI, updating the register to
    /// be NewReg.
    static VarLoc CreateCopyLoc(const VarLoc &OldVL, const MachineLoc &OldML,
                                Register NewReg) {
      VarLoc VL = OldVL;
      for (MachineLoc &ML : VL.Locs)
        if (ML == OldML) {
          ML.Kind = MachineLocKind::RegisterKind;
          ML.Value.RegNo = NewReg;
          return VL;
        }
      llvm_unreachable("Should have found OldML in new VarLoc.");
    }

    /// Take the variable described by DBG_VALUE* MI, and create a VarLoc
    /// locating it in the specified spill location.
    static VarLoc CreateSpillLoc(const VarLoc &OldVL, const MachineLoc &OldML,
                                 unsigned SpillBase, StackOffset SpillOffset) {
      VarLoc VL = OldVL;
      for (MachineLoc &ML : VL.Locs)
        if (ML == OldML) {
          ML.Kind = MachineLocKind::SpillLocKind;
          ML.Value.SpillLocation = {SpillBase, SpillOffset};
          return VL;
        }
      llvm_unreachable("Should have found OldML in new VarLoc.");
    }

    /// Create a DBG_VALUE representing this VarLoc in the given function.
    /// Copies variable-specific information such as DILocalVariable and
    /// inlining information from the original DBG_VALUE instruction, which may
    /// have been several transfers ago.
    MachineInstr *BuildDbgValue(MachineFunction &MF) const {
      assert(!isEntryBackupLoc() &&
             "Tried to produce DBG_VALUE for backup VarLoc");
      const DebugLoc &DbgLoc = MI.getDebugLoc();
      bool Indirect = MI.isIndirectDebugValue();
      const auto &IID = MI.getDesc();
      const DILocalVariable *Var = MI.getDebugVariable();
      NumInserted++;

      const DIExpression *DIExpr = Expr;
      SmallVector<MachineOperand, 8> MOs;
      for (unsigned I = 0, E = Locs.size(); I < E; ++I) {
        MachineLocKind LocKind = Locs[I].Kind;
        MachineLocValue Loc = Locs[I].Value;
        const MachineOperand &Orig = MI.getDebugOperand(OrigLocMap[I]);
        switch (LocKind) {
        case MachineLocKind::RegisterKind:
          // An entry value is a register location -- but with an updated
          // expression. The register location of such DBG_VALUE is always the
          // one from the entry DBG_VALUE, it does not matter if the entry value
          // was copied in to another register due to some optimizations.
          // Non-entry value register locations are like the source
          // DBG_VALUE, but with the register number from this VarLoc.
          MOs.push_back(MachineOperand::CreateReg(
              EVKind == EntryValueLocKind::EntryValueKind ? Orig.getReg()
                                                          : Register(Loc.RegNo),
              false));
          break;
        case MachineLocKind::SpillLocKind: {
          // Spills are indirect DBG_VALUEs, with a base register and offset.
          // Use the original DBG_VALUEs expression to build the spilt location
          // on top of. FIXME: spill locations created before this pass runs
          // are not recognized, and not handled here.
          unsigned Base = Loc.SpillLocation.SpillBase;
          auto *TRI = MF.getSubtarget().getRegisterInfo();
          if (MI.isNonListDebugValue()) {
            auto Deref = Indirect ? DIExpression::DerefAfter : 0;
            DIExpr = TRI->prependOffsetExpression(
                DIExpr, DIExpression::ApplyOffset | Deref,
                Loc.SpillLocation.SpillOffset);
            Indirect = true;
          } else {
            SmallVector<uint64_t, 4> Ops;
            TRI->getOffsetOpcodes(Loc.SpillLocation.SpillOffset, Ops);
            Ops.push_back(dwarf::DW_OP_deref);
            DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, I);
          }
          MOs.push_back(MachineOperand::CreateReg(Base, false));
          break;
        }
        case MachineLocKind::ImmediateKind: {
          MOs.push_back(Orig);
          break;
        }
        case MachineLocKind::InvalidKind:
          llvm_unreachable("Tried to produce DBG_VALUE for invalid VarLoc");
        }
      }
      return BuildMI(MF, DbgLoc, IID, Indirect, MOs, Var, DIExpr);
    }

    /// Is the Loc field a constant or constant object?
    bool isConstant(MachineLocKind Kind) const {
      return Kind == MachineLocKind::ImmediateKind;
    }

    /// Check if the Loc field is an entry backup location.
    bool isEntryBackupLoc() const {
      return EVKind == EntryValueLocKind::EntryValueBackupKind ||
             EVKind == EntryValueLocKind::EntryValueCopyBackupKind;
    }

    /// If this variable is described by register \p Reg holding the entry
    /// value, return true.
    bool isEntryValueBackupReg(Register Reg) const {
      return EVKind == EntryValueLocKind::EntryValueBackupKind && usesReg(Reg);
    }

    /// If this variable is described by register \p Reg holding a copy of the
    /// entry value, return true.
    bool isEntryValueCopyBackupReg(Register Reg) const {
      return EVKind == EntryValueLocKind::EntryValueCopyBackupKind &&
             usesReg(Reg);
    }

    /// If this variable is described in whole or part by \p Reg, return true.
    bool usesReg(Register Reg) const {
      MachineLoc RegML;
      RegML.Kind = MachineLocKind::RegisterKind;
      RegML.Value.RegNo = Reg;
      return is_contained(Locs, RegML);
    }

    /// If this variable is described in whole or part by \p Reg, return true.
    unsigned getRegIdx(Register Reg) const {
      for (unsigned Idx = 0; Idx < Locs.size(); ++Idx)
        if (Locs[Idx].Kind == MachineLocKind::RegisterKind &&
            Register{static_cast<unsigned>(Locs[Idx].Value.RegNo)} == Reg)
          return Idx;
      llvm_unreachable("Could not find given Reg in Locs");
    }

    /// If this variable is described in whole or part by 1 or more registers,
    /// add each of them to \p Regs and return true.
    bool getDescribingRegs(SmallVectorImpl<uint32_t> &Regs) const {
      bool AnyRegs = false;
      for (const auto &Loc : Locs)
        if (Loc.Kind == MachineLocKind::RegisterKind) {
          Regs.push_back(Loc.Value.RegNo);
          AnyRegs = true;
        }
      return AnyRegs;
    }

    bool containsSpillLocs() const {
      return any_of(Locs, [](VarLoc::MachineLoc ML) {
        return ML.Kind == VarLoc::MachineLocKind::SpillLocKind;
      });
    }

    /// If this variable is described in whole or part by \p SpillLocation,
    /// return true.
    bool usesSpillLoc(SpillLoc SpillLocation) const {
      MachineLoc SpillML;
      SpillML.Kind = MachineLocKind::SpillLocKind;
      SpillML.Value.SpillLocation = SpillLocation;
      return is_contained(Locs, SpillML);
    }

    /// If this variable is described in whole or part by \p SpillLocation,
    /// return the index .
    unsigned getSpillLocIdx(SpillLoc SpillLocation) const {
      for (unsigned Idx = 0; Idx < Locs.size(); ++Idx)
        if (Locs[Idx].Kind == MachineLocKind::SpillLocKind &&
            Locs[Idx].Value.SpillLocation == SpillLocation)
          return Idx;
      llvm_unreachable("Could not find given SpillLoc in Locs");
    }

    /// Determine whether the lexical scope of this value's debug location
    /// dominates MBB.
    bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const {
      return LS.dominates(MI.getDebugLoc().get(), &MBB);
    }

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    // TRI can be null.
    void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const {
      Out << "VarLoc(";
      for (const MachineLoc &MLoc : Locs) {
        if (Locs.begin() != &MLoc)
          Out << ", ";
        switch (MLoc.Kind) {
        case MachineLocKind::RegisterKind:
          Out << printReg(MLoc.Value.RegNo, TRI);
          break;
        case MachineLocKind::SpillLocKind:
          Out << printReg(MLoc.Value.SpillLocation.SpillBase, TRI);
          Out << "[" << MLoc.Value.SpillLocation.SpillOffset.getFixed() << " + "
              << MLoc.Value.SpillLocation.SpillOffset.getScalable()
              << "x vscale"
              << "]";
          break;
        case MachineLocKind::ImmediateKind:
          Out << MLoc.Value.Immediate;
          break;
        case MachineLocKind::InvalidKind:
          llvm_unreachable("Invalid VarLoc in dump method");
        }
      }

      Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", ";
      if (Var.getInlinedAt())
        Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n";
      else
        Out << "(null))";

      if (isEntryBackupLoc())
        Out << " (backup loc)\n";
      else
        Out << "\n";
    }
#endif

    bool operator==(const VarLoc &Other) const {
      return std::tie(EVKind, Var, Expr, Locs) ==
             std::tie(Other.EVKind, Other.Var, Other.Expr, Other.Locs);
    }

    /// This operator guarantees that VarLocs are sorted by Variable first.
    bool operator<(const VarLoc &Other) const {
      return std::tie(Var, EVKind, Locs, Expr) <
             std::tie(Other.Var, Other.EVKind, Other.Locs, Other.Expr);
    }
  };

#ifndef NDEBUG
  using VarVec = SmallVector<VarLoc, 32>;
#endif

  /// VarLocMap is used for two things:
  /// 1) Assigning LocIndices to a VarLoc. The LocIndices can be used to
  ///    virtually insert a VarLoc into a VarLocSet.
  /// 2) Given a LocIndex, look up the unique associated VarLoc.
  class VarLocMap {
    /// Map a VarLoc to an index within the vector reserved for its location
    /// within Loc2Vars.
    std::map<VarLoc, LocIndices> Var2Indices;

    /// Map a location to a vector which holds VarLocs which live in that
    /// location.
    SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars;

  public:
    /// Retrieve LocIndices for \p VL.
    LocIndices insert(const VarLoc &VL) {
      LocIndices &Indices = Var2Indices[VL];
      // If Indices is not empty, VL is already in the map.
      if (!Indices.empty())
        return Indices;
      SmallVector<LocIndex::u32_location_t, 4> Locations;
      // LocIndices are determined by EVKind and MLs; each Register has a
      // unique location, while all SpillLocs use a single bucket, and any EV
      // VarLocs use only the Backup bucket or none at all (except the
      // compulsory entry at the universal location index). LocIndices will
      // always have an index at the universal location index as the last index.
      if (VL.EVKind == VarLoc::EntryValueLocKind::NonEntryValueKind) {
        VL.getDescribingRegs(Locations);
        assert(all_of(Locations,
                      [](auto RegNo) {
                        return RegNo < LocIndex::kFirstInvalidRegLocation;
                      }) &&
               "Physreg out of range?");
        if (VL.containsSpillLocs()) {
          LocIndex::u32_location_t Loc = LocIndex::kSpillLocation;
          Locations.push_back(Loc);
        }
      } else if (VL.EVKind != VarLoc::EntryValueLocKind::EntryValueKind) {
        LocIndex::u32_location_t Loc = LocIndex::kEntryValueBackupLocation;
        Locations.push_back(Loc);
      }
      Locations.push_back(LocIndex::kUniversalLocation);
      for (LocIndex::u32_location_t Location : Locations) {
        auto &Vars = Loc2Vars[Location];
        Indices.push_back(
            {Location, static_cast<LocIndex::u32_index_t>(Vars.size())});
        Vars.push_back(VL);
      }
      return Indices;
    }

    LocIndices getAllIndices(const VarLoc &VL) const {
      auto IndIt = Var2Indices.find(VL);
      assert(IndIt != Var2Indices.end() && "VarLoc not tracked");
      return IndIt->second;
    }

    /// Retrieve the unique VarLoc associated with \p ID.
    const VarLoc &operator[](LocIndex ID) const {
      auto LocIt = Loc2Vars.find(ID.Location);
      assert(LocIt != Loc2Vars.end() && "Location not tracked");
      return LocIt->second[ID.Index];
    }
  };

  using VarLocInMBB =
      SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>;
  struct TransferDebugPair {
    MachineInstr *TransferInst; ///< Instruction where this transfer occurs.
    LocIndex LocationID;        ///< Location number for the transfer dest.
  };
  using TransferMap = SmallVector<TransferDebugPair, 4>;
  // Types for recording Entry Var Locations emitted by a single MachineInstr,
  // as well as recording MachineInstr which last defined a register.
  using InstToEntryLocMap = std::multimap<const MachineInstr *, LocIndex>;
  using RegDefToInstMap = DenseMap<Register, MachineInstr *>;

  // Types for recording sets of variable fragments that overlap. For a given
  // local variable, we record all other fragments of that variable that could
  // overlap it, to reduce search time.
  using FragmentOfVar =
      std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
  using OverlapMap =
      DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;

  // Helper while building OverlapMap, a map of all fragments seen for a given
  // DILocalVariable.
  using VarToFragments =
      DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;

  /// Collects all VarLocs from \p CollectFrom. Each unique VarLoc is added
  /// to \p Collected once, in order of insertion into \p VarLocIDs.
  static void collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected,
                                const VarLocSet &CollectFrom,
                                const VarLocMap &VarLocIDs);

  /// Get the registers which are used by VarLocs of kind RegisterKind tracked
  /// by \p CollectFrom.
  void getUsedRegs(const VarLocSet &CollectFrom,
                   SmallVectorImpl<Register> &UsedRegs) const;

  /// This holds the working set of currently open ranges. For fast
  /// access, this is done both as a set of VarLocIDs, and a map of
  /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
  /// previous open ranges for the same variable. In addition, we keep
  /// two different maps (Vars/EntryValuesBackupVars), so erase/insert
  /// methods act differently depending on whether a VarLoc is primary
  /// location or backup one. In the case the VarLoc is backup location
  /// we will erase/insert from the EntryValuesBackupVars map, otherwise
  /// we perform the operation on the Vars.
  class OpenRangesSet {
    VarLocSet::Allocator &Alloc;
    VarLocSet VarLocs;
    // Map the DebugVariable to recent primary location ID.
    SmallDenseMap<DebugVariable, LocIndices, 8> Vars;
    // Map the DebugVariable to recent backup location ID.
    SmallDenseMap<DebugVariable, LocIndices, 8> EntryValuesBackupVars;
    OverlapMap &OverlappingFragments;

  public:
    OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap)
        : Alloc(Alloc), VarLocs(Alloc), OverlappingFragments(_OLapMap) {}

    const VarLocSet &getVarLocs() const { return VarLocs; }

    // Fetches all VarLocs in \p VarLocIDs and inserts them into \p Collected.
    // This method is needed to get every VarLoc once, as each VarLoc may have
    // multiple indices in a VarLocMap (corresponding to each applicable
    // location), but all VarLocs appear exactly once at the universal location
    // index.
    void getUniqueVarLocs(SmallVectorImpl<VarLoc> &Collected,
                          const VarLocMap &VarLocIDs) const {
      collectAllVarLocs(Collected, VarLocs, VarLocIDs);
    }

    /// Terminate all open ranges for VL.Var by removing it from the set.
    void erase(const VarLoc &VL);

    /// Terminate all open ranges listed as indices in \c KillSet with
    /// \c Location by removing them from the set.
    void erase(const VarLocsInRange &KillSet, const VarLocMap &VarLocIDs,
               LocIndex::u32_location_t Location);

    /// Insert a new range into the set.
    void insert(LocIndices VarLocIDs, const VarLoc &VL);

    /// Insert a set of ranges.
    void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map);

    llvm::Optional<LocIndices> getEntryValueBackup(DebugVariable Var);

    /// Empty the set.
    void clear() {
      VarLocs.clear();
      Vars.clear();
      EntryValuesBackupVars.clear();
    }

    /// Return whether the set is empty or not.
    bool empty() const {
      assert(Vars.empty() == EntryValuesBackupVars.empty() &&
             Vars.empty() == VarLocs.empty() &&
             "open ranges are inconsistent");
      return VarLocs.empty();
    }

    /// Get an empty range of VarLoc IDs.
    auto getEmptyVarLocRange() const {
      return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(),
                                                       getVarLocs().end());
    }

    /// Get all set IDs for VarLocs with MLs of kind RegisterKind in \p Reg.
    auto getRegisterVarLocs(Register Reg) const {
      return LocIndex::indexRangeForLocation(getVarLocs(), Reg);
    }

    /// Get all set IDs for VarLocs with MLs of kind SpillLocKind.
    auto getSpillVarLocs() const {
      return LocIndex::indexRangeForLocation(getVarLocs(),
                                             LocIndex::kSpillLocation);
    }

    /// Get all set IDs for VarLocs of EVKind EntryValueBackupKind or
    /// EntryValueCopyBackupKind.
    auto getEntryValueBackupVarLocs() const {
      return LocIndex::indexRangeForLocation(
          getVarLocs(), LocIndex::kEntryValueBackupLocation);
    }
  };

  /// Collect all VarLoc IDs from \p CollectFrom for VarLocs with MLs of kind
  /// RegisterKind which are located in any reg in \p Regs. The IDs for each
  /// VarLoc correspond to entries in the universal location bucket, which every
  /// VarLoc has exactly 1 entry for. Insert collected IDs into \p Collected.
  static void collectIDsForRegs(VarLocsInRange &Collected,
                                const DefinedRegsSet &Regs,
                                const VarLocSet &CollectFrom,
                                const VarLocMap &VarLocIDs);

  VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) {
    std::unique_ptr<VarLocSet> &VLS = Locs[MBB];
    if (!VLS)
      VLS = std::make_unique<VarLocSet>(Alloc);
    return *VLS;
  }

  const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB,
                                   const VarLocInMBB &Locs) const {
    auto It = Locs.find(MBB);
    assert(It != Locs.end() && "MBB not in map");
    return *It->second;
  }

  /// Tests whether this instruction is a spill to a stack location.
  bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);

  /// Decide if @MI is a spill instruction and return true if it is. We use 2
  /// criteria to make this decision:
  /// - Is this instruction a store to a spill slot?
  /// - Is there a register operand that is both used and killed?
  /// TODO: Store optimization can fold spills into other stores (including
  /// other spills). We do not handle this yet (more than one memory operand).
  bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
                       Register &Reg);

  /// Returns true if the given machine instruction is a debug value which we
  /// can emit entry values for.
  ///
  /// Currently, we generate debug entry values only for parameters that are
  /// unmodified throughout the function and located in a register.
  bool isEntryValueCandidate(const MachineInstr &MI,
                             const DefinedRegsSet &Regs) const;

  /// If a given instruction is identified as a spill, return the spill location
  /// and set \p Reg to the spilled register.
  Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI,
                                                  MachineFunction *MF,
                                                  Register &Reg);
  /// Given a spill instruction, extract the register and offset used to
  /// address the spill location in a target independent way.
  VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
  void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges,
                               TransferMap &Transfers, VarLocMap &VarLocIDs,
                               LocIndex OldVarID, TransferKind Kind,
                               const VarLoc::MachineLoc &OldLoc,
                               Register NewReg = Register());

  void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
                          VarLocMap &VarLocIDs,
                          InstToEntryLocMap &EntryValTransfers,
                          RegDefToInstMap &RegSetInstrs);
  void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
                                  VarLocMap &VarLocIDs, TransferMap &Transfers);
  void cleanupEntryValueTransfers(const MachineInstr *MI,
                                  OpenRangesSet &OpenRanges,
                                  VarLocMap &VarLocIDs, const VarLoc &EntryVL,
                                  InstToEntryLocMap &EntryValTransfers);
  void removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
                        VarLocMap &VarLocIDs, const VarLoc &EntryVL,
                        InstToEntryLocMap &EntryValTransfers,
                        RegDefToInstMap &RegSetInstrs);
  void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges,
                       VarLocMap &VarLocIDs,
                       InstToEntryLocMap &EntryValTransfers,
                       VarLocsInRange &KillSet);
  void recordEntryValue(const MachineInstr &MI,
                        const DefinedRegsSet &DefinedRegs,
                        OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs);
  void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges,
                            VarLocMap &VarLocIDs, TransferMap &Transfers);
  void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
                           VarLocMap &VarLocIDs,
                           InstToEntryLocMap &EntryValTransfers,
                           RegDefToInstMap &RegSetInstrs);
  bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges,
                          VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs);

  void process(MachineInstr &MI, OpenRangesSet &OpenRanges,
               VarLocMap &VarLocIDs, TransferMap &Transfers,
               InstToEntryLocMap &EntryValTransfers,
               RegDefToInstMap &RegSetInstrs);

  void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments,
                             OverlapMap &OLapMap);

  bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
            const VarLocMap &VarLocIDs,
            SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
            SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks);

  /// Create DBG_VALUE insts for inlocs that have been propagated but
  /// had their instruction creation deferred.
  void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs);

  bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree,
                    TargetPassConfig *TPC, unsigned InputBBLimit,
                    unsigned InputDbgValLimit) override;

public:
  /// Default construct and initialize the pass.
  VarLocBasedLDV();

  ~VarLocBasedLDV();

  /// Print to ostream with a message.
  void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V,
                        const VarLocMap &VarLocIDs, const char *msg,
                        raw_ostream &Out) const;
};

} // end anonymous namespace

//===----------------------------------------------------------------------===//
//            Implementation
//===----------------------------------------------------------------------===//

VarLocBasedLDV::VarLocBasedLDV() = default;

VarLocBasedLDV::~VarLocBasedLDV() = default;

/// Erase a variable from the set of open ranges, and additionally erase any
/// fragments that may overlap it. If the VarLoc is a backup location, erase
/// the variable from the EntryValuesBackupVars set, indicating we should stop
/// tracking its backup entry location. Otherwise, if the VarLoc is primary
/// location, erase the variable from the Vars set.
void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) {
  // Erasure helper.
  auto DoErase = [VL, this](DebugVariable VarToErase) {
    auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
    auto It = EraseFrom->find(VarToErase);
    if (It != EraseFrom->end()) {
      LocIndices IDs = It->second;
      for (LocIndex ID : IDs)
        VarLocs.reset(ID.getAsRawInteger());
      EraseFrom->erase(It);
    }
  };

  DebugVariable Var = VL.Var;

  // Erase the variable/fragment that ends here.
  DoErase(Var);

  // Extract the fragment. Interpret an empty fragment as one that covers all
  // possible bits.
  FragmentInfo ThisFragment = Var.getFragmentOrDefault();

  // There may be fragments that overlap the designated fragment. Look them up
  // in the pre-computed overlap map, and erase them too.
  auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment});
  if (MapIt != OverlappingFragments.end()) {
    for (auto Fragment : MapIt->second) {
      VarLocBasedLDV::OptFragmentInfo FragmentHolder;
      if (!DebugVariable::isDefaultFragment(Fragment))
        FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment);
      DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()});
    }
  }
}

void VarLocBasedLDV::OpenRangesSet::erase(const VarLocsInRange &KillSet,
                                          const VarLocMap &VarLocIDs,
                                          LocIndex::u32_location_t Location) {
  VarLocSet RemoveSet(Alloc);
  for (LocIndex::u32_index_t ID : KillSet) {
    const VarLoc &VL = VarLocIDs[LocIndex(Location, ID)];
    auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
    EraseFrom->erase(VL.Var);
    LocIndices VLI = VarLocIDs.getAllIndices(VL);
    for (LocIndex ID : VLI)
      RemoveSet.set(ID.getAsRawInteger());
  }
  VarLocs.intersectWithComplement(RemoveSet);
}

void VarLocBasedLDV::OpenRangesSet::insertFromLocSet(const VarLocSet &ToLoad,
                                                     const VarLocMap &Map) {
  VarLocsInRange UniqueVarLocIDs;
  DefinedRegsSet Regs;
  Regs.insert(LocIndex::kUniversalLocation);
  collectIDsForRegs(UniqueVarLocIDs, Regs, ToLoad, Map);
  for (uint64_t ID : UniqueVarLocIDs) {
    LocIndex Idx = LocIndex::fromRawInteger(ID);
    const VarLoc &VarL = Map[Idx];
    const LocIndices Indices = Map.getAllIndices(VarL);
    insert(Indices, VarL);
  }
}

void VarLocBasedLDV::OpenRangesSet::insert(LocIndices VarLocIDs,
                                           const VarLoc &VL) {
  auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
  for (LocIndex ID : VarLocIDs)
    VarLocs.set(ID.getAsRawInteger());
  InsertInto->insert({VL.Var, VarLocIDs});
}

/// Return the Loc ID of an entry value backup location, if it exists for the
/// variable.
llvm::Optional<LocIndices>
VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) {
  auto It = EntryValuesBackupVars.find(Var);
  if (It != EntryValuesBackupVars.end())
    return It->second;

  return llvm::None;
}

void VarLocBasedLDV::collectIDsForRegs(VarLocsInRange &Collected,
                                       const DefinedRegsSet &Regs,
                                       const VarLocSet &CollectFrom,
                                       const VarLocMap &VarLocIDs) {
  assert(!Regs.empty() && "Nothing to collect");
  SmallVector<Register, 32> SortedRegs;
  append_range(SortedRegs, Regs);
  array_pod_sort(SortedRegs.begin(), SortedRegs.end());
  auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front()));
  auto End = CollectFrom.end();
  for (Register Reg : SortedRegs) {
    // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains
    // all possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which
    // live in Reg.
    uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg);
    uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1);
    It.advanceToLowerBound(FirstIndexForReg);

