aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64LoopIdiomTransform.cpp
blob: 6fcd9c290e9c5c2b3c6fd48aa177c1c3d5fc23b3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
//===- AArch64LoopIdiomTransform.cpp - Loop idiom recognition -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements a pass that recognizes certain loop idioms and
// transforms them into more optimized versions of the same loop. In cases
// where this happens, it can be a significant performance win.
//
// We currently only recognize one loop that finds the first mismatched byte
// in an array and returns the index, i.e. something like:
//
//  while (++i != n) {
//    if (a[i] != b[i])
//      break;
//  }
//
// In this example we can actually vectorize the loop despite the early exit,
// although the loop vectorizer does not support it. It requires some extra
// checks to deal with the possibility of faulting loads when crossing page
// boundaries. However, even with these checks it is still profitable to do the
// transformation.
//
//===----------------------------------------------------------------------===//
//
// TODO List:
//
// * Add support for the inverse case where we scan for a matching element.
// * Permit 64-bit induction variable types.
// * Recognize loops that increment the IV *after* comparing bytes.
// * Allow 32-bit sign-extends of the IV used by the GEP.
//
//===----------------------------------------------------------------------===//

#include "AArch64LoopIdiomTransform.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "aarch64-loop-idiom-transform"

static cl::opt<bool>
    DisableAll("disable-aarch64-lit-all", cl::Hidden, cl::init(true),
               cl::desc("Disable AArch64 Loop Idiom Transform Pass."));

static cl::opt<bool> DisableByteCmp(
    "disable-aarch64-lit-bytecmp", cl::Hidden, cl::init(false),
    cl::desc("Proceed with AArch64 Loop Idiom Transform Pass, but do "
             "not convert byte-compare loop(s)."));

static cl::opt<bool> VerifyLoops(
    "aarch64-lit-verify", cl::Hidden, cl::init(false),
    cl::desc("Verify loops generated AArch64 Loop Idiom Transform Pass."));

namespace llvm {

void initializeAArch64LoopIdiomTransformLegacyPassPass(PassRegistry &);
Pass *createAArch64LoopIdiomTransformPass();

} // end namespace llvm

namespace {

class AArch64LoopIdiomTransform {
  Loop *CurLoop = nullptr;
  DominatorTree *DT;
  LoopInfo *LI;
  const TargetTransformInfo *TTI;
  const DataLayout *DL;

public:
  explicit AArch64LoopIdiomTransform(DominatorTree *DT, LoopInfo *LI,
                                     const TargetTransformInfo *TTI,
                                     const DataLayout *DL)
      : DT(DT), LI(LI), TTI(TTI), DL(DL) {}

  bool run(Loop *L);

private:
  /// \name Countable Loop Idiom Handling
  /// @{

  bool runOnCountableLoop();
  bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
                      SmallVectorImpl<BasicBlock *> &ExitBlocks);

  bool recognizeByteCompare();
  Value *expandFindMismatch(IRBuilder<> &Builder, DomTreeUpdater &DTU,
                            GetElementPtrInst *GEPA, GetElementPtrInst *GEPB,
                            Instruction *Index, Value *Start, Value *MaxLen);
  void transformByteCompare(GetElementPtrInst *GEPA, GetElementPtrInst *GEPB,
                            PHINode *IndPhi, Value *MaxLen, Instruction *Index,
                            Value *Start, bool IncIdx, BasicBlock *FoundBB,
                            BasicBlock *EndBB);
  /// @}
};

class AArch64LoopIdiomTransformLegacyPass : public LoopPass {
public:
  static char ID;

  explicit AArch64LoopIdiomTransformLegacyPass() : LoopPass(ID) {
    initializeAArch64LoopIdiomTransformLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override {
    return "Transform AArch64-specific loop idioms";
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<LoopInfoWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
  }

  bool runOnLoop(Loop *L, LPPassManager &LPM) override;
};

bool AArch64LoopIdiomTransformLegacyPass::runOnLoop(Loop *L,
                                                    LPPassManager &LPM) {

  if (skipLoop(L))
    return false;

  auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
      *L->getHeader()->getParent());
  return AArch64LoopIdiomTransform(
             DT, LI, &TTI, &L->getHeader()->getModule()->getDataLayout())
      .run(L);
}

} // end anonymous namespace

char AArch64LoopIdiomTransformLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(
    AArch64LoopIdiomTransformLegacyPass, "aarch64-lit",
    "Transform specific loop idioms into optimized vector forms", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(
    AArch64LoopIdiomTransformLegacyPass, "aarch64-lit",
    "Transform specific loop idioms into optimized vector forms", false, false)

Pass *llvm::createAArch64LoopIdiomTransformPass() {
  return new AArch64LoopIdiomTransformLegacyPass();
}

PreservedAnalyses
AArch64LoopIdiomTransformPass::run(Loop &L, LoopAnalysisManager &AM,
                                   LoopStandardAnalysisResults &AR,
                                   LPMUpdater &) {
  if (DisableAll)
    return PreservedAnalyses::all();

  const auto *DL = &L.getHeader()->getModule()->getDataLayout();

  AArch64LoopIdiomTransform LIT(&AR.DT, &AR.LI, &AR.TTI, DL);
  if (!LIT.run(&L))
    return PreservedAnalyses::all();

  return PreservedAnalyses::none();
}

//===----------------------------------------------------------------------===//
//
//          Implementation of AArch64LoopIdiomTransform
//
//===----------------------------------------------------------------------===//

bool AArch64LoopIdiomTransform::run(Loop *L) {
  CurLoop = L;

  if (DisableAll || L->getHeader()->getParent()->hasOptSize())
    return false;

  // If the loop could not be converted to canonical form, it must have an
  // indirectbr in it, just give up.
  if (!L->getLoopPreheader())
    return false;

  LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
                    << CurLoop->getHeader()->getParent()->getName()
                    << "] Loop %" << CurLoop->getHeader()->getName() << "\n");

  return recognizeByteCompare();
}

bool AArch64LoopIdiomTransform::recognizeByteCompare() {
  // Currently the transformation only works on scalable vector types, although
  // there is no fundamental reason why it cannot be made to work for fixed
  // width too.

  // We also need to know the minimum page size for the target in order to
  // generate runtime memory checks to ensure the vector version won't fault.
  if (!TTI->supportsScalableVectors() || !TTI->getMinPageSize().has_value() ||
      DisableByteCmp)
    return false;

  BasicBlock *Header = CurLoop->getHeader();

  // In AArch64LoopIdiomTransform::run we have already checked that the loop
  // has a preheader so we can assume it's in a canonical form.
  if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 2)
    return false;

  PHINode *PN = dyn_cast<PHINode>(&Header->front());
  if (!PN || PN->getNumIncomingValues() != 2)
    return false;

  auto LoopBlocks = CurLoop->getBlocks();
  // The first block in the loop should contain only 4 instructions, e.g.
  //
  //  while.cond:
  //   %res.phi = phi i32 [ %start, %ph ], [ %inc, %while.body ]
  //   %inc = add i32 %res.phi, 1
  //   %cmp.not = icmp eq i32 %inc, %n
  //   br i1 %cmp.not, label %while.end, label %while.body
  //
  auto CondBBInsts = LoopBlocks[0]->instructionsWithoutDebug();
  if (std::distance(CondBBInsts.begin(), CondBBInsts.end()) > 4)
    return false;

  // The second block should contain 7 instructions, e.g.
  //
  // while.body:
  //   %idx = zext i32 %inc to i64
  //   %idx.a = getelementptr inbounds i8, ptr %a, i64 %idx
  //   %load.a = load i8, ptr %idx.a
  //   %idx.b = getelementptr inbounds i8, ptr %b, i64 %idx
  //   %load.b = load i8, ptr %idx.b
  //   %cmp.not.ld = icmp eq i8 %load.a, %load.b
  //   br i1 %cmp.not.ld, label %while.cond, label %while.end
  //
  auto LoopBBInsts = LoopBlocks[1]->instructionsWithoutDebug();
  if (std::distance(LoopBBInsts.begin(), LoopBBInsts.end()) > 7)
    return false;

  // The incoming value to the PHI node from the loop should be an add of 1.
  Value *StartIdx = nullptr;
  Instruction *Index = nullptr;
  if (!CurLoop->contains(PN->getIncomingBlock(0))) {
    StartIdx = PN->getIncomingValue(0);
    Index = dyn_cast<Instruction>(PN->getIncomingValue(1));
  } else {
    StartIdx = PN->getIncomingValue(1);
    Index = dyn_cast<Instruction>(PN->getIncomingValue(0));
  }

  // Limit to 32-bit types for now
  if (!Index || !Index->getType()->isIntegerTy(32) ||
      !match(Index, m_c_Add(m_Specific(PN), m_One())))
    return false;

  // If we match the pattern, PN and Index will be replaced with the result of
  // the cttz.elts intrinsic. If any other instructions are used outside of
  // the loop, we cannot replace it.
  for (BasicBlock *BB : LoopBlocks)
    for (Instruction &I : *BB)
      if (&I != PN && &I != Index)
        for (User *U : I.users())
          if (!CurLoop->contains(cast<Instruction>(U)))
            return false;

  // Match the branch instruction for the header
  ICmpInst::Predicate Pred;
  Value *MaxLen;
  BasicBlock *EndBB, *WhileBB;
  if (!match(Header->getTerminator(),
             m_Br(m_ICmp(Pred, m_Specific(Index), m_Value(MaxLen)),
                  m_BasicBlock(EndBB), m_BasicBlock(WhileBB))) ||
      Pred != ICmpInst::Predicate::ICMP_EQ || !CurLoop->contains(WhileBB))
    return false;

  // WhileBB should contain the pattern of load & compare instructions. Match
  // the pattern and find the GEP instructions used by the loads.
  ICmpInst::Predicate WhilePred;
  BasicBlock *FoundBB;
  BasicBlock *TrueBB;
  Value *LoadA, *LoadB;
  if (!match(WhileBB->getTerminator(),
             m_Br(m_ICmp(WhilePred, m_Value(LoadA), m_Value(LoadB)),
                  m_BasicBlock(TrueBB), m_BasicBlock(FoundBB))) ||
      WhilePred != ICmpInst::Predicate::ICMP_EQ || !CurLoop->contains(TrueBB))
    return false;

  Value *A, *B;
  if (!match(LoadA, m_Load(m_Value(A))) || !match(LoadB, m_Load(m_Value(B))))
    return false;

  LoadInst *LoadAI = cast<LoadInst>(LoadA);
  LoadInst *LoadBI = cast<LoadInst>(LoadB);
  if (!LoadAI->isSimple() || !LoadBI->isSimple())
    return false;

  GetElementPtrInst *GEPA = dyn_cast<GetElementPtrInst>(A);
  GetElementPtrInst *GEPB = dyn_cast<GetElementPtrInst>(B);

  if (!GEPA || !GEPB)
    return false;

  Value *PtrA = GEPA->getPointerOperand();
  Value *PtrB = GEPB->getPointerOperand();

  // Check we are loading i8 values from two loop invariant pointers
  if (!CurLoop->isLoopInvariant(PtrA) || !CurLoop->isLoopInvariant(PtrB) ||
      !GEPA->getResultElementType()->isIntegerTy(8) ||
      !GEPB->getResultElementType()->isIntegerTy(8) ||
      !LoadAI->getType()->isIntegerTy(8) ||
      !LoadBI->getType()->isIntegerTy(8) || PtrA == PtrB)
    return false;

  // Check that the index to the GEPs is the index we found earlier
  if (GEPA->getNumIndices() > 1 || GEPB->getNumIndices() > 1)
    return false;

  Value *IdxA = GEPA->getOperand(GEPA->getNumIndices());
  Value *IdxB = GEPB->getOperand(GEPB->getNumIndices());
  if (IdxA != IdxB || !match(IdxA, m_ZExt(m_Specific(Index))))
    return false;

  // We only ever expect the pre-incremented index value to be used inside the
  // loop.
  if (!PN->hasOneUse())
    return false;

  // Ensure that when the Found and End blocks are identical the PHIs have the
  // supported format. We don't currently allow cases like this:
  // while.cond:
  //   ...
  //   br i1 %cmp.not, label %while.end, label %while.body
  //
  // while.body:
  //   ...
  //   br i1 %cmp.not2, label %while.cond, label %while.end
  //
  // while.end:
  //   %final_ptr = phi ptr [ %c, %while.body ], [ %d, %while.cond ]
  //
  // Where the incoming values for %final_ptr are unique and from each of the
  // loop blocks, but not actually defined in the loop. This requires extra
  // work setting up the byte.compare block, i.e. by introducing a select to
  // choose the correct value.
  // TODO: We could add support for this in future.
  if (FoundBB == EndBB) {
    for (PHINode &EndPN : EndBB->phis()) {
      Value *WhileCondVal = EndPN.getIncomingValueForBlock(Header);
      Value *WhileBodyVal = EndPN.getIncomingValueForBlock(WhileBB);

      // The value of the index when leaving the while.cond block is always the
      // same as the end value (MaxLen) so we permit either. Otherwise for any
      // other value defined outside the loop we only allow values that are the
      // same as the exit value for while.body.
      if (WhileCondVal != Index && WhileCondVal != MaxLen &&
          WhileCondVal != WhileBodyVal)
        return false;
    }
  }

  LLVM_DEBUG(dbgs() << "FOUND IDIOM IN LOOP: \n"
                    << *(EndBB->getParent()) << "\n\n");

  // The index is incremented before the GEP/Load pair so we need to
  // add 1 to the start value.
  transformByteCompare(GEPA, GEPB, PN, MaxLen, Index, StartIdx, /*IncIdx=*/true,
                       FoundBB, EndBB);
  return true;
}

Value *AArch64LoopIdiomTransform::expandFindMismatch(
    IRBuilder<> &Builder, DomTreeUpdater &DTU, GetElementPtrInst *GEPA,
    GetElementPtrInst *GEPB, Instruction *Index, Value *Start, Value *MaxLen) {
  Value *PtrA = GEPA->getPointerOperand();
  Value *PtrB = GEPB->getPointerOperand();

  // Get the arguments and types for the intrinsic.
  BasicBlock *Preheader = CurLoop->getLoopPreheader();
  BranchInst *PHBranch = cast<BranchInst>(Preheader->getTerminator());
  LLVMContext &Ctx = PHBranch->getContext();
  Type *LoadType = Type::getInt8Ty(Ctx);
  Type *ResType = Builder.getInt32Ty();

  // Split block in the original loop preheader.
  BasicBlock *EndBlock =
      SplitBlock(Preheader, PHBranch, DT, LI, nullptr, "mismatch_end");

  // Create the blocks that we're going to need:
  //  1. A block for checking the zero-extended length exceeds 0
  //  2. A block to check that the start and end addresses of a given array
  //     lie on the same page.
  //  3. The SVE loop preheader.
  //  4. The first SVE loop block.
  //  5. The SVE loop increment block.
  //  6. A block we can jump to from the SVE loop when a mismatch is found.
  //  7. The first block of the scalar loop itself, containing PHIs , loads
  //  and cmp.
  //  8. A scalar loop increment block to increment the PHIs and go back
  //  around the loop.

  BasicBlock *MinItCheckBlock = BasicBlock::Create(
      Ctx, "mismatch_min_it_check", EndBlock->getParent(), EndBlock);

  // Update the terminator added by SplitBlock to branch to the first block
  Preheader->getTerminator()->setSuccessor(0, MinItCheckBlock);

  BasicBlock *MemCheckBlock = BasicBlock::Create(
      Ctx, "mismatch_mem_check", EndBlock->getParent(), EndBlock);

  BasicBlock *SVELoopPreheaderBlock = BasicBlock::Create(
      Ctx, "mismatch_sve_loop_preheader", EndBlock->getParent(), EndBlock);

  BasicBlock *SVELoopStartBlock = BasicBlock::Create(
      Ctx, "mismatch_sve_loop", EndBlock->getParent(), EndBlock);

  BasicBlock *SVELoopIncBlock = BasicBlock::Create(
      Ctx, "mismatch_sve_loop_inc", EndBlock->getParent(), EndBlock);

  BasicBlock *SVELoopMismatchBlock = BasicBlock::Create(
      Ctx, "mismatch_sve_loop_found", EndBlock->getParent(), EndBlock);

  BasicBlock *LoopPreHeaderBlock = BasicBlock::Create(
      Ctx, "mismatch_loop_pre", EndBlock->getParent(), EndBlock);

  BasicBlock *LoopStartBlock =
      BasicBlock::Create(Ctx, "mismatch_loop", EndBlock->getParent(), EndBlock);

  BasicBlock *LoopIncBlock = BasicBlock::Create(
      Ctx, "mismatch_loop_inc", EndBlock->getParent(), EndBlock);

  DTU.applyUpdates({{DominatorTree::Insert, Preheader, MinItCheckBlock},
                    {DominatorTree::Delete, Preheader, EndBlock}});

  // Update LoopInfo with the new SVE & scalar loops.
  auto SVELoop = LI->AllocateLoop();
  auto ScalarLoop = LI->AllocateLoop();

  if (CurLoop->getParentLoop()) {
    CurLoop->getParentLoop()->addBasicBlockToLoop(MinItCheckBlock, *LI);
    CurLoop->getParentLoop()->addBasicBlockToLoop(MemCheckBlock, *LI);
    CurLoop->getParentLoop()->addBasicBlockToLoop(SVELoopPreheaderBlock, *LI);
    CurLoop->getParentLoop()->addChildLoop(SVELoop);
    CurLoop->getParentLoop()->addBasicBlockToLoop(SVELoopMismatchBlock, *LI);
    CurLoop->getParentLoop()->addBasicBlockToLoop(LoopPreHeaderBlock, *LI);
    CurLoop->getParentLoop()->addChildLoop(ScalarLoop);
  } else {
    LI->addTopLevelLoop(SVELoop);
    LI->addTopLevelLoop(ScalarLoop);
  }

  // Add the new basic blocks to their associated loops.
  SVELoop->addBasicBlockToLoop(SVELoopStartBlock, *LI);
  SVELoop->addBasicBlockToLoop(SVELoopIncBlock, *LI);

  ScalarLoop->addBasicBlockToLoop(LoopStartBlock, *LI);
  ScalarLoop->addBasicