aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/IR/Verifier.cpp
blob: b6ad85b2d46e12e6723edf8066130e6e48d4e763 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the function verifier interface, that can be used for some
// basic correctness checking of input to the system.
//
// Note that this does not provide full `Java style' security and verifications,
// instead it just tries to ensure that code is well-formed.
//
//  * Both of a binary operator's parameters are of the same type
//  * Verify that the indices of mem access instructions match other operands
//  * Verify that arithmetic and other things are only performed on first-class
//    types.  Verify that shifts & logicals only happen on integrals f.e.
//  * All of the constants in a switch statement are of the correct type
//  * The code is in valid SSA form
//  * It should be illegal to put a label into any other type (like a structure)
//    or to return one. [except constant arrays!]
//  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
//  * PHI nodes must have an entry for each predecessor, with no extras.
//  * PHI nodes must be the first thing in a basic block, all grouped together
//  * All basic blocks should only end with terminator insts, not contain them
//  * The entry node to a function must not have predecessors
//  * All Instructions must be embedded into a basic block
//  * Functions cannot take a void-typed parameter
//  * Verify that a function's argument list agrees with it's declared type.
//  * It is illegal to specify a name for a void value.
//  * It is illegal to have a internal global value with no initializer
//  * It is illegal to have a ret instruction that returns a value that does not
//    agree with the function return value type.
//  * Function call argument types match the function prototype
//  * A landing pad is defined by a landingpad instruction, and can be jumped to
//    only by the unwind edge of an invoke instruction.
//  * A landingpad instruction must be the first non-PHI instruction in the
//    block.
//  * Landingpad instructions must be in a function with a personality function.
//  * Convergence control intrinsics are introduced in ConvergentOperations.rst.
//    The applied restrictions are too numerous to list here.
//  * The convergence entry intrinsic and the loop heart must be the first
//    non-PHI instruction in their respective block. This does not conflict with
//    the landing pads, since these two kinds cannot occur in the same block.
//  * All other things that are tested by asserts spread about the code...
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/Verifier.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/AttributeMask.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/ConvergenceVerifier.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/EHPersonalities.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GCStrategy.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/IntrinsicsNVPTX.h"
#include "llvm/IR/IntrinsicsWebAssembly.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSlotTracker.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <memory>
#include <optional>
#include <string>
#include <utility>

using namespace llvm;

static cl::opt<bool> VerifyNoAliasScopeDomination(
    "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
    cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
             "scopes are not dominating"));

namespace llvm {

struct VerifierSupport {
  raw_ostream *OS;
  const Module &M;
  ModuleSlotTracker MST;
  Triple TT;
  const DataLayout &DL;
  LLVMContext &Context;

  /// Track the brokenness of the module while recursively visiting.
  bool Broken = false;
  /// Broken debug info can be "recovered" from by stripping the debug info.
  bool BrokenDebugInfo = false;
  /// Whether to treat broken debug info as an error.
  bool TreatBrokenDebugInfoAsError = true;

  explicit VerifierSupport(raw_ostream *OS, const Module &M)
      : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
        Context(M.getContext()) {}

private:
  void Write(const Module *M) {
    *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
  }

  void Write(const Value *V) {
    if (V)
      Write(*V);
  }

  void Write(const Value &V) {
    if (isa<Instruction>(V)) {
      V.print(*OS, MST);
      *OS << '\n';
    } else {
      V.printAsOperand(*OS, true, MST);
      *OS << '\n';
    }
  }

  void Write(const Metadata *MD) {
    if (!MD)
      return;
    MD->print(*OS, MST, &M);
    *OS << '\n';
  }

  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
    Write(MD.get());
  }

  void Write(const NamedMDNode *NMD) {
    if (!NMD)
      return;
    NMD->print(*OS, MST);
    *OS << '\n';
  }

  void Write(Type *T) {
    if (!T)
      return;
    *OS << ' ' << *T;
  }

  void Write(const Comdat *C) {
    if (!C)
      return;
    *OS << *C;
  }

  void Write(const APInt *AI) {
    if (!AI)
      return;
    *OS << *AI << '\n';
  }

  void Write(const unsigned i) { *OS << i << '\n'; }

  // NOLINTNEXTLINE(readability-identifier-naming)
  void Write(const Attribute *A) {
    if (!A)
      return;
    *OS << A->getAsString() << '\n';
  }

  // NOLINTNEXTLINE(readability-identifier-naming)
  void Write(const AttributeSet *AS) {
    if (!AS)
      return;
    *OS << AS->getAsString() << '\n';
  }

  // NOLINTNEXTLINE(readability-identifier-naming)
  void Write(const AttributeList *AL) {
    if (!AL)
      return;
    AL->print(*OS);
  }

  void Write(Printable P) { *OS << P << '\n'; }

  template <typename T> void Write(ArrayRef<T> Vs) {
    for (const T &V : Vs)
      Write(V);
  }

  template <typename T1, typename... Ts>
  void WriteTs(const T1 &V1, const Ts &... Vs) {
    Write(V1);
    WriteTs(Vs...);
  }

  template <typename... Ts> void WriteTs() {}

public:
  /// A check failed, so printout out the condition and the message.
  ///
  /// This provides a nice place to put a breakpoint if you want to see why
  /// something is not correct.
  void CheckFailed(const Twine &Message) {
    if (OS)
      *OS << Message << '\n';
    Broken = true;
  }

  /// A check failed (with values to print).
  ///
  /// This calls the Message-only version so that the above is easier to set a
  /// breakpoint on.
  template <typename T1, typename... Ts>
  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
    CheckFailed(Message);
    if (OS)
      WriteTs(V1, Vs...);
  }

  /// A debug info check failed.
  void DebugInfoCheckFailed(const Twine &Message) {
    if (OS)
      *OS << Message << '\n';
    Broken |= TreatBrokenDebugInfoAsError;
    BrokenDebugInfo = true;
  }

  /// A debug info check failed (with values to print).
  template <typename T1, typename... Ts>
  void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
                            const Ts &... Vs) {
    DebugInfoCheckFailed(Message);
    if (OS)
      WriteTs(V1, Vs...);
  }
};

} // namespace llvm

namespace {

class Verifier : public InstVisitor<Verifier>, VerifierSupport {
  friend class InstVisitor<Verifier>;

  // ISD::ArgFlagsTy::MemAlign only have 4 bits for alignment, so
  // the alignment size should not exceed 2^15. Since encode(Align)
  // would plus the shift value by 1, the alignment size should
  // not exceed 2^14, otherwise it can NOT be properly lowered
  // in backend.
  static constexpr unsigned ParamMaxAlignment = 1 << 14;
  DominatorTree DT;

  /// When verifying a basic block, keep track of all of the
  /// instructions we have seen so far.
  ///
  /// This allows us to do efficient dominance checks for the case when an
  /// instruction has an operand that is an instruction in the same block.
  SmallPtrSet<Instruction *, 16> InstsInThisBlock;

  /// Keep track of the metadata nodes that have been checked already.
  SmallPtrSet<const Metadata *, 32> MDNodes;

  /// Keep track which DISubprogram is attached to which function.
  DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;

  /// Track all DICompileUnits visited.
  SmallPtrSet<const Metadata *, 2> CUVisited;

  /// The result type for a landingpad.
  Type *LandingPadResultTy;

  /// Whether we've seen a call to @llvm.localescape in this function
  /// already.
  bool SawFrameEscape;

  /// Whether the current function has a DISubprogram attached to it.
  bool HasDebugInfo = false;

  /// The current source language.
  dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;

  /// Stores the count of how many objects were passed to llvm.localescape for a
  /// given function and the largest index passed to llvm.localrecover.
  DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;

  // Maps catchswitches and cleanuppads that unwind to siblings to the
  // terminators that indicate the unwind, used to detect cycles therein.
  MapVector<Instruction *, Instruction *> SiblingFuncletInfo;

  /// Cache which blocks are in which funclet, if an EH funclet personality is
  /// in use. Otherwise empty.
  DenseMap<BasicBlock *, ColorVector> BlockEHFuncletColors;

  /// Cache of constants visited in search of ConstantExprs.
  SmallPtrSet<const Constant *, 32> ConstantExprVisited;

  /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
  SmallVector<const Function *, 4> DeoptimizeDeclarations;

  /// Cache of attribute lists verified.
  SmallPtrSet<const void *, 32> AttributeListsVisited;

  // Verify that this GlobalValue is only used in this module.
  // This map is used to avoid visiting uses twice. We can arrive at a user
  // twice, if they have multiple operands. In particular for very large
  // constant expressions, we can arrive at a particular user many times.
  SmallPtrSet<const Value *, 32> GlobalValueVisited;

  // Keeps track of duplicate function argument debug info.
  SmallVector<const DILocalVariable *, 16> DebugFnArgs;

  TBAAVerifier TBAAVerifyHelper;
  ConvergenceVerifier ConvergenceVerifyHelper;

  SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;

  void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);

public:
  explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
                    const Module &M)
      : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
        SawFrameEscape(false), TBAAVerifyHelper(this) {
    TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
  }

  bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }

  bool verify(const Function &F) {
    assert(F.getParent() == &M &&
           "An instance of this class only works with a specific module!");

    // First ensure the function is well-enough formed to compute dominance
    // information, and directly compute a dominance tree. We don't rely on the
    // pass manager to provide this as it isolates us from a potentially
    // out-of-date dominator tree and makes it significantly more complex to run
    // this code outside of a pass manager.
    // FIXME: It's really gross that we have to cast away constness here.
    if (!F.empty())
      DT.recalculate(const_cast<Function &>(F));

    for (const BasicBlock &BB : F) {
      if (!BB.empty() && BB.back().isTerminator())
        continue;

      if (OS) {
        *OS << "Basic Block in function '" << F.getName()
            << "' does not have terminator!\n";
        BB.printAsOperand(*OS, true, MST);
        *OS << "\n";
      }
      return false;
    }

    auto FailureCB = [this](const Twine &Message) {
      this->CheckFailed(Message);
    };
    ConvergenceVerifyHelper.initialize(OS, FailureCB, F);

    Broken = false;
    // FIXME: We strip const here because the inst visitor strips const.
    visit(const_cast<Function &>(F));
    verifySiblingFuncletUnwinds();

    if (ConvergenceVerifyHelper.sawTokens())
      ConvergenceVerifyHelper.verify(DT);

    InstsInThisBlock.clear();
    DebugFnArgs.clear();
    LandingPadResultTy = nullptr;
    SawFrameEscape = false;
    SiblingFuncletInfo.clear();
    verifyNoAliasScopeDecl();
    NoAliasScopeDecls.clear();

    return !Broken;
  }

  /// Verify the module that this instance of \c Verifier was initialized with.
  bool verify() {
    Broken = false;

    // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
    for (const Function &F : M)
      if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
        DeoptimizeDeclarations.push_back(&F);

    // Now that we've visited every function, verify that we never asked to
    // recover a frame index that wasn't escaped.
    verifyFrameRecoverIndices();
    for (const GlobalVariable &GV : M.globals())
      visitGlobalVariable(GV);

    for (const GlobalAlias &GA : M.aliases())
      visitGlobalAlias(GA);

    for (const GlobalIFunc &GI : M.ifuncs())
      visitGlobalIFunc(GI);

    for (const NamedMDNode &NMD : M.named_metadata())
      visitNamedMDNode(NMD);

    for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
      visitComdat(SMEC.getValue());

    visitModuleFlags();
    visitModuleIdents();
    visitModuleCommandLines();

    verifyCompileUnits();

    verifyDeoptimizeCallingConvs();
    DISubprogramAttachments.clear();
    return !Broken;
  }

private:
  /// Whether a metadata node is allowed to be, or contain, a DILocation.
  enum class AreDebugLocsAllowed { No, Yes };

  // Verification methods...
  void visitGlobalValue(const GlobalValue &GV);
  void visitGlobalVariable(const GlobalVariable &GV);
  void visitGlobalAlias(const GlobalAlias &GA);
  void visitGlobalIFunc(const GlobalIFunc &GI);
  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
                           const GlobalAlias &A, const Constant &C);
  void visitNamedMDNode(const NamedMDNode &NMD);
  void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
  void visitDIArgList(const DIArgList &AL, Function *F);
  void visitComdat(const Comdat &C);
  void visitModuleIdents();
  void visitModuleCommandLines();
  void visitModuleFlags();
  void visitModuleFlag(const MDNode *Op,
                       DenseMap<const MDString *, const MDNode *> &SeenIDs,
                       SmallVectorImpl<const MDNode *> &Requirements);
  void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
  void visitFunction(const Function &F);
  void visitBasicBlock(BasicBlock &BB);
  void verifyRangeMetadata(const Value &V, const MDNode *Range, Type *Ty,
                           bool IsAbsoluteSymbol);
  void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
  void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
  void visitProfMetadata(Instruction &I, MDNode *MD);
  void visitCallStackMetadata(MDNode *MD);
  void visitMemProfMetadata(Instruction &I, MDNode *MD);
  void visitCallsiteMetadata(Instruction &I, MDNode *MD);
  void visitDIAssignIDMetadata(Instruction &I, MDNode *MD);
  void visitAnnotationMetadata(MDNode *Annotation);
  void visitAliasScopeMetadata(const MDNode *MD);
  void visitAliasScopeListMetadata(const MDNode *MD);
  void visitAccessGroupMetadata(const MDNode *MD);

  template <class Ty> bool isValidMetadataArray(const MDTuple &N);
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
#include "llvm/IR/Metadata.def"
  void visitDIScope(const DIScope &N);
  void visitDIVariable(const DIVariable &N);
  void visitDILexicalBlockBase(const DILexicalBlockBase &N);
  void visitDITemplateParameter(const DITemplateParameter &N);

  void visitTemplateParams(const MDNode &N, const Metadata &RawParams);

  // InstVisitor overrides...
  using InstVisitor<Verifier>::visit;
  void visit(Instruction &I);

  void visitTruncInst(TruncInst &I);
  void visitZExtInst(ZExtInst &I);
  void visitSExtInst(SExtInst &I);
  void visitFPTruncInst(FPTruncInst &I);
  void visitFPExtInst(FPExtInst &I);
  void visitFPToUIInst(FPToUIInst &I);
  void visitFPToSIInst(FPToSIInst &I);
  void visitUIToFPInst(UIToFPInst &I);
  void visitSIToFPInst(SIToFPInst &I);
  void visitIntToPtrInst(IntToPtrInst &I);
  void visitPtrToIntInst(PtrToIntInst &I);
  void visitBitCastInst(BitCastInst &I);
  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
  void visitPHINode(PHINode &PN);
  void visitCallBase(CallBase &Call);
  void visitUnaryOperator(UnaryOperator &U);
  void visitBinaryOperator(BinaryOperator &B);
  void visitICmpInst(ICmpInst &IC);
  void visitFCmpInst(FCmpInst &FC);
  void visitExtractElementInst(ExtractElementInst &EI);
  void visitInsertElementInst(InsertElementInst &EI);
  void visitShuffleVectorInst(ShuffleVectorInst &EI);
  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
  void visitCallInst(CallInst &CI);
  void visitInvokeInst(InvokeInst &II);
  void visitGetElementPtrInst(GetElementPtrInst &GEP);
  void visitLoadInst(LoadInst &LI);
  void visitStoreInst(StoreInst &SI);
  void verifyDominatesUse(Instruction &I, unsigned i);
  void visitInstruction(Instruction &I);
  void visitTerminator(Instruction &I);
  void visitBranchInst(BranchInst &BI);
  void visitReturnInst(ReturnInst &RI);
  void visitSwitchInst(SwitchInst &SI);
  void visitIndirectBrInst(IndirectBrInst &BI);
  void visitCallBrInst(CallBrInst &CBI);
  void visitSelectInst(SelectInst &SI);
  void visitUserOp1(Instruction &I);
  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
  void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
  void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
  void visitVPIntrinsic(VPIntrinsic &VPI);
  void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
  void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
  void visitFenceInst(FenceInst &FI);
  void visitAllocaInst(AllocaInst &AI);
  void visitExtractValueInst(ExtractValueInst &EVI);
  void visitInsertValueInst(InsertValueInst &IVI);
  void visitEHPadPredecessors(Instruction &I);
  void visitLandingPadInst(LandingPadInst &LPI);
  void visitResumeInst(ResumeInst &RI);
  void visitCatchPadInst(CatchPadInst &CPI);
  void visitCatchReturnInst(CatchReturnInst &CatchReturn);
  void visitCleanupPadInst(CleanupPadInst &CPI);
  void visitFuncletPadInst(FuncletPadInst &FPI);
  void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
  void visitCleanupReturnInst(CleanupReturnInst &CRI);

  void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
  void verifySwiftErrorValue(const Value *SwiftErrorVal);
  void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context);
  void verifyMustTailCall(CallInst &CI);
  bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
  void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
  void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
  void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
                                    const Value *V);
  void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
                           const Value *V, bool IsIntrinsic, bool IsInlineAsm);
  void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);

  void visitConstantExprsRecursively(const Constant *EntryC);
  void visitConstantExpr(const ConstantExpr *CE);
  void verifyInlineAsmCall(const CallBase &Call);
  void verifyStatepoint(const CallBase &Call);
  void verifyFrameRecoverIndices();
  void verifySiblingFuncletUnwinds();

  void verifyFragmentExpression(const DbgVariableIntrinsic &I);
  template <typename ValueOrMetadata>
  void verifyFragmentExpression(const DIVariable &V,
                                DIExpression::FragmentInfo Fragment,
                                ValueOrMetadata *Desc);
  void verifyFnArgs(const DbgVariableIntrinsic &I);
  void verifyNotEntryValue(const DbgVariableIntrinsic &I);

  /// Module-level debug info verification...
  void verifyCompileUnits();

  /// Module-level verification that all @llvm.experimental.deoptimize
  /// declarations share the same calling convention.
  void verifyDeoptimizeCallingConvs();

  void verifyAttachedCallBundle(const CallBase &Call,
                                const OperandBundleUse &BU);

  /// Verify the llvm.experimental.noalias.scope.decl declarations
  void verifyNoAliasScopeDecl();
};

} // end anonymous namespace

/// We know that cond should be true, if not print an error message.
#define Check(C, ...)                                                          \
  do {                                                                         \
    if (!(C)) {                                                                \
      CheckFailed(__VA_ARGS__);                                                \
      return;                                                                  \
    }                                                                          \
  } while (false)

/// We know that a debug info condition should be true, if not print
/// an error message.
#define CheckDI(C, ...)                                                        \
  do {                                                                         \
    if (!(C)) {                                                                \
      DebugInfoCheckFailed(__VA_ARGS__);                                       \
      return;                                                                  \
    }                                                                          \
  } while (false)

void Verifier::visit(Instruction &I) {
  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
    Check(I.getOperand(i) != nullptr, "Operand is null", &I);
  InstVisitor<Verifier>::visit(I);
}

// Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further.
static void forEachUser(const Value *User,
                        SmallPtrSet<const Value *, 32> &Visited,
                        llvm::function_ref<bool(const Value *)> Callback) {
  if (!Visited.insert(User).second)
    return;

  SmallVector<const Value *> WorkList;
  append_range(WorkList, User->materialized_users());
  while (!WorkList.empty()) {
   const Value *Cur = WorkList.pop_back_val();
    if (!Visited.insert(Cur).second)
      continue;
    if (Callback(Cur))
      append_range(WorkList, Cur->materialized_users());
  }
}

void Verifier::visitGlobalValue(const GlobalValue &GV) {
  Check(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
        "Global is external, but doesn't have external or weak linkage!", &GV);

  if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) {

    if (MaybeAlign A = GO->getAlign()) {
      Check(A->value() <= Value::MaximumAlignment,
            "huge alignment values are unsupported", GO);
    }

    if (const MDNode *Associated =
            GO->getMetadata(LLVMContext::MD_associated)) {
      Check(Associated->getNumOperands() == 1,
            "associated metadata must have one operand", &GV, Associated);
      const Metadata *Op = Associated->getOperand(0).get();
      Check(Op, "associated metadata must have a global value", GO, Associated);

      const auto *VM = dyn_cast_or_null<ValueAsMetadata>(Op);
      Check(VM, "associated metadata must be ValueAsMetadata", GO, Associated);
      if (VM) {
        Check(isa<PointerType>(VM->getValue()->getType()),
              "associated value must be pointer typed", GV, Associated);

        const Value *Stripped = VM->getValue()->stripPointerCastsAndAliases();
        Check(isa<GlobalObject>(Stripped) || isa<Constant>(Stripped),
              "associated metadata must point to a GlobalObject", GO, Stripped);
        Check(Stripped != GO,
              "global values should not associate to themselves", GO,
              Associated);
      }
    }

    // FIXME: Why is getMetadata on GlobalValue protected?
    if (const MDNode *AbsoluteSymbol =
            GO->getMetadata(LLVMContext::MD_absolute_symbol)) {
      verifyRangeMetadata(*GO, AbsoluteSymbol, DL.getIntPtrType(GO->getType()),
                          true);
    }
  }

  Check(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
        "Only global variables can have appending linkage!", &GV);

  if (GV.hasAppendingLinkage()) {
    const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
    Check(GVar && GVar->getValueType()->isArrayTy(),
          "Only global arrays can have appending linkage!", GVar);
  }

  if (GV.isDeclarationForLinker())
    Check(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);

  if (GV.hasDLLExportStorageClass()) {
    Check(!GV.hasHiddenVisibility(),
          "dllexport GlobalValue must have default or protected visibility",
          &GV);
  }
  if (GV.hasDLLImportStorageClass()) {
    Check(GV.hasDefaultVisibility(),
          "dllimport GlobalValue must have default visibility", &GV);
    Check(!GV.isDSOLocal(), "GlobalValue with DLLImport Storage is dso_local!",
          &GV);

    Check((GV.isDeclaration() &&
           (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
              GV.hasAvailableExternallyLinkage(),
          "Global is marked as dllimport, but not external", &GV);
  }

  if (GV.isImplicitDSOLocal())
    Check(GV.isDSOLocal(),
          "GlobalValue with local linkage or non-default "
          "visibility must be dso_local!",
          &GV);

  forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
    if (const Instruction *I = dyn_cast<Instruction>(V)) {
      if (!I->getParent() || !I->getParent()->getParent())
        CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
                    I);
      else if (I->getParent()->getParent()->getParent() != &M)
        CheckFailed("Global is referenced in a different module!", &GV, &M, I,
                    I->getParent()->getParent(),
                    I->getParent()->getParent()->getParent());
      return false;
    } else if (const Function *F = dyn_cast<Function>(V)) {
      if (F->getParent() != &M)
        CheckFailed("Global is used by function in a different module", &GV, &M,
                    F, F->getParent());
      return false;
    }
    return true;
  });
}

void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
  if (GV.hasInitializer()) {
    Check(GV.getInitializer()->getType() == GV.getValueType(),
          "Global variable initializer type does not match global "
          "variable type!",
          &GV);
    // If the global has common linkage, it must have a zero initializer and
    // cannot be constant.
    if (GV.hasCommonLinkage()) {
      Check(GV.getInitializer()->isNullValue(),
            "'common' global must have a zero initializer!", &GV);
      Check(!GV.isConstant(), "'common' global may not be marked constant!",
            &GV);
      Check(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
    }
  }

  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
                       GV.getName() == "llvm.global_dtors")) {
    Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
          "invalid linkage for intrinsic global variable", &GV);
    Check(GV.materialized_use_empty(),
          "invalid uses of intrinsic global variable", &GV);

    // Don't worry about emitting an error for it not being an array,
    // visitGlobalValue will complain on appending non-array.
    if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
      StructType *STy = dyn_cast<StructType>(ATy->getElementType());
      PointerType *FuncPtrTy =
          PointerType::get(Context, DL.getProgramAddressSpace());
      Check(STy && (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
                STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
                STy->getTypeAtIndex(1) == FuncPtrTy,
            "wrong type for intrinsic global variable", &GV);
      Check(STy->getNumElements() == 3,
            "the third field of the element type is mandatory, "
            "specify ptr null to migrate from the obsoleted 2-field form");
      Type *ETy = STy->getTypeAtIndex(2);
      Check(ETy->isPointerTy(), "wrong type for intrinsic global variable",
            &GV);
    }
  }

  if (GV.hasName() && (GV.getName() == "llvm.used" ||
                       GV.getName() == "llvm.compiler.used")) {
    Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
          "invalid linkage for intrinsic global variable", &GV);
    Check(GV.materialized_use_empty(),
          "invalid uses of intrinsic global variable", &GV);

    Type *GVType = GV.getValueType();
    if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
      PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
      Check(PTy, "wrong type for intrinsic global variable", &GV);
      if (GV.hasInitializer()) {
        const Constant *Init = GV.getInitializer();
        const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
        Check(InitArray, "wrong initalizer for intrinsic global variable",
              Init);
        for (Value *Op : InitArray->operands()) {
          Value *V = Op->stripPointerCasts();
          Check(isa<GlobalVariable>(V) || isa<Function>(V) ||
                    isa<GlobalAlias>(V),
                Twine("invalid ") + GV.getName() + " member", V);
          Check(V->hasName(),
                Twine("members of ") + GV.getName() + " must be named", V);
        }
      }
    }
  }

  // Visit any debug info attachments.
  SmallVector<MDNode *, 1> MDs;
  GV.getMetadata(LLVMContext::MD_dbg, MDs);
  for (auto *MD : MDs) {
    if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
      visitDIGlobalVariableExpression(*GVE);
    else
      CheckDI(false, "!dbg attachment of global variable must be a "
                     "DIGlobalVariableExpression");
  }

  // Scalable vectors cannot be global variables, since we don't know
  // the runtime size.
  Check(!GV.getValueType()->isScalableTy(),
        "Globals cannot contain scalable types", &GV);

  // Check if it's a target extension type that disallows being used as a
  // global.
  if (auto *TTy = dyn_cast<TargetExtType>(GV.getValueType()))
    Check(TTy->hasProperty(TargetExtType::CanBeGlobal),
          "Global @" + GV.getName() + " has illegal target extension type",
          TTy);

  if (!GV.hasInitializer()) {
    visitGlobalValue(GV);
    return;
  }

  // Walk any aggregate initializers looking for bitcasts between address spaces
  visitConstantExprsRecursively(GV.getInitializer());

  visitGlobalValue(GV);
}

void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
  SmallPtrSet<const GlobalAlias*, 4> Visited;
  Visited.insert(&GA);
  visitAliaseeSubExpr(Visited, GA, C);
}

void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
                                   const GlobalAlias &GA, const Constant &C) {
  if (GA.hasAvailableExternallyLinkage()) {
    Check(isa<GlobalValue>(C) &&
              cast<GlobalValue>(C).hasAvailableExternallyLinkage(),
          "available_externally alias must point to available_externally "
          "global value",
          &GA);
  }
  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
    if (!GA.hasAvailableExternallyLinkage()) {
      Check(!GV->isDeclarationForLinker(), "Alias must point to a definition",
            &GA);
    }

    if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
      Check(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);

      Check(!GA2->isInterposable(),
            "Alias cannot point to an interposable alias", &GA);
    } else {
      // Only continue verifying subexpressions of GlobalAliases.
      // Do not recurse into global initializers.
      return;
    }
  }

  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
    visitConstantExprsRecursively(CE);

  for (const Use &U : C.operands()) {
    Value *V = &*U;
    if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
      visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
    else if (const auto *C2 = dyn_cast<Constant>(V))
      visitAliaseeSubExpr(Visited, GA, *C2);
  }
}

void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
  Check(GlobalAlias::isValidLinkage(GA.getLinkage()),
        "Alias should have private, internal, linkonce, weak, linkonce_odr, "
        "weak_odr, external, or available_externally linkage!",
        &GA);
  const Constant *Aliasee = GA.getAliasee();
  Check(Aliasee, "Aliasee cannot be NULL!", &GA);
  Check(GA.getType() == Aliasee->getType(),
        "Alias and aliasee types should match!", &GA);

  Check(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
        "Aliasee should be either GlobalValue or ConstantExpr", &GA);

  visitAliaseeSubExpr(GA, *Aliasee);

  visitGlobalValue(GA);
}

void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) {
  Check(GlobalIFunc::isValidLinkage(GI.getLinkage()),
        "IFunc should have private, internal, linkonce, weak, linkonce_odr, "
        "weak_odr, or external linkage!",
        &GI);
  // Pierce through ConstantExprs and GlobalAliases and check that the resolver
  // is a Function definition.
  const Function *Resolver = GI.getResolverFunction();
  Check(Resolver, "IFunc must have a Function resolver", &GI);
  Check(!Resolver->isDeclarationForLinker(),
        "IFunc resolver must be a definition", &GI);

  // Check that the immediate resolver operand (prior to any bitcasts) has the
  // correct type.
  const Type *ResolverTy = GI.getResolver()->getType();

  Check(isa<PointerType>(Resolver->getFunctionType()->getReturnType()),
        "IFunc resolver must return a pointer", &GI);

  const Type *ResolverFuncTy =
      GlobalIFunc::getResolverFunctionType(GI.getValueType());
  Check(ResolverTy == ResolverFuncTy->getPointerTo(GI.getAddressSpace()),
        "IFunc resolver has incorrect type", &GI);
}

void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
  // There used to be various other llvm.dbg.* nodes, but we don't support
  // upgrading them and we want to reserve the namespace for future uses.
  if (NMD.getName().starts_with("llvm.dbg."))
    CheckDI(NMD.getName() == "llvm.dbg.cu",
            "unrecognized named metadata node in the llvm.dbg namespace", &NMD);
  for (const MDNode *MD : NMD.operands()) {
    if (NMD.getName() == "llvm.dbg.cu")
      CheckDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);

    if (!MD)
      continue;

    visitMDNode(*MD, AreDebugLocsAllowed::Yes);
  }
}

void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
  // Only visit each node once.  Metadata can be mutually recursive, so this
  // avoids infinite recursion here, as well as being an optimization.
  if (!MDNodes.insert(&MD).second)
    return;

  Check(&MD.getContext() == &Context,
        "MDNode context does not match Module context!", &MD);

  switch (MD.getMetadataID()) {
  default:
    llvm_unreachable("Invalid MDNode subclass");
  case Metadata::MDTupleKind:
    break;
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
  case Metadata::CLASS##Kind:                                                  \
    visit##CLASS(cast<CLASS>(MD));                                             \
    break;
#include "llvm/IR/Metadata.def"
  }

  for (const Metadata *Op : MD.operands()) {
    if (!Op)
      continue;
    Check(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
          &MD, Op);
    CheckDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
            "DILocation not allowed within this metadata node", &MD, Op);
    if (auto *N = dyn_cast<MDNode>(Op)) {
      visitMDNode(*N, AllowLocs);
      continue;
    }
    if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
      visitValueAsMetadata(*V, nullptr);
      continue;
    }
  }

  // Check these last, so we diagnose problems in operands first.
  Check(!MD.isTemporary(), "Expected no forward declarations!", &MD);
  Check(MD.isResolved(), "All nodes should be resolved!", &MD);
}

void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
  Check(MD.getValue(), "Expected valid value", &MD);
  Check(!MD.getValue()->getType()->isMetadataTy(),
        "Unexpected metadata round-trip through values", &MD, MD.getValue());

  auto *L = dyn_cast<LocalAsMetadata>(&MD);
  if (!L)
    return;

  Check(F, "function-local metadata used outside a function", L);

  // If this was an instruction, bb, or argument, verify that it is in the
  // function that we expect.
  Function *ActualF = nullptr;
  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
    Check(I->getParent(), "function-local metadata not in basic block", L, I);
    ActualF = I->getParent()->getParent();
  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
    ActualF = BB->getParent();
  else if (Argument *A = dyn_cast<Argument>(L->getValue()))
    ActualF = A->getParent();
  assert(ActualF && "Unimplemented function local metadata case!");

  Check(ActualF == F, "function-local metadata used in wrong function", L);
}

void Verifier::visitDIArgList(const DIArgList &AL, Function *F) {
  for (const ValueAsMetadata *VAM : AL.getArgs())
    visitValueAsMetadata(*VAM, F);
}

void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
  Metadata *MD = MDV.getMetadata();
  if (auto *N = dyn_cast<MDNode>(MD)) {
    visitMDNode(*N, AreDebugLocsAllowed::No);
    return;
  }

  // Only visit each node once.  Metadata can be mutually recursive, so this
  // avoids infinite recursion here, as well as being an optimization.
  if (!MDNodes.insert(MD).second)
    return;

  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
    visitValueAsMetadata(*V, F);

  if (auto *AL = dyn_cast<DIArgList>(MD))
    visitDIArgList(*AL, F);
}

static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }

void Verifier::visitDILocation(const DILocation &N) {
  CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
          "location requires a valid scope", &N, N.getRawScope());
  if (auto *IA = N.getRawInlinedAt())
    CheckDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
    CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
}

void Verifier::visitGenericDINode(const GenericDINode &N) {
  CheckDI(N.getTag(), "invalid tag", &N);
}

void Verifier::visitDIScope(const DIScope &N) {
  if (auto *F = N.getRawFile())
    CheckDI(isa<DIFile>(F), "invalid file", &N, F);
}

void Verifier::visitDISubrange(const DISubrange &N) {
  CheckDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
  bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
  CheckDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||
              N.getRawUpperBound(),
          "Subrange must contain count or upperBound", &N);
  CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
          "Subrange can have any one of count or upperBound", &N);
  auto *CBound = N.getRawCountNode();
  CheckDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
              isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
          "Count must be signed constant or DIVariable or DIExpression", &N);
  auto Count = N.getCount();
  CheckDI(!Count || !isa<ConstantInt *>(Count) ||
              cast<ConstantInt *>(Count)->getSExtValue() >= -1,
          "invalid subrange count", &N);
  auto *LBound = N.getRawLowerBound();
  CheckDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
              isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
          "LowerBound must be signed constant or DIVariable or DIExpression",
          &N);
  auto *UBound = N.getRawUpperBound();
  CheckDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
              isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
          "UpperBound must be signed constant or DIVariable or DIExpression",
          &N);
  auto *Stride = N.getRawStride();
  CheckDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
              isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
          "Stride must be signed constant or DIVariable or DIExpression", &N);
}

void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
  CheckDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
  CheckDI(N.getRawCountNode() || N.getRawUpperBound(),
          "GenericSubrange must contain count or upperBound", &N);
  CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
          "GenericSubrange can have any one of count or upperBound", &N);
  auto *CBound = N.getRawCountNode();
  CheckDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
          "Count must be signed constant or DIVariable or DIExpression", &N);
  auto *LBound = N.getRawLowerBound();
  CheckDI(LBound, "GenericSubrange must contain lowerBound", &N);
  CheckDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
          "LowerBound must be signed constant or DIVariable or DIExpression",
          &N);
  auto *UBound = N.getRawUpperBound();
  CheckDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
          "UpperBound must be signed constant or DIVariable or DIExpression",
          &N);
  auto *Stride = N.getRawStride();
  CheckDI(Stride, "GenericSubrange must contain stride", &N);
  CheckDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
          "Stride must be signed constant or DIVariable or DIExpression", &N);
}

void Verifier::visitDIEnumerator(const DIEnumerator &N) {
  CheckDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
}

void Verifier::visitDIBasicType(const DIBasicType &N) {
  CheckDI(N.getTag() == dwarf::DW_TAG_base_type ||
              N.getTag() == dwarf::DW_TAG_unspecified_type ||
              N.getTag() == dwarf::DW_TAG_string_type,
          "invalid tag", &N);
}

void Verifier::visitDIStringType(const DIStringType &N) {
  CheckDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
  CheckDI(!(N.isBigEndian() && N.isLittleEndian()), "has conflicting flags",
          &N);
}

void Verifier::visitDIDerivedType(const DIDerivedType &N) {
  // Common scope checks.
  visitDIScope(N);

  CheckDI(N.getTag() == dwarf::DW_TAG_typedef ||
              N.getTag() == dwarf::DW_TAG_pointer_type ||
              N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
              N.getTag() == dwarf::DW_TAG_reference_type ||
              N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
              N.getTag() == dwarf::DW_TAG_const_type ||
              N.getTag() == dwarf::DW_TAG_immutable_type ||
              N.getTag() == dwarf::DW_TAG_volatile_type ||
              N.getTag() == dwarf::DW_TAG_restrict_type ||
              N.getTag() == dwarf::DW_TAG_atomic_type ||
              N.getTag() == dwarf::DW_TAG_member ||
              (N.getTag() == dwarf::DW_TAG_variable && N.isStaticMember()) ||
              N.getTag() == dwarf::DW_TAG_inheritance ||
              N.getTag() == dwarf::DW_TAG_friend ||
              N.getTag() == dwarf::DW_TAG_set_type,
          "invalid tag", &N);
  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
    CheckDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
            N.getRawExtraData());
  }

  if (N.getTag() == dwarf::DW_TAG_set_type) {
    if (auto *T = N.getRawBaseType()) {
      auto *Enum = dyn_cast_or_null<DICompositeType>(T);
      auto *Basic = dyn_cast_or_null<DIBasicType>(T);
      CheckDI(
          (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
              (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
                         Basic->getEncoding() == dwarf::DW_ATE_signed ||
                         Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
                         Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
                         Basic->getEncoding() == dwarf::DW_ATE_boolean)),
          "invalid set base type", &N, T);
    }
  }

  CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
  CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
          N.getRawBaseType());

  if (N.getDWARFAddressSpace()) {
    CheckDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
                N.getTag() == dwarf::DW_TAG_reference_type ||
                N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
            "DWARF address space only applies to pointer or reference types",
            &N);
  }
}

/// Detect mutually exclusive flags.
static bool hasConflictingReferenceFlags(unsigned Flags) {
  return ((Flags & DINode::FlagLValueReference) &&
          (Flags & DINode::FlagRValueReference)) ||
         ((Flags & DINode::FlagTypePassByValue) &&
          (Flags & DINode::FlagTypePassByReference));
}

void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
  auto *Params = dyn_cast<MDTuple>(&RawParams);
  CheckDI(Params, "invalid template params", &N, &RawParams);
  for (Metadata *Op : Params->operands()) {
    CheckDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
            &N, Params, Op);
  }
}

void Verifier::visitDICompositeType(const DICompositeType &N) {
  // Common scope checks.
  visitDIScope(N);

  CheckDI(N.getTag() == dwarf::DW_TAG_array_type ||
              N.getTag() == dwarf::DW_TAG_structure_type ||
              N.getTag() == dwarf::DW_TAG_union_type ||
              N.getTag() == dwarf::DW_TAG_enumeration_type ||
              N.getTag() == dwarf::DW_TAG_class_type ||
              N.getTag() == dwarf::DW_TAG_variant_part ||
              N.getTag() == dwarf::DW_TAG_namelist,
          "invalid tag", &N);

  CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
  CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
          N.getRawBaseType());

  CheckDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
          "invalid composite elements", &N, N.getRawElements());
  CheckDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
          N.getRawVTableHolder());
  CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
          "invalid reference flags", &N);
  unsigned DIBlockByRefStruct = 1 << 4;
  CheckDI((N.getFlags() & DIBlockByRefStruct) == 0,
          "DIBlockByRefStruct on DICompositeType is no longer supported", &N);

  if (N.isVector()) {
    const DINodeArray Elements = N.getElements();
    CheckDI(Elements.size() == 1 &&
                Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
            "invalid vector, expected one element of type subrange", &N);
  }

  if (auto *Params = N.getRawTemplateParams())
    visitTemplateParams(N, *Params);

  if (auto *D = N.getRawDiscriminator()) {
    CheckDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
            "discriminator can only appear on variant part");
  }

  if (N.getRawDataLocation()) {
    CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
            "dataLocation can only appear in array type");
  }

  if (N.getRawAssociated()) {
    CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
            "associated can only appear in array type");
  }

  if (N.getRawAllocated()) {
    CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
            "allocated can only appear in array type");
  }

  if (N.getRawRank()) {
    CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
            "rank can only appear in array type");
  }

  if (N.getTag() == dwarf::DW_TAG_array_type) {
    CheckDI(N.getRawBaseType(), "array types must have a base type", &N);
  }
}

void Verifier::visitDISubroutineType(const DISubroutineType &N) {
  CheckDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
  if (auto *Types = N.getRawTypeArray()) {
    CheckDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
    for (Metadata *Ty : N.getTypeArray()->operands()) {
      CheckDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
    }
  }
  CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
          "invalid reference flags", &N);
}

void Verifier::visitDIFile(const DIFile &N) {
  CheckDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
  std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
  if (Checksum) {
    CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
            "invalid checksum kind", &N);
    size_t Size;
    switch (Checksum->Kind) {
    case DIFile::CSK_MD5:
      Size = 32;
      break;
    case DIFile::CSK_SHA1:
      Size = 40;
      break;
    case DIFile::CSK_SHA256:
      Size = 64;
      break;
    }
    CheckDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
    CheckDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
            "invalid checksum", &N);
  }
}

void Verifier::visitDICompileUnit(const DICompileUnit &N) {
  CheckDI(N.isDistinct(), "compile units must be distinct", &N);
  CheckDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);

  // Don't bother verifying the compilation directory or producer string
  // as those could be empty.
  CheckDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
          N.getRawFile());
  CheckDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
          N.getFile());

  CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();

  CheckDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
          "invalid emission kind", &N);

  if (auto *Array = N.getRawEnumTypes()) {
    CheckDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
    for (Metadata *Op : N.getEnumTypes()->operands()) {
      auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
      CheckDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
              "invalid enum type", &N, N.getEnumTypes(), Op);
    }
  }
  if (auto *Array = N.getRawRetainedTypes()) {
    CheckDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
    for (Metadata *Op : N.getRetainedTypes()->operands()) {
      CheckDI(
          Op && (isa<DIType>(Op) || (isa<DISubprogram>(Op) &&
                                     !cast<DISubprogram>(Op)->isDefinition())),
          "invalid retained type", &N, Op);
    }
  }
  if (auto *Array = N.getRawGlobalVariables()) {
    CheckDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
    for (Metadata *Op : N.getGlobalVariables()->operands()) {
      CheckDI(Op && (isa<DIGlobalVariableExpression>(Op)),
              "invalid global variable ref", &N, Op);
    }
  }
  if (auto *Array = N.getRawImportedEntities()) {
    CheckDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
    for (Metadata *Op : N.getImportedEntities()->operands()) {
      CheckDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
              &N, Op);
    }
  }
  if (auto *Array = N.getRawMacros()) {
    CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
    for (Metadata *Op : N.getMacros()->operands()) {
      CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
    }
  }
  CUVisited.insert(&N);
}

void Verifier::visitDISubprogram(const DISubprogram &N) {
  CheckDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
  CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
  if (auto *F = N.getRawFile())
    CheckDI(isa<DIFile>(F), "invalid file", &N, F);
  else
    CheckDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
  if (auto *T = N.getRawType())
    CheckDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
  CheckDI(isType(N.getRawContainingType()), "invalid containing type", &N,
          N.getRawContainingType());
  if (auto *Params = N.getRawTemplateParams())
    visitTemplateParams(N, *Params);
  if (auto *S = N.getRawDeclaration())
    CheckDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
            "invalid subprogram declaration", &N, S);
  if (auto *RawNode = N.getRawRetainedNodes()) {
    auto *Node = dyn_cast<MDTuple>(RawNode);
    CheckDI(Node, "invalid retained nodes list", &N, RawNode);
    for (Metadata *Op : Node->operands()) {
      CheckDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op) ||
                     isa<DIImportedEntity>(Op)),
              "invalid retained nodes, expected DILocalVariable, DILabel or "
              "DIImportedEntity",
              &N, Node, Op);
    }
  }
  CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
          "invalid reference flags", &N);

  auto *Unit = N.getRawUnit();
  if (N.isDefinition()) {
    // Subprogram definitions (not part of the type hierarchy).
    CheckDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
    CheckDI(Unit, "subprogram definitions must have a compile unit", &N);
    CheckDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
    // There's no good way to cross the CU boundary to insert a nested
    // DISubprogram definition in one CU into a type defined in another CU.
    auto *CT = dyn_cast_or_null<DICompositeType>(N.getRawScope());
    if (CT && CT->getRawIdentifier() &&
        M.getContext().isODRUniquingDebugTypes())
      CheckDI(N.getDeclaration(),
              "definition subprograms cannot be nested within DICompositeType "
              "when enabling ODR",
              &N);
  } else {
    // Subprogram declarations (part of the type hierarchy).
    CheckDI(!Unit, "subprogram declarations must not have a compile unit", &N);
    CheckDI(!N.getRawDeclaration(),
            "subprogram declaration must not have a declaration field");
  }

  if (auto *RawThrownTypes = N.getRawThrownTypes()) {
    auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
    CheckDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
    for (Metadata *Op : ThrownTypes->operands())
      CheckDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
              Op);
  }

  if (N.areAllCallsDescribed())
    CheckDI(N.isDefinition(),
            "DIFlagAllCallsDescribed must be attached to a definition");
}

void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
  CheckDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
  CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
          "invalid local scope", &N, N.getRawScope());
  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
    CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
}

void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
  visitDILexicalBlockBase(N);

  CheckDI(N.getLine() || !N.getColumn(),
          "cannot have column info without line info", &N);
}

void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
  visitDILexicalBlockBase(N);
}

void Verifier::visitDICommonBlock(const DICommonBlock &N) {
  CheckDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
  if (auto *S = N.getRawScope())
    CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
  if (auto *S = N.getRawDecl())
    CheckDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
}

void Verifier::visitDINamespace(const DINamespace &N) {
  CheckDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
  if (auto *S = N.getRawScope())
    CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
}

void Verifier::visitDIMacro(const DIMacro &N) {
  CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
              N.getMacinfoType() == dwarf::DW_MACINFO_undef,
          "invalid macinfo type", &N);
  CheckDI(!N.getName().empty(), "anonymous macro", &N);
  if (!N.getValue().empty()) {
    assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
  }
}

void Verifier::visitDIMacroFile(const DIMacroFile &N) {
  CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
          "invalid macinfo type", &N);
  if (auto *F = N.getRawFile())
    CheckDI(isa<DIFile>(F), "invalid file", &N, F);

  if (auto *Array = N.getRawElements()) {
    CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
    for (Metadata *Op : N.getElements()->operands()) {
      CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
    }
  }
}

void Verifier::visitDIModule(const DIModule &N) {
  CheckDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
  CheckDI(!N.getName().empty(), "anonymous module", &N);
}

void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
  CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
}

void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
  visitDITemplateParameter(N);

  CheckDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
          &N);
}

void Verifier::visitDITemplateValueParameter(
    const DITemplateValueParameter &N) {
  visitDITemplateParameter(N);

  CheckDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
              N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
              N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
          "invalid tag", &N);
}

void Verifier::visitDIVariable(const DIVariable &N) {
  if (auto *S = N.getRawScope())
    CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
  if (auto *F = N.getRawFile())
    CheckDI(isa<DIFile>(F), "invalid file", &N, F);
}

void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
  // Checks common to all variables.
  visitDIVariable(N);

  CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
  CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
  // Check only if the global variable is not an extern
  if (N.isDefinition())
    CheckDI(N.getType(), "missing global variable type", &N);
  if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
    CheckDI(isa<DIDerivedType>(Member),
            "invalid static data member declaration", &N, Member);
  }
}

void Verifier::visitDILocalVariable(const DILocalVariable &N) {
  // Checks common to all variables.
  visitDIVariable(N);

  CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
  CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
  CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
          "local variable requires a valid scope", &N, N.getRawScope());
  if (auto Ty = N.getType())
    CheckDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
}

void Verifier::visitDIAssignID(const DIAssignID &N) {
  CheckDI(!N.getNumOperands(), "DIAssignID has no arguments", &N);
  CheckDI(N.isDistinct(), "DIAssignID must be distinct", &N);
}

void Verifier::visitDILabel(const DILabel &N) {
  if (auto *S = N.getRawScope())
    CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
  if (auto *F = N.getRawFile())
    CheckDI(isa<DIFile>(F), "invalid file", &N, F);

  CheckDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
  CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
          "label requires a valid scope", &N, N.getRawScope());
}

void Verifier::visitDIExpression(const DIExpression &N) {
  CheckDI(N.isValid(), "invalid expression", &N);
}

void Verifier::visitDIGlobalVariableExpression(
    const DIGlobalVariableExpression &GVE) {
  CheckDI(GVE.getVariable(), "missing variable");
  if (auto *Var = GVE.getVariable())
    visitDIGlobalVariable(*Var);
  if (auto *Expr = GVE.getExpression()) {
    visitDIExpression(*Expr);
    if (auto Fragment = Expr->getFragmentInfo())
      verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
  }
}

void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
  CheckDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
  if (auto *T = N.getRawType())
    CheckDI(isType(T), "invalid type ref", &N, T);
  if (auto *F = N.getRawFile())
    CheckDI(isa<DIFile>(F), "invalid file", &N, F);
}

void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
  CheckDI(N.getTag() == dwarf::DW_TAG_imported_module ||
              N.getTag() == dwarf::DW_TAG_imported_declaration,
          "invalid tag", &N);
  if (auto *S = N.getRawScope())
    CheckDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
  CheckDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
          N.getRawEntity());
}

void Verifier::visitComdat(const Comdat &C) {
  // In COFF the Module is invalid if the GlobalValue has private linkage.
  // Entities with private linkage don't have entries in the symbol table.
  if (TT.isOSBinFormatCOFF())
    if (const GlobalValue *GV = M.getNamedValue(C.getName()))
      Check(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
            GV);
}

void Verifier::visitModuleIdents() {
  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
  if (!Idents)
    return;

  // llvm.ident takes a list of metadata entry. Each entry has only one string.
  // Scan each llvm.ident entry and make sure that this requirement is met.
  for (const MDNode *N : Idents->operands()) {
    Check(N->getNumOperands() == 1,
          "incorrect number of operands in llvm.ident metadata", N);
    Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
          ("invalid value for llvm.ident metadata entry operand"
           "(the operand should be a string)"),
          N->getOperand(0));
  }
}

void Verifier::visitModuleCommandLines() {
  const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
  if (!CommandLines)
    return;

  // llvm.commandline takes a list of metadata entry. Each entry has only one
  // string. Scan each llvm.commandline entry and make sure that this
  // requirement is met.
  for (const MDNode *N : CommandLines->operands()) {
    Check(N->getNumOperands() == 1,
          "incorrect number of operands in llvm.commandline metadata", N);
    Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
          ("invalid value for llvm.commandline metadata entry operand"
           "(the operand should be a string)"),
          N->getOperand(0));
  }
}

void Verifier::visitModuleFlags() {
  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
  if (!Flags) return;

  // Scan each flag, and track the flags and requirements.
  DenseMap<const MDString*, const MDNode*> SeenIDs;
  SmallVector<const MDNode*, 16> Requirements;
  for (const MDNode *MDN : Flags->operands())
    visitModuleFlag(MDN, SeenIDs, Requirements);

  // Validate that the requirements in the module are valid.
  for (const MDNode *Requirement : Requirements) {
    const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
    const Metadata *ReqValue = Requirement->getOperand(1);

    const MDNode *Op = SeenIDs.lookup(Flag);
    if (!Op) {
      CheckFailed("invalid requirement on flag, flag is not present in module",
                  Flag);
      continue;
    }

    if (Op->getOperand(2) != ReqValue) {
      CheckFailed(("invalid requirement on flag, "
                   "flag does not have the required value"),
                  Flag);
      continue;
    }
  }
}

void
Verifier::visitModuleFlag(const MDNode *Op,
                          DenseMap<const MDString *, const MDNode *> &SeenIDs,
                          SmallVectorImpl<const MDNode *> &Requirements) {
  // Each module flag should have three arguments, the merge behavior (a
  // constant int), the flag ID (an MDString), and the value.
  Check(Op->getNumOperands() == 3,
        "incorrect number of operands in module flag", Op);
  Module::ModFlagBehavior MFB;
  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
    Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
          "invalid behavior operand in module flag (expected constant integer)",
          Op->getOperand(0));
    Check(false,
          "invalid behavior operand in module flag (unexpected constant)",
          Op->getOperand(0));
  }
  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
  Check(ID, "invalid ID operand in module flag (expected metadata string)",
        Op->getOperand(1));

  // Check the values for behaviors with additional requirements.
  switch (MFB) {
  case Module::Error:
  case Module::Warning:
  case Module::Override:
    // These behavior types accept any value.
    break;

  case Module::Min: {
    auto *V = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
    Check(V && V->getValue().isNonNegative(),
          "invalid value for 'min' module flag (expected constant non-negative "
          "integer)",
          Op->getOperand(2));
    break;
  }

  case Module::Max: {
    Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
          "invalid value for 'max' module flag (expected constant integer)",
          Op->getOperand(2));
    break;
  }

  case Module::Require: {
    // The value should itself be an MDNode with two operands, a flag ID (an
    // MDString), and a value.
    MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
    Check(Value && Value->getNumOperands() == 2,
          "invalid value for 'require' module flag (expected metadata pair)",
          Op->getOperand(2));
    Check(isa<MDString>(Value->getOperand(0)),
          ("invalid value for 'require' module flag "
           "(first value operand should be a string)"),
          Value->getOperand(0));

    // Append it to the list of requirements, to check once all module flags are
    // scanned.
    Requirements.push_back(Value);
    break;
  }

  case Module::Append:
  case Module::AppendUnique: {
    // These behavior types require the operand be an MDNode.
    Check(isa<MDNode>(Op->getOperand(2)),
          "invalid value for 'append'-type module flag "
          "(expected a metadata node)",
          Op->getOperand(2));
    break;
  }
  }

  // Unless this is a "requires" flag, check the ID is unique.
  if (MFB != Module::Require) {
    bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
    Check(Inserted,
          "module flag identifiers must be unique (or of 'require' type)", ID);
  }

  if (ID->getString() == "wchar_size") {
    ConstantInt *Value
      = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
    Check(Value, "wchar_size metadata requires constant integer argument");
  }

  if (ID->getString() == "Linker Options") {
    // If the llvm.linker.options named metadata exists, we assume that the
    // bitcode reader has upgraded the module flag. Otherwise the flag might
    // have been created by a client directly.
    Check(M.getNamedMetadata("llvm.linker.options"),
          "'Linker Options' named metadata no longer supported");
  }

  if (ID->getString() == "SemanticInterposition") {
    ConstantInt *Value =
        mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
    Check(Value,
          "SemanticInterposition metadata requires constant integer argument");
  }

  if (ID->getString() == "CG Profile") {
    for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
      visitModuleFlagCGProfileEntry(MDO);
  }
}

void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
  auto CheckFunction = [&](const MDOperand &FuncMDO) {
    if (!FuncMDO)
      return;
    auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
    Check(F && isa<Function>(F->getValue()->stripPointerCasts()),
          "expected a Function or null", FuncMDO);
  };
  auto Node = dyn_cast_or_null<MDNode>(MDO);
  Check(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
  CheckFunction(Node->getOperand(0));
  CheckFunction(Node->getOperand(1));
  auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
  Check(Count && Count->getType()->isIntegerTy(),
        "expected an integer constant", Node->getOperand(2));
}

void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
  for (Attribute A : Attrs) {

    if (A.isStringAttribute()) {
#define GET_ATTR_NAMES
#define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
#define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME)                             \
  if (A.getKindAsString() == #DISPLAY_NAME) {                                  \
    auto V = A.getValueAsString();                                             \
    if (!(V.empty() || V == "true" || V == "false"))                           \
      CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V +    \
                  "");                                                         \
  }

#include "llvm/IR/Attributes.inc"
      continue;
    }

    if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
      CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
                  V);
      return;
    }
  }
}

// VerifyParameterAttrs - Check the given attributes for an argument or return
// value of the specified type.  The value V is printed in error messages.
void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
                                    const Value *V) {
  if (!Attrs.hasAttributes())
    return;

  verifyAttributeTypes(Attrs, V);

  for (Attribute Attr : Attrs)
    Check(Attr.isStringAttribute() ||
              Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
          "Attribute '" + Attr.getAsString() + "' does not apply to parameters",
          V);

  if (Attrs.hasAttribute(Attribute::ImmArg)) {
    Check(Attrs.getNumAttributes() == 1,
          "Attribute 'immarg' is incompatible with other attributes", V);
  }

  // Check for mutually incompatible attributes.  Only inreg is compatible with
  // sret.
  unsigned AttrCount = 0;
  AttrCount += Attrs.hasAttribute(Attribute::ByVal);
  AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
  AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
  AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
               Attrs.hasAttribute(Attribute::InReg);
  AttrCount += Attrs.hasAttribute(Attribute::Nest);
  AttrCount += Attrs.hasAttribute(Attribute::ByRef);
  Check(AttrCount <= 1,
        "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
        "'byref', and 'sret' are incompatible!",
        V);

  Check(!(Attrs.hasAttribute(Attribute::InAlloca) &&
          Attrs.hasAttribute(Attribute::ReadOnly)),
        "Attributes "
        "'inalloca and readonly' are incompatible!",
        V);

  Check(!(Attrs.hasAttribute(Attribute::StructRet) &&
          Attrs.hasAttribute(Attribute::Returned)),
        "Attributes "
        "'sret and returned' are incompatible!",
        V);

  Check(!(Attrs.hasAttribute(Attribute::ZExt) &&
          Attrs.hasAttribute(Attribute::SExt)),
        "Attributes "
        "'zeroext and signext' are incompatible!",
        V);

  Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
          Attrs.hasAttribute(Attribute::ReadOnly)),
        "Attributes "
        "'readnone and readonly' are incompatible!",
        V);

  Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
          Attrs.hasAttribute(Attribute::WriteOnly)),
        "Attributes "
        "'readnone and writeonly' are incompatible!",
        V);

  Check(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
          Attrs.hasAttribute(Attribute::WriteOnly)),
        "Attributes "
        "'readonly and writeonly' are incompatible!",
        V);

  Check(!(Attrs.hasAttribute(Attribute::NoInline) &&
          Attrs.hasAttribute(Attribute::AlwaysInline)),
        "Attributes "
        "'noinline and alwaysinline' are incompatible!",
        V);

  Check(!(Attrs.hasAttribute(Attribute::Writable) &&
          Attrs.hasAttribute(Attribute::ReadNone)),
        "Attributes writable and readnone are incompatible!", V);

  Check(!(Attrs.hasAttribute(Attribute::Writable) &&
          Attrs.hasAttribute(Attribute::ReadOnly)),
        "Attributes writable and readonly are incompatible!", V);

  AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
  for (Attribute Attr : Attrs) {
    if (!Attr.isStringAttribute() &&
        IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
      CheckFailed("Attribute '" + Attr.getAsString() +
                  "' applied to incompatible type!", V);
      return;
    }
  }

  if (isa<PointerType>(Ty)) {
    if (Attrs.hasAttribute(Attribute::ByVal)) {
      if (Attrs.hasAttribute(Attribute::Alignment)) {
        Align AttrAlign = Attrs.getAlignment().valueOrOne();
        Align MaxAlign(ParamMaxAlignment);
        Check(AttrAlign <= MaxAlign,
              "Attribute 'align' exceed the max size 2^14", V);
      }
      SmallPtrSet<Type *, 4> Visited;
      Check(Attrs.getByValType()->isSized(&Visited),
            "Attribute 'byval' does not support unsized types!", V);
    }
    if (Attrs.hasAttribute(Attribute::ByRef)) {
      SmallPtrSet<Type *, 4> Visited;
      Check(Attrs.getByRefType()->isSized(&Visited),
            "Attribute 'byref' does not support unsized types!", V);
    }
    if (Attrs.hasAttribute(Attribute::InAlloca)) {
      SmallPtrSet<Type *, 4> Visited;
      Check(Attrs.getInAllocaType()->isSized(&Visited),
            "Attribute 'inalloca' does not support unsized types!", V);
    }
    if (Attrs.hasAttribute(Attribute::Preallocated)) {
      SmallPtrSet<Type *, 4> Visited;
      Check(Attrs.getPreallocatedType()->isSized(&Visited),
            "Attribute 'preallocated' does not support unsized types!", V);
    }
  }

  if (Attrs.hasAttribute(Attribute::NoFPClass)) {
    uint64_t Val = Attrs.getAttribute(Attribute::NoFPClass).getValueAsInt();
    Check(Val != 0, "Attribute 'nofpclass' must have at least one test bit set",
          V);
    Check((Val & ~static_cast<unsigned>(fcAllFlags)) == 0,
          "Invalid value for 'nofpclass' test mask", V);
  }
}

void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
                                            const Value *V) {
  if (Attrs.hasFnAttr(Attr)) {
    StringRef S = Attrs.getFnAttr(Attr).getValueAsString();
    unsigned N;
    if (S.getAsInteger(10, N))
      CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
  }
}

// Check parameter attributes against a function type.
// The value V is printed in error messages.
void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
                                   const Value *V, bool IsIntrinsic,
                                   bool IsInlineAsm) {
  if (Attrs.isEmpty())
    return;

  if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
    Check(Attrs.hasParentContext(Context),
          "Attribute list does not match Module context!", &Attrs, V);
    for (const auto &AttrSet : Attrs) {
      Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
            "Attribute set does not match Module context!", &AttrSet, V);
      for (const auto &A : AttrSet) {
        Check(A.hasParentContext(Context),
              "Attribute does not match Module context!", &A, V);
      }
    }
  }

  bool SawNest = false;
  bool SawReturned = false;
  bool SawSRet = false;
  bool SawSwiftSelf = false;
  bool SawSwiftAsync = false;
  bool SawSwiftError = false;

  // Verify return value attributes.
  AttributeSet RetAttrs = Attrs.getRetAttrs();
  for (Attribute RetAttr : RetAttrs)
    Check(RetAttr.isStringAttribute() ||
              Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
          "Attribute '" + RetAttr.getAsString() +
              "' does not apply to function return values",
          V);

  unsigned MaxParameterWidth = 0;
  auto GetMaxParameterWidth = [&MaxParameterWidth](Type *Ty) {
    if (Ty->isVectorTy()) {
      if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
        unsigned Size = VT->getPrimitiveSizeInBits().getFixedValue();
        if (Size > MaxParameterWidth)
          MaxParameterWidth = Size;
      }
    }
  };
  GetMaxParameterWidth(FT->getReturnType());
  verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);

  // Verify parameter attributes.
  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
    Type *Ty = FT->getParamType(i);
    AttributeSet ArgAttrs = Attrs.getParamAttrs(i);

    if (!IsIntrinsic) {
      Check(!ArgAttrs.hasAttribute(Attribute::ImmArg),
            "immarg attribute only applies to intrinsics", V);
      if (!IsInlineAsm)
        Check(!ArgAttrs.hasAttribute(Attribute::ElementType),
              "Attribute 'elementtype' can only be applied to intrinsics"
              " and inline asm.",
              V);
    }

    verifyParameterAttrs(ArgAttrs, Ty, V);
    GetMaxParameterWidth(Ty);

    if (ArgAttrs.hasAttribute(Attribute::Nest)) {
      Check(!SawNest, "More than one parameter has attribute nest!", V);
      SawNest = true;
    }

    if (ArgAttrs.hasAttribute(Attribute::Returned)) {
      Check(!SawReturned, "More than one parameter has attribute returned!", V);
      Check(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
            "Incompatible argument and return types for 'returned' attribute",
            V);
      SawReturned = true;
    }

    if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
      Check(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
      Check(i == 0 || i == 1,
            "Attribute 'sret' is not on first or second parameter!", V);
      SawSRet = true;
    }

    if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
      Check(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
      SawSwiftSelf = true;
    }

    if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
      Check(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
      SawSwiftAsync = true;
    }

    if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
      Check(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", V);
      SawSwiftError = true;
    }

    if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
      Check(i == FT->getNumParams() - 1,
            "inalloca isn't on the last parameter!", V);
    }
  }

  if (!Attrs.hasFnAttrs())
    return;

  verifyAttributeTypes(Attrs.getFnAttrs(), V);
  for (Attribute FnAttr : Attrs.getFnAttrs())
    Check(FnAttr.isStringAttribute() ||
              Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
          "Attribute '" + FnAttr.getAsString() +
              "' does not apply to functions!",
          V);

  Check(!(Attrs.hasFnAttr(Attribute::NoInline) &&
          Attrs.hasFnAttr(Attribute::AlwaysInline)),
        "Attributes 'noinline and alwaysinline' are incompatible!", V);

  if (Attrs.hasFnAttr(Attribute::OptimizeNone)) {
    Check(Attrs.hasFnAttr(Attribute::NoInline),
          "Attribute 'optnone' requires 'noinline'!", V);

    Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
          "Attributes 'optsize and optnone' are incompatible!", V);

    Check(!Attrs.hasFnAttr(Attribute::MinSize),
          "Attributes 'minsize and optnone' are incompatible!", V);

    Check(!Attrs.hasFnAttr(Attribute::OptimizeForDebugging),
          "Attributes 'optdebug and optnone' are incompatible!", V);
  }

  if (Attrs.hasFnAttr(Attribute::OptimizeForDebugging)) {
    Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
          "Attributes 'optsize and optdebug' are incompatible!", V);

    Check(!Attrs.hasFnAttr(Attribute::MinSize),
          "Attributes 'minsize and optdebug' are incompatible!", V);
  }

  Check(!Attrs.hasAttrSomewhere(Attribute::Writable) ||
        isModSet(Attrs.getMemoryEffects().getModRef(IRMemLocation::ArgMem)),
        "Attribute writable and memory without argmem: write are incompatible!",
        V);

  if (Attrs.hasFnAttr("aarch64_pstate_sm_enabled")) {
    Check(!Attrs.hasFnAttr("aarch64_pstate_sm_compatible"),
           "Attributes 'aarch64_pstate_sm_enabled and "
           "aarch64_pstate_sm_compatible' are incompatible!",
           V);
  }

  if (Attrs.hasFnAttr("aarch64_pstate_za_new")) {
    Check(!Attrs.hasFnAttr("aarch64_pstate_za_preserved"),
           "Attributes 'aarch64_pstate_za_new and aarch64_pstate_za_preserved' "
           "are incompatible!",
           V);

    Check(!Attrs.hasFnAttr("aarch64_pstate_za_shared"),
           "Attributes 'aarch64_pstate_za_new and aarch64_pstate_za_shared' "
           "are incompatible!",
           V);
  }

  if (Attrs.hasFnAttr(Attribute::JumpTable)) {
    const GlobalValue *GV = cast<GlobalValue>(V);
    Check(GV->hasGlobalUnnamedAddr(),
          "Attribute 'jumptable' requires 'unnamed_addr'", V);
  }

  if (auto Args = Attrs.getFnAttrs().getAllocSizeArgs()) {
    auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
      if (ParamNo >= FT->getNumParams()) {
        CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
        return false;
      }

      if (!FT->getParamType(ParamNo)->isIntegerTy()) {
        CheckFailed("'allocsize' " + Name +
                        " argument must refer to an integer parameter",
                    V);
        return false;
      }

      return true;
    };

    if (!CheckParam("element size", Args->first))
      return;

    if (Args->second && !CheckParam("number of elements", *Args->second))
      return;
  }

  if (Attrs.hasFnAttr(Attribute::AllocKind)) {
    AllocFnKind K = Attrs.getAllocKind();
    AllocFnKind Type =
        K & (AllocFnKind::Alloc | AllocFnKind::Realloc | AllocFnKind::Free);
    if (!is_contained(
            {AllocFnKind::Alloc, AllocFnKind::Realloc, AllocFnKind::Free},
            Type))
      CheckFailed(
          "'allockind()' requires exactly one of alloc, realloc, and free");
    if ((Type == AllocFnKind::Free) &&
        ((K & (AllocFnKind::Uninitialized | AllocFnKind::Zeroed |
               AllocFnKind::Aligned)) != AllocFnKind::Unknown))
      CheckFailed("'allockind(\"free\")' doesn't allow uninitialized, zeroed, "
                  "or aligned modifiers.");
    AllocFnKind ZeroedUninit = AllocFnKind::Uninitialized | AllocFnKind::Zeroed;
    if ((K & ZeroedUninit) == ZeroedUninit)
      CheckFailed("'allockind()' can't be both zeroed and uninitialized");
  }

  if (Attrs.hasFnAttr(Attribute::VScaleRange)) {
    unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin();
    if (VScaleMin == 0)
      CheckFailed("'vscale_range' minimum must be greater than 0", V);
    else if (!isPowerOf2_32(VScaleMin))
      CheckFailed("'vscale_range' minimum must be power-of-two value", V);
    std::optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax();
    if (VScaleMax && VScaleMin > VScaleMax)
      CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
    else if (VScaleMax && !isPowerOf2_32(*VScaleMax))
      CheckFailed("'vscale_range' maximum must be power-of-two value", V);
  }

  if (Attrs.hasFnAttr("frame-pointer")) {
    StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString();
    if (FP != "all" && FP != "non-leaf" && FP != "none")
      CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
  }

  // Check EVEX512 feature.
  if (MaxParameterWidth >= 512 && Attrs.hasFnAttr("target-features") &&
      TT.isX86()) {
    StringRef TF = Attrs.getFnAttr("target-features").getValueAsString();
    Check(!TF.contains("+avx512f") || !TF.contains("-evex512"),
          "512-bit vector arguments require 'evex512' for AVX512", V);
  }

  checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
  checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
  checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);

  if (auto A = Attrs.getFnAttr("sign-return-address"); A.isValid()) {
    StringRef S = A.getValueAsString();
    if (S != "none" && S != "all" && S != "non-leaf")
      CheckFailed("invalid value for 'sign-return-address' attribute: " + S, V);
  }

  if (auto A = Attrs.getFnAttr("sign-return-address-key"); A.isValid()) {
    StringRef S = A.getValueAsString();
    if (S != "a_key" && S != "b_key")
      CheckFailed("invalid value for 'sign-return-address-key' attribute: " + S,
                  V);
  }

  if (auto A = Attrs.getFnAttr("branch-target-enforcement"); A.isValid()) {
    StringRef S = A.getValueAsString();
    if (S != "true" && S != "false")
      CheckFailed(
          "invalid value for 'branch-target-enforcement' attribute: " + S, V);
  }
}

void Verifier::verifyFunctionMetadata(
    ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
  for (const auto &Pair : MDs) {
    if (Pair.first == LLVMContext::MD_prof) {
      MDNode *MD = Pair.second;
      Check(MD->getNumOperands() >= 2,
            "!prof annotations should have no less than 2 operands", MD);

      // Check first operand.
      Check(MD->getOperand(0) != nullptr, "first operand should not be null",
            MD);
      Check(isa<MDString>(MD->getOperand(0)),
            "expected string with name of the !prof annotation", MD);
      MDString *MDS = cast<MDString>(MD->getOperand(0));
      StringRef ProfName = MDS->getString();
      Check(ProfName.equals("function_entry_count") ||
                ProfName.equals("synthetic_function_entry_count"),
            "first operand should be 'function_entry_count'"
            " or 'synthetic_function_entry_count'",
            MD);

      // Check second operand.
      Check(MD->getOperand(1) != nullptr, "second operand should not be null",
            MD);
      Check(isa<ConstantAsMetadata>(MD->getOperand(1)),
            "expected integer argument to function_entry_count", MD);
    } else if (Pair.first == LLVMContext::MD_kcfi_type) {
      MDNode *MD = Pair.second;
      Check(MD->getNumOperands() == 1,
            "!kcfi_type must have exactly one operand", MD);
      Check(MD->getOperand(0) != nullptr, "!kcfi_type operand must not be null",
            MD);
      Check(isa<ConstantAsMetadata>(MD->getOperand(0)),
            "expected a constant operand for !kcfi_type", MD);
      Constant *C = cast<ConstantAsMetadata>(MD->getOperand(0))->getValue();
      Check(isa<ConstantInt>(C) && isa<IntegerType>(C->getType()),
            "expected a constant integer operand for !kcfi_type", MD);
      Check(cast<ConstantInt>(C)->getBitWidth() == 32,
            "expected a 32-bit integer constant operand for !kcfi_type", MD);
    }
  }
}

void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
  if (!ConstantExprVisited.insert(EntryC).second)
    return;

  SmallVector<const Constant *, 16> Stack;
  Stack.push_back(EntryC);

  while (!Stack.empty()) {
    const Constant *C = Stack.pop_back_val();

    // Check this constant expression.
    if (const auto *CE = dyn_cast<ConstantExpr>(C))
      visitConstantExpr(CE);

    if (const auto *GV = dyn_cast<GlobalValue>(C)) {
      // Global Values get visited separately, but we do need to make sure
      // that the global value is in the correct module
      Check(GV->getParent() == &M, "Referencing global in another module!",
            EntryC, &M, GV, GV->getParent());
      continue;
    }

    // Visit all sub-expressions.
    for (const Use &U : C->operands()) {
      const auto *OpC = dyn_cast<Constant>(U);
      if (!OpC)
        continue;
      if (!ConstantExprVisited.insert(OpC).second)
        continue;
      Stack.push_back(OpC);
    }
  }
}

void Verifier::visitConstantExpr(const ConstantExpr *CE) {
  if (CE->getOpcode() == Instruction::BitCast)
    Check(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
                                CE->getType()),
          "Invalid bitcast", CE);
}

bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
  // There shouldn't be more attribute sets than there are parameters plus the
  // function and return value.
  return Attrs.getNumAttrSets() <= Params + 2;
}

void Verifier::verifyInlineAsmCall(const CallBase &Call) {
  const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
  unsigned ArgNo = 0;
  unsigned LabelNo = 0;
  for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
    if (CI.Type == InlineAsm::isLabel) {
      ++LabelNo;
      continue;
    }

    // Only deal with constraints that correspond to call arguments.
    if (!CI.hasArg())
      continue;

    if (CI.isIndirect) {
      const Value *Arg = Call.getArgOperand(ArgNo);
      Check(Arg->getType()->isPointerTy(),
            "Operand for indirect constraint must have pointer type", &Call);

      Check(Call.getParamElementType(ArgNo),
            "Operand for indirect constraint must have elementtype attribute",
            &Call);
    } else {
      Check(!Call.paramHasAttr(ArgNo, Attribute::ElementType),
            "Elementtype attribute can only be applied for indirect "
            "constraints",
            &Call);
    }

    ArgNo++;
  }

  if (auto *CallBr = dyn_cast<CallBrInst>(&Call)) {
    Check(LabelNo == CallBr->getNumIndirectDests(),
          "Number of label constraints does not match number of callbr dests",
          &Call);
  } else {
    Check(LabelNo == 0, "Label constraints can only be used with callbr",
          &Call);
  }
}

/// Verify that statepoint intrinsic is well formed.
void Verifier::verifyStatepoint(const CallBase &Call) {
  assert(Call.getCalledFunction() &&
         Call.getCalledFunction()->getIntrinsicID() ==
             Intrinsic::experimental_gc_statepoint);

  Check(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
            !Call.onlyAccessesArgMemory(),
        "gc.statepoint must read and write all memory to preserve "
        "reordering restrictions required by safepoint semantics",
        Call);

  const int64_t NumPatchBytes =
      cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
  assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
  Check(NumPatchBytes >= 0,
        "gc.statepoint number of patchable bytes must be "
        "positive",
        Call);

  Type *TargetElemType = Call.getParamElementType(2);
  Check(TargetElemType,
        "gc.statepoint callee argument must have elementtype attribute", Call);
  FunctionType *TargetFuncType = dyn_cast<FunctionType>(TargetElemType);
  Check(TargetFuncType,
        "gc.statepoint callee elementtype must be function type", Call);

  const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
  Check(NumCallArgs >= 0,
        "gc.statepoint number of arguments to underlying call "
        "must be positive",
        Call);
  const int NumParams = (int)TargetFuncType->getNumParams();
  if (TargetFuncType->isVarArg()) {
    Check(NumCallArgs >= NumParams,
          "gc.statepoint mismatch in number of vararg call args", Call);

    // TODO: Remove this limitation
    Check(TargetFuncType->getReturnType()->isVoidTy(),
          "gc.statepoint doesn't support wrapping non-void "
          "vararg functions yet",
          Call);
  } else
    Check(NumCallArgs == NumParams,
          "gc.statepoint mismatch in number of call args", Call);

  const uint64_t Flags
    = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
  Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
        "unknown flag used in gc.statepoint flags argument", Call);

  // Verify that the types of the call parameter arguments match
  // the type of the wrapped callee.
  AttributeList Attrs = Call.getAttributes();
  for (int i = 0; i < NumParams; i++) {
    Type *ParamType = TargetFuncType->getParamType(i);
    Type *ArgType = Call.getArgOperand(5 + i)->getType();
    Check(ArgType == ParamType,
          "gc.statepoint call argument does not match wrapped "
          "function type",
          Call);

    if (TargetFuncType->isVarArg()) {
      AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i);
      Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
            "Attribute 'sret' cannot be used for vararg call arguments!", Call);
    }
  }

  const int EndCallArgsInx = 4 + NumCallArgs;

  const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
  Check(isa<ConstantInt>(NumTransitionArgsV),
        "gc.statepoint number of transition arguments "
        "must be constant integer",
        Call);
  const int NumTransitionArgs =
      cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
  Check(NumTransitionArgs == 0,
        "gc.statepoint w/inline transition bundle is deprecated", Call);
  const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;

  const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
  Check(isa<ConstantInt>(NumDeoptArgsV),
        "gc.statepoint number of deoptimization arguments "
        "must be constant integer",
        Call);
  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
  Check(NumDeoptArgs == 0,
        "gc.statepoint w/inline deopt operands is deprecated", Call);

  const int ExpectedNumArgs = 7 + NumCallArgs;
  Check(ExpectedNumArgs == (int)Call.arg_size(),
        "gc.statepoint too many arguments", Call);

  // Check that the only uses of this gc.statepoint are gc.result or
  // gc.relocate calls which are tied to this statepoint and thus part
  // of the same statepoint sequence
  for (const User *U : Call.users()) {
    const CallInst *UserCall = dyn_cast<const CallInst>(U);
    Check(UserCall, "illegal use of statepoint token", Call, U);
    if (!UserCall)
      continue;
    Check(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
          "gc.result or gc.relocate are the only value uses "
          "of a gc.statepoint",
          Call, U);
    if (isa<GCResultInst>(UserCall)) {
      Check(UserCall->getArgOperand(0) == &Call,
            "gc.result connected to wrong gc.statepoint", Call, UserCall);
    } else if (isa<GCRelocateInst>(Call)) {
      Check(UserCall->getArgOperand(0) == &Call,
            "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
    }
  }

  // Note: It is legal for a single derived pointer to be listed multiple
  // times.  It's non-optimal, but it is legal.  It can also happen after
  // insertion if we strip a bitcast away.
  // Note: It is really tempting to check that each base is relocated and
  // that a derived pointer is never reused as a base pointer.  This turns
  // out to be problematic since optimizations run after safepoint insertion
  // can recognize equality properties that the insertion logic doesn't know
  // about.  See example statepoint.ll in the verifier subdirectory
}

void Verifier::verifyFrameRecoverIndices() {
  for (auto &Counts : FrameEscapeInfo) {
    Function *F = Counts.first;
    unsigned EscapedObjectCount = Counts.second.first;
    unsigned MaxRecoveredIndex = Counts.second.second;
    Check(MaxRecoveredIndex <= EscapedObjectCount,
          "all indices passed to llvm.localrecover must be less than the "
          "number of arguments passed to llvm.localescape in the parent "
          "function",
          F);
  }
}

static Instruction *getSuccPad(Instruction *Terminator) {
  BasicBlock *UnwindDest;
  if (auto *II = dyn_cast<InvokeInst>(Terminator))
    UnwindDest = II->getUnwindDest();
  else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
    UnwindDest = CSI->getUnwindDest();
  else
    UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
  return UnwindDest->getFirstNonPHI();
}

void Verifier::verifySiblingFuncletUnwinds() {
  SmallPtrSet<Instruction *, 8> Visited;
  SmallPtrSet<Instruction *, 8> Active;
  for (const auto &Pair : SiblingFuncletInfo) {
    Instruction *PredPad = Pair.first;
    if (Visited.count(PredPad))
      continue;
    Active.insert(PredPad);
    Instruction *Terminator = Pair.second;
    do {
      Instruction *SuccPad = getSuccPad(Terminator);
      if (Active.count(SuccPad)) {
        // Found a cycle; report error
        Instruction *CyclePad = SuccPad;
        SmallVector<Instruction *, 8> CycleNodes;
        do {
          CycleNodes.push_back(CyclePad);
          Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
          if (CycleTerminator != CyclePad)
            CycleNodes.push_back(CycleTerminator);
          CyclePad = getSuccPad(CycleTerminator);
        } while (CyclePad != SuccPad);
        Check(false, "EH pads can't handle each other's exceptions",
              ArrayRef<Instruction *>(CycleNodes));
      }
      // Don't re-walk a node we've already checked
      if (!Visited.insert(SuccPad).second)
        break;
      // Walk to this successor if it has a map entry.
      PredPad = SuccPad;
      auto TermI = SiblingFuncletInfo.find(PredPad);
      if (TermI == SiblingFuncletInfo.end())
        break;
      Terminator = TermI->second;
      Active.insert(PredPad);
    } while (true);
    // Each node only has one successor, so we've walked all the active
    // nodes' successors.
    Active.clear();
  }
}

// visitFunction - Verify that a function is ok.
//
void Verifier::visitFunction(const Function &F) {
  visitGlobalValue(F);

  // Check function arguments.
  FunctionType *FT = F.getFunctionType();
  unsigned NumArgs = F.arg_size();

  Check(&Context == &F.getContext(),
        "Function context does not match Module context!", &F);

  Check(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
  Check(FT->getNumParams() == NumArgs,
        "# formal arguments must match # of arguments for function type!", &F,
        FT);
  Check(F.getReturnType()->isFirstClassType() ||
            F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
        "Functions cannot return aggregate values!", &F);

  Check(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
        "Invalid struct return type!", &F);

  AttributeList Attrs = F.getAttributes();

  Check(verifyAttributeCount(Attrs, FT->getNumParams()),
        "Attribute after last parameter!", &F);

  bool IsIntrinsic = F.isIntrinsic();

  // Check function attributes.
  verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false);

  // On function declarations/definitions, we do not support the builtin
  // attribute. We do not check this in VerifyFunctionAttrs since that is
  // checking for Attributes that can/can not ever be on functions.
  Check(!Attrs.hasFnAttr(Attribute::Builtin),
        "Attribute 'builtin' can only be applied to a callsite.", &F);

  Check(!Attrs.hasAttrSomewhere(Attribute::ElementType),
        "Attribute 'elementtype' can only be applied to a callsite.", &F);

  // Check that this function meets the restrictions on this calling convention.
  // Sometimes varargs is used for perfectly forwarding thunks, so some of these
  // restrictions can be lifted.
  switch (F.getCallingConv()) {
  default:
  case CallingConv::C:
    break;
  case CallingConv::X86_INTR: {
    Check(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal),
          "Calling convention parameter requires byval", &F);
    break;
  }
  case CallingConv::AMDGPU_KERNEL:
  case CallingConv::SPIR_KERNEL:
  case CallingConv::AMDGPU_CS_Chain:
  case CallingConv::AMDGPU_CS_ChainPreserve:
    Check(F.getReturnType()->isVoidTy(),
          "Calling convention requires void return type", &F);
    [[fallthrough]];
  case CallingConv::AMDGPU_VS:
  case CallingConv::AMDGPU_HS:
  case CallingConv::AMDGPU_GS:
  case CallingConv::AMDGPU_PS:
  case CallingConv::AMDGPU_CS:
    Check(!F.hasStructRetAttr(), "Calling convention does not allow sret", &F);
    if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
      const unsigned StackAS = DL.getAllocaAddrSpace();
      unsigned i = 0;
      for (const Argument &Arg : F.args()) {
        Check(!Attrs.hasParamAttr(i, Attribute::ByVal),
              "Calling convention disallows byval", &F);
        Check(!Attrs.hasParamAttr(i, Attribute::Preallocated),
              "Calling convention disallows preallocated", &F);
        Check(!Attrs.hasParamAttr(i, Attribute::InAlloca),
              "Calling convention disallows inalloca", &F);

        if (Attrs.hasParamAttr(i, Attribute::ByRef)) {
          // FIXME: Should also disallow LDS and GDS, but we don't have the enum
          // value here.
          Check(Arg.getType()->getPointerAddressSpace() != StackAS,
                "Calling convention disallows stack byref", &F);
        }

        ++i;
      }
    }

    [[fallthrough]];
  case CallingConv::Fast:
  case CallingConv::Cold:
  case CallingConv::Intel_OCL_BI:
  case CallingConv::PTX_Kernel:
  case CallingConv::PTX_Device:
    Check(!F.isVarArg(),
          "Calling convention does not support varargs or "
          "perfect forwarding!",
          &F);
    break;
  }

  // Check that the argument values match the function type for this function...
  unsigned i = 0;
  for (const Argument &Arg : F.args()) {
    Check(Arg.getType() == FT->getParamType(i),
          "Argument value does not match function argument type!", &Arg,
          FT->getParamType(i));
    Check(Arg.getType()->isFirstClassType(),
          "Function arguments must have first-class types!", &Arg);
    if (!IsIntrinsic) {
      Check(!Arg.getType()->isMetadataTy(),
            "Function takes metadata but isn't an intrinsic", &Arg, &F);
      Check(!Arg.getType()->isTokenTy(),
            "Function takes token but isn't an intrinsic", &Arg, &F);
      Check(!Arg.getType()->isX86_AMXTy(),
            "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
    }

    // Check that swifterror argument is only used by loads and stores.
    if (Attrs.hasParamAttr(i, Attribute::SwiftError)) {
      verifySwiftErrorValue(&Arg);
    }
    ++i;
  }

  if (!IsIntrinsic) {
    Check(!F.getReturnType()->isTokenTy(),
          "Function returns a token but isn't an intrinsic", &F);
    Check(!F.getReturnType()->isX86_AMXTy(),
          "Function returns a x86_amx but isn't an intrinsic", &F);
  }

  // Get the function metadata attachments.
  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
  F.getAllMetadata(MDs);
  assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
  verifyFunctionMetadata(MDs);

  // Check validity of the personality function
  if (F.hasPersonalityFn()) {
    auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
    if (Per)
      Check(Per->getParent() == F.getParent(),
            "Referencing personality function in another module!", &F,
            F.getParent(), Per, Per->getParent());
  }

  // EH funclet coloring can be expensive, recompute on-demand
  BlockEHFuncletColors.clear();

  if (F.isMaterializable()) {
    // Function has a body somewhere we can't see.
    Check(MDs.empty(), "unmaterialized function cannot have metadata", &F,
          MDs.empty() ? nullptr : MDs.front().second);
  } else if (F.isDeclaration()) {
    for (const auto &I : MDs) {
      // This is used for call site debug information.
      CheckDI(I.first != LLVMContext::MD_dbg ||
                  !cast<DISubprogram>(I.second)->isDistinct(),
              "function declaration may only have a unique !dbg attachment",
              &F);
      Check(I.first != LLVMContext::MD_prof,
            "function declaration may not have a !prof attachment", &F);

      // Verify the metadata itself.
      visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
    }
    Check(!F.hasPersonalityFn(),
          "Function declaration shouldn't have a personality routine", &F);
  } else {
    // Verify that this function (which has a body) is not named "llvm.*".  It
    // is not legal to define intrinsics.
    Check(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);

    // Check the entry node
    const BasicBlock *Entry = &F.getEntryBlock();
    Check(pred_empty(Entry),
          "Entry block to function must not have predecessors!", Entry);

    // The address of the entry block cannot be taken, unless it is dead.
    if (Entry->hasAddressTaken()) {
      Check(!BlockAddress::lookup(Entry)->isConstantUsed(),
            "blockaddress may not be used with the entry block!", Entry);
    }

    unsigned NumDebugAttachments = 0, NumProfAttachments = 0,
             NumKCFIAttachments = 0;
    // Visit metadata attachments.
    for (const auto &I : MDs) {
      // Verify that the attachment is legal.
      auto AllowLocs = AreDebugLocsAllowed::No;
      switch (I.first) {
      default:
        break;
      case LLVMContext::MD_dbg: {
        ++NumDebugAttachments;
        CheckDI(NumDebugAttachments == 1,
                "function must have a single !dbg attachment", &F, I.second);
        CheckDI(isa<DISubprogram>(I.second),
                "function !dbg attachment must be a subprogram", &F, I.second);
        CheckDI(cast<DISubprogram>(I.second)->isDistinct(),
                "function definition may only have a distinct !dbg attachment",
                &F);

        auto *SP = cast<DISubprogram>(I.second);
        const Function *&AttachedTo = DISubprogramAttachments[SP];
        CheckDI(!AttachedTo || AttachedTo == &F,
                "DISubprogram attached to more than one function", SP, &F);
        AttachedTo = &F;
        AllowLocs = AreDebugLocsAllowed::Yes;
        break;
      }
      case LLVMContext::MD_prof:
        ++NumProfAttachments;
        Check(NumProfAttachments == 1,
              "function must have a single !prof attachment", &F, I.second);
        break;
      case LLVMContext::MD_kcfi_type:
        ++NumKCFIAttachments;
        Check(NumKCFIAttachments == 1,
              "function must have a single !kcfi_type attachment", &F,
              I.second);
        break;
      }

      // Verify the metadata itself.
      visitMDNode(*I.second, AllowLocs);
    }
  }

  // If this function is actually an intrinsic, verify that it is only used in
  // direct call/invokes, never having its "address taken".
  // Only do this if the module is materialized, otherwise we don't have all the
  // uses.
  if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
    const User *U;
    if (F.hasAddressTaken(&U, false, true, false,
                          /*IgnoreARCAttachedCall=*/true))
      Check(false, "Invalid user of intrinsic instruction!", U);
  }

  // Check intrinsics' signatures.
  switch (F.getIntrinsicID()) {
  case Intrinsic::experimental_gc_get_pointer_base: {
    FunctionType *FT = F.getFunctionType();
    Check(FT->getNumParams() == 1, "wrong number of parameters", F);
    Check(isa<PointerType>(F.getReturnType()),
          "gc.get.pointer.base must return a pointer", F);
    Check(FT->getParamType(0) == F.getReturnType(),
          "gc.get.pointer.base operand and result must be of the same type", F);
    break;
  }
  case Intrinsic::experimental_gc_get_pointer_offset: {
    FunctionType *FT = F.getFunctionType();
    Check(FT->getNumParams() == 1, "wrong number of parameters", F);
    Check(isa<PointerType>(FT->getParamType(0)),
          "gc.get.pointer.offset operand must be a pointer", F);
    Check(F.getReturnType()->isIntegerTy(),
          "gc.get.pointer.offset must return integer", F);
    break;
  }
  }

  auto *N = F.getSubprogram();
  HasDebugInfo = (N != nullptr);
  if (!HasDebugInfo)
    return;

  // Check that all !dbg attachments lead to back to N.
  //
  // FIXME: Check this incrementally while visiting !dbg attachments.
  // FIXME: Only check when N is the canonical subprogram for F.
  SmallPtrSet<const MDNode *, 32> Seen;
  auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
    // Be careful about using DILocation here since we might be dealing with
    // broken code (this is the Verifier after all).
    const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
    if (!DL)
      return;
    if (!Seen.insert(DL).second)
      return;

    Metadata *Parent = DL->getRawScope();
    CheckDI(Parent && isa<DILocalScope>(Parent),
            "DILocation's scope must be a DILocalScope", N, &F, &I, DL, Parent);

    DILocalScope *Scope = DL->getInlinedAtScope();
    Check(Scope, "Failed to find DILocalScope", DL);

    if (!Seen.insert(Scope).second)
      return;

    DISubprogram *SP = Scope->getSubprogram();

    // Scope and SP could be the same MDNode and we don't want to skip
    // validation in that case
    if (SP && ((Scope != SP) && !Seen.insert(SP).second))
      return;

    CheckDI(SP->describes(&F),
            "!dbg attachment points at wrong subprogram for function", N, &F,
            &I, DL, Scope, SP);
  };
  for (auto &BB : F)
    for (auto &I : BB) {
      VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
      // The llvm.loop annotations also contain two DILocations.
      if (auto MD = I.getMetadata(LLVMContext::MD_loop))
        for (unsigned i = 1; i < MD->getNumOperands(); ++i)
          VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
      if (BrokenDebugInfo)
        return;
    }
}

// verifyBasicBlock - Verify that a basic block is well formed...
//
void Verifier::visitBasicBlock(BasicBlock &BB) {
  InstsInThisBlock.clear();
  ConvergenceVerifyHelper.visit(BB);

  // Ensure that basic blocks have terminators!
  Check(BB.getTerminator(), "Basic Block does not have terminator!", &BB);

  // Check constraints that this basic block imposes on all of the PHI nodes in
  // it.
  if (isa<PHINode>(BB.front())) {
    SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
    llvm::sort(Preds);
    for (const PHINode &PN : BB.phis()) {
      Check(PN.getNumIncomingValues() == Preds.size(),
            "PHINode should have one entry for each predecessor of its "
            "parent basic block!",
            &PN);

      // Get and sort all incoming values in the PHI node...
      Values.clear();
      Values.reserve(PN.getNumIncomingValues());
      for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
        Values.push_back(
            std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
      llvm::sort(Values);

      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
        // Check to make sure that if there is more than one entry for a
        // particular basic block in this PHI node, that the incoming values are
        // all identical.
        //
        Check(i == 0 || Values[i].first != Values[i - 1].first ||
                  Values[i].second == Values[i - 1].second,
              "PHI node has multiple entries for the same basic block with "
              "different incoming values!",
              &PN, Values[i].first, Values[i].second, Values[i - 1].second);

        // Check to make sure that the predecessors and PHI node entries are
        // matched up.
        Check(Values[i].first == Preds[i],
              "PHI node entries do not match predecessors!", &PN,
              Values[i].first, Preds[i]);
      }
    }
  }

  // Check that all instructions have their parent pointers set up correctly.
  for (auto &I : BB)
  {
    Check(I.getParent() == &BB, "Instruction has bogus parent pointer!");
  }

  // Confirm that no issues arise from the debug program.
  if (BB.IsNewDbgInfoFormat) {
    // Configure the validate function to not fire assertions, instead print
    // errors and return true if there's a problem.
    bool RetVal = BB.validateDbgValues(false, true, OS);
    Check(!RetVal, "Invalid configuration of new-debug-info data found");
  }
}

void Verifier::visitTerminator(Instruction &I) {
  // Ensure that terminators only exist at the end of the basic block.
  Check(&I == I.getParent()->getTerminator(),
        "Terminator found in the middle of a basic block!", I.getParent());
  visitInstruction(I);
}

void Verifier::visitBranchInst(BranchInst &BI) {
  if (BI.isConditional()) {
    Check(BI.getCondition()->getType()->isIntegerTy(1),
          "Branch condition is not 'i1' type!", &BI, BI.getCondition());
  }
  visitTerminator(BI);
}

void Verifier::visitReturnInst(ReturnInst &RI) {
  Function *F = RI.getParent()->getParent();
  unsigned N = RI.getNumOperands();
  if (F->getReturnType()->isVoidTy())
    Check(N == 0,
          "Found return instr that returns non-void in Function of void "
          "return type!",
          &RI, F->getReturnType());
  else
    Check(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
          "Function return type does not match operand "
          "type of return inst!",
          &RI, F->getReturnType());

  // Check to make sure that the return value has necessary properties for
  // terminators...
  visitTerminator(RI);
}

void Verifier::visitSwitchInst(SwitchInst &SI) {
  Check(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI);
  // Check to make sure that all of the constants in the switch instruction
  // have the same type as the switched-on value.
  Type *SwitchTy = SI.getCondition()->getType();
  SmallPtrSet<ConstantInt*, 32> Constants;
  for (auto &Case : SI.cases()) {
    Check(isa<ConstantInt>(SI.getOperand(Case.getCaseIndex() * 2 + 2)),
          "Case value is not a constant integer.", &SI);
    Check(Case.getCaseValue()->getType() == SwitchTy,
          "Switch constants must all be same type as switch value!", &SI);
    Check(Constants.insert(Case.getCaseValue()).second,
          "Duplicate integer as switch case", &SI, Case.getCaseValue());
  }

  visitTerminator(SI);
}

void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
  Check(BI.getAddress()->getType()->isPointerTy(),
        "Indirectbr operand must have pointer type!", &BI);
  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
    Check(BI.getDestination(i)->getType()->isLabelTy(),
          "Indirectbr destinations must all have pointer type!", &BI);

  visitTerminator(BI);
}

void Verifier::visitCallBrInst(CallBrInst &CBI) {
  Check(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", &CBI);
  const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
  Check(!IA->canThrow(), "Unwinding from Callbr is not allowed");

  verifyInlineAsmCall(CBI);
  visitTerminator(CBI);
}

void Verifier::visitSelectInst(SelectInst &SI) {
  Check(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
                                        SI.getOperand(2)),
        "Invalid operands for select instruction!", &SI);

  Check(SI.getTrueValue()->getType() == SI.getType(),
        "Select values must have same type as select instruction!", &SI);
  visitInstruction(SI);
}

/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
/// a pass, if any exist, it's an error.
///
void Verifier::visitUserOp1(Instruction &I) {
  Check(false, "User-defined operators should not live outside of a pass!", &I);
}

void Verifier::visitTruncInst(TruncInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Check(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
  Check(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
  Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
        "trunc source and destination must both be a vector or neither", &I);
  Check(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);

  visitInstruction(I);
}

void Verifier::visitZExtInst(ZExtInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  Check(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
  Check(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
  Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
        "zext source and destination must both be a vector or neither", &I);
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Check(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);

  visitInstruction(I);
}

void Verifier::visitSExtInst(SExtInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Check(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
  Check(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
  Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
        "sext source and destination must both be a vector or neither", &I);
  Check(SrcBitSize < DestBitSize, "Type too small for SExt", &I);

  visitInstruction(I);
}

void Verifier::visitFPTruncInst(FPTruncInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();
  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Check(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
  Check(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
  Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
        "fptrunc source and destination must both be a vector or neither", &I);
  Check(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);

  visitInstruction(I);
}

void Verifier::visitFPExtInst(FPExtInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  // Get the size of the types in bits, we'll need this later
  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
  unsigned DestBitSize = DestTy->getScalarSizeInBits();

  Check(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
  Check(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
  Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
        "fpext source and destination must both be a vector or neither", &I);
  Check(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);

  visitInstruction(I);
}

void Verifier::visitUIToFPInst(UIToFPInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  bool SrcVec = SrcTy->isVectorTy();
  bool DstVec = DestTy->isVectorTy();

  Check(SrcVec == DstVec,
        "UIToFP source and dest must both be vector or scalar", &I);
  Check(SrcTy->isIntOrIntVectorTy(),
        "UIToFP source must be integer or integer vector", &I);
  Check(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
        &I);

  if (SrcVec && DstVec)
    Check(cast<VectorType>(SrcTy)->getElementCount() ==
              cast<VectorType>(DestTy)->getElementCount(),
          "UIToFP source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitSIToFPInst(SIToFPInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  bool SrcVec = SrcTy->isVectorTy();
  bool DstVec = DestTy->isVectorTy();

  Check(SrcVec == DstVec,
        "SIToFP source and dest must both be vector or scalar", &I);
  Check(SrcTy->isIntOrIntVectorTy(),
        "SIToFP source must be integer or integer vector", &I);
  Check(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
        &I);

  if (SrcVec && DstVec)
    Check(cast<VectorType>(SrcTy)->getElementCount() ==
              cast<VectorType>(DestTy)->getElementCount(),
          "SIToFP source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitFPToUIInst(FPToUIInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  bool SrcVec = SrcTy->isVectorTy();
  bool DstVec = DestTy->isVectorTy();

  Check(SrcVec == DstVec,
        "FPToUI source and dest must both be vector or scalar", &I);
  Check(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I);
  Check(DestTy->isIntOrIntVectorTy(),
        "FPToUI result must be integer or integer vector", &I);

  if (SrcVec && DstVec)
    Check(cast<VectorType>(SrcTy)->getElementCount() ==
              cast<VectorType>(DestTy)->getElementCount(),
          "FPToUI source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitFPToSIInst(FPToSIInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  bool SrcVec = SrcTy->isVectorTy();
  bool DstVec = DestTy->isVectorTy();

  Check(SrcVec == DstVec,
        "FPToSI source and dest must both be vector or scalar", &I);
  Check(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I);
  Check(DestTy->isIntOrIntVectorTy(),
        "FPToSI result must be integer or integer vector", &I);

  if (SrcVec && DstVec)
    Check(cast<VectorType>(SrcTy)->getElementCount() ==
              cast<VectorType>(DestTy)->getElementCount(),
          "FPToSI source and dest vector length mismatch", &I);

  visitInstruction(I);
}

void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  Check(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);

  Check(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
  Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
        &I);

  if (SrcTy->isVectorTy()) {
    auto *VSrc = cast<VectorType>(SrcTy);
    auto *VDest = cast<VectorType>(DestTy);
    Check(VSrc->getElementCount() == VDest->getElementCount(),
          "PtrToInt Vector width mismatch", &I);
  }

  visitInstruction(I);
}

void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
  // Get the source and destination types
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  Check(SrcTy->isIntOrIntVectorTy(), "IntToPtr source must be an integral", &I);
  Check(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);

  Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
        &I);
  if (SrcTy->isVectorTy()) {
    auto *VSrc = cast<VectorType>(SrcTy);
    auto *VDest = cast<VectorType>(DestTy);
    Check(VSrc->getElementCount() == VDest->getElementCount(),
          "IntToPtr Vector width mismatch", &I);
  }
  visitInstruction(I);
}

void Verifier::visitBitCastInst(BitCastInst &I) {
  Check(
      CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
      "Invalid bitcast", &I);
  visitInstruction(I);
}

void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
  Type *SrcTy = I.getOperand(0)->getType();
  Type *DestTy = I.getType();

  Check(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
        &I);
  Check(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
        &I);
  Check(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
        "AddrSpaceCast must be between different address spaces", &I);
  if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
    Check(SrcVTy->getElementCount() ==
              cast<VectorType>(DestTy)->getElementCount(),
          "AddrSpaceCast vector pointer number of elements mismatch", &I);
  visitInstruction(I);
}

/// visitPHINode - Ensure that a PHI node is well formed.
///
void Verifier::visitPHINode(PHINode &PN) {
  // Ensure that the PHI nodes are all grouped together at the top of the block.
  // This can be tested by checking whether the instruction before this is
  // either nonexistent (because this is begin()) or is a PHI node.  If not,
  // then there is some other instruction before a PHI.
  Check(&PN == &PN.getParent()->front() ||
            isa<PHINode>(--BasicBlock::iterator(&PN)),
        "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());

  // Check that a PHI doesn't yield a Token.
  Check(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");

  // Check that all of the values of the PHI node have the same type as the
  // result, and that the incoming blocks are really basic blocks.
  for (Value *IncValue : PN.incoming_values()) {
    Check(PN.getType() == IncValue->getType(),
          "PHI node operands are not the same type as the result!", &PN);
  }

  // All other PHI node constraints are checked in the visitBasicBlock method.

  visitInstruction(PN);
}

void Verifier::visitCallBase(CallBase &Call) {
  Check(Call.getCalledOperand()->getType()->isPointerTy(),
        "Called function must be a pointer!", Call);
  FunctionType *FTy = Call.getFunctionType();

  // Verify that the correct number of arguments are being passed
  if (FTy->isVarArg())
    Check(Call.arg_size() >= FTy->getNumParams(),
          "Called function requires more parameters than were provided!", Call);
  else
    Check(Call.arg_size() == FTy->getNumParams(),
          "Incorrect number of arguments passed to called function!", Call);

  // Verify that all arguments to the call match the function type.
  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
    Check(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
          "Call parameter type does not match function signature!",
          Call.getArgOperand(i), FTy->getParamType(i), Call);

  AttributeList Attrs = Call.getAttributes();

  Check(verifyAttributeCount(Attrs, Call.arg_size()),
        "Attribute after last parameter!", Call);

  Function *Callee =
      dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
  bool IsIntrinsic = Callee && Callee->isIntrinsic();
  if (IsIntrinsic)
    Check(Callee->getValueType() == FTy,
          "Intrinsic called with incompatible signature", Call);

  // Disallow calls to functions with the amdgpu_cs_chain[_preserve] calling
  // convention.
  auto CC = Call.getCallingConv();
  Check(CC != CallingConv::AMDGPU_CS_Chain &&
            CC != CallingConv::AMDGPU_CS_ChainPreserve,
        "Direct calls to amdgpu_cs_chain/amdgpu_cs_chain_preserve functions "
        "not allowed. Please use the @llvm.amdgpu.cs.chain intrinsic instead.",
        Call);

  auto VerifyTypeAlign = [&](Type *Ty, const Twine &Message) {
    if (!Ty->isSized())
      return;
    Align ABIAlign = DL.getABITypeAlign(Ty);
    Align MaxAlign(ParamMaxAlignment);
    Check(ABIAlign <= MaxAlign,
          "Incorrect alignment of " + Message + " to called function!", Call);
  };

  if (!IsIntrinsic) {
    VerifyTypeAlign(FTy->getReturnType(), "return type");
    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
      Type *Ty = FTy->getParamType(i);
      VerifyTypeAlign(Ty, "argument passed");
    }
  }

  if (Attrs.hasFnAttr(Attribute::Speculatable)) {
    // Don't allow speculatable on call sites, unless the underlying function
    // declaration is also speculatable.
    Check(Callee && Callee->isSpeculatable(),
          "speculatable attribute may not apply to call sites", Call);
  }

  if (Attrs.hasFnAttr(Attribute::Preallocated)) {
    Check(Call.getCalledFunction()->getIntrinsicID() ==
              Intrinsic::call_preallocated_arg,
          "preallocated as a call site attribute can only be on "
          "llvm.call.preallocated.arg");
  }

  // Verify call attributes.
  verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm());

  // Conservatively check the inalloca argument.
  // We have a bug if we can find that there is an underlying alloca without
  // inalloca.
  if (Call.hasInAllocaArgument()) {
    Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
    if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
      Check(AI->isUsedWithInAlloca(),
            "inalloca argument for call has mismatched alloca", AI, Call);
  }

  // For each argument of the callsite, if it has the swifterror argument,
  // make sure the underlying alloca/parameter it comes from has a swifterror as
  // well.
  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
    if (Call.paramHasAttr(i, Attribute::SwiftError)) {
      Value *SwiftErrorArg = Call.getArgOperand(i);
      if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
        Check(AI->isSwiftError(),
              "swifterror argument for call has mismatched alloca", AI, Call);
        continue;
      }
      auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
      Check(ArgI, "swifterror argument should come from an alloca or parameter",
            SwiftErrorArg, Call);
      Check(ArgI->hasSwiftErrorAttr(),
            "swifterror argument for call has mismatched parameter", ArgI,
            Call);
    }

    if (Attrs.hasParamAttr(i, Attribute::ImmArg)) {
      // Don't allow immarg on call sites, unless the underlying declaration
      // also has the matching immarg.
      Check(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
            "immarg may not apply only to call sites", Call.getArgOperand(i),
            Call);
    }

    if (Call.paramHasAttr(i, Attribute::ImmArg)) {
      Value *ArgVal = Call.getArgOperand(i);
      Check(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
            "immarg operand has non-immediate parameter", ArgVal, Call);
    }

    if (Call.paramHasAttr(i, Attribute::Preallocated)) {
      Value *ArgVal = Call.getArgOperand(i);
      bool hasOB =
          Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
      bool isMustTail = Call.isMustTailCall();
      Check(hasOB != isMustTail,
            "preallocated operand either requires a preallocated bundle or "
            "the call to be musttail (but not both)",
            ArgVal, Call);
    }
  }

  if (FTy->isVarArg()) {
    // FIXME? is 'nest' even legal here?
    bool SawNest = false;
    bool SawReturned = false;

    for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
      if (Attrs.hasParamAttr(Idx, Attribute::Nest))
        SawNest = true;
      if (Attrs.hasParamAttr(Idx, Attribute::Returned))
        SawReturned = true;
    }

    // Check attributes on the varargs part.
    for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
      Type *Ty = Call.getArgOperand(Idx)->getType();
      AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx);
      verifyParameterAttrs(ArgAttrs, Ty, &Call);

      if (ArgAttrs.hasAttribute(Attribute::Nest)) {
        Check(!SawNest, "More than one parameter has attribute nest!", Call);
        SawNest = true;
      }

      if (ArgAttrs.hasAttribute(Attribute::Returned)) {
        Check(!SawReturned, "More than one parameter has attribute returned!",
              Call);
        Check(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
              "Incompatible argument and return types for 'returned' "
              "attribute",
              Call);
        SawReturned = true;
      }

      // Statepoint intrinsic is vararg but the wrapped function may be not.
      // Allow sret here and check the wrapped function in verifyStatepoint.
      if (!Call.getCalledFunction() ||
          Call.getCalledFunction()->getIntrinsicID() !=
              Intrinsic::experimental_gc_statepoint)
        Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
              "Attribute 'sret' cannot be used for vararg call arguments!",
              Call);

      if (ArgAttrs.hasAttribute(Attribute::InAlloca))
        Check(Idx == Call.arg_size() - 1,
              "inalloca isn't on the last argument!", Call);
    }
  }

  // Verify that there's no metadata unless it's a direct call to an intrinsic.
  if (!IsIntrinsic) {
    for (Type *ParamTy : FTy->params()) {
      Check(!ParamTy->isMetadataTy(),
            "Function has metadata parameter but isn't an intrinsic", Call);
      Check(!ParamTy->isTokenTy(),
            "Function has token parameter but isn't an intrinsic", Call);
    }
  }

  // Verify that indirect calls don't return tokens.
  if (!Call.getCalledFunction()) {
    Check(!FTy->getReturnType()->isTokenTy(),
          "Return type cannot be token for indirect call!");
    Check(!FTy->getReturnType()->isX86_AMXTy(),
          "Return type cannot be x86_amx for indirect call!");
  }

  if (Function *F = Call.getCalledFunction())
    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
      visitIntrinsicCall(ID, Call);

  // Verify that a callsite has at most one "deopt", at most one "funclet", at
  // most one "gc-transition", at most one "cfguardtarget", at most one
  // "preallocated" operand bundle, and at most one "ptrauth" operand bundle.
  bool FoundDeoptBundle = false, FoundFuncletBundle = false,
       FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
       FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
       FoundPtrauthBundle = false, FoundKCFIBundle = false,
       FoundAttachedCallBundle = false;
  for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
    OperandBundleUse BU = Call.getOperandBundleAt(i);
    uint32_t Tag = BU.getTagID();
    if (Tag == LLVMContext::OB_deopt) {
      Check(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
      FoundDeoptBundle = true;
    } else if (Tag == LLVMContext::OB_gc_transition) {
      Check(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
            Call);
      FoundGCTransitionBundle = true;
    } else if (Tag == LLVMContext::OB_funclet) {
      Check(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
      FoundFuncletBundle = true;
      Check(BU.Inputs.size() == 1,
            "Expected exactly one funclet bundle operand", Call);
      Check(isa<FuncletPadInst>(BU.Inputs.front()),
            "Funclet bundle operands should correspond to a FuncletPadInst",
            Call);
    } else if (Tag == LLVMContext::OB_cfguardtarget) {
      Check(!FoundCFGuardTargetBundle, "Multiple CFGuardTarget operand bundles",
            Call);
      FoundCFGuardTargetBundle = true;
      Check(BU.Inputs.size() == 1,
            "Expected exactly one cfguardtarget bundle operand", Call);
    } else if (Tag == LLVMContext::OB_ptrauth) {
      Check(!FoundPtrauthBundle, "Multiple ptrauth operand bundles", Call);
      FoundPtrauthBundle = true;
      Check(BU.Inputs.size() == 2,
            "Expected exactly two ptrauth bundle operands", Call);
      Check(isa<ConstantInt>(BU.Inputs[0]) &&
                BU.Inputs[0]->getType()->isIntegerTy(32),
            "Ptrauth bundle key operand must be an i32 constant", Call);
      Check(BU.Inputs[1]->getType()->isIntegerTy(64),
            "Ptrauth bundle discriminator operand must be an i64", Call);
    } else if (Tag == LLVMContext::OB_kcfi) {
      Check(!FoundKCFIBundle, "Multiple kcfi operand bundles", Call);
      FoundKCFIBundle = true;
      Check(BU.Inputs.size() == 1, "Expected exactly one kcfi bundle operand",
            Call);
      Check(isa<ConstantInt>(BU.Inputs[0]) &&
                BU.Inputs[0]->getType()->isIntegerTy(32),
            "Kcfi bundle operand must be an i32 constant", Call);
    } else if (Tag == LLVMContext::OB_preallocated) {
      Check(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
            Call);
      FoundPreallocatedBundle = true;
      Check(BU.Inputs.size() == 1,
            "Expected exactly one preallocated bundle operand", Call);
      auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
      Check(Input &&
                Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
            "\"preallocated\" argument must be a token from "
            "llvm.call.preallocated.setup",
            Call);
    } else if (Tag == LLVMContext::OB_gc_live) {
      Check(!FoundGCLiveBundle, "Multiple gc-live operand bundles", Call);
      FoundGCLiveBundle = true;
    } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
      Check(!FoundAttachedCallBundle,
            "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
      FoundAttachedCallBundle = true;
      verifyAttachedCallBundle(Call, BU);
    }
  }

  // Verify that callee and callsite agree on whether to use pointer auth.
  Check(!(Call.getCalledFunction() && FoundPtrauthBundle),
        "Direct call cannot have a ptrauth bundle", Call);

  // Verify that each inlinable callsite of a debug-info-bearing function in a
  // debug-info-bearing function has a debug location attached to it. Failure to
  // do so causes assertion failures when the inliner sets up inline scope info
  // (Interposable functions are not inlinable, neither are functions without
  //  definitions.)
  if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
      !Call.getCalledFunction()->isInterposable() &&
      !Call.getCalledFunction()->isDeclaration() &&
      Call.getCalledFunction()->getSubprogram())
    CheckDI(Call.getDebugLoc(),
            "inlinable function call in a function with "
            "debug info must have a !dbg location",
            Call);

  if (Call.isInlineAsm())
    verifyInlineAsmCall(Call);

  ConvergenceVerifyHelper.visit(Call);

  visitInstruction(Call);
}

void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs,
                                         StringRef Context) {
  Check(!Attrs.contains(Attribute::InAlloca),
        Twine("inalloca attribute not allowed in ") + Context);
  Check(!Attrs.contains(Attribute::InReg),
        Twine("inreg attribute not allowed in ") + Context);
  Check(!Attrs.contains(Attribute::SwiftError),
        Twine("swifterror attribute not allowed in ") + Context);
  Check(!Attrs.contains(Attribute::Preallocated),
        Twine("preallocated attribute not allowed in ") + Context);
  Check(!Attrs.contains(Attribute::ByRef),
        Twine("byref attribute not allowed in ") + Context);
}

/// Two types are "congruent" if they are identical, or if they are both pointer
/// types with different pointee types and the same address space.
static bool isTypeCongruent(Type *L, Type *R) {
  if (L == R)
    return true;
  PointerType *PL = dyn_cast<PointerType>(L);
  PointerType *PR = dyn_cast<PointerType>(R);
  if (!PL || !PR)
    return false;
  return PL->getAddressSpace() == PR->getAddressSpace();
}

static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) {
  static const Attribute::AttrKind ABIAttrs[] = {
      Attribute::StructRet,  Attribute::ByVal,          Attribute::InAlloca,
      Attribute::InReg,      Attribute::StackAlignment, Attribute::SwiftSelf,
      Attribute::SwiftAsync, Attribute::SwiftError,     Attribute::Preallocated,
      Attribute::ByRef};
  AttrBuilder Copy(C);
  for (auto AK : ABIAttrs) {
    Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK);
    if (Attr.isValid())
      Copy.addAttribute(Attr);
  }

  // `align` is ABI-affecting only in combination with `byval` or `byref`.
  if (Attrs.hasParamAttr(I, Attribute::Alignment) &&
      (Attrs.hasParamAttr(I, Attribute::ByVal) ||
       Attrs.hasParamAttr(I, Attribute::ByRef)))
    Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
  return Copy;
}

void Verifier::verifyMustTailCall(CallInst &CI) {
  Check(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);

  Function *F = CI.getParent()->getParent();
  FunctionType *CallerTy = F->getFunctionType();
  FunctionType *CalleeTy = CI.getFunctionType();
  Check(CallerTy->isVarArg() == CalleeTy->isVarArg(),
        "cannot guarantee tail call due to mismatched varargs", &CI);
  Check(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
        "cannot guarantee tail call due to mismatched return types", &CI);

  // - The calling conventions of the caller and callee must match.
  Check(F->getCallingConv() == CI.getCallingConv(),
        "cannot guarantee tail call due to mismatched calling conv", &CI);

  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
  //   or a pointer bitcast followed by a ret instruction.
  // - The ret instruction must return the (possibly bitcasted) value
  //   produced by the call or void.
  Value *RetVal = &CI;
  Instruction *Next = CI.getNextNode();

  // Handle the optional bitcast.
  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
    Check(BI->getOperand(0) == RetVal,
          "bitcast following musttail call must use the call", BI);
    RetVal = BI;
    Next = BI->getNextNode();
  }

  // Check the return.
  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
  Check(Ret, "musttail call must precede a ret with an optional bitcast", &CI);
  Check(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
            isa<UndefValue>(Ret->getReturnValue()),
        "musttail call result must be returned", Ret);

  AttributeList CallerAttrs = F->getAttributes();
  AttributeList CalleeAttrs = CI.getAttributes();
  if (CI.getCallingConv() == CallingConv::SwiftTail ||
      CI.getCallingConv() == CallingConv::Tail) {
    StringRef CCName =
        CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";

    // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
    //   are allowed in swifttailcc call
    for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
      AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
      SmallString<32> Context{CCName, StringRef(" musttail caller")};
      verifyTailCCMustTailAttrs(ABIAttrs, Context);
    }
    for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
      AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
      SmallString<32> Context{CCName, StringRef(" musttail callee")};
      verifyTailCCMustTailAttrs(ABIAttrs, Context);
    }
    // - Varargs functions are not allowed
    Check(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
                                     " tail call for varargs function");
    return;
  }

  // - The caller and callee prototypes must match.  Pointer types of
  //   parameters or return types may differ in pointee type, but not
  //   address space.
  if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
    Check(CallerTy->getNumParams() == CalleeTy->getNumParams(),
          "cannot guarantee tail call due to mismatched parameter counts", &CI);
    for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
      Check(
          isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
          "cannot guarantee tail call due to mismatched parameter types", &CI);
    }
  }

  // - All ABI-impacting function attributes, such as sret, byval, inreg,
  //   returned, preallocated, and inalloca, must match.
  for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
    AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
    AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
    Check(CallerABIAttrs == CalleeABIAttrs,
          "cannot guarantee tail call due to mismatched ABI impacting "
          "function attributes",
          &CI, CI.getOperand(I));
  }
}

void Verifier::visitCallInst(CallInst &CI) {
  visitCallBase(CI);

  if (CI.isMustTailCall())
    verifyMustTailCall(CI);
}

void Verifier::visitInvokeInst(InvokeInst &II) {
  visitCallBase(II);

  // Verify that the first non-PHI instruction of the unwind destination is an
  // exception handling instruction.
  Check(
      II.getUnwindDest()->isEHPad(),
      "The unwind destination does not have an exception handling instruction!",
      &II);

  visitTerminator(II);
}

/// visitUnaryOperator - Check the argument to the unary operator.
///
void Verifier::visitUnaryOperator(UnaryOperator &U) {
  Check(U.getType() == U.getOperand(0)->getType(),
        "Unary operators must have same type for"
        "operands and result!",
        &U);

  switch (U.getOpcode()) {
  // Check that floating-point arithmetic operators are only used with
  // floating-point operands.
  case Instruction::FNeg:
    Check(U.getType()->isFPOrFPVectorTy(),
          "FNeg operator only works with float types!", &U);
    break;
  default:
    llvm_unreachable("Unknown UnaryOperator opcode!");
  }

  visitInstruction(U);
}

/// visitBinaryOperator - Check that both arguments to the binary operator are
/// of the same type!
///
void Verifier::visitBinaryOperator(BinaryOperator &B) {
  Check(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
        "Both operands to a binary operator are not of the same type!", &B);

  switch (B.getOpcode()) {
  // Check that integer arithmetic operators are only used with
  // integral operands.
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::SDiv:
  case Instruction::UDiv:
  case Instruction::SRem:
  case Instruction::URem:
    Check(B.getType()->isIntOrIntVectorTy(),
          "Integer arithmetic operators only work with integral types!", &B);
    Check(B.getType() == B.getOperand(0)->getType(),
          "Integer arithmetic operators must have same type "
          "for operands and result!",
          &B);
    break;
  // Check that floating-point arithmetic operators are only used with
  // floating-point operands.
  case Instruction::FAdd:
  case Instruction::FSub:
  case Instruction::FMul:
  case Instruction::FDiv:
  case Instruction::FRem:
    Check(B.getType()->isFPOrFPVectorTy(),
          "Floating-point arithmetic operators only work with "
          "floating-point types!",
          &B);
    Check(B.getType() == B.getOperand(0)->getType(),
          "Floating-point arithmetic operators must have same type "
          "for operands and result!",
          &B);
    break;
  // Check that logical operators are only used with integral operands.
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    Check(B.getType()->isIntOrIntVectorTy(),
          "Logical operators only work with integral types!", &B);
    Check(B.getType() == B.getOperand(0)->getType(),
          "Logical operators must have same type for operands and result!", &B);
    break;
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    Check(B.getType()->isIntOrIntVectorTy(),
          "Shifts only work with integral types!", &B);
    Check(B.getType() == B.getOperand(0)->getType(),
          "Shift return type must be same as operands!", &B);
    break;
  default:
    llvm_unreachable("Unknown BinaryOperator opcode!");
  }

  visitInstruction(B);
}

void Verifier::visitICmpInst(ICmpInst &IC) {
  // Check that the operands are the same type
  Type *Op0Ty = IC.getOperand(0)->getType();
  Type *Op1Ty = IC.getOperand(1)->getType();
  Check(Op0Ty == Op1Ty,
        "Both operands to ICmp instruction are not of the same type!", &IC);
  // Check that the operands are the right type
  Check(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
        "Invalid operand types for ICmp instruction", &IC);
  // Check that the predicate is valid.
  Check(IC.isIntPredicate(), "Invalid predicate in ICmp instruction!", &IC);

  visitInstruction(IC);
}

void Verifier::visitFCmpInst(FCmpInst &FC) {
  // Check that the operands are the same type
  Type *Op0Ty = FC.getOperand(0)->getType();
  Type *Op1Ty = FC.getOperand(1)->getType();
  Check(Op0Ty == Op1Ty,
        "Both operands to FCmp instruction are not of the same type!", &FC);
  // Check that the operands are the right type
  Check(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction",
        &FC);
  // Check that the predicate is valid.
  Check(FC.isFPPredicate(), "Invalid predicate in FCmp instruction!", &FC);

  visitInstruction(FC);
}

void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
  Check(ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
        "Invalid extractelement operands!", &EI);
  visitInstruction(EI);
}

void Verifier::visitInsertElementInst(InsertElementInst &IE) {
  Check(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
                                           IE.getOperand(2)),
        "Invalid insertelement operands!", &IE);
  visitInstruction(IE);
}

void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
  Check(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
                                           SV.getShuffleMask()),
        "Invalid shufflevector operands!", &SV);
  visitInstruction(SV);
}

void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();

  Check(isa<PointerType>(TargetTy),
        "GEP base pointer is not a vector or a vector of pointers", &GEP);
  Check(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);

  if (auto *STy = dyn_cast<StructType>(GEP.getSourceElementType())) {
    SmallPtrSet<Type *, 4> Visited;
    Check(!STy->containsScalableVectorType(&Visited),
          "getelementptr cannot target structure that contains scalable vector"
          "type",
          &GEP);
  }

  SmallVector<Value *, 16> Idxs(GEP.indices());
  Check(
      all_of(Idxs, [](Value *V) { return V->getType()->isIntOrIntVectorTy(); }),
      "GEP indexes must be integers", &GEP);
  Type *ElTy =
      GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
  Check(ElTy, "Invalid indices for GEP pointer type!", &GEP);

  Check(GEP.getType()->isPtrOrPtrVectorTy() &&
            GEP.getResultElementType() == ElTy,
        "GEP is not of right type for indices!", &GEP, ElTy);

  if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
    // Additional checks for vector GEPs.
    ElementCount GEPWidth = GEPVTy->getElementCount();
    if (GEP.getPointerOperandType()->isVectorTy())
      Check(
          GEPWidth ==
              cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
          "Vector GEP result width doesn't match operand's", &GEP);
    for (Value *Idx : Idxs) {
      Type *IndexTy = Idx->getType();
      if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
        ElementCount IndexWidth = IndexVTy->getElementCount();
        Check(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
      }
      Check(IndexTy->isIntOrIntVectorTy(),
            "All GEP indices should be of integer type");
    }
  }

  if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
    Check(GEP.getAddressSpace() == PTy->getAddressSpace(),
          "GEP address space doesn't match type", &GEP);
  }

  visitInstruction(GEP);
}

static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
}

/// Verify !range and !absolute_symbol metadata. These have the same
/// restrictions, except !absolute_symbol allows the full set.
void Verifier::verifyRangeMetadata(const Value &I, const MDNode *Range,
                                   Type *Ty, bool IsAbsoluteSymbol) {
  unsigned NumOperands = Range->getNumOperands();
  Check(NumOperands % 2 == 0, "Unfinished range!", Range);
  unsigned NumRanges = NumOperands / 2;
  Check(NumRanges >= 1, "It should have at least one range!", Range);

  ConstantRange LastRange(1, true); // Dummy initial value
  for (unsigned i = 0; i < NumRanges; ++i) {
    ConstantInt *Low =
        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
    Check(Low, "The lower limit must be an integer!", Low);
    ConstantInt *High =
        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
    Check(High, "The upper limit must be an integer!", High);
    Check(High->getType() == Low->getType() &&
          High->getType() == Ty->getScalarType(),
          "Range types must match instruction type!", &I);

    APInt HighV = High->getValue();
    APInt LowV = Low->getValue();

    // ConstantRange asserts if the ranges are the same except for the min/max
    // value. Leave the cases it tolerates for the empty range error below.
    Check(LowV != HighV || LowV.isMaxValue() || LowV.isMinValue(),
          "The upper and lower limits cannot be the same value", &I);

    ConstantRange CurRange(LowV, HighV);
    Check(!CurRange.isEmptySet() && (IsAbsoluteSymbol || !CurRange.isFullSet()),
          "Range must not be empty!", Range);
    if (i != 0) {
      Check(CurRange.intersectWith(LastRange).isEmptySet(),
            "Intervals are overlapping", Range);
      Check(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
            Range);
      Check(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
            Range);
    }
    LastRange = ConstantRange(LowV, HighV);
  }
  if (NumRanges > 2) {
    APInt FirstLow =
        mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
    APInt FirstHigh =
        mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
    ConstantRange FirstRange(FirstLow, FirstHigh);
    Check(FirstRange.intersectWith(LastRange).isEmptySet(),
          "Intervals are overlapping", Range);
    Check(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
          Range);
  }
}

void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
  assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
         "precondition violation");
  verifyRangeMetadata(I, Range, Ty, false);
}

void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
  unsigned Size = DL.getTypeSizeInBits(Ty);
  Check(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
  Check(!(Size & (Size - 1)),
        "atomic memory access' operand must have a power-of-two size", Ty, I);
}

void Verifier::visitLoadInst(LoadInst &LI) {
  PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
  Check(PTy, "Load operand must be a pointer.", &LI);
  Type *ElTy = LI.getType();
  if (MaybeAlign A = LI.getAlign()) {
    Check(A->value() <= Value::MaximumAlignment,
          "huge alignment values are unsupported", &LI);
  }
  Check(ElTy->isSized(), "loading unsized types is not allowed", &LI);
  if (LI.isAtomic()) {
    Check(LI.getOrdering() != AtomicOrdering::Release &&
              LI.getOrdering() != AtomicOrdering::AcquireRelease,
          "Load cannot have Release ordering", &LI);
    Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
          "atomic load operand must have integer, pointer, or floating point "
          "type!",
          ElTy, &LI);
    checkAtomicMemAccessSize(ElTy, &LI);
  } else {
    Check(LI.getSyncScopeID() == SyncScope::System,
          "Non-atomic load cannot have SynchronizationScope specified", &LI);
  }

  visitInstruction(LI);
}

void Verifier::visitStoreInst(StoreInst &SI) {
  PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
  Check(PTy, "Store operand must be a pointer.", &SI);
  Type *ElTy = SI.getOperand(0)->getType();
  if (MaybeAlign A = SI.getAlign()) {
    Check(A->value() <= Value::MaximumAlignment,
          "huge alignment values are unsupported", &SI);
  }
  Check(ElTy->isSized(), "storing unsized types is not allowed", &SI);
  if (SI.isAtomic()) {
    Check(SI.getOrdering() != AtomicOrdering::Acquire &&
              SI.getOrdering() != AtomicOrdering::AcquireRelease,
          "Store cannot have Acquire ordering", &SI);
    Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
          "atomic store operand must have integer, pointer, or floating point "
          "type!",
          ElTy, &SI);
    checkAtomicMemAccessSize(ElTy, &SI);
  } else {
    Check(SI.getSyncScopeID() == SyncScope::System,
          "Non-atomic store cannot have SynchronizationScope specified", &SI);
  }
  visitInstruction(SI);
}

/// Check that SwiftErrorVal is used as a swifterror argument in CS.
void Verifier::verifySwiftErrorCall(CallBase &Call,
                                    const Value *SwiftErrorVal) {
  for (const auto &I : llvm::enumerate(Call.args())) {
    if (I.value() == SwiftErrorVal) {
      Check(Call.paramHasAttr(I.index(), Attribute::SwiftError),
            "swifterror value when used in a callsite should be marked "
            "with swifterror attribute",
            SwiftErrorVal, Call);
    }
  }
}

void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
  // Check that swifterror value is only used by loads, stores, or as
  // a swifterror argument.
  for (const User *U : SwiftErrorVal->users()) {
    Check(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
              isa<InvokeInst>(U),
          "swifterror value can only be loaded and stored from, or "
          "as a swifterror argument!",
          SwiftErrorVal, U);
    // If it is used by a store, check it is the second operand.
    if (auto StoreI = dyn_cast<StoreInst>(U))
      Check(StoreI->getOperand(1) == SwiftErrorVal,
            "swifterror value should be the second operand when used "
            "by stores",
            SwiftErrorVal, U);
    if (auto *Call = dyn_cast<CallBase>(U))
      verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
  }
}

void Verifier::visitAllocaInst(AllocaInst &AI) {
  SmallPtrSet<Type*, 4> Visited;
  Check(AI.getAllocatedType()->isSized(&Visited),
        "Cannot allocate unsized type", &AI);
  Check(AI.getArraySize()->getType()->isIntegerTy(),
        "Alloca array size must have integer type", &AI);
  if (MaybeAlign A = AI.getAlign()) {
    Check(A->value() <= Value::MaximumAlignment,
          "huge alignment values are unsupported", &AI);
  }

  if (AI.isSwiftError()) {
    Check(AI.getAllocatedType()->isPointerTy(),
          "swifterror alloca must have pointer type", &AI);
    Check(!AI.isArrayAllocation(),
          "swifterror alloca must not be array allocation", &AI);
    verifySwiftErrorValue(&AI);
  }

  visitInstruction(AI);
}

void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
  Type *ElTy = CXI.getOperand(1)->getType();
  Check(ElTy->isIntOrPtrTy(),
        "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
  checkAtomicMemAccessSize(ElTy, &CXI);
  visitInstruction(CXI);
}

void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
  Check(RMWI.getOrdering() != AtomicOrdering::Unordered,
        "atomicrmw instructions cannot be unordered.", &RMWI);
  auto Op = RMWI.getOperation();
  Type *ElTy = RMWI.getOperand(1)->getType();
  if (Op == AtomicRMWInst::Xchg) {
    Check(ElTy->isIntegerTy() || ElTy->isFloatingPointTy() ||
              ElTy->isPointerTy(),
          "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
              " operand must have integer or floating point type!",
          &RMWI, ElTy);
  } else if (AtomicRMWInst::isFPOperation(Op)) {
    Check(ElTy->isFloatingPointTy(),
          "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
              " operand must have floating point type!",
          &RMWI, ElTy);
  } else {
    Check(ElTy->isIntegerTy(),
          "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
              " operand must have integer type!",
          &RMWI, ElTy);
  }
  checkAtomicMemAccessSize(ElTy, &RMWI);
  Check(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
        "Invalid binary operation!", &RMWI);
  visitInstruction(RMWI);
}

void Verifier::visitFenceInst(FenceInst &FI) {
  const AtomicOrdering Ordering = FI.getOrdering();
  Check(Ordering == AtomicOrdering::Acquire ||
            Ordering == AtomicOrdering::Release ||
            Ordering == AtomicOrdering::AcquireRelease ||
            Ordering == AtomicOrdering::SequentiallyConsistent,
        "fence instructions may only have acquire, release, acq_rel, or "
        "seq_cst ordering.",
        &FI);
  visitInstruction(FI);
}

void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
  Check(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
                                         EVI.getIndices()) == EVI.getType(),
        "Invalid ExtractValueInst operands!", &EVI);

  visitInstruction(EVI);
}

void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
  Check(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
                                         IVI.getIndices()) ==
            IVI.getOperand(1)->getType(),
        "Invalid InsertValueInst operands!", &IVI);

  visitInstruction(IVI);
}

static Value *getParentPad(Value *EHPad) {
  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
    return FPI->getParentPad();

  return cast<CatchSwitchInst>(EHPad)->getParentPad();
}

void Verifier::visitEHPadPredecessors(Instruction &I) {
  assert(I.isEHPad());

  BasicBlock *BB = I.getParent();
  Function *F = BB->getParent();

  Check(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);

  if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
    // The landingpad instruction defines its parent as a landing pad block. The
    // landing pad block may be branched to only by the unwind edge of an
    // invoke.
    for (BasicBlock *PredBB : predecessors(BB)) {
      const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
      Check(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
            "Block containing LandingPadInst must be jumped to "
            "only by the unwind edge of an invoke.",
            LPI);
    }
    return;
  }
  if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
    if (!pred_empty(BB))
      Check(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
            "Block containg CatchPadInst must be jumped to "
            "only by its catchswitch.",
            CPI);
    Check(BB != CPI->getCatchSwitch()->getUnwindDest(),
          "Catchswitch cannot unwind to one of its catchpads",
          CPI->getCatchSwitch(), CPI);
    return;
  }

  // Verify that each pred has a legal terminator with a legal to/from EH
  // pad relationship.
  Instruction *ToPad = &I;
  Value *ToPadParent = getParentPad(ToPad);
  for (BasicBlock *PredBB : predecessors(BB)) {
    Instruction *TI = PredBB->getTerminator();
    Value *FromPad;
    if (auto *II = dyn_cast<InvokeInst>(TI)) {
      Check(II->getUnwindDest() == BB && II->getNormalDest() != BB,
            "EH pad must be jumped to via an unwind edge", ToPad, II);
      if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
        FromPad = Bundle->Inputs[0];
      else
        FromPad = ConstantTokenNone::get(II->getContext());
    } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
      FromPad = CRI->getOperand(0);
      Check(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
    } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
      FromPad = CSI;
    } else {
      Check(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
    }

    // The edge may exit from zero or more nested pads.
    SmallSet<Value *, 8> Seen;
    for (;; FromPad = getParentPad(FromPad)) {
      Check(FromPad != ToPad,
            "EH pad cannot handle exceptions raised within it", FromPad, TI);
      if (FromPad == ToPadParent) {
        // This is a legal unwind edge.
        break;
      }
      Check(!isa<ConstantTokenNone>(FromPad),
            "A single unwind edge may only enter one EH pad", TI);
      Check(Seen.insert(FromPad).second, "EH pad jumps through a cycle of pads",
            FromPad);

      // This will be diagnosed on the corresponding instruction already. We
      // need the extra check here to make sure getParentPad() works.
      Check(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad),
            "Parent pad must be catchpad/cleanuppad/catchswitch", TI);
    }
  }
}

void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
  // The landingpad instruction is ill-formed if it doesn't have any clauses and
  // isn't a cleanup.
  Check(LPI.getNumClauses() > 0 || LPI.isCleanup(),
        "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);

  visitEHPadPredecessors(LPI);

  if (!LandingPadResultTy)
    LandingPadResultTy = LPI.getType();
  else
    Check(LandingPadResultTy == LPI.getType(),
          "The landingpad instruction should have a consistent result type "
          "inside a function.",
          &LPI);

  Function *F = LPI.getParent()->getParent();
  Check(F->hasPersonalityFn(),
        "LandingPadInst needs to be in a function with a personality.", &LPI);

  // The landingpad instruction must be the first non-PHI instruction in the
  // block.
  Check(LPI.getParent()->getLandingPadInst() == &LPI,
        "LandingPadInst not the first non-PHI instruction in the block.", &LPI);

  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
    Constant *Clause = LPI.getClause(i);
    if (LPI.isCatch(i)) {
      Check(isa<PointerType>(Clause->getType()),
            "Catch operand does not have pointer type!", &LPI);
    } else {
      Check(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
      Check(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
            "Filter operand is not an array of constants!", &LPI);
    }
  }

  visitInstruction(LPI);
}

void Verifier::visitResumeInst(ResumeInst &RI) {
  Check(RI.getFunction()->hasPersonalityFn(),
        "ResumeInst needs to be in a function with a personality.", &RI);

  if (!LandingPadResultTy)
    LandingPadResultTy = RI.getValue()->getType();
  else
    Check(LandingPadResultTy == RI.getValue()->getType(),
          "The resume instruction should have a consistent result type "
          "inside a function.",
          &RI);

  visitTerminator(RI);
}

void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
  BasicBlock *BB = CPI.getParent();

  Function *F = BB->getParent();
  Check(F->hasPersonalityFn(),
        "CatchPadInst needs to be in a function with a personality.", &CPI);

  Check(isa<CatchSwitchInst>(CPI.getParentPad()),
        "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
        CPI.getParentPad());

  // The catchpad instruction must be the first non-PHI instruction in the
  // block.
  Check(BB->getFirstNonPHI() == &CPI,
        "CatchPadInst not the first non-PHI instruction in the block.", &CPI);

  visitEHPadPredecessors(CPI);
  visitFuncletPadInst(CPI);
}

void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
  Check(isa<CatchPadInst>(CatchReturn.getOperand(0)),
        "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
        CatchReturn.getOperand(0));

  visitTerminator(CatchReturn);
}

void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
  BasicBlock *BB = CPI.getParent();

  Function *F = BB->getParent();
  Check(F->hasPersonalityFn(),
        "CleanupPadInst needs to be in a function with a personality.", &CPI);

  // The cleanuppad instruction must be the first non-PHI instruction in the
  // block.
  Check(BB->getFirstNonPHI() == &CPI,
        "CleanupPadInst not the first non-PHI instruction in the block.", &CPI);

  auto *ParentPad = CPI.getParentPad();
  Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
        "CleanupPadInst has an invalid parent.", &CPI);

  visitEHPadPredecessors(CPI);
  visitFuncletPadInst(CPI);
}

void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
  User *FirstUser = nullptr;
  Value *FirstUnwindPad = nullptr;
  SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
  SmallSet<FuncletPadInst *, 8> Seen;

  while (!Worklist.empty()) {
    FuncletPadInst *CurrentPad = Worklist.pop_back_val();
    Check(Seen.insert(CurrentPad).second,
          "FuncletPadInst must not be nested within itself", CurrentPad);
    Value *UnresolvedAncestorPad = nullptr;
    for (User *U : CurrentPad->users()) {
      BasicBlock *UnwindDest;
      if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
        UnwindDest = CRI->getUnwindDest();
      } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
        // We allow catchswitch unwind to caller to nest
        // within an outer pad that unwinds somewhere else,
        // because catchswitch doesn't have a nounwind variant.
        // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
        if (CSI->unwindsToCaller())
          continue;
        UnwindDest = CSI->getUnwindDest();
      } else if (auto *II = dyn_cast<InvokeInst>(U)) {
        UnwindDest = II->getUnwindDest();
      } else if (isa<CallInst>(U)) {
        // Calls which don't unwind may be found inside funclet
        // pads that unwind somewhere else.  We don't *require*
        // such calls to be annotated nounwind.
        continue;
      } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
        // The unwind dest for a cleanup can only be found by
        // recursive search.  Add it to the worklist, and we'll
        // search for its first use that determines where it unwinds.
        Worklist.push_back(CPI);
        continue;
      } else {
        Check(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
        continue;
      }

      Value *UnwindPad;
      bool ExitsFPI;
      if (UnwindDest) {
        UnwindPad = UnwindDest->getFirstNonPHI();
        if (!cast<Instruction>(UnwindPad)->isEHPad())
          continue;
        Value *UnwindParent = getParentPad(UnwindPad);
        // Ignore unwind edges that don't exit CurrentPad.
        if (UnwindParent == CurrentPad)
          continue;
        // Determine whether the original funclet pad is exited,
        // and if we are scanning nested pads determine how many
        // of them are exited so we can stop searching their
        // children.
        Value *ExitedPad = CurrentPad;
        ExitsFPI = false;
        do {
          if (ExitedPad == &FPI) {
            ExitsFPI = true;
            // Now we can resolve any ancestors of CurrentPad up to
            // FPI, but not including FPI since we need to make sure
            // to check all direct users of FPI for consistency.
            UnresolvedAncestorPad = &FPI;
            break;
          }
          Value *ExitedParent = getParentPad(ExitedPad);
          if (ExitedParent == UnwindParent) {
            // ExitedPad is the ancestor-most pad which this unwind
            // edge exits, so we can resolve up to it, meaning that
            // ExitedParent is the first ancestor still unresolved.
            UnresolvedAncestorPad = ExitedParent;
            break;
          }
          ExitedPad = ExitedParent;
        } while (!isa<ConstantTokenNone>(ExitedPad));
      } else {
        // Unwinding to caller exits all pads.
        UnwindPad = ConstantTokenNone::get(FPI.getContext());
        ExitsFPI = true;
        UnresolvedAncestorPad = &FPI;
      }

      if (ExitsFPI) {
        // This unwind edge exits FPI.  Make sure it agrees with other
        // such edges.
        if (FirstUser) {
          Check(UnwindPad == FirstUnwindPad,
                "Unwind edges out of a funclet "
                "pad must have the same unwind "
                "dest",
                &FPI, U, FirstUser);
        } else {
          FirstUser = U;
          FirstUnwindPad = UnwindPad;
          // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
          if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
              getParentPad(UnwindPad) == getParentPad(&FPI))
            SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
        }
      }
      // Make sure we visit all uses of FPI, but for nested pads stop as
      // soon as we know where they unwind to.
      if (CurrentPad != &FPI)
        break;
    }
    if (UnresolvedAncestorPad) {
      if (CurrentPad == UnresolvedAncestorPad) {
        // When CurrentPad is FPI itself, we don't mark it as resolved even if
        // we've found an unwind edge that exits it, because we need to verify
        // all direct uses of FPI.
        assert(CurrentPad == &FPI);
        continue;
      }
      // Pop off the worklist any nested pads that we've found an unwind
      // destination for.  The pads on the worklist are the uncles,
      // great-uncles, etc. of CurrentPad.  We've found an unwind destination
      // for all ancestors of CurrentPad up to but not including
      // UnresolvedAncestorPad.
      Value *ResolvedPad = CurrentPad;
      while (!Worklist.empty()) {
        Value *UnclePad = Worklist.back();
        Value *AncestorPad = getParentPad(UnclePad);
        // Walk ResolvedPad up the ancestor list until we either find the
        // uncle's parent or the last resolved ancestor.
        while (ResolvedPad != AncestorPad) {
          Value *ResolvedParent = getParentPad(ResolvedPad);
          if (ResolvedParent == UnresolvedAncestorPad) {
            break;
          }
          ResolvedPad = ResolvedParent;
        }
        // If the resolved ancestor search didn't find the uncle's parent,
        // then the uncle is not yet resolved.
        if (ResolvedPad != AncestorPad)
          break;
        // This uncle is resolved, so pop it from the worklist.
        Worklist.pop_back();
      }
    }
  }

  if (FirstUnwindPad) {
    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
      BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
      Value *SwitchUnwindPad;
      if (SwitchUnwindDest)
        SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
      else
        SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
      Check(SwitchUnwindPad == FirstUnwindPad,
            "Unwind edges out of a catch must have the same unwind dest as "
            "the parent catchswitch",
            &FPI, FirstUser, CatchSwitch);
    }
  }

  visitInstruction(FPI);
}

void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
  BasicBlock *BB = CatchSwitch.getParent();

  Function *F = BB->getParent();
  Check(F->hasPersonalityFn(),
        "CatchSwitchInst needs to be in a function with a personality.",
        &CatchSwitch);

  // The catchswitch instruction must be the first non-PHI instruction in the
  // block.
  Check(BB->getFirstNonPHI() == &CatchSwitch,
        "CatchSwitchInst not the first non-PHI instruction in the block.",
        &CatchSwitch);

  auto *ParentPad = CatchSwitch.getParentPad();
  Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
        "CatchSwitchInst has an invalid parent.", ParentPad);

  if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
    Instruction *I = UnwindDest->getFirstNonPHI();
    Check(I->isEHPad() && !isa<LandingPadInst>(I),
          "CatchSwitchInst must unwind to an EH block which is not a "
          "landingpad.",
          &CatchSwitch);

    // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
    if (getParentPad(I) == ParentPad)
      SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
  }

  Check(CatchSwitch.getNumHandlers() != 0,
        "CatchSwitchInst cannot have empty handler list", &CatchSwitch);

  for (BasicBlock *Handler : CatchSwitch.handlers()) {
    Check(isa<CatchPadInst>(Handler->getFirstNonPHI()),
          "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
  }

  visitEHPadPredecessors(CatchSwitch);
  visitTerminator(CatchSwitch);
}

void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
  Check(isa<CleanupPadInst>(CRI.getOperand(0)),
        "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
        CRI.getOperand(0));

  if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
    Instruction *I = UnwindDest->getFirstNonPHI();
    Check(I->isEHPad() && !isa<LandingPadInst>(I),
          "CleanupReturnInst must unwind to an EH block which is not a "
          "landingpad.",
          &CRI);
  }

  visitTerminator(CRI);
}

void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
  Instruction *Op = cast<Instruction>(I.getOperand(i));
  // If the we have an invalid invoke, don't try to compute the dominance.
  // We already reject it in the invoke specific checks and the dominance
  // computation doesn't handle multiple edges.
  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
    if (II->getNormalDest() == II->getUnwindDest())
      return;
  }

  // Quick check whether the def has already been encountered in the same block.
  // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
  // uses are defined to happen on the incoming edge, not at the instruction.
  //
  // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
  // wrapping an SSA value, assert that we've already encountered it.  See
  // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
  if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
    return;

  const Use &U = I.getOperandUse(i);
  Check(DT.dominates(Op, U), "Instruction does not dominate all uses!", Op, &I);
}

void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
  Check(I.getType()->isPointerTy(),
        "dereferenceable, dereferenceable_or_null "
        "apply only to pointer types",
        &I);
  Check((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
        "dereferenceable, dereferenceable_or_null apply only to load"
        " and inttoptr instructions, use attributes for calls or invokes",
        &I);
  Check(MD->getNumOperands() == 1,
        "dereferenceable, dereferenceable_or_null "
        "take one operand!",
        &I);
  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
  Check(CI && CI->getType()->isIntegerTy(64),
        "dereferenceable, "
        "dereferenceable_or_null metadata value must be an i64!",
        &I);
}

void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
  Check(MD->getNumOperands() >= 2,
        "!prof annotations should have no less than 2 operands", MD);

  // Check first operand.
  Check(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
  Check(isa<MDString>(MD->getOperand(0)),
        "expected string with name of the !prof annotation", MD);
  MDString *MDS = cast<MDString>(MD->getOperand(0));
  StringRef ProfName = MDS->getString();

  // Check consistency of !prof branch_weights metadata.
  if (ProfName.equals("branch_weights")) {
    if (isa<InvokeInst>(&I)) {
      Check(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
            "Wrong number of InvokeInst branch_weights operands", MD);
    } else {
      unsigned ExpectedNumOperands = 0;
      if (BranchInst *BI = dyn_cast<BranchInst>(&I))
        ExpectedNumOperands = BI->getNumSuccessors();
      else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
        ExpectedNumOperands = SI->getNumSuccessors();
      else if (isa<CallInst>(&I))
        ExpectedNumOperands = 1;
      else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
        ExpectedNumOperands = IBI->getNumDestinations();
      else if (isa<SelectInst>(&I))
        ExpectedNumOperands = 2;
      else if (CallBrInst *CI = dyn_cast<CallBrInst>(&I))
        ExpectedNumOperands = CI->getNumSuccessors();
      else
        CheckFailed("!prof branch_weights are not allowed for this instruction",
                    MD);

      Check(MD->getNumOperands() == 1 + ExpectedNumOperands,
            "Wrong number of operands", MD);
    }
    for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
      auto &MDO = MD->getOperand(i);
      Check(MDO, "second operand should not be null", MD);
      Check(mdconst::dyn_extract<ConstantInt>(MDO),
            "!prof brunch_weights operand is not a const int");
    }
  }
}

void Verifier::visitDIAssignIDMetadata(Instruction &I, MDNode *MD) {
  assert(I.hasMetadata(LLVMContext::MD_DIAssignID));
  bool ExpectedInstTy =
      isa<AllocaInst>(I) || isa<StoreInst>(I) || isa<MemIntrinsic>(I);
  CheckDI(ExpectedInstTy, "!DIAssignID attached to unexpected instruction kind",
          I, MD);
  // Iterate over the MetadataAsValue uses of the DIAssignID - these should
  // only be found as DbgAssignIntrinsic operands.
  if (auto *AsValue = MetadataAsValue::getIfExists(Context, MD)) {
    for (auto *User : AsValue->users()) {
      CheckDI(isa<DbgAssignIntrinsic>(User),
              "!DIAssignID should only be used by llvm.dbg.assign intrinsics",
              MD, User);
      // All of the dbg.assign intrinsics should be in the same function as I.
      if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(User))
        CheckDI(DAI->getFunction() == I.getFunction(),
                "dbg.assign not in same function as inst", DAI, &I);
    }
  }
}

void Verifier::visitCallStackMetadata(MDNode *MD) {
  // Call stack metadata should consist of a list of at least 1 constant int
  // (representing a hash of the location).
  Check(MD->getNumOperands() >= 1,
        "call stack metadata should have at least 1 operand", MD);

  for (const auto &Op : MD->operands())
    Check(mdconst::dyn_extract_or_null<ConstantInt>(Op),
          "call stack metadata operand should be constant integer", Op);
}

void Verifier::visitMemProfMetadata(Instruction &I, MDNode *MD) {
  Check(isa<CallBase>(I), "!memprof metadata should only exist on calls", &I);
  Check(MD->getNumOperands() >= 1,
        "!memprof annotations should have at least 1 metadata operand "
        "(MemInfoBlock)",
        MD);

  // Check each MIB
  for (auto &MIBOp : MD->operands()) {
    MDNode *MIB = dyn_cast<MDNode>(MIBOp);
    // The first operand of an MIB should be the call stack metadata.
    // There rest of the operands should be MDString tags, and there should be
    // at least one.
    Check(MIB->getNumOperands() >= 2,
          "Each !memprof MemInfoBlock should have at least 2 operands", MIB);

    // Check call stack metadata (first operand).
    Check(MIB->getOperand(0) != nullptr,
          "!memprof MemInfoBlock first operand should not be null", MIB);
    Check(isa<MDNode>(MIB->getOperand(0)),
          "!memprof MemInfoBlock first operand should be an MDNode", MIB);
    MDNode *StackMD = dyn_cast<MDNode>(MIB->getOperand(0));
    visitCallStackMetadata(StackMD);

    // Check that remaining operands are MDString.
    Check(llvm::all_of(llvm::drop_begin(MIB->operands()),
                       [](const MDOperand &Op) { return isa<MDString>(Op); }),
          "Not all !memprof MemInfoBlock operands 1 to N are MDString", MIB);
  }
}

void Verifier::visitCallsiteMetadata(Instruction &I, MDNode *MD) {
  Check(isa<CallBase>(I), "!callsite metadata should only exist on calls", &I);
  // Verify the partial callstack annotated from memprof profiles. This callsite
  // is a part of a profiled allocation callstack.
  visitCallStackMetadata(MD);
}

void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
  Check(isa<MDTuple>(Annotation), "annotation must be a tuple");
  Check(Annotation->getNumOperands() >= 1,
        "annotation must have at least one operand");
  for (const MDOperand &Op : Annotation->operands()) {
    bool TupleOfStrings =
        isa<MDTuple>(Op.get()) &&
        all_of(cast<MDTuple>(Op)->operands(), [](auto &Annotation) {
          return isa<MDString>(Annotation.get());
        });
    Check(isa<MDString>(Op.get()) || TupleOfStrings,
          "operands must be a string or a tuple of strings");
  }
}

void Verifier::visitAliasScopeMetadata(const MDNode *MD) {
  unsigned NumOps = MD->getNumOperands();
  Check(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands",
        MD);
  Check(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)),
        "first scope operand must be self-referential or string", MD);
  if (NumOps == 3)
    Check(isa<MDString>(MD->getOperand(2)),
          "third scope operand must be string (if used)", MD);

  MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1));
  Check(Domain != nullptr, "second scope operand must be MDNode", MD);

  unsigned NumDomainOps = Domain->getNumOperands();
  Check(NumDomainOps >= 1 && NumDomainOps <= 2,
        "domain must have one or two operands", Domain);
  Check(Domain->getOperand(0).get() == Domain ||
            isa<MDString>(Domain->getOperand(0)),
        "first domain operand must be self-referential or string", Domain);
  if (NumDomainOps == 2)
    Check(isa<MDString>(Domain->getOperand(1)),
          "second domain operand must be string (if used)", Domain);
}

void Verifier::visitAliasScopeListMetadata(const MDNode *MD) {
  for (const MDOperand &Op : MD->operands()) {
    const MDNode *OpMD = dyn_cast<MDNode>(Op);
    Check(OpMD != nullptr, "scope list must consist of MDNodes", MD);
    visitAliasScopeMetadata(OpMD);
  }
}

void Verifier::visitAccessGroupMetadata(const MDNode *MD) {
  auto IsValidAccessScope = [](const MDNode *MD) {
    return MD->getNumOperands() == 0 && MD->isDistinct();
  };

  // It must be either an access scope itself...
  if (IsValidAccessScope(MD))
    return;

  // ...or a list of access scopes.
  for (const MDOperand &Op : MD->operands()) {
    const MDNode *OpMD = dyn_cast<MDNode>(Op);
    Check(OpMD != nullptr, "Access scope list must consist of MDNodes", MD);
    Check(IsValidAccessScope(OpMD),
          "Access scope list contains invalid access scope", MD);
  }
}

/// verifyInstruction - Verify that an instruction is well formed.
///
void Verifier::visitInstruction(Instruction &I) {
  BasicBlock *BB = I.getParent();
  Check(BB, "Instruction not embedded in basic block!", &I);

  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
    for (User *U : I.users()) {
      Check(U != (User *)&I || !DT.isReachableFromEntry(BB),
            "Only PHI nodes may reference their own value!", &I);
    }
  }

  // Check that void typed values don't have names
  Check(!I.getType()->isVoidTy() || !I.hasName(),
        "Instruction has a name, but provides a void value!", &I);

  // Check that the return value of the instruction is either void or a legal
  // value type.
  Check(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
        "Instruction returns a non-scalar type!", &I);

  // Check that the instruction doesn't produce metadata. Calls are already
  // checked against the callee type.
  Check(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
        "Invalid use of metadata!", &I);

  // Check that all uses of the instruction, if they are instructions
  // themselves, actually have parent basic blocks.  If the use is not an
  // instruction, it is an error!
  for (Use &U : I.uses()) {
    if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
      Check(Used->getParent() != nullptr,
            "Instruction referencing"
            " instruction not embedded in a basic block!",
            &I, Used);
    else {
      CheckFailed("Use of instruction is not an instruction!", U);
      return;
    }
  }

  // Get a pointer to the call base of the instruction if it is some form of
  // call.
  const CallBase *CBI = dyn_cast<CallBase>(&I);

  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
    Check(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);

    // Check to make sure that only first-class-values are operands to
    // instructions.
    if (!I.getOperand(i)->getType()->isFirstClassType()) {
      Check(false, "Instruction operands must be first-class values!", &I);
    }

    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
      // This code checks whether the function is used as the operand of a
      // clang_arc_attachedcall operand bundle.
      auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI,
                                      int Idx) {
        return CBI && CBI->isOperandBundleOfType(
                          LLVMContext::OB_clang_arc_attachedcall, Idx);
      };

      // Check to make sure that the "address of" an intrinsic function is never
      // taken. Ignore cases where the address of the intrinsic function is used
      // as the argument of operand bundle "clang.arc.attachedcall" as those
      // cases are handled in verifyAttachedCallBundle.
      Check((!F->isIntrinsic() ||
             (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) ||
             IsAttachedCallOperand(F, CBI, i)),
            "Cannot take the address of an intrinsic!", &I);
      Check(!F->isIntrinsic() || isa<CallInst>(I) ||
                F->getIntrinsicID() == Intrinsic::donothing ||
                F->getIntrinsicID() == Intrinsic::seh_try_begin ||
                F->getIntrinsicID() == Intrinsic::seh_try_end ||
                F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
                F->getIntrinsicID() == Intrinsic::seh_scope_end ||
                F->getIntrinsicID() == Intrinsic::coro_resume ||
                F->getIntrinsicID() == Intrinsic::coro_destroy ||
                F->getIntrinsicID() ==
                    Intrinsic::experimental_patchpoint_void ||
                F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
                F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
                F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
                IsAttachedCallOperand(F, CBI, i),
            "Cannot invoke an intrinsic other than donothing, patchpoint, "
            "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall",
            &I);
      Check(F->getParent() == &M, "Referencing function in another module!", &I,
            &M, F, F->getParent());
    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
      Check(OpBB->getParent() == BB->getParent(),
            "Referring to a basic block in another function!", &I);
    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
      Check(OpArg->getParent() == BB->getParent(),
            "Referring to an argument in another function!", &I);
    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
      Check(GV->getParent() == &M, "Referencing global in another module!", &I,
            &M, GV, GV->getParent());
    } else if (isa<Instruction>(I.getOperand(i))) {
      verifyDominatesUse(I, i);
    } else if (isa<InlineAsm>(I.getOperand(i))) {
      Check(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
            "Cannot take the address of an inline asm!", &I);
    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
      if (CE->getType()->isPtrOrPtrVectorTy()) {
        // If we have a ConstantExpr pointer, we need to see if it came from an
        // illegal bitcast.
        visitConstantExprsRecursively(CE);
      }
    }
  }

  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
    Check(I.getType()->isFPOrFPVectorTy(),
          "fpmath requires a floating point result!", &I);
    Check(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
    if (ConstantFP *CFP0 =
            mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
      const APFloat &Accuracy = CFP0->getValueAPF();
      Check(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
            "fpmath accuracy must have float type", &I);
      Check(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
            "fpmath accuracy not a positive number!", &I);
    } else {
      Check(false, "invalid fpmath accuracy!", &I);
    }
  }

  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
    Check(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
          "Ranges are only for loads, calls and invokes!", &I);
    visitRangeMetadata(I, Range, I.getType());
  }

  if (I.hasMetadata(LLVMContext::MD_invariant_group)) {
    Check(isa<LoadInst>(I) || isa<StoreInst>(I),
          "invariant.group metadata is only for loads and stores", &I);
  }

  if (MDNode *MD = I.getMetadata(LLVMContext::MD_nonnull)) {
    Check(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
          &I);
    Check(isa<LoadInst>(I),
          "nonnull applies only to load instructions, use attributes"
          " for calls or invokes",
          &I);
    Check(MD->getNumOperands() == 0, "nonnull metadata must be empty", &I);
  }

  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
    visitDereferenceableMetadata(I, MD);

  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
    visitDereferenceableMetadata(I, MD);

  if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
    TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);

  if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias))
    visitAliasScopeListMetadata(MD);
  if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope))
    visitAliasScopeListMetadata(MD);

  if (MDNode *MD = I.getMetadata(LLVMContext::MD_access_group))
    visitAccessGroupMetadata(MD);

  if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
    Check(I.getType()->isPointerTy(), "align applies only to pointer types",
          &I);
    Check(isa<LoadInst>(I),
          "align applies only to load instructions, "
          "use attributes for calls or invokes",
          &I);
    Check(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
    ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
    Check(CI && CI->getType()->isIntegerTy(64),
          "align metadata value must be an i64!", &I);
    uint64_t Align = CI->getZExtValue();
    Check(isPowerOf2_64(Align), "align metadata value must be a power of 2!",
          &I);
    Check(Align <= Value::MaximumAlignment,
          "alignment is larger that implementation defined limit", &I);
  }

  if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
    visitProfMetadata(I, MD);

  if (MDNode *MD = I.getMetadata(LLVMContext::MD_memprof))
    visitMemProfMetadata(I, MD);

  if (MDNode *MD = I.getMetadata(LLVMContext::MD_callsite))
    visitCallsiteMetadata(I, MD);

  if (MDNode *MD = I.getMetadata(LLVMContext::MD_DIAssignID))
    visitDIAssignIDMetadata(I, MD);

  if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
    visitAnnotationMetadata(Annotation);

  if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
    CheckDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
    visitMDNode(*N, AreDebugLocsAllowed::Yes);
  }

  if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
    verifyFragmentExpression(*DII);
    verifyNotEntryValue(*DII);
  }

  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
  I.getAllMetadata(MDs);
  for (auto Attachment : MDs) {
    unsigned Kind = Attachment.first;
    auto AllowLocs =
        (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
            ? AreDebugLocsAllowed::Yes
            : AreDebugLocsAllowed::No;
    visitMDNode(*Attachment.second, AllowLocs);
  }

  InstsInThisBlock.insert(&I);
}

/// Allow intrinsics to be verified in different ways.
void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
  Function *IF = Call.getCalledFunction();
  Check(IF->isDeclaration(), "Intrinsic functions should never be defined!",
        IF);

  // Verify that the intrinsic prototype lines up with what the .td files
  // describe.
  FunctionType *IFTy = IF->getFunctionType();
  bool IsVarArg = IFTy->isVarArg();

  SmallVector<Intrinsic::IITDescriptor, 8> Table;
  getIntrinsicInfoTableEntries(ID, Table);
  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;

  // Walk the descriptors to extract overloaded types.
  SmallVector<Type *, 4> ArgTys;
  Intrinsic::MatchIntrinsicTypesResult Res =
      Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
  Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
        "Intrinsic has incorrect return type!", IF);
  Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
        "Intrinsic has incorrect argument type!", IF);

  // Verify if the intrinsic call matches the vararg property.
  if (IsVarArg)
    Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
          "Intrinsic was not defined with variable arguments!", IF);
  else
    Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
          "Callsite was not defined with variable arguments!", IF);

  // All descriptors should be absorbed by now.
  Check(TableRef.empty(), "Intrinsic has too few arguments!", IF);

  // Now that we have the intrinsic ID and the actual argument types (and we
  // know they are legal for the intrinsic!) get the intrinsic name through the
  // usual means.  This allows us to verify the mangling of argument types into
  // the name.
  const std::string ExpectedName =
      Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
  Check(ExpectedName == IF->getName(),
        "Intrinsic name not mangled correctly for type arguments! "
        "Should be: " +
            ExpectedName,
        IF);

  // If the intrinsic takes MDNode arguments, verify that they are either global
  // or are local to *this* function.
  for (Value *V : Call.args()) {
    if (auto *MD = dyn_cast<MetadataAsValue>(V))
      visitMetadataAsValue(*MD, Call.getCaller());
    if (auto *Const = dyn_cast<Constant>(V))
      Check(!Const->getType()->isX86_AMXTy(),
            "const x86_amx is not allowed in argument!");
  }

  switch (ID) {
  default:
    break;
  case Intrinsic::assume: {
    for (auto &Elem : Call.bundle_op_infos()) {
      unsigned ArgCount = Elem.End - Elem.Begin;
      // Separate storage assumptions are special insofar as they're the only
      // operand bundles allowed on assumes that aren't parameter attributes.
      if (Elem.Tag->getKey() == "separate_storage") {
        Check(ArgCount == 2,
              "separate_storage assumptions should have 2 arguments", Call);
        Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy() &&
                  Call.getOperand(Elem.Begin + 1)->getType()->isPointerTy(),
              "arguments to separate_storage assumptions should be pointers",
              Call);
        return;
      }
      Check(Elem.Tag->getKey() == "ignore" ||
                Attribute::isExistingAttribute(Elem.Tag->getKey()),
            "tags must be valid attribute names", Call);
      Attribute::AttrKind Kind =
          Attribute::getAttrKindFromName(Elem.Tag->getKey());
      if (Kind == Attribute::Alignment) {
        Check(ArgCount <= 3 && ArgCount >= 2,
              "alignment assumptions should have 2 or 3 arguments", Call);
        Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
              "first argument should be a pointer", Call);
        Check(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
              "second argument should be an integer", Call);
        if (ArgCount == 3)
          Check(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
                "third argument should be an integer if present", Call);
        return;
      }
      Check(ArgCount <= 2, "too many arguments", Call);
      if (Kind == Attribute::None)
        break;
      if (Attribute::isIntAttrKind(Kind)) {
        Check(ArgCount == 2, "this attribute should have 2 arguments", Call);
        Check(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
              "the second argument should be a constant integral value", Call);
      } else if (Attribute::canUseAsParamAttr(Kind)) {
        Check((ArgCount) == 1, "this attribute should have one argument", Call);
      } else if (Attribute::canUseAsFnAttr(Kind)) {
        Check((ArgCount) == 0, "this attribute has no argument", Call);
      }
    }
    break;
  }
  case Intrinsic::coro_id: {
    auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
    if (isa<ConstantPointerNull>(InfoArg))
      break;
    auto *GV = dyn_cast<GlobalVariable>(InfoArg);
    Check(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
          "info argument of llvm.coro.id must refer to an initialized "
          "constant");
    Constant *Init = GV->getInitializer();
    Check(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
          "info argument of llvm.coro.id must refer to either a struct or "
          "an array");
    break;
  }
  case Intrinsic::is_fpclass: {
    const ConstantInt *TestMask = cast<ConstantInt>(Call.getOperand(1));
    Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0,
          "unsupported bits for llvm.is.fpclass test mask");
    break;
  }
  case Intrinsic::fptrunc_round: {
    // Check the rounding mode
    Metadata *MD = nullptr;
    auto *MAV = dyn_cast<MetadataAsValue>(Call.getOperand(1));
    if (MAV)
      MD = MAV->getMetadata();

    Check(MD != nullptr, "missing rounding mode argument", Call);

    Check(isa<MDString>(MD),
          ("invalid value for llvm.fptrunc.round metadata operand"
           " (the operand should be a string)"),
          MD);

    std::optional<RoundingMode> RoundMode =
        convertStrToRoundingMode(cast<MDString>(MD)->getString());
    Check(RoundMode && *RoundMode != RoundingMode::Dynamic,
          "unsupported rounding mode argument", Call);
    break;
  }
#define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
#include "llvm/IR/VPIntrinsics.def"
    visitVPIntrinsic(cast<VPIntrinsic>(Call));
    break;
#define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC)                        \
  case Intrinsic::INTRINSIC:
#include "llvm/IR/ConstrainedOps.def"
    visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
    break;
  case Intrinsic::dbg_declare: // llvm.dbg.declare
    Check(isa<MetadataAsValue>(Call.getArgOperand(0)),
          "invalid llvm.dbg.declare intrinsic call 1", Call);
    visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
    break;
  case Intrinsic::dbg_value: // llvm.dbg.value
    visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
    break;
  case Intrinsic::dbg_assign: // llvm.dbg.assign
    visitDbgIntrinsic("assign", cast<DbgVariableIntrinsic>(Call));
    break;
  case Intrinsic::dbg_label: // llvm.dbg.label
    visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
    break;
  case Intrinsic::memcpy:
  case Intrinsic::memcpy_inline:
  case Intrinsic::memmove:
  case Intrinsic::memset:
  case Intrinsic::memset_inline: {
    break;
  }
  case Intrinsic::memcpy_element_unordered_atomic:
  case Intrinsic::memmove_element_unordered_atomic:
  case Intrinsic::memset_element_unordered_atomic: {
    const auto *AMI = cast<AtomicMemIntrinsic>(&Call);

    ConstantInt *ElementSizeCI =
        cast<ConstantInt>(AMI->getRawElementSizeInBytes());
    const APInt &ElementSizeVal = ElementSizeCI->getValue();
    Check(ElementSizeVal.isPowerOf2(),
          "element size of the element-wise atomic memory intrinsic "
          "must be a power of 2",
          Call);

    auto IsValidAlignment = [&](MaybeAlign Alignment) {
      return Alignment && ElementSizeVal.ule(Alignment->value());
    };
    Check(IsValidAlignment(AMI->getDestAlign()),
          "incorrect alignment of the destination argument", Call);
    if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
      Check(IsValidAlignment(AMT->getSourceAlign()),
            "incorrect alignment of the source argument", Call);
    }
    break;
  }
  case Intrinsic::call_preallocated_setup: {
    auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
    Check(NumArgs != nullptr,
          "llvm.call.preallocated.setup argument must be a constant");
    bool FoundCall = false;
    for (User *U : Call.users()) {
      auto *UseCall = dyn_cast<CallBase>(U);
      Check(UseCall != nullptr,
            "Uses of llvm.call.preallocated.setup must be calls");
      const Function *Fn = UseCall->getCalledFunction();
      if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
        auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
        Check(AllocArgIndex != nullptr,
              "llvm.call.preallocated.alloc arg index must be a constant");
        auto AllocArgIndexInt = AllocArgIndex->getValue();
        Check(AllocArgIndexInt.sge(0) &&
                  AllocArgIndexInt.slt(NumArgs->getValue()),
              "llvm.call.preallocated.alloc arg index must be between 0 and "
              "corresponding "
              "llvm.call.preallocated.setup's argument count");
      } else if (Fn && Fn->getIntrinsicID() ==
                           Intrinsic::call_preallocated_teardown) {
        // nothing to do
      } else {
        Check(!FoundCall, "Can have at most one call corresponding to a "
                          "llvm.call.preallocated.setup");
        FoundCall = true;
        size_t NumPreallocatedArgs = 0;
        for (unsigned i = 0; i < UseCall->arg_size(); i++) {
          if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
            ++NumPreallocatedArgs;
          }
        }
        Check(NumPreallocatedArgs != 0,
              "cannot use preallocated intrinsics on a call without "
              "preallocated arguments");
        Check(NumArgs->equalsInt(NumPreallocatedArgs),
              "llvm.call.preallocated.setup arg size must be equal to number "
              "of preallocated arguments "
              "at call site",
              Call, *UseCall);
        // getOperandBundle() cannot be called if more than one of the operand
        // bundle exists. There is already a check elsewhere for this, so skip
        // here if we see more than one.
        if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
            1) {
          return;
        }
        auto PreallocatedBundle =
            UseCall->getOperandBundle(LLVMContext::OB_preallocated);
        Check(PreallocatedBundle,
              "Use of llvm.call.preallocated.setup outside intrinsics "
              "must be in \"preallocated\" operand bundle");
        Check(PreallocatedBundle->Inputs.front().get() == &Call,
              "preallocated bundle must have token from corresponding "
              "llvm.call.preallocated.setup");
      }
    }
    break;
  }
  case Intrinsic::call_preallocated_arg: {
    auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
    Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
                       Intrinsic::call_preallocated_setup,
          "llvm.call.preallocated.arg token argument must be a "
          "llvm.call.preallocated.setup");
    Check(Call.hasFnAttr(Attribute::Preallocated),
          "llvm.call.preallocated.arg must be called with a \"preallocated\" "
          "call site attribute");
    break;
  }
  case Intrinsic::call_preallocated_teardown: {
    auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
    Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
                       Intrinsic::call_preallocated_setup,
          "llvm.call.preallocated.teardown token argument must be a "
          "llvm.call.preallocated.setup");
    break;
  }
  case Intrinsic::gcroot:
  case Intrinsic::gcwrite:
  case Intrinsic::gcread:
    if (ID == Intrinsic::gcroot) {
      AllocaInst *AI =
          dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
      Check(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
      Check(isa<Constant>(Call.getArgOperand(1)),
            "llvm.gcroot parameter #2 must be a constant.", Call);
      if (!AI->getAllocatedType()->isPointerTy()) {
        Check(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
              "llvm.gcroot parameter #1 must either be a pointer alloca, "
              "or argument #2 must be a non-null constant.",
              Call);
      }
    }

    Check(Call.getParent()->getParent()->hasGC(),
          "Enclosing function does not use GC.", Call);
    break;
  case Intrinsic::init_trampoline:
    Check(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
          "llvm.init_trampoline parameter #2 must resolve to a function.",
          Call);
    break;
  case Intrinsic::prefetch:
    Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
          "rw argument to llvm.prefetch must be 0-1", Call);
    Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
          "locality argument to llvm.prefetch must be 0-3", Call);
    Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
          "cache type argument to llvm.prefetch must be 0-1", Call);
    break;
  case Intrinsic::stackprotector:
    Check(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
          "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
    break;
  case Intrinsic::localescape: {
    BasicBlock *BB = Call.getParent();
    Check(BB->isEntryBlock(), "llvm.localescape used outside of entry block",
          Call);
    Check(!SawFrameEscape, "multiple calls to llvm.localescape in one function",
          Call);
    for (Value *Arg : Call.args()) {
      if (isa<ConstantPointerNull>(Arg))
        continue; // Null values are allowed as placeholders.
      auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
      Check(AI && AI->isStaticAlloca(),
            "llvm.localescape only accepts static allocas", Call);
    }
    FrameEscapeInfo[BB->getParent()].first = Call.arg_size();
    SawFrameEscape = true;
    break;
  }
  case Intrinsic::localrecover: {
    Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
    Function *Fn = dyn_cast<Function>(FnArg);
    Check(Fn && !Fn->isDeclaration(),
          "llvm.localrecover first "
          "argument must be function defined in this module",
          Call);
    auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
    auto &Entry = FrameEscapeInfo[Fn];
    Entry.second = unsigned(
        std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
    break;
  }

  case Intrinsic::experimental_gc_statepoint:
    if (auto *CI = dyn_cast<CallInst>(&Call))
      Check(!CI->isInlineAsm(),
            "gc.statepoint support for inline assembly unimplemented", CI);
    Check(Call.getParent()->getParent()->hasGC(),
          "Enclosing function does not use GC.", Call);

    verifyStatepoint(Call);
    break;
  case Intrinsic::experimental_gc_result: {
    Check(Call.getParent()->getParent()->hasGC(),
          "Enclosing function does not use GC.", Call);

    auto *Statepoint = Call.getArgOperand(0);
    if (isa<UndefValue>(Statepoint))
      break;

    // Are we tied to a statepoint properly?
    const auto *StatepointCall = dyn_cast<CallBase>(Statepoint);
    const Function *StatepointFn =
        StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
    Check(StatepointFn && StatepointFn->isDeclaration() &&
              StatepointFn->getIntrinsicID() ==
                  Intrinsic::experimental_gc_statepoint,
          "gc.result operand #1 must be from a statepoint", Call,
          Call.getArgOperand(0));

    // Check that result type matches wrapped callee.
    auto *TargetFuncType =
        cast<FunctionType>(StatepointCall->getParamElementType(2));
    Check(Call.getType() == TargetFuncType->getReturnType(),
          "gc.result result type does not match wrapped callee", Call);
    break;
  }
  case Intrinsic::experimental_gc_relocate: {
    Check(Call.arg_size() == 3, "wrong number of arguments", Call);

    Check(isa<PointerType>(Call.getType()->getScalarType()),
          "gc.relocate must return a pointer or a vector of pointers", Call);

    // Check that this relocate is correctly tied to the statepoint

    // This is case for relocate on the unwinding path of an invoke statepoint
    if (LandingPadInst *LandingPad =
            dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {

      const BasicBlock *InvokeBB =
          LandingPad->getParent()->getUniquePredecessor();

      // Landingpad relocates should have only one predecessor with invoke
      // statepoint terminator
      Check(InvokeBB, "safepoints should have unique landingpads",
            LandingPad->getParent());
      Check(InvokeBB->getTerminator(), "safepoint block should be well formed",
            InvokeBB);
      Check(isa<GCStatepointInst>(InvokeBB->getTerminator()),
            "gc relocate should be linked to a statepoint", InvokeBB);
    } else {
      // In all other cases relocate should be tied to the statepoint directly.
      // This covers relocates on a normal return path of invoke statepoint and
      // relocates of a call statepoint.
      auto *Token = Call.getArgOperand(0);
      Check(isa<GCStatepointInst>(Token) || isa<UndefValue>(Token),
            "gc relocate is incorrectly tied to the statepoint", Call, Token);
    }

    // Verify rest of the relocate arguments.
    const Value &StatepointCall = *cast<GCRelocateInst>(Call).getStatepoint();

    // Both the base and derived must be piped through the safepoint.
    Value *Base = Call.getArgOperand(1);
    Check(isa<ConstantInt>(Base),
          "gc.relocate operand #2 must be integer offset", Call);

    Value *Derived = Call.getArgOperand(2);
    Check(isa<ConstantInt>(Derived),
          "gc.relocate operand #3 must be integer offset", Call);

    const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
    const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();

    // Check the bounds
    if (isa<UndefValue>(StatepointCall))
      break;
    if (auto Opt = cast<GCStatepointInst>(StatepointCall)
                       .getOperandBundle(LLVMContext::OB_gc_live)) {
      Check(BaseIndex < Opt->Inputs.size(),
            "gc.relocate: statepoint base index out of bounds", Call);
      Check(DerivedIndex < Opt->Inputs.size(),
            "gc.relocate: statepoint derived index out of bounds", Call);
    }

    // Relocated value must be either a pointer type or vector-of-pointer type,
    // but gc_relocate does not need to return the same pointer type as the
    // relocated pointer. It can be casted to the correct type later if it's
    // desired. However, they must have the same address space and 'vectorness'
    GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
    auto *ResultType = Call.getType();
    auto *DerivedType = Relocate.getDerivedPtr()->getType();
    auto *BaseType = Relocate.getBasePtr()->getType();

    Check(BaseType->isPtrOrPtrVectorTy(),
          "gc.relocate: relocated value must be a pointer", Call);
    Check(DerivedType->isPtrOrPtrVectorTy(),
          "gc.relocate: relocated value must be a pointer", Call);

    Check(ResultType->isVectorTy() == DerivedType->isVectorTy(),
          "gc.relocate: vector relocates to vector and pointer to pointer",
          Call);
    Check(
        ResultType->getPointerAddressSpace() ==
            DerivedType->getPointerAddressSpace(),
        "gc.relocate: relocating a pointer shouldn't change its address space",
        Call);

    auto GC = llvm::getGCStrategy(Relocate.getFunction()->getGC());
    Check(GC, "gc.relocate: calling function must have GCStrategy",
          Call.getFunction());
    if (GC) {
      auto isGCPtr = [&GC](Type *PTy) {
        return GC->isGCManagedPointer(PTy->getScalarType()).value_or(true);
      };
      Check(isGCPtr(ResultType), "gc.relocate: must return gc pointer", Call);
      Check(isGCPtr(BaseType),
            "gc.relocate: relocated value must be a gc pointer", Call);
      Check(isGCPtr(DerivedType),
            "gc.relocate: relocated value must be a gc pointer", Call);
    }
    break;
  }
  case Intrinsic::eh_exceptioncode:
  case Intrinsic::eh_exceptionpointer: {
    Check(isa<CatchPadInst>(Call.getArgOperand(0)),
          "eh.exceptionpointer argument must be a catchpad", Call);
    break;
  }
  case Intrinsic::get_active_lane_mask: {
    Check(Call.getType()->isVectorTy(),
          "get_active_lane_mask: must return a "
          "vector",
          Call);
    auto *ElemTy = Call.getType()->getScalarType();
    Check(ElemTy->isIntegerTy(1),
          "get_active_lane_mask: element type is not "
          "i1",
          Call);
    break;
  }
  case Intrinsic::experimental_get_vector_length: {
    ConstantInt *VF = cast<ConstantInt>(Call.getArgOperand(1));
    Check(!VF->isNegative() && !VF->isZero(),
          "get_vector_length: VF must be positive", Call);
    break;
  }
  case Intrinsic::masked_load: {
    Check(Call.getType()->isVectorTy(), "masked_load: must return a vector",
          Call);

    ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
    Value *Mask = Call.getArgOperand(2);
    Value *PassThru = Call.getArgOperand(3);
    Check(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
          Call);
    Check(Alignment->getValue().isPowerOf2(),
          "masked_load: alignment must be a power of 2", Call);
    Check(PassThru->getType() == Call.getType(),
          "masked_load: pass through and return type must match", Call);
    Check(cast<VectorType>(Mask->getType())->getElementCount() ==
              cast<VectorType>(Call.getType())->getElementCount(),
          "masked_load: vector mask must be same length as return", Call);
    break;
  }
  case Intrinsic::masked_store: {
    Value *Val = Call.getArgOperand(0);
    ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
    Value *Mask = Call.getArgOperand(3);
    Check(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
          Call);
    Check(Alignment->getValue().isPowerOf2(),
          "masked_store: alignment must be a power of 2", Call);
    Check(cast<VectorType>(Mask->getType())->getElementCount() ==
              cast<VectorType>(Val->getType())->getElementCount(),
          "masked_store: vector mask must be same length as value", Call);
    break;
  }

  case Intrinsic::masked_gather: {
    const APInt &Alignment =
        cast<ConstantInt>(Call.getArgOperand(1))->getValue();
    Check(Alignment.isZero() || Alignment.isPowerOf2(),
          "masked_gather: alignment must be 0 or a power of 2", Call);
    break;
  }
  case Intrinsic::masked_scatter: {
    const APInt &Alignment =
        cast<ConstantInt>(Call.getArgOperand(2))->getValue();
    Check(Alignment.isZero() || Alignment.isPowerOf2(),
          "masked_scatter: alignment must be 0 or a power of 2", Call);
    break;
  }

  case Intrinsic::experimental_guard: {
    Check(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
    Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
          "experimental_guard must have exactly one "
          "\"deopt\" operand bundle");
    break;
  }

  case Intrinsic::experimental_deoptimize: {
    Check(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
          Call);
    Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
          "experimental_deoptimize must have exactly one "
          "\"deopt\" operand bundle");
    Check(Call.getType() == Call.getFunction()->getReturnType(),
          "experimental_deoptimize return type must match caller return type");

    if (isa<CallInst>(Call)) {
      auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
      Check(RI,
            "calls to experimental_deoptimize must be followed by a return");

      if (!Call.getType()->isVoidTy() && RI)
        Check(RI->getReturnValue() == &Call,
              "calls to experimental_deoptimize must be followed by a return "
              "of the value computed by experimental_deoptimize");
    }

    break;
  }
  case Intrinsic::vector_reduce_and:
  case Intrinsic::vector_reduce_or:
  case Intrinsic::vector_reduce_xor:
  case Intrinsic::vector_reduce_add:
  case Intrinsic::vector_reduce_mul:
  case Intrinsic::vector_reduce_smax:
  case Intrinsic::vector_reduce_smin:
  case Intrinsic::vector_reduce_umax:
  case Intrinsic::vector_reduce_umin: {
    Type *ArgTy = Call.getArgOperand(0)->getType();
    Check(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
          "Intrinsic has incorrect argument type!");
    break;
  }
  case Intrinsic::vector_reduce_fmax:
  case Intrinsic::vector_reduce_fmin: {
    Type *ArgTy = Call.getArgOperand(0)->getType();
    Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
          "Intrinsic has incorrect argument type!");
    break;
  }
  case Intrinsic::vector_reduce_fadd:
  case Intrinsic::vector_reduce_fmul: {
    // Unlike the other reductions, the first argument is a start value. The
    // second argument is the vector to be reduced.
    Type *ArgTy = Call.getArgOperand(1)->getType();
    Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
          "Intrinsic has incorrect argument type!");
    break;
  }
  case Intrinsic::smul_fix:
  case Intrinsic::smul_fix_sat:
  case Intrinsic::umul_fix:
  case Intrinsic::umul_fix_sat:
  case Intrinsic::sdiv_fix:
  case Intrinsic::sdiv_fix_sat:
  case Intrinsic::udiv_fix:
  case Intrinsic::udiv_fix_sat: {
    Value *Op1 = Call.getArgOperand(0);
    Value *Op2 = Call.getArgOperand(1);
    Check(Op1->getType()->isIntOrIntVectorTy(),
          "first operand of [us][mul|div]_fix[_sat] must be an int type or "
          "vector of ints");
    Check(Op2->getType()->isIntOrIntVectorTy(),
          "second operand of [us][mul|div]_fix[_sat] must be an int type or "
          "vector of ints");

    auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
    Check(Op3->getType()->isIntegerTy(),
          "third operand of [us][mul|div]_fix[_sat] must be an int type");
    Check(Op3->getBitWidth() <= 32,
          "third operand of [us][mul|div]_fix[_sat] must fit within 32 bits");

    if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
        ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
      Check(Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
            "the scale of s[mul|div]_fix[_sat] must be less than the width of "
            "the operands");
    } else {
      Check(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
            "the scale of u[mul|div]_fix[_sat] must be less than or equal "
            "to the width of the operands");
    }
    break;
  }
  case Intrinsic::lrint:
  case Intrinsic::llrint: {
    Type *ValTy = Call.getArgOperand(0)->getType();
    Type *ResultTy = Call.getType();
    Check(
        ValTy->isFPOrFPVectorTy() && ResultTy->isIntOrIntVectorTy(),
        "llvm.lrint, llvm.llrint: argument must be floating-point or vector "
        "of floating-points, and result must be integer or vector of integers",
        &Call);
    Check(ValTy->isVectorTy() == ResultTy->isVectorTy(),
          "llvm.lrint, llvm.llrint: argument and result disagree on vector use",
          &Call);
    if (ValTy->isVectorTy()) {
      Check(cast<VectorType>(ValTy)->getElementCount() ==
                cast<VectorType>(ResultTy)->getElementCount(),
            "llvm.lrint, llvm.llrint: argument must be same length as result",
            &Call);
    }
    break;
  }
  case Intrinsic::lround:
  case Intrinsic::llround: {
    Type *ValTy = Call.getArgOperand(0)->getType();
    Type *ResultTy = Call.getType();
    Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
          "Intrinsic does not support vectors", &Call);
    break;
  }
  case Intrinsic::bswap: {
    Type *Ty = Call.getType();
    unsigned Size = Ty->getScalarSizeInBits();
    Check(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
    break;
  }
  case Intrinsic::invariant_start: {
    ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
    Check(InvariantSize &&
              (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
          "invariant_start parameter must be -1, 0 or a positive number",
          &Call);
    break;
  }
  case Intrinsic::matrix_multiply:
  case Intrinsic::matrix_transpose:
  case Intrinsic::matrix_column_major_load:
  case Intrinsic::matrix_column_major_store: {
    Function *IF = Call.getCalledFunction();
    ConstantInt *Stride = nullptr;
    ConstantInt *NumRows;
    ConstantInt *NumColumns;
    VectorType *ResultTy;
    Type *Op0ElemTy = nullptr;
    Type *Op1ElemTy = nullptr;
    switch (ID) {
    case Intrinsic::matrix_multiply: {
      NumRows = cast<ConstantInt>(Call.getArgOperand(2));
      ConstantInt *N = cast<ConstantInt>(Call.getArgOperand(3));
      NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
      Check(cast<FixedVectorType>(Call.getArgOperand(0)->getType())
                    ->getNumElements() ==
                NumRows->getZExtValue() * N->getZExtValue(),
            "First argument of a matrix operation does not match specified "
            "shape!");
      Check(cast<FixedVectorType>(Call.getArgOperand(1)->getType())
                    ->getNumElements() ==
                N->getZExtValue() * NumColumns->getZExtValue(),
            "Second argument of a matrix operation does not match specified "
            "shape!");

      ResultTy = cast<VectorType>(Call.getType());
      Op0ElemTy =
          cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
      Op1ElemTy =
          cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
      break;
    }
    case Intrinsic::matrix_transpose:
      NumRows = cast<ConstantInt>(Call.getArgOperand(1));
      NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
      ResultTy = cast<VectorType>(Call.getType());
      Op0ElemTy =
          cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
      break;
    case Intrinsic::matrix_column_major_load: {
      Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
      NumRows = cast<ConstantInt>(Call.getArgOperand(3));
      NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
      ResultTy = cast<VectorType>(Call.getType());
      break;
    }
    case Intrinsic::matrix_column_major_store: {
      Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
      NumRows = cast<ConstantInt>(Call.getArgOperand(4));
      NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
      ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
      Op0ElemTy =
          cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
      break;
    }
    default:
      llvm_unreachable("unexpected intrinsic");
    }

    Check(ResultTy->getElementType()->isIntegerTy() ||
              ResultTy->getElementType()->isFloatingPointTy(),
          "Result type must be an integer or floating-point type!", IF);

    if (Op0ElemTy)
      Check(ResultTy->getElementType() == Op0ElemTy,
            "Vector element type mismatch of the result and first operand "
            "vector!",
            IF);

    if (Op1ElemTy)
      Check(ResultTy->getElementType() == Op1ElemTy,
            "Vector element type mismatch of the result and second operand "
            "vector!",
            IF);

    Check(cast<FixedVectorType>(ResultTy)->getNumElements() ==
              NumRows->getZExtValue() * NumColumns->getZExtValue(),
          "Result of a matrix operation does not fit in the returned vector!");

    if (Stride)
      Check(Stride->getZExtValue() >= NumRows->getZExtValue(),
            "Stride must be greater or equal than the number of rows!", IF);

    break;
  }
  case Intrinsic::experimental_vector_splice: {
    VectorType *VecTy = cast<VectorType>(Call.getType());
    int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue();
    int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
    if (Call.getParent() && Call.getParent()->getParent()) {
      AttributeList Attrs = Call.getParent()->getParent()->getAttributes();
      if (Attrs.hasFnAttr(Attribute::VScaleRange))
        KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin();
    }
    Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) ||
              (Idx >= 0 && Idx < KnownMinNumElements),
          "The splice index exceeds the range [-VL, VL-1] where VL is the "
          "known minimum number of elements in the vector. For scalable "
          "vectors the minimum number of elements is determined from "
          "vscale_range.",
          &Call);
    break;
  }
  case Intrinsic::experimental_stepvector: {
    VectorType *VecTy = dyn_cast<VectorType>(Call.getType());
    Check(VecTy && VecTy->getScalarType()->isIntegerTy() &&
              VecTy->getScalarSizeInBits() >= 8,
          "experimental_stepvector only supported for vectors of integers "
          "with a bitwidth of at least 8.",
          &Call);
    break;
  }
  case Intrinsic::vector_insert: {
    Value *Vec = Call.getArgOperand(0);
    Value *SubVec = Call.getArgOperand(1);
    Value *Idx = Call.getArgOperand(2);
    unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();

    VectorType *VecTy = cast<VectorType>(Vec->getType());
    VectorType *SubVecTy = cast<VectorType>(SubVec->getType());

    ElementCount VecEC = VecTy->getElementCount();
    ElementCount SubVecEC = SubVecTy->getElementCount();
    Check(VecTy->getElementType() == SubVecTy->getElementType(),
          "vector_insert parameters must have the same element "
          "type.",
          &Call);
    Check(IdxN % SubVecEC.getKnownMinValue() == 0,
          "vector_insert index must be a constant multiple of "
          "the subvector's known minimum vector length.");

    // If this insertion is not the 'mixed' case where a fixed vector is
    // inserted into a scalable vector, ensure that the insertion of the
    // subvector does not overrun the parent vector.
    if (VecEC.isScalable() == SubVecEC.isScalable()) {
      Check(IdxN < VecEC.getKnownMinValue() &&
                IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
            "subvector operand of vector_insert would overrun the "
            "vector being inserted into.");
    }
    break;
  }
  case Intrinsic::vector_extract: {
    Value *Vec = Call.getArgOperand(0);
    Value *Idx = Call.getArgOperand(1);
    unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();

    VectorType *ResultTy = cast<VectorType>(Call.getType());
    VectorType *VecTy = cast<VectorType>(Vec->getType());

    ElementCount VecEC = VecTy->getElementCount();
    ElementCount ResultEC = ResultTy->getElementCount();

    Check(ResultTy->getElementType() == VecTy->getElementType(),
          "vector_extract result must have the same element "
          "type as the input vector.",
          &Call);
    Check(IdxN % ResultEC.getKnownMinValue() == 0,
          "vector_extract index must be a constant multiple of "
          "the result type's known minimum vector length.");

    // If this extraction is not the 'mixed' case where a fixed vector is
    // extracted from a scalable vector, ensure that the extraction does not
    // overrun the parent vector.
    if (VecEC.isScalable() == ResultEC.isScalable()) {
      Check(IdxN < VecEC.getKnownMinValue() &&
                IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
            "vector_extract would overrun.");
    }
    break;
  }
  case Intrinsic::experimental_noalias_scope_decl: {
    NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call));
    break;
  }
  case Intrinsic::preserve_array_access_index:
  case Intrinsic::preserve_struct_access_index:
  case Intrinsic::aarch64_ldaxr:
  case Intrinsic::aarch64_ldxr:
  case Intrinsic::arm_ldaex:
  case Intrinsic::arm_ldrex: {
    Type *ElemTy = Call.getParamElementType(0);
    Check(ElemTy, "Intrinsic requires elementtype attribute on first argument.",
          &Call);
    break;
  }
  case Intrinsic::aarch64_stlxr:
  case Intrinsic::aarch64_stxr:
  case Intrinsic::arm_stlex:
  case Intrinsic::arm_strex: {
    Type *ElemTy = Call.getAttributes().getParamElementType(1);
    Check(ElemTy,
          "Intrinsic requires elementtype attribute on second argument.",
          &Call);
    break;
  }
  case Intrinsic::aarch64_prefetch: {
    Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
          "write argument to llvm.aarch64.prefetch must be 0 or 1", Call);
    Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
          "target argument to llvm.aarch64.prefetch must be 0-3", Call);
    Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
          "stream argument to llvm.aarch64.prefetch must be 0 or 1", Call);
    Check(cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue() < 2,
          "isdata argument to llvm.aarch64.prefetch must be 0 or 1", Call);
    break;
  }
  case Intrinsic::callbr_landingpad: {
    const auto *CBR = dyn_cast<CallBrInst>(Call.getOperand(0));
    Check(CBR, "intrinstic requires callbr operand", &Call);
    if (!CBR)
      break;

    const BasicBlock *LandingPadBB = Call.getParent();
    const BasicBlock *PredBB = LandingPadBB->getUniquePredecessor();
    if (!PredBB) {
      CheckFailed("Intrinsic in block must have 1 unique predecessor", &Call);
      break;
    }
    if (!isa<CallBrInst>(PredBB->getTerminator())) {
      CheckFailed("Intrinsic must have corresponding callbr in predecessor",
                  &Call);
      break;
    }
    Check(llvm::any_of(CBR->getIndirectDests(),
                       [LandingPadBB](const BasicBlock *IndDest) {
                         return IndDest == LandingPadBB;
                       }),
          "Intrinsic's corresponding callbr must have intrinsic's parent basic "
          "block in indirect destination list",
          &Call);
    const Instruction &First = *LandingPadBB->begin();
    Check(&First == &Call, "No other instructions may proceed intrinsic",
          &Call);
    break;
  }
  case Intrinsic::amdgcn_cs_chain: {
    auto CallerCC = Call.getCaller()->getCallingConv();
    switch (CallerCC) {
    case CallingConv::AMDGPU_CS:
    case CallingConv::AMDGPU_CS_Chain:
    case CallingConv::AMDGPU_CS_ChainPreserve:
      break;
    default:
      CheckFailed("Intrinsic can only be used from functions with the "
                  "amdgpu_cs, amdgpu_cs_chain or amdgpu_cs_chain_preserve "
                  "calling conventions",
                  &Call);
      break;
    }

    Check(Call.paramHasAttr(2, Attribute::InReg),
          "SGPR arguments must have the `inreg` attribute", &Call);
    Check(!Call.paramHasAttr(3, Attribute::InReg),
          "VGPR arguments must not have the `inreg` attribute", &Call);
    break;
  }
  case Intrinsic::amdgcn_set_inactive_chain_arg: {
    auto CallerCC = Call.getCaller()->getCallingConv();
    switch (CallerCC) {
    case CallingConv::AMDGPU_CS_Chain:
    case CallingConv::AMDGPU_CS_ChainPreserve:
      break;
    default:
      CheckFailed("Intrinsic can only be used from functions with the "
                  "amdgpu_cs_chain or amdgpu_cs_chain_preserve "
                  "calling conventions",
                  &Call);
      break;
    }

    unsigned InactiveIdx = 1;
    Check(!Call.paramHasAttr(InactiveIdx, Attribute::InReg),
          "Value for inactive lanes must not have the `inreg` attribute",
          &Call);
    Check(isa<Argument>(Call.getArgOperand(InactiveIdx)),
          "Value for inactive lanes must be a function argument", &Call);
    Check(!cast<Argument>(Call.getArgOperand(InactiveIdx))->hasInRegAttr(),
          "Value for inactive lanes must be a VGPR function argument", &Call);
    break;
  }
  case Intrinsic::nvvm_setmaxnreg_inc_sync_aligned_u32:
  case Intrinsic::nvvm_setmaxnreg_dec_sync_aligned_u32: {
    Value *V = Call.getArgOperand(0);
    unsigned RegCount = cast<ConstantInt>(V)->getZExtValue();
    Check(RegCount % 8 == 0,
          "reg_count argument to nvvm.setmaxnreg must be in multiples of 8");
    Check((RegCount >= 24 && RegCount <= 256),
          "reg_count argument to nvvm.setmaxnreg must be within [24, 256]");
    break;
  }
  case Intrinsic::experimental_convergence_entry:
    LLVM_FALLTHROUGH;
  case Intrinsic::experimental_convergence_anchor:
    break;
  case Intrinsic::experimental_convergence_loop:
    break;
  case Intrinsic::ptrmask: {
    Type *Ty0 = Call.getArgOperand(0)->getType();
    Type *Ty1 = Call.getArgOperand(1)->getType();
    Check(Ty0->isPtrOrPtrVectorTy(),
          "llvm.ptrmask intrinsic first argument must be pointer or vector "
          "of pointers",
          &Call);
    Check(
        Ty0->isVectorTy() == Ty1->isVectorTy(),
        "llvm.ptrmask intrinsic arguments must be both scalars or both vectors",
        &Call);
    if (Ty0->isVectorTy())
      Check(cast<VectorType>(Ty0)->getElementCount() ==
                cast<VectorType>(Ty1)->getElementCount(),
            "llvm.ptrmask intrinsic arguments must have the same number of "
            "elements",
            &Call);
    Check(DL.getIndexTypeSizeInBits(Ty0) == Ty1->getScalarSizeInBits(),
          "llvm.ptrmask intrinsic second argument bitwidth must match "
          "pointer index type size of first argument",
          &Call);
    break;
  }
  };

  // Verify that there aren't any unmediated control transfers between funclets.
  if (IntrinsicInst::mayLowerToFunctionCall(ID)) {
    Function *F = Call.getParent()->getParent();
    if (F->hasPersonalityFn() &&
        isScopedEHPersonality(classifyEHPersonality(F->getPersonalityFn()))) {
      // Run EH funclet coloring on-demand and cache results for other intrinsic
      // calls in this function
      if (BlockEHFuncletColors.empty())
        BlockEHFuncletColors = colorEHFunclets(*F);

      // Check for catch-/cleanup-pad in first funclet block
      bool InEHFunclet = false;
      BasicBlock *CallBB = Call.getParent();
      const ColorVector &CV = BlockEHFuncletColors.find(CallBB)->second;
      assert(CV.size() > 0 && "Uncolored block");
      for (BasicBlock *ColorFirstBB : CV)
        if (dyn_cast_or_null<FuncletPadInst>(ColorFirstBB->getFirstNonPHI()))
          InEHFunclet = true;

      // Check for funclet operand bundle
      bool HasToken = false;
      for (unsigned I = 0, E = Call.getNumOperandBundles(); I != E; ++I)
        if (Call.getOperandBundleAt(I).getTagID() == LLVMContext::OB_funclet)
          HasToken = true;

      // This would cause silent code truncation in WinEHPrepare
      if (InEHFunclet)
        Check(HasToken, "Missing funclet token on intrinsic call", &Call);
    }
  }
}

/// Carefully grab the subprogram from a local scope.
///
/// This carefully grabs the subprogram from a local scope, avoiding the
/// built-in assertions that would typically fire.
static DISubprogram *getSubprogram(Metadata *LocalScope) {
  if (!LocalScope)
    return nullptr;

  if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
    return SP;

  if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
    return getSubprogram(LB->getRawScope());

  // Just return null; broken scope chains are checked elsewhere.
  assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
  return nullptr;
}

void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) {
  if (auto *VPCast = dyn_cast<VPCastIntrinsic>(&VPI)) {
    auto *RetTy = cast<VectorType>(VPCast->getType());
    auto *ValTy = cast<VectorType>(VPCast->getOperand(0)->getType());
    Check(RetTy->getElementCount() == ValTy->getElementCount(),
          "VP cast intrinsic first argument and result vector lengths must be "
          "equal",
          *VPCast);

    switch (VPCast->getIntrinsicID()) {
    default:
      llvm_unreachable("Unknown VP cast intrinsic");
    case Intrinsic::vp_trunc:
      Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
            "llvm.vp.trunc intrinsic first argument and result element type "
            "must be integer",
            *VPCast);
      Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
            "llvm.vp.trunc intrinsic the bit size of first argument must be "
            "larger than the bit size of the return type",
            *VPCast);
      break;
    case Intrinsic::vp_zext:
    case Intrinsic::vp_sext:
      Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
            "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result "
            "element type must be integer",
            *VPCast);
      Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
            "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first "
            "argument must be smaller than the bit size of the return type",
            *VPCast);
      break;
    case Intrinsic::vp_fptoui:
    case Intrinsic::vp_fptosi:
      Check(
          RetTy->isIntOrIntVectorTy() && ValTy->isFPOrFPVectorTy(),
          "llvm.vp.fptoui or llvm.vp.fptosi intrinsic first argument element "
          "type must be floating-point and result element type must be integer",
          *VPCast);
      break;
    case Intrinsic::vp_uitofp:
    case Intrinsic::vp_sitofp:
      Check(
          RetTy->isFPOrFPVectorTy() && ValTy->isIntOrIntVectorTy(),
          "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element "
          "type must be integer and result element type must be floating-point",
          *VPCast);
      break;
    case Intrinsic::vp_fptrunc:
      Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
            "llvm.vp.fptrunc intrinsic first argument and result element type "
            "must be floating-point",
            *VPCast);
      Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
            "llvm.vp.fptrunc intrinsic the bit size of first argument must be "
            "larger than the bit size of the return type",
            *VPCast);
      break;
    case Intrinsic::vp_fpext:
      Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
            "llvm.vp.fpext intrinsic first argument and result element type "
            "must be floating-point",
            *VPCast);
      Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
            "llvm.vp.fpext intrinsic the bit size of first argument must be "
            "smaller than the bit size of the return type",
            *VPCast);
      break;
    case Intrinsic::vp_ptrtoint:
      Check(RetTy->isIntOrIntVectorTy() && ValTy->isPtrOrPtrVectorTy(),
            "llvm.vp.ptrtoint intrinsic first argument element type must be "
            "pointer and result element type must be integer",
            *VPCast);
      break;
    case Intrinsic::vp_inttoptr:
      Check(RetTy->isPtrOrPtrVectorTy() && ValTy->isIntOrIntVectorTy(),
            "llvm.vp.inttoptr intrinsic first argument element type must be "
            "integer and result element type must be pointer",
            *VPCast);
      break;
    }
  }
  if (VPI.getIntrinsicID() == Intrinsic::vp_fcmp) {
    auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
    Check(CmpInst::isFPPredicate(Pred),
          "invalid predicate for VP FP comparison intrinsic", &VPI);
  }
  if (VPI.getIntrinsicID() == Intrinsic::vp_icmp) {
    auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
    Check(CmpInst::isIntPredicate(Pred),
          "invalid predicate for VP integer comparison intrinsic", &VPI);
  }
  if (VPI.getIntrinsicID() == Intrinsic::vp_is_fpclass) {
    auto TestMask = cast<ConstantInt>(VPI.getOperand(1));
    Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0,
          "unsupported bits for llvm.vp.is.fpclass test mask");
  }
}

void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
  unsigned NumOperands;
  bool HasRoundingMD;
  switch (FPI.getIntrinsicID()) {
#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
  case Intrinsic::INTRINSIC:                                                   \
    NumOperands = NARG;                                                        \
    HasRoundingMD = ROUND_MODE;                                                \
    break;
#include "llvm/IR/ConstrainedOps.def"
  default:
    llvm_unreachable("Invalid constrained FP intrinsic!");
  }
  NumOperands += (1 + HasRoundingMD);
  // Compare intrinsics carry an extra predicate metadata operand.
  if (isa<ConstrainedFPCmpIntrinsic>(FPI))
    NumOperands += 1;
  Check((FPI.arg_size() == NumOperands),
        "invalid arguments for constrained FP intrinsic", &FPI);

  switch (FPI.getIntrinsicID()) {
  case Intrinsic::experimental_constrained_lrint:
  case Intrinsic::experimental_constrained_llrint: {
    Type *ValTy = FPI.getArgOperand(0)->getType();
    Type *ResultTy = FPI.getType();
    Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
          "Intrinsic does not support vectors", &FPI);
  }
    break;

  case Intrinsic::experimental_constrained_lround:
  case Intrinsic::experimental_constrained_llround: {
    Type *ValTy = FPI.getArgOperand(0)->getType();
    Type *ResultTy = FPI.getType();
    Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
          "Intrinsic does not support vectors", &FPI);
    break;
  }

  case Intrinsic::experimental_constrained_fcmp:
  case Intrinsic::experimental_constrained_fcmps: {
    auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
    Check(CmpInst::isFPPredicate(Pred),
          "invalid predicate for constrained FP comparison intrinsic", &FPI);
    break;
  }

  case Intrinsic::experimental_constrained_fptosi:
  case Intrinsic::experimental_constrained_fptoui: {
    Value *Operand = FPI.getArgOperand(0);
    ElementCount SrcEC;
    Check(Operand->getType()->isFPOrFPVectorTy(),
          "Intrinsic first argument must be floating point", &FPI);
    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
      SrcEC = cast<VectorType>(OperandT)->getElementCount();
    }

    Operand = &FPI;
    Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(),
          "Intrinsic first argument and result disagree on vector use", &FPI);
    Check(Operand->getType()->isIntOrIntVectorTy(),
          "Intrinsic result must be an integer", &FPI);
    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
      Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(),
            "Intrinsic first argument and result vector lengths must be equal",
            &FPI);
    }
  }
    break;

  case Intrinsic::experimental_constrained_sitofp:
  case Intrinsic::experimental_constrained_uitofp: {
    Value *Operand = FPI.getArgOperand(0);
    ElementCount SrcEC;
    Check(Operand->getType()->isIntOrIntVectorTy(),
          "Intrinsic first argument must be integer", &FPI);
    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
      SrcEC = cast<VectorType>(OperandT)->getElementCount();
    }

    Operand = &FPI;
    Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(),
          "Intrinsic first argument and result disagree on vector use", &FPI);
    Check(Operand->getType()->isFPOrFPVectorTy(),
          "Intrinsic result must be a floating point", &FPI);
    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
      Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(),
            "Intrinsic first argument and result vector lengths must be equal",
            &FPI);
    }
  } break;

  case Intrinsic::experimental_constrained_fptrunc:
  case Intrinsic::experimental_constrained_fpext: {
    Value *Operand = FPI.getArgOperand(0);
    Type *OperandTy = Operand->getType();
    Value *Result = &FPI;
    Type *ResultTy = Result->getType();
    Check(OperandTy->isFPOrFPVectorTy(),
          "Intrinsic first argument must be FP or FP vector", &FPI);
    Check(ResultTy->isFPOrFPVectorTy(),
          "Intrinsic result must be FP or FP vector", &FPI);
    Check(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
          "Intrinsic first argument and result disagree on vector use", &FPI);
    if (OperandTy->isVectorTy()) {
      Check(cast<VectorType>(OperandTy)->getElementCount() ==
                cast<VectorType>(ResultTy)->getElementCount(),
            "Intrinsic first argument and result vector lengths must be equal",
            &FPI);
    }
    if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
      Check(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
            "Intrinsic first argument's type must be larger than result type",
            &FPI);
    } else {
      Check(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
            "Intrinsic first argument's type must be smaller than result type",
            &FPI);
    }
  }
    break;

  default:
    break;
  }

  // If a non-metadata argument is passed in a metadata slot then the
  // error will be caught earlier when the incorrect argument doesn't
  // match the specification in the intrinsic call table. Thus, no
  // argument type check is needed here.

  Check(FPI.getExceptionBehavior().has_value(),
        "invalid exception behavior argument", &FPI);
  if (HasRoundingMD) {
    Check(FPI.getRoundingMode().has_value(), "invalid rounding mode argument",
          &FPI);
  }
}

void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
  auto *MD = DII.getRawLocation();
  CheckDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
              (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
          "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
  CheckDI(isa<DILocalVariable>(DII.getRawVariable()),
          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
          DII.getRawVariable());
  CheckDI(isa<DIExpression>(DII.getRawExpression()),
          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
          DII.getRawExpression());

  if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&DII)) {
    CheckDI(isa<DIAssignID>(DAI->getRawAssignID()),
            "invalid llvm.dbg.assign intrinsic DIAssignID", &DII,
            DAI->getRawAssignID());
    const auto *RawAddr = DAI->getRawAddress();
    CheckDI(
        isa<ValueAsMetadata>(RawAddr) ||
            (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()),
        "invalid llvm.dbg.assign intrinsic address", &DII,
        DAI->getRawAddress());
    CheckDI(isa<DIExpression>(DAI->getRawAddressExpression()),
            "invalid llvm.dbg.assign intrinsic address expression", &DII,
            DAI->getRawAddressExpression());
    // All of the linked instructions should be in the same function as DII.
    for (Instruction *I : at::getAssignmentInsts(DAI))
      CheckDI(DAI->getFunction() == I->getFunction(),
              "inst not in same function as dbg.assign", I, DAI);
  }

  // Ignore broken !dbg attachments; they're checked elsewhere.
  if (MDNode *N = DII.getDebugLoc().getAsMDNode())
    if (!isa<DILocation>(N))
      return;

  BasicBlock *BB = DII.getParent();
  Function *F = BB ? BB->getParent() : nullptr;

  // The scopes for variables and !dbg attachments must agree.
  DILocalVariable *Var = DII.getVariable();
  DILocation *Loc = DII.getDebugLoc();
  CheckDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
          &DII, BB, F);

  DISubprogram *VarSP = getSubprogram(Var->getRawScope());
  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
  if (!VarSP || !LocSP)
    return; // Broken scope chains are checked elsewhere.

  CheckDI(VarSP == LocSP,
          "mismatched subprogram between llvm.dbg." + Kind +
              " variable and !dbg attachment",
          &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
          Loc->getScope()->getSubprogram());

  // This check is redundant with one in visitLocalVariable().
  CheckDI(isType(Var->getRawType()), "invalid type ref", Var,
          Var->getRawType());
  verifyFnArgs(DII);
}

void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
  CheckDI(isa<DILabel>(DLI.getRawLabel()),
          "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
          DLI.getRawLabel());

  // Ignore broken !dbg attachments; they're checked elsewhere.
  if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
    if (!isa<DILocation>(N))
      return;

  BasicBlock *BB = DLI.getParent();
  Function *F = BB ? BB->getParent() : nullptr;

  // The scopes for variables and !dbg attachments must agree.
  DILabel *Label = DLI.getLabel();
  DILocation *Loc = DLI.getDebugLoc();
  Check(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", &DLI,
        BB, F);

  DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
  if (!LabelSP || !LocSP)
    return;

  CheckDI(LabelSP == LocSP,
          "mismatched subprogram between llvm.dbg." + Kind +
              " label and !dbg attachment",
          &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
          Loc->getScope()->getSubprogram());
}

void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
  DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
  DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());

  // We don't know whether this intrinsic verified correctly.
  if (!V || !E || !E->isValid())
    return;

  // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
  auto Fragment = E->getFragmentInfo();
  if (!Fragment)
    return;

  // The frontend helps out GDB by emitting the members of local anonymous
  // unions as artificial local variables with shared storage. When SROA splits
  // the storage for artificial local variables that are smaller than the entire
  // union, the overhang piece will be outside of the allotted space for the
  // variable and this check fails.
  // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
  if (V->isArtificial())
    return;

  verifyFragmentExpression(*V, *Fragment, &I);
}

template <typename ValueOrMetadata>
void Verifier::verifyFragmentExpression(const DIVariable &V,
                                        DIExpression::FragmentInfo Fragment,
                                        ValueOrMetadata *Desc) {
  // If there's no size, the type is broken, but that should be checked
  // elsewhere.
  auto VarSize = V.getSizeInBits();
  if (!VarSize)
    return;

  unsigned FragSize = Fragment.SizeInBits;
  unsigned FragOffset = Fragment.OffsetInBits;
  CheckDI(FragSize + FragOffset <= *VarSize,
          "fragment is larger than or outside of variable", Desc, &V);
  CheckDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
}

void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
  // This function does not take the scope of noninlined function arguments into
  // account. Don't run it if current function is nodebug, because it may
  // contain inlined debug intrinsics.
  if (!HasDebugInfo)
    return;

  // For performance reasons only check non-inlined ones.
  if (I.getDebugLoc()->getInlinedAt())
    return;

  DILocalVariable *Var = I.getVariable();
  CheckDI(Var, "dbg intrinsic without variable");

  unsigned ArgNo = Var->getArg();
  if (!ArgNo)
    return;

  // Verify there are no duplicate function argument debug info entries.
  // These will cause hard-to-debug assertions in the DWARF backend.
  if (DebugFnArgs.size() < ArgNo)
    DebugFnArgs.resize(ArgNo, nullptr);

  auto *Prev = DebugFnArgs[ArgNo - 1];
  DebugFnArgs[ArgNo - 1] = Var;
  CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
          Prev, Var);
}

void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
  DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());

  // We don't know whether this intrinsic verified correctly.
  if (!E || !E->isValid())
    return;

  if (isa<ValueAsMetadata>(I.getRawLocation())) {
    Value *VarValue = I.getVariableLocationOp(0);
    if (isa<UndefValue>(VarValue) || isa<PoisonValue>(VarValue))
      return;
    // We allow EntryValues for swift async arguments, as they have an
    // ABI-guarantee to be turned into a specific register.
    if (auto *ArgLoc = dyn_cast_or_null<Argument>(VarValue);
        ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync))
      return;
  }

  CheckDI(!E->isEntryValue(),
          "Entry values are only allowed in MIR unless they target a "
          "swiftasync Argument",
          &I);
}

void Verifier::verifyCompileUnits() {
  // When more than one Module is imported into the same context, such as during
  // an LTO build before linking the modules, ODR type uniquing may cause types
  // to point to a different CU. This check does not make sense in this case.
  if (M.getContext().isODRUniquingDebugTypes())
    return;
  auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
  SmallPtrSet<const Metadata *, 2> Listed;
  if (CUs)
    Listed.insert(CUs->op_begin(), CUs->op_end());
  for (const auto *CU : CUVisited)
    CheckDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
  CUVisited.clear();
}

void Verifier::verifyDeoptimizeCallingConvs() {
  if (DeoptimizeDeclarations.empty())
    return;

  const Function *First = DeoptimizeDeclarations[0];
  for (const auto *F : ArrayRef(DeoptimizeDeclarations).slice(1)) {
    Check(First->getCallingConv() == F->getCallingConv(),
          "All llvm.experimental.deoptimize declarations must have the same "
          "calling convention",
          First, F);
  }
}

void Verifier::verifyAttachedCallBundle(const CallBase &Call,
                                        const OperandBundleUse &BU) {
  FunctionType *FTy = Call.getFunctionType();

  Check((FTy->getReturnType()->isPointerTy() ||
         (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
        "a call with operand bundle \"clang.arc.attachedcall\" must call a "
        "function returning a pointer or a non-returning function that has a "
        "void return type",
        Call);

  Check(BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()),
        "operand bundle \"clang.arc.attachedcall\" requires one function as "
        "an argument",
        Call);

  auto *Fn = cast<Function>(BU.Inputs.front());
  Intrinsic::ID IID = Fn->getIntrinsicID();

  if (IID) {
    Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
           IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
          "invalid function argument", Call);
  } else {
    StringRef FnName = Fn->getName();
    Check((FnName == "objc_retainAutoreleasedReturnValue" ||
           FnName == "objc_unsafeClaimAutoreleasedReturnValue"),
          "invalid function argument", Call);
  }
}

void Verifier::verifyNoAliasScopeDecl() {
  if (NoAliasScopeDecls.empty())
    return;

  // only a single scope must be declared at a time.
  for (auto *II : NoAliasScopeDecls) {
    assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
           "Not a llvm.experimental.noalias.scope.decl ?");
    const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
        II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
    Check(ScopeListMV != nullptr,
          "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
          "argument",
          II);

    const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
    Check(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", II);
    Check(ScopeListMD->getNumOperands() == 1,
          "!id.scope.list must point to a list with a single scope", II);
    visitAliasScopeListMetadata(ScopeListMD);
  }

  // Only check the domination rule when requested. Once all passes have been
  // adapted this option can go away.
  if (!VerifyNoAliasScopeDomination)
    return;

  // Now sort the intrinsics based on the scope MDNode so that declarations of
  // the same scopes are next to each other.
  auto GetScope = [](IntrinsicInst *II) {
    const auto *ScopeListMV = cast<MetadataAsValue>(
        II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
    return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
  };

  // We are sorting on MDNode pointers here. For valid input IR this is ok.
  // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
  auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
    return GetScope(Lhs) < GetScope(Rhs);
  };

  llvm::sort(NoAliasScopeDecls, Compare);

  // Go over the intrinsics and check that for the same scope, they are not
  // dominating each other.
  auto ItCurrent = NoAliasScopeDecls.begin();
  while (ItCurrent != NoAliasScopeDecls.end()) {
    auto CurScope = GetScope(*ItCurrent);
    auto ItNext = ItCurrent;
    do {
      ++ItNext;
    } while (ItNext != NoAliasScopeDecls.end() &&
             GetScope(*ItNext) == CurScope);

    // [ItCurrent, ItNext) represents the declarations for the same scope.
    // Ensure they are not dominating each other.. but only if it is not too
    // expensive.
    if (ItNext - ItCurrent < 32)
      for (auto *I : llvm::make_range(ItCurrent, ItNext))
        for (auto *J : llvm::make_range(ItCurrent, ItNext))
          if (I != J)
            Check(!DT.dominates(I, J),
                  "llvm.experimental.noalias.scope.decl dominates another one "
                  "with the same scope",
                  I);
    ItCurrent = ItNext;
  }
}

//===----------------------------------------------------------------------===//
//  Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//

bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
  Function &F = const_cast<Function &>(f);

  // Don't use a raw_null_ostream.  Printing IR is expensive.
  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());

  // Note that this function's return value is inverted from what you would
  // expect of a function called "verify".
  return !V.verify(F);
}

bool llvm::verifyModule(const Module &M, raw_ostream *OS,
                        bool *BrokenDebugInfo) {
  // Don't use a raw_null_ostream.  Printing IR is expensive.
  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);

  bool Broken = false;
  for (const Function &F : M)
    Broken |= !V.verify(F);

  Broken |= !V.verify();
  if (BrokenDebugInfo)
    *BrokenDebugInfo = V.hasBrokenDebugInfo();
  // Note that this function's return value is inverted from what you would
  // expect of a function called "verify".
  return Broken;
}

namespace {

struct VerifierLegacyPass : public FunctionPass {
  static char ID;

  std::unique_ptr<Verifier> V;
  bool FatalErrors = true;

  VerifierLegacyPass() : FunctionPass(ID) {
    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
  }
  explicit VerifierLegacyPass(bool FatalErrors)
      : FunctionPass(ID),
        FatalErrors(FatalErrors) {
    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool doInitialization(Module &M) override {
    V = std::make_unique<Verifier>(
        &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
    return false;
  }

  bool runOnFunction(Function &F) override {
    if (!V->verify(F) && FatalErrors) {
      errs() << "in function " << F.getName() << '\n';
      report_fatal_error("Broken function found, compilation aborted!");
    }
    return false;
  }

  bool doFinalization(Module &M) override {
    bool HasErrors = false;
    for (Function &F : M)
      if (F.isDeclaration())
        HasErrors |= !V->verify(F);

    HasErrors |= !V->verify();
    if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
      report_fatal_error("Broken module found, compilation aborted!");
    return false;
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesAll();
  }
};

} // end anonymous namespace

/// Helper to issue failure from the TBAA verification
template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
  if (Diagnostic)
    return Diagnostic->CheckFailed(Args...);
}

#define CheckTBAA(C, ...)                                                      \
  do {                                                                         \
    if (!(C)) {                                                                \
      CheckFailed(__VA_ARGS__);                                                \
      return false;                                                            \
    }                                                                          \
  } while (false)

/// Verify that \p BaseNode can be used as the "base type" in the struct-path
/// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
/// struct-type node describing an aggregate data structure (like a struct).
TBAAVerifier::TBAABaseNodeSummary
TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
                                 bool IsNewFormat) {
  if (BaseNode->getNumOperands() < 2) {
    CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
    return {true, ~0u};
  }

  auto Itr = TBAABaseNodes.find(BaseNode);
  if (Itr != TBAABaseNodes.end())
    return Itr->second;

  auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
  auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
  (void)InsertResult;
  assert(InsertResult.second && "We just checked!");
  return Result;
}

TBAAVerifier::TBAABaseNodeSummary
TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
                                     bool IsNewFormat) {
  const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};

  if (BaseNode->getNumOperands() == 2) {
    // Scalar nodes can only be accessed at offset 0.
    return isValidScalarTBAANode(BaseNode)
               ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
               : InvalidNode;
  }

  if (IsNewFormat) {
    if (BaseNode->getNumOperands() % 3 != 0) {
      CheckFailed("Access tag nodes must have the number of operands that is a "
                  "multiple of 3!", BaseNode);
      return InvalidNode;
    }
  } else {
    if (BaseNode->getNumOperands() % 2 != 1) {
      CheckFailed("Struct tag nodes must have an odd number of operands!",
                  BaseNode);
      return InvalidNode;
    }
  }

  // Check the type size field.
  if (IsNewFormat) {
    auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
        BaseNode->getOperand(1));
    if (!TypeSizeNode) {
      CheckFailed("Type size nodes must be constants!", &I, BaseNode);
      return InvalidNode;
    }
  }

  // Check the type name field. In the new format it can be anything.
  if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
    CheckFailed("Struct tag nodes have a string as their first operand",
                BaseNode);
    return InvalidNode;
  }

  bool Failed = false;

  std::optional<APInt> PrevOffset;
  unsigned BitWidth = ~0u;

  // We've already checked that BaseNode is not a degenerate root node with one
  // operand in \c verifyTBAABaseNode, so this loop should run at least once.
  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
  unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
           Idx += NumOpsPerField) {
    const MDOperand &FieldTy = BaseNode->getOperand(Idx);
    const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
    if (!isa<MDNode>(FieldTy)) {
      CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
      Failed = true;
      continue;
    }

    auto *OffsetEntryCI =
        mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
    if (!OffsetEntryCI) {
      CheckFailed("Offset entries must be constants!", &I, BaseNode);
      Failed = true;
      continue;
    }

    if (BitWidth == ~0u)
      BitWidth = OffsetEntryCI->getBitWidth();

    if (OffsetEntryCI->getBitWidth() != BitWidth) {
      CheckFailed(
          "Bitwidth between the offsets and struct type entries must match", &I,
          BaseNode);
      Failed = true;
      continue;
    }

    // NB! As far as I can tell, we generate a non-strictly increasing offset
    // sequence only from structs that have zero size bit fields.  When
    // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
    // pick the field lexically the latest in struct type metadata node.  This
    // mirrors the actual behavior of the alias analysis implementation.
    bool IsAscending =
        !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());

    if (!IsAscending) {
      CheckFailed("Offsets must be increasing!", &I, BaseNode);
      Failed = true;
    }

    PrevOffset = OffsetEntryCI->getValue();

    if (IsNewFormat) {
      auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
          BaseNode->getOperand(Idx + 2));
      if (!MemberSizeNode) {
        CheckFailed("Member size entries must be constants!", &I, BaseNode);
        Failed = true;
        continue;
      }
    }
  }

  return Failed ? InvalidNode
                : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
}

static bool IsRootTBAANode(const MDNode *MD) {
  return MD->getNumOperands() < 2;
}

static bool IsScalarTBAANodeImpl(const MDNode *MD,
                                 SmallPtrSetImpl<const MDNode *> &Visited) {
  if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
    return false;

  if (!isa<MDString>(MD->getOperand(0)))
    return false;

  if (MD->getNumOperands() == 3) {
    auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
    if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
      return false;
  }

  auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
  return Parent && Visited.insert(Parent).second &&
         (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
}

bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
  auto ResultIt = TBAAScalarNodes.find(MD);
  if (ResultIt != TBAAScalarNodes.end())
    return ResultIt->second;

  SmallPtrSet<const MDNode *, 4> Visited;
  bool Result = IsScalarTBAANodeImpl(MD, Visited);
  auto InsertResult = TBAAScalarNodes.insert({MD, Result});
  (void)InsertResult;
  assert(InsertResult.second && "Just checked!");

  return Result;
}

/// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
/// Offset in place to be the offset within the field node returned.
///
/// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
                                                   const MDNode *BaseNode,
                                                   APInt &Offset,
                                                   bool IsNewFormat) {
  assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");

  // Scalar nodes have only one possible "field" -- their parent in the access
  // hierarchy.  Offset must be zero at this point, but our caller is supposed
  // to check that.
  if (BaseNode->getNumOperands() == 2)
    return cast<MDNode>(BaseNode->getOperand(1));

  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
  unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
           Idx += NumOpsPerField) {
    auto *OffsetEntryCI =
        mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
    if (OffsetEntryCI->getValue().ugt(Offset)) {
      if (Idx == FirstFieldOpNo) {
        CheckFailed("Could not find TBAA parent in struct type node", &I,
                    BaseNode, &Offset);
        return nullptr;
      }

      unsigned PrevIdx = Idx - NumOpsPerField;
      auto *PrevOffsetEntryCI =
          mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
      Offset -= PrevOffsetEntryCI->getValue();
      return cast<MDNode>(BaseNode->getOperand(PrevIdx));
    }
  }

  unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
  auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
      BaseNode->getOperand(LastIdx + 1));
  Offset -= LastOffsetEntryCI->getValue();
  return cast<MDNode>(BaseNode->getOperand(LastIdx));
}

static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
  if (!Type || Type->getNumOperands() < 3)
    return false;

  // In the new format type nodes shall have a reference to the parent type as
  // its first operand.
  return isa_and_nonnull<MDNode>(Type->getOperand(0));
}

bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
  CheckTBAA(MD->getNumOperands() > 0, "TBAA metadata cannot have 0 operands",
            &I, MD);

  CheckTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
                isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
                isa<AtomicCmpXchgInst>(I),
            "This instruction shall not have a TBAA access tag!", &I);

  bool IsStructPathTBAA =
      isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;

  CheckTBAA(IsStructPathTBAA,
            "Old-style TBAA is no longer allowed, use struct-path TBAA instead",
            &I);

  MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
  MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));

  bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);

  if (IsNewFormat) {
    CheckTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
              "Access tag metadata must have either 4 or 5 operands", &I, MD);
  } else {
    CheckTBAA(MD->getNumOperands() < 5,
              "Struct tag metadata must have either 3 or 4 operands", &I, MD);
  }

  // Check the access size field.
  if (IsNewFormat) {
    auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
        MD->getOperand(3));
    CheckTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
  }

  // Check the immutability flag.
  unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
  if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
    auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
        MD->getOperand(ImmutabilityFlagOpNo));
    CheckTBAA(IsImmutableCI,
              "Immutability tag on struct tag metadata must be a constant", &I,
              MD);
    CheckTBAA(
        IsImmutableCI->isZero() || IsImmutableCI->isOne(),
        "Immutability part of the struct tag metadata must be either 0 or 1",
        &I, MD);
  }

  CheckTBAA(BaseNode && AccessType,
            "Malformed struct tag metadata: base and access-type "
            "should be non-null and point to Metadata nodes",
            &I, MD, BaseNode, AccessType);

  if (!IsNewFormat) {
    CheckTBAA(isValidScalarTBAANode(AccessType),
              "Access type node must be a valid scalar type", &I, MD,
              AccessType);
  }

  auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
  CheckTBAA(OffsetCI, "Offset must be constant integer", &I, MD);

  APInt Offset = OffsetCI->getValue();
  bool SeenAccessTypeInPath = false;

  SmallPtrSet<MDNode *, 4> StructPath;

  for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
       BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
                                               IsNewFormat)) {
    if (!StructPath.insert(BaseNode).second) {
      CheckFailed("Cycle detected in struct path", &I, MD);
      return false;
    }

    bool Invalid;
    unsigned BaseNodeBitWidth;
    std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
                                                             IsNewFormat);

    // If the base node is invalid in itself, then we've already printed all the
    // errors we wanted to print.
    if (Invalid)
      return false;

    SeenAccessTypeInPath |= BaseNode == AccessType;

    if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
      CheckTBAA(Offset == 0, "Offset not zero at the point of scalar access",
                &I, MD, &Offset);

    CheckTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
                  (BaseNodeBitWidth == 0 && Offset == 0) ||
                  (IsNewFormat && BaseNodeBitWidth == ~0u),
              "Access bit-width not the same as description bit-width", &I, MD,
              BaseNodeBitWidth, Offset.getBitWidth());

    if (IsNewFormat && SeenAccessTypeInPath)
      break;
  }

  CheckTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", &I,
            MD);
  return true;
}

char VerifierLegacyPass::ID = 0;
INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)

FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
  return new VerifierLegacyPass(FatalErrors);
}

AnalysisKey VerifierAnalysis::Key;
VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
                                               ModuleAnalysisManager &) {
  Result Res;
  Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
  return Res;
}

VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
                                               FunctionAnalysisManager &) {
  return { llvm::verifyFunction(F, &dbgs()), false };
}

PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
  auto Res = AM.getResult<VerifierAnalysis>(M);
  if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
    report_fatal_error("Broken module found, compilation aborted!");

  return PreservedAnalyses::all();
}

PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
  auto res = AM.getResult<VerifierAnalysis>(F);
  if (res.IRBroken && FatalErrors)
    report_fatal_error("Broken function found, compilation aborted!");

  return PreservedAnalyses::all();
}