    // Iterate through that half-open interval and collect all the set IDs.
    for (; It != End && *It < FirstInvalidIndex; ++It) {
      LocIndex ItIdx = LocIndex::fromRawInteger(*It);
      const VarLoc &VL = VarLocIDs[ItIdx];
      LocIndices LI = VarLocIDs.getAllIndices(VL);
      // For now, the back index is always the universal location index.
      assert(LI.back().Location == LocIndex::kUniversalLocation &&
             "Unexpected order of LocIndices for VarLoc; was it inserted into "
             "the VarLocMap correctly?");
      Collected.insert(LI.back().Index);
    }

    if (It == End)
      return;
  }
}

void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom,
                                 SmallVectorImpl<Register> &UsedRegs) const {
  // All register-based VarLocs are assigned indices greater than or equal to
  // FirstRegIndex.
  uint64_t FirstRegIndex =
      LocIndex::rawIndexForReg(LocIndex::kFirstRegLocation);
  uint64_t FirstInvalidIndex =
      LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation);
  for (auto It = CollectFrom.find(FirstRegIndex),
            End = CollectFrom.find(FirstInvalidIndex);
       It != End;) {
    // We found a VarLoc ID for a VarLoc that lives in a register. Figure out
    // which register and add it to UsedRegs.
    uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location;
    assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) &&
           "Duplicate used reg");
    UsedRegs.push_back(FoundReg);

    // Skip to the next /set/ register. Note that this finds a lower bound, so
    // even if there aren't any VarLocs living in `FoundReg+1`, we're still
    // guaranteed to move on to the next register (or to end()).
    uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1);
    It.advanceToLowerBound(NextRegIndex);
  }
}

//===----------------------------------------------------------------------===//
//            Debug Range Extension Implementation
//===----------------------------------------------------------------------===//

#ifndef NDEBUG
void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF,
                                       const VarLocInMBB &V,
                                       const VarLocMap &VarLocIDs,
                                       const char *msg,
                                       raw_ostream &Out) const {
  Out << '\n' << msg << '\n';
  for (const MachineBasicBlock &BB : MF) {
    if (!V.count(&BB))
      continue;
    const VarLocSet &L = getVarLocsInMBB(&BB, V);
    if (L.empty())
      continue;
    SmallVector<VarLoc, 32> VarLocs;
    collectAllVarLocs(VarLocs, L, VarLocIDs);
    Out << "MBB: " << BB.getNumber() << ":\n";
    for (const VarLoc &VL : VarLocs) {
      Out << " Var: " << VL.Var.getVariable()->getName();
      Out << " MI: ";
      VL.dump(TRI, Out);
    }
  }
  Out << "\n";
}
#endif

VarLocBasedLDV::VarLoc::SpillLoc
VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
  assert(MI.hasOneMemOperand() &&
         "Spill instruction does not have exactly one memory operand?");
  auto MMOI = MI.memoperands_begin();
  const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
  assert(PVal->kind() == PseudoSourceValue::FixedStack &&
         "Inconsistent memory operand in spill instruction");
  int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
  const MachineBasicBlock *MBB = MI.getParent();
  Register Reg;
  StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
  return {Reg, Offset};
}

/// Do cleanup of \p EntryValTransfers created by \p TRInst, by removing the
/// Transfer, which uses the to-be-deleted \p EntryVL.
void VarLocBasedLDV::cleanupEntryValueTransfers(
    const MachineInstr *TRInst, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs,
    const VarLoc &EntryVL, InstToEntryLocMap &EntryValTransfers) {
  if (EntryValTransfers.empty() || TRInst == nullptr)
    return;

  auto TransRange = EntryValTransfers.equal_range(TRInst);
  for (auto TDPair : llvm::make_range(TransRange.first, TransRange.second)) {
    const VarLoc &EmittedEV = VarLocIDs[TDPair.second];
    if (std::tie(EntryVL.Var, EntryVL.Locs[0].Value.RegNo, EntryVL.Expr) ==
        std::tie(EmittedEV.Var, EmittedEV.Locs[0].Value.RegNo,
                 EmittedEV.Expr)) {
      OpenRanges.erase(EmittedEV);
      EntryValTransfers.erase(TRInst);
      break;
    }
  }
}

/// Try to salvage the debug entry value if we encounter a new debug value
/// describing the same parameter, otherwise stop tracking the value. Return
/// true if we should stop tracking the entry value and do the cleanup of
/// emitted Entry Value Transfers, otherwise return false.
void VarLocBasedLDV::removeEntryValue(const MachineInstr &MI,
                                      OpenRangesSet &OpenRanges,
                                      VarLocMap &VarLocIDs,
                                      const VarLoc &EntryVL,
                                      InstToEntryLocMap &EntryValTransfers,
                                      RegDefToInstMap &RegSetInstrs) {
  // Skip the DBG_VALUE which is the debug entry value itself.
  if (&MI == &EntryVL.MI)
    return;

  // If the parameter's location is not register location, we can not track
  // the entry value any more. It doesn't have the TransferInst which defines
  // register, so no Entry Value Transfers have been emitted already.
  if (!MI.getDebugOperand(0).isReg())
    return;

  // Try to get non-debug instruction responsible for the DBG_VALUE.
  const MachineInstr *TransferInst = nullptr;
  Register Reg = MI.getDebugOperand(0).getReg();
  if (Reg.isValid() && RegSetInstrs.find(Reg) != RegSetInstrs.end())
    TransferInst = RegSetInstrs.find(Reg)->second;

  // Case of the parameter's DBG_VALUE at the start of entry MBB.
  if (!TransferInst && !LastNonDbgMI && MI.getParent()->isEntryBlock())
    return;

  // If the debug expression from the DBG_VALUE is not empty, we can assume the
  // parameter's value has changed indicating that we should stop tracking its
  // entry value as well.
  if (MI.getDebugExpression()->getNumElements() == 0 && TransferInst) {
    // If the DBG_VALUE comes from a copy instruction that copies the entry
    // value, it means the parameter's value has not changed and we should be
    // able to use its entry value.
    // TODO: Try to keep tracking of an entry value if we encounter a propagated
    // DBG_VALUE describing the copy of the entry value. (Propagated entry value
    // does not indicate the parameter modification.)
    auto DestSrc = TII->isCopyInstr(*TransferInst);
    if (DestSrc) {
      const MachineOperand *SrcRegOp, *DestRegOp;
      SrcRegOp = DestSrc->Source;
      DestRegOp = DestSrc->Destination;
      if (Reg == DestRegOp->getReg()) {
        for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
          const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)];
          if (VL.isEntryValueCopyBackupReg(Reg) &&
              // Entry Values should not be variadic.
              VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg())
            return;
        }
      }
    }
  }

  LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: ";
             MI.print(dbgs(), /*IsStandalone*/ false,
                      /*SkipOpers*/ false, /*SkipDebugLoc*/ false,
                      /*AddNewLine*/ true, TII));
  cleanupEntryValueTransfers(TransferInst, OpenRanges, VarLocIDs, EntryVL,
                             EntryValTransfers);
  OpenRanges.erase(EntryVL);
}

/// End all previous ranges related to @MI and start a new range from @MI
/// if it is a DBG_VALUE instr.
void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI,
                                        OpenRangesSet &OpenRanges,
                                        VarLocMap &VarLocIDs,
                                        InstToEntryLocMap &EntryValTransfers,
                                        RegDefToInstMap &RegSetInstrs) {
  if (!MI.isDebugValue())
    return;
  const DILocalVariable *Var = MI.getDebugVariable();
  const DIExpression *Expr = MI.getDebugExpression();
  const DILocation *DebugLoc = MI.getDebugLoc();
  const DILocation *InlinedAt = DebugLoc->getInlinedAt();
  assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
         "Expected inlined-at fields to agree");

  DebugVariable V(Var, Expr, InlinedAt);

  // Check if this DBG_VALUE indicates a parameter's value changing.
  // If that is the case, we should stop tracking its entry value.
  auto EntryValBackupID = OpenRanges.getEntryValueBackup(V);
  if (Var->isParameter() && EntryValBackupID) {
    const VarLoc &EntryVL = VarLocIDs[EntryValBackupID->back()];
    removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL, EntryValTransfers,
                     RegSetInstrs);
  }

  if (all_of(MI.debug_operands(), [](const MachineOperand &MO) {
        return (MO.isReg() && MO.getReg()) || MO.isImm() || MO.isFPImm() ||
               MO.isCImm();
      })) {
    // Use normal VarLoc constructor for registers and immediates.
    VarLoc VL(MI, LS);
    // End all previous ranges of VL.Var.
    OpenRanges.erase(VL);

    LocIndices IDs = VarLocIDs.insert(VL);
    // Add the VarLoc to OpenRanges from this DBG_VALUE.
    OpenRanges.insert(IDs, VL);
  } else if (MI.memoperands().size() > 0) {
    llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?");
  } else {
    // This must be an undefined location. If it has an open range, erase it.
    assert(MI.isUndefDebugValue() &&
           "Unexpected non-undef DBG_VALUE encountered");
    VarLoc VL(MI, LS);
    OpenRanges.erase(VL);
  }
}

// This should be removed later, doesn't fit the new design.
void VarLocBasedLDV::collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected,
                                       const VarLocSet &CollectFrom,
                                       const VarLocMap &VarLocIDs) {
  // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all
  // possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which live
  // in Reg.
  uint64_t FirstIndex = LocIndex::rawIndexForReg(LocIndex::kUniversalLocation);
  uint64_t FirstInvalidIndex =
      LocIndex::rawIndexForReg(LocIndex::kUniversalLocation + 1);
  // Iterate through that half-open interval and collect all the set IDs.
  for (auto It = CollectFrom.find(FirstIndex), End = CollectFrom.end();
       It != End && *It < FirstInvalidIndex; ++It) {
    LocIndex RegIdx = LocIndex::fromRawInteger(*It);
    Collected.push_back(VarLocIDs[RegIdx]);
  }
}

/// Turn the entry value backup locations into primary locations.
void VarLocBasedLDV::emitEntryValues(MachineInstr &MI,
                                     OpenRangesSet &OpenRanges,
                                     VarLocMap &VarLocIDs,
                                     InstToEntryLocMap &EntryValTransfers,
                                     VarLocsInRange &KillSet) {
  // Do not insert entry value locations after a terminator.
  if (MI.isTerminator())
    return;

  for (uint32_t ID : KillSet) {
    // The KillSet IDs are indices for the universal location bucket.
    LocIndex Idx = LocIndex(LocIndex::kUniversalLocation, ID);
    const VarLoc &VL = VarLocIDs[Idx];
    if (!VL.Var.getVariable()->isParameter())
      continue;

    auto DebugVar = VL.Var;
    Optional<LocIndices> EntryValBackupIDs =
        OpenRanges.getEntryValueBackup(DebugVar);

    // If the parameter has the entry value backup, it means we should
    // be able to use its entry value.
    if (!EntryValBackupIDs)
      continue;

    const VarLoc &EntryVL = VarLocIDs[EntryValBackupIDs->back()];
    VarLoc EntryLoc = VarLoc::CreateEntryLoc(EntryVL.MI, LS, EntryVL.Expr,
                                             EntryVL.Locs[0].Value.RegNo);
    LocIndices EntryValueIDs = VarLocIDs.insert(EntryLoc);
    assert(EntryValueIDs.size() == 1 &&
           "EntryValue loc should not be variadic");
    EntryValTransfers.insert({&MI, EntryValueIDs.back()});
    OpenRanges.insert(EntryValueIDs, EntryLoc);
  }
}

/// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
/// with \p OldVarID should be deleted form \p OpenRanges and replaced with
/// new VarLoc. If \p NewReg is different than default zero value then the
/// new location will be register location created by the copy like instruction,
/// otherwise it is variable's location on the stack.
void VarLocBasedLDV::insertTransferDebugPair(
    MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers,
    VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind,
    const VarLoc::MachineLoc &OldLoc, Register NewReg) {
  const VarLoc &OldVarLoc = VarLocIDs[OldVarID];

  auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) {
    LocIndices LocIds = VarLocIDs.insert(VL);

    // Close this variable's previous location range.
    OpenRanges.erase(VL);

    // Record the new location as an open range, and a postponed transfer
    // inserting a DBG_VALUE for this location.
    OpenRanges.insert(LocIds, VL);
    assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator");
    TransferDebugPair MIP = {&MI, LocIds.back()};
    Transfers.push_back(MIP);
  };

  // End all previous ranges of VL.Var.
  OpenRanges.erase(VarLocIDs[OldVarID]);
  switch (Kind) {
  case TransferKind::TransferCopy: {
    assert(NewReg &&
           "No register supplied when handling a copy of a debug value");
    // Create a DBG_VALUE instruction to describe the Var in its new
    // register location.
    VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg);
    ProcessVarLoc(VL);
    LLVM_DEBUG({
      dbgs() << "Creating VarLoc for register copy:";
      VL.dump(TRI);
    });
    return;
  }
  case TransferKind::TransferSpill: {
    // Create a DBG_VALUE instruction to describe the Var in its spilled
    // location.
    VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
    VarLoc VL = VarLoc::CreateSpillLoc(
        OldVarLoc, OldLoc, SpillLocation.SpillBase, SpillLocation.SpillOffset);
    ProcessVarLoc(VL);
    LLVM_DEBUG({
      dbgs() << "Creating VarLoc for spill:";
      VL.dump(TRI);
    });
    return;
  }
  case TransferKind::TransferRestore: {
    assert(NewReg &&
           "No register supplied when handling a restore of a debug value");
    // DebugInstr refers to the pre-spill location, therefore we can reuse
    // its expression.
    VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg);
    ProcessVarLoc(VL);
    LLVM_DEBUG({
      dbgs() << "Creating VarLoc for restore:";
      VL.dump(TRI);
    });
    return;
  }
  }
  llvm_unreachable("Invalid transfer kind");
}

/// A definition of a register may mark the end of a range.
void VarLocBasedLDV::transferRegisterDef(MachineInstr &MI,
                                         OpenRangesSet &OpenRanges,
                                         VarLocMap &VarLocIDs,
                                         InstToEntryLocMap &EntryValTransfers,
                                         RegDefToInstMap &RegSetInstrs) {

  // Meta Instructions do not affect the debug liveness of any register they
  // define.
  if (MI.isMetaInstruction())
    return;

  MachineFunction *MF = MI.getMF();
  const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
  Register SP = TLI->getStackPointerRegisterToSaveRestore();

  // Find the regs killed by MI, and find regmasks of preserved regs.
  DefinedRegsSet DeadRegs;
  SmallVector<const uint32_t *, 4> RegMasks;
  for (const MachineOperand &MO : MI.operands()) {
    // Determine whether the operand is a register def.
    if (MO.isReg() && MO.isDef() && MO.getReg() &&
        Register::isPhysicalRegister(MO.getReg()) &&
        !(MI.isCall() && MO.getReg() == SP)) {
      // Remove ranges of all aliased registers.
      for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
        // FIXME: Can we break out of this loop early if no insertion occurs?
        DeadRegs.insert(*RAI);
      RegSetInstrs.erase(MO.getReg());
      RegSetInstrs.insert({MO.getReg(), &MI});
    } else if (MO.isRegMask()) {
      RegMasks.push_back(MO.getRegMask());
    }
  }

  // Erase VarLocs which reside in one of the dead registers. For performance
  // reasons, it's critical to not iterate over the full set of open VarLocs.
  // Iterate over the set of dying/used regs instead.
  if (!RegMasks.empty()) {
    SmallVector<Register, 32> UsedRegs;
    getUsedRegs(OpenRanges.getVarLocs(), UsedRegs);
    for (Register Reg : UsedRegs) {
      // Remove ranges of all clobbered registers. Register masks don't usually
      // list SP as preserved. Assume that call instructions never clobber SP,
      // because some backends (e.g., AArch64) never list SP in the regmask.
      // While the debug info may be off for an instruction or two around
      // callee-cleanup calls, transferring the DEBUG_VALUE across the call is
      // still a better user experience.
      if (Reg == SP)
        continue;
      bool AnyRegMaskKillsReg =
          any_of(RegMasks, [Reg](const uint32_t *RegMask) {
            return MachineOperand::clobbersPhysReg(RegMask, Reg);
          });
      if (AnyRegMaskKillsReg)
        DeadRegs.insert(Reg);
      if (AnyRegMaskKillsReg) {
        RegSetInstrs.erase(Reg);
        RegSetInstrs.insert({Reg, &MI});
      }
    }
  }

  if (DeadRegs.empty())
    return;

  VarLocsInRange KillSet;
  collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs(), VarLocIDs);
  OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kUniversalLocation);

  if (TPC) {
    auto &TM = TPC->getTM<TargetMachine>();
    if (TM.Options.ShouldEmitDebugEntryValues())
      emitEntryValues(MI, OpenRanges, VarLocIDs, EntryValTransfers, KillSet);
  }
}

bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI,
                                         MachineFunction *MF) {
  // TODO: Handle multiple stores folded into one.
  if (!MI.hasOneMemOperand())
    return false;

  if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
    return false; // This is not a spill instruction, since no valid size was
                  // returned from either function.

  return true;
}

bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI,
                                      MachineFunction *MF, Register &Reg) {
  if (!isSpillInstruction(MI, MF))
    return false;

  auto isKilledReg = [&](const MachineOperand MO, Register &Reg) {
    if (!MO.isReg() || !MO.isUse()) {
      Reg = 0;
      return false;
    }
    Reg = MO.getReg();
    return MO.isKill();
  };

  for (const MachineOperand &MO : MI.operands()) {
    // In a spill instruction generated by the InlineSpiller the spilled
    // register has its kill flag set.
    if (isKilledReg(MO, Reg))
      return true;
    if (Reg != 0) {
      // Check whether next instruction kills the spilled register.
      // FIXME: Current solution does not cover search for killed register in
      // bundles and instructions further down the chain.
      auto NextI = std::next(MI.getIterator());
      // Skip next instruction that points to basic block end iterator.
      if (MI.getParent()->end() == NextI)
        continue;
      Register RegNext;
      for (const MachineOperand &MONext : NextI->operands()) {
        // Return true if we came across the register from the
        // previous spill instruction that is killed in NextI.
        if (isKilledReg(MONext, RegNext) && RegNext == Reg)
          return true;
      }
    }
  }
  // Return false if we didn't find spilled register.
  return false;
}

Optional<VarLocBasedLDV::VarLoc::SpillLoc>
VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI,
                                      MachineFunction *MF, Register &Reg) {
  if (!MI.hasOneMemOperand())
    return None;

  // FIXME: Handle folded restore instructions with more than one memory
  // operand.
  if (MI.getRestoreSize(TII)) {
    Reg = MI.getOperand(0).getReg();
    return extractSpillBaseRegAndOffset(MI);
  }
  return None;
}

/// A spilled register may indicate that we have to end the current range of
/// a variable and create a new one for the spill location.
/// A restored register may indicate the reverse situation.
/// We don't want to insert any instructions in process(), so we just create
/// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
/// It will be inserted into the BB when we're done iterating over the
/// instructions.
void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI,
                                                 OpenRangesSet &OpenRanges,
                                                 VarLocMap &VarLocIDs,
                                                 TransferMap &Transfers) {
  MachineFunction *MF = MI.getMF();
  TransferKind TKind;
  Register Reg;
  Optional<VarLoc::SpillLoc> Loc;

  LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););

  // First, if there are any DBG_VALUEs pointing at a spill slot that is
  // written to, then close the variable location. The value in memory
  // will have changed.
  VarLocsInRange KillSet;
  if (isSpillInstruction(MI, MF)) {
    Loc = extractSpillBaseRegAndOffset(MI);
    for (uint64_t ID : OpenRanges.getSpillVarLocs()) {
      LocIndex Idx = LocIndex::fromRawInteger(ID);
      const VarLoc &VL = VarLocIDs[Idx];
      assert(VL.containsSpillLocs() && "Broken VarLocSet?");
      if (VL.usesSpillLoc(*Loc)) {
        // This location is overwritten by the current instruction -- terminate
        // the open range, and insert an explicit DBG_VALUE $noreg.
        //
        // Doing this at a later stage would require re-interpreting all
        // DBG_VALUes and DIExpressions to identify whether they point at
        // memory, and then analysing all memory writes to see if they
        // overwrite that memory, which is expensive.
        //
        // At this stage, we already know which DBG_VALUEs are for spills and
        // where they are located; it's best to fix handle overwrites now.
        KillSet.insert(ID);
        unsigned SpillLocIdx = VL.getSpillLocIdx(*Loc);
        VarLoc::MachineLoc OldLoc = VL.Locs[SpillLocIdx];
        VarLoc UndefVL = VarLoc::CreateCopyLoc(VL, OldLoc, 0);
        LocIndices UndefLocIDs = VarLocIDs.insert(UndefVL);
        Transfers.push_back({&MI, UndefLocIDs.back()});
      }
    }
    OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kSpillLocation);
  }

  // Try to recognise spill and restore instructions that may create a new
  // variable location.
  if (isLocationSpill(MI, MF, Reg)) {
    TKind = TransferKind::TransferSpill;
    LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump(););
    LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
                      << "\n");
  } else {
    if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
      return;
    TKind = TransferKind::TransferRestore;
    LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump(););
    LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
                      << "\n");
  }
  // Check if the register or spill location is the location of a debug value.
  auto TransferCandidates = OpenRanges.getEmptyVarLocRange();
  if (TKind == TransferKind::TransferSpill)
    TransferCandidates = OpenRanges.getRegisterVarLocs(Reg);
  else if (TKind == TransferKind::TransferRestore)
    TransferCandidates = OpenRanges.getSpillVarLocs();
  for (uint64_t ID : TransferCandidates) {
    LocIndex Idx = LocIndex::fromRawInteger(ID);
    const VarLoc &VL = VarLocIDs[Idx];
    unsigned LocIdx;
    if (TKind == TransferKind::TransferSpill) {
      assert(VL.usesReg(Reg) && "Broken VarLocSet?");
      LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '('
                        << VL.Var.getVariable()->getName() << ")\n");
      LocIdx = VL.getRegIdx(Reg);
    } else {
      assert(TKind == TransferKind::TransferRestore && VL.containsSpillLocs() &&
             "Broken VarLocSet?");
      if (!VL.usesSpillLoc(*Loc))
        // The spill location is not the location of a debug value.
        continue;
      LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '('
                        << VL.Var.getVariable()->getName() << ")\n");
      LocIdx = VL.getSpillLocIdx(*Loc);
    }
    VarLoc::MachineLoc MLoc = VL.Locs[LocIdx];
    insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind,
                            MLoc, Reg);
    // FIXME: A comment should explain why it's correct to return early here,
    // if that is in fact correct.
    return;
  }
}

/// If \p MI is a register copy instruction, that copies a previously tracked
/// value from one register to another register that is callee saved, we
/// create new DBG_VALUE instruction  described with copy destination register.
void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI,
                                           OpenRangesSet &OpenRanges,
                                           VarLocMap &VarLocIDs,
                                           TransferMap &Transfers) {
  auto DestSrc = TII->isCopyInstr(MI);
  if (!DestSrc)
    return;

  const MachineOperand *DestRegOp = DestSrc->Destination;
  const MachineOperand *SrcRegOp = DestSrc->Source;

  if (!DestRegOp->isDef())
    return;

  auto isCalleeSavedReg = [&](Register Reg) {
    for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
      if (CalleeSavedRegs.test(*RAI))
        return true;
    return false;
  };

  Register SrcReg = SrcRegOp->getReg();
  Register DestReg = DestRegOp->getReg();

  // We want to recognize instructions where destination register is callee
  // saved register. If register that could be clobbered by the call is
  // included, there would be a great chance that it is going to be clobbered
  // soon. It is more likely that previous register location, which is callee
  // saved, is going to stay unclobbered longer, even if it is killed.
  if (!isCalleeSavedReg(DestReg))
    return;

  // Remember an entry value movement. If we encounter a new debug value of
  // a parameter describing only a moving of the value around, rather then
  // modifying it, we are still able to use the entry value if needed.
  if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) {
    for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
      LocIndex Idx = LocIndex::fromRawInteger(ID);
      const VarLoc &VL = VarLocIDs[Idx];
      if (VL.isEntryValueBackupReg(SrcReg)) {
        LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump(););
        VarLoc EntryValLocCopyBackup =
            VarLoc::CreateEntryCopyBackupLoc(VL.MI, LS, VL.Expr, DestReg);
        // Stop tracking the original entry value.
        OpenRanges.erase(VL);

        // Start tracking the entry value copy.
        LocIndices EntryValCopyLocIDs = VarLocIDs.insert(EntryValLocCopyBackup);
        OpenRanges.insert(EntryValCopyLocIDs, EntryValLocCopyBackup);
        break;
      }
    }
  }

  if (!SrcRegOp->isKill())
    return;

  for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) {
    LocIndex Idx = LocIndex::fromRawInteger(ID);
    assert(VarLocIDs[Idx].usesReg(SrcReg) && "Broken VarLocSet?");
    VarLoc::MachineLocValue Loc;
    Loc.RegNo = SrcReg;
    VarLoc::MachineLoc MLoc{VarLoc::MachineLocKind::RegisterKind, Loc};
    insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx,
                            TransferKind::TransferCopy, MLoc, DestReg);
    // FIXME: A comment should explain why it's correct to return early here,
    // if that is in fact correct.
    return;
  }
}

/// Terminate all open ranges at the end of the current basic block.
bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB,
                                         OpenRangesSet &OpenRanges,
                                         VarLocInMBB &OutLocs,
                                         const VarLocMap &VarLocIDs) {
  bool Changed = false;
  LLVM_DEBUG({
    VarVec VarLocs;
    OpenRanges.getUniqueVarLocs(VarLocs, VarLocIDs);
    for (VarLoc &VL : VarLocs) {
      // Copy OpenRanges to OutLocs, if not already present.
      dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ":  ";
      VL.dump(TRI);
    }
  });
  VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs);
  Changed = VLS != OpenRanges.getVarLocs();
  // New OutLocs set may be different due to spill, restore or register
  // copy instruction processing.
  if (Changed)
    VLS = OpenRanges.getVarLocs();
  OpenRanges.clear();
  return Changed;
}

/// Accumulate a mapping between each DILocalVariable fragment and other
/// fragments of that DILocalVariable which overlap. This reduces work during
/// the data-flow stage from "Find any overlapping fragments" to "Check if the
/// known-to-overlap fragments are present".
/// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
///           fragment usage.
/// \param SeenFragments Map from DILocalVariable to all fragments of that
///           Variable which are known to exist.
/// \param OverlappingFragments The overlap map being constructed, from one
///           Var/Fragment pair to a vector of fragments known to overlap.
void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI,
                                            VarToFragments &SeenFragments,
                                            OverlapMap &OverlappingFragments) {
  DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
                      MI.getDebugLoc()->getInlinedAt());
  FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();

  // If this is the first sighting of this variable, then we are guaranteed
  // there are currently no overlapping fragments either. Initialize the set
  // of seen fragments, record no overlaps for the current one, and return.
  auto SeenIt = SeenFragments.find(MIVar.getVariable());
  if (SeenIt == SeenFragments.end()) {
    SmallSet<FragmentInfo, 4> OneFragment;
    OneFragment.insert(ThisFragment);
    SeenFragments.insert({MIVar.getVariable(), OneFragment});

    OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
    return;
  }

  // If this particular Variable/Fragment pair already exists in the overlap
  // map, it has already been accounted for.
  auto IsInOLapMap =
      OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
  if (!IsInOLapMap.second)
    return;

  auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
  auto &AllSeenFragments = SeenIt->second;

  // Otherwise, examine all other seen fragments for this variable, with "this"
  // fragment being a previously unseen fragment. Record any pair of
  // overlapping fragments.
  for (auto &ASeenFragment : AllSeenFragments) {
    // Does this previously seen fragment overlap?
    if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
      // Yes: Mark the current fragment as being overlapped.
      ThisFragmentsOverlaps.push_back(ASeenFragment);
      // Mark the previously seen fragment as being overlapped by the current
      // one.
      auto ASeenFragmentsOverlaps =
          OverlappingFragments.find({MIVar.getVariable(), ASeenFragment});
      assert(ASeenFragmentsOverlaps != OverlappingFragments.end() &&
             "Previously seen var fragment has no vector of overlaps");
      ASeenFragmentsOverlaps->second.push_back(ThisFragment);
    }
  }

  AllSeenFragments.insert(ThisFragment);
}

/// This routine creates OpenRanges.
void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges,
                             VarLocMap &VarLocIDs, TransferMap &Transfers,
                             InstToEntryLocMap &EntryValTransfers,
                             RegDefToInstMap &RegSetInstrs) {
  if (!MI.isDebugInstr())
    LastNonDbgMI = &MI;
  transferDebugValue(MI, OpenRanges, VarLocIDs, EntryValTransfers,
                     RegSetInstrs);
  transferRegisterDef(MI, OpenRanges, VarLocIDs, EntryValTransfers,
                      RegSetInstrs);
  transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers);
  transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers);
}

/// This routine joins the analysis results of all incoming edges in @MBB by
/// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
/// source variable in all the predecessors of @MBB reside in the same location.
bool VarLocBasedLDV::join(
    MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
    const VarLocMap &VarLocIDs,
    SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
    SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) {
  LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");

  VarLocSet InLocsT(Alloc); // Temporary incoming locations.

  // For all predecessors of this MBB, find the set of VarLocs that
  // can be joined.
  int NumVisited = 0;
  for (auto p : MBB.predecessors()) {
    // Ignore backedges if we have not visited the predecessor yet. As the
    // predecessor hasn't yet had locations propagated into it, most locations
    // will not yet be valid, so treat them as all being uninitialized and
    // potentially valid. If a location guessed to be correct here is
    // invalidated later, we will remove it when we revisit this block.
    if (!Visited.count(p)) {
      LLVM_DEBUG(dbgs() << "  ignoring unvisited pred MBB: " << p->getNumber()
                        << "\n");
      continue;
    }
    auto OL = OutLocs.find(p);
    // Join is null in case of empty OutLocs from any of the pred.
    if (OL == OutLocs.end())
      return false;

    // Just copy over the Out locs to incoming locs for the first visited
    // predecessor, and for all other predecessors join the Out locs.
    VarLocSet &OutLocVLS = *OL->second;
    if (!NumVisited)
      InLocsT = OutLocVLS;
    else
      InLocsT &= OutLocVLS;

    LLVM_DEBUG({
      if (!InLocsT.empty()) {
        VarVec VarLocs;
        collectAllVarLocs(VarLocs, InLocsT, VarLocIDs);
        for (const VarLoc &VL : VarLocs)
          dbgs() << "  gathered candidate incoming var: "
                 << VL.Var.getVariable()->getName() << "\n";
      }
    });

    NumVisited++;
  }

  // Filter out DBG_VALUES that are out of scope.
  VarLocSet KillSet(Alloc);
  bool IsArtificial = ArtificialBlocks.count(&MBB);
  if (!IsArtificial) {
    for (uint64_t ID : InLocsT) {
      LocIndex Idx = LocIndex::fromRawInteger(ID);
      if (!VarLocIDs[Idx].dominates(LS, MBB)) {
        KillSet.set(ID);
        LLVM_DEBUG({
          auto Name = VarLocIDs[Idx].Var.getVariable()->getName();
          dbgs() << "  killing " << Name << ", it doesn't dominate MBB\n";
        });
      }
    }
  }
  InLocsT.intersectWithComplement(KillSet);

  // As we are processing blocks in reverse post-order we
  // should have processed at least one predecessor, unless it
  // is the entry block which has no predecessor.
  assert((NumVisited || MBB.pred_empty()) &&
         "Should have processed at least one predecessor");

  VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs);
  bool Changed = false;
  if (ILS != InLocsT) {
    ILS = InLocsT;
    Changed = true;
  }

  return Changed;
}

void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs,
                                       VarLocMap &VarLocIDs) {
  // PendingInLocs records all locations propagated into blocks, which have
  // not had DBG_VALUE insts created. Go through and create those insts now.
  for (auto &Iter : PendingInLocs) {
    // Map is keyed on a constant pointer, unwrap it so we can insert insts.
    auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first);
    VarLocSet &Pending = *Iter.second;

    SmallVector<VarLoc, 32> VarLocs;
    collectAllVarLocs(VarLocs, Pending, VarLocIDs);

    for (VarLoc DiffIt : VarLocs) {
      // The ID location is live-in to MBB -- work out what kind of machine
      // location it is and create a DBG_VALUE.
      if (DiffIt.isEntryBackupLoc())
        continue;
      MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent());
      MBB.insert(MBB.instr_begin(), MI);

      (void)MI;
      LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump(););
    }
  }
}

bool VarLocBasedLDV::isEntryValueCandidate(
    const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const {
  assert(MI.isDebugValue() && "This must be DBG_VALUE.");

  // TODO: Add support for local variables that are expressed in terms of
  // parameters entry values.
  // TODO: Add support for modified arguments that can be expressed
  // by using its entry value.
  auto *DIVar = MI.getDebugVariable();
  if (!DIVar->isParameter())
    return false;

  // Do not consider parameters that belong to an inlined function.
  if (MI.getDebugLoc()->getInlinedAt())
    return false;

  // Only consider parameters that are described using registers. Parameters
  // that are passed on the stack are not yet supported, so ignore debug
  // values that are described by the frame or stack pointer.
  if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI))
    return false;

  // If a parameter's value has been propagated from the caller, then the
  // parameter's DBG_VALUE may be described using a register defined by some
  // instruction in the entry block, in which case we shouldn't create an
  // entry value.
  if (DefinedRegs.count(MI.getDebugOperand(0).getReg()))
    return false;

  // TODO: Add support for parameters that have a pre-existing debug expressions
  // (e.g. fragments).
  if (MI.getDebugExpression()->getNumElements() > 0)
    return false;

  return true;
}

/// Collect all register defines (including aliases) for the given instruction.
static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs,
                           const TargetRegisterInfo *TRI) {
  for (const MachineOperand &MO : MI.operands())
    if (MO.isReg() && MO.isDef() && MO.getReg())
      for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
        Regs.insert(*AI);
}

/// This routine records the entry values of function parameters. The values
/// could be used as backup values. If we loose the track of some unmodified
/// parameters, the backup values will be used as a primary locations.
void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI,
                                       const DefinedRegsSet &DefinedRegs,
                                       OpenRangesSet &OpenRanges,
                                       VarLocMap &VarLocIDs) {
  if (TPC) {
    auto &TM = TPC->getTM<TargetMachine>();
    if (!TM.Options.ShouldEmitDebugEntryValues())
      return;
  }

  DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(),
                  MI.getDebugLoc()->getInlinedAt());

  if (!isEntryValueCandidate(MI, DefinedRegs) ||
      OpenRanges.getEntryValueBackup(V))
    return;

  LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump(););

  // Create the entry value and use it as a backup location until it is
  // valid. It is valid until a parameter is not changed.
  DIExpression *NewExpr =
      DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue);
  VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, LS, NewExpr);
  LocIndices EntryValLocIDs = VarLocIDs.insert(EntryValLocAsBackup);
  OpenRanges.insert(EntryValLocIDs, EntryValLocAsBackup);
}

/// Calculate the liveness information for the given machine function and
/// extend ranges across basic blocks.
bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF,
                                  MachineDominatorTree *DomTree,
                                  TargetPassConfig *TPC, unsigned InputBBLimit,
                                  unsigned InputDbgValLimit) {
  (void)DomTree;
  LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");

  if (!MF.getFunction().getSubprogram())
    // VarLocBaseLDV will already have removed all DBG_VALUEs.
    return false;

  // Skip functions from NoDebug compilation units.
  if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
      DICompileUnit::NoDebug)
    return false;

  TRI = MF.getSubtarget().getRegisterInfo();
  TII = MF.getSubtarget().getInstrInfo();
  TFI = MF.getSubtarget().getFrameLowering();
  TFI->getCalleeSaves(MF, CalleeSavedRegs);
  this->TPC = TPC;
  LS.initialize(MF);

  bool Changed = false;
  bool OLChanged = false;
  bool MBBJoined = false;

  VarLocMap VarLocIDs;         // Map VarLoc<>unique ID for use in bitvectors.
  OverlapMap OverlapFragments; // Map of overlapping variable fragments.
  OpenRangesSet OpenRanges(Alloc, OverlapFragments);
                              // Ranges that are open until end of bb.
  VarLocInMBB OutLocs;        // Ranges that exist beyond bb.
  VarLocInMBB InLocs;         // Ranges that are incoming after joining.
  TransferMap Transfers;      // DBG_VALUEs associated with transfers (such as
                              // spills, copies and restores).
  // Map responsible MI to attached Transfer emitted from Backup Entry Value.
  InstToEntryLocMap EntryValTransfers;
  // Map a Register to the last MI which clobbered it.
  RegDefToInstMap RegSetInstrs;

  VarToFragments SeenFragments;

  // Blocks which are artificial, i.e. blocks which exclusively contain
  // instructions without locations, or with line 0 locations.
  SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;

  DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
  DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
  std::priority_queue<unsigned int, std::vector<unsigned int>,
                      std::greater<unsigned int>>
      Worklist;
  std::priority_queue<unsigned int, std::vector<unsigned int>,
                      std::greater<unsigned int>>
      Pending;

  // Set of register defines that are seen when traversing the entry block
  // looking for debug entry value candidates.
  DefinedRegsSet DefinedRegs;

  // Only in the case of entry MBB collect DBG_VALUEs representing
  // function parameters in order to generate debug entry values for them.
  MachineBasicBlock &First_MBB = *(MF.begin());
  for (auto &MI : First_MBB) {
    collectRegDefs(MI, DefinedRegs, TRI);
    if (MI.isDebugValue())
      recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs);
  }

  // Initialize per-block structures and scan for fragment overlaps.
  for (auto &MBB : MF)
    for (auto &MI : MBB)
      if (MI.isDebugValue())
        accumulateFragmentMap(MI, SeenFragments, OverlapFragments);

  auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
    if (const DebugLoc &DL = MI.getDebugLoc())
      return DL.getLine() != 0;
    return false;
  };
  for (auto &MBB : MF)
    if (none_of(MBB.instrs(), hasNonArtificialLocation))
      ArtificialBlocks.insert(&MBB);

  LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
                              "OutLocs after initialization", dbgs()));

  ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
  unsigned int RPONumber = 0;
  for (MachineBasicBlock *MBB : RPOT) {
    OrderToBB[RPONumber] = MBB;
    BBToOrder[MBB] = RPONumber;
    Worklist.push(RPONumber);
    ++RPONumber;
  }

  if (RPONumber > InputBBLimit) {
    unsigned NumInputDbgValues = 0;
    for (auto &MBB : MF)
      for (auto &MI : MBB)
        if (MI.isDebugValue())
          ++NumInputDbgValues;
    if (NumInputDbgValues > InputDbgValLimit) {
      LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName()
                        << " has " << RPONumber << " basic blocks and "
                        << NumInputDbgValues
                        << " input DBG_VALUEs, exceeding limits.\n");
      return false;
    }
  }

  // This is a standard "union of predecessor outs" dataflow problem.
  // To solve it, we perform join() and process() using the two worklist method
  // until the ranges converge.
  // Ranges have converged when both worklists are empty.
  SmallPtrSet<const MachineBasicBlock *, 16> Visited;
  while (!Worklist.empty() || !Pending.empty()) {
    // We track what is on the pending worklist to avoid inserting the same
    // thing twice.  We could avoid this with a custom priority queue, but this
    // is probably not worth it.
    SmallPtrSet<MachineBasicBlock *, 16> OnPending;
    LLVM_DEBUG(dbgs() << "Processing Worklist\n");
    while (!Worklist.empty()) {
      MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
      Worklist.pop();
      MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited,
                       ArtificialBlocks);
      MBBJoined |= Visited.insert(MBB).second;
      if (MBBJoined) {
        MBBJoined = false;
        Changed = true;
        // Now that we have started to extend ranges across BBs we need to
        // examine spill, copy and restore instructions to see whether they
        // operate with registers that correspond to user variables.
        // First load any pending inlocs.
        OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs);
        LastNonDbgMI = nullptr;
        RegSetInstrs.clear();
        for (auto &MI : *MBB)
          process(MI, OpenRanges, VarLocIDs, Transfers, EntryValTransfers,
                  RegSetInstrs);
        OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs);

        LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
                                    "OutLocs after propagating", dbgs()));
        LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs,
                                    "InLocs after propagating", dbgs()));

        if (OLChanged) {
          OLChanged = false;
          for (auto s : MBB->successors())
            if (OnPending.insert(s).second) {
              Pending.push(BBToOrder[s]);
            }
        }
      }
    }
    Worklist.swap(Pending);
    // At this point, pending must be empty, since it was just the empty
    // worklist
    assert(Pending.empty() && "Pending should be empty");
  }

  // Add any DBG_VALUE instructions created by location transfers.
  for (auto &TR : Transfers) {
    assert(!TR.TransferInst->isTerminator() &&
           "Cannot insert DBG_VALUE after terminator");
    MachineBasicBlock *MBB = TR.TransferInst->getParent();
    const VarLoc &VL = VarLocIDs[TR.LocationID];
    MachineInstr *MI = VL.BuildDbgValue(MF);
    MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI);
  }
  Transfers.clear();

  // Add DBG_VALUEs created using Backup Entry Value location.
  for (auto &TR : EntryValTransfers) {
    MachineInstr *TRInst = const_cast<MachineInstr *>(TR.first);
    assert(!TRInst->isTerminator() &&
           "Cannot insert DBG_VALUE after terminator");
    MachineBasicBlock *MBB = TRInst->getParent();
    const VarLoc &VL = VarLocIDs[TR.second];
    MachineInstr *MI = VL.BuildDbgValue(MF);
    MBB->insertAfterBundle(TRInst->getIterator(), MI);
  }
  EntryValTransfers.clear();

  // Deferred inlocs will not have had any DBG_VALUE insts created; do
  // that now.
  flushPendingLocs(InLocs, VarLocIDs);

  LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs()));
  LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs()));
  return Changed;
}

LDVImpl *
llvm::makeVarLocBasedLiveDebugValues()
{
  return new VarLocBasedLDV();
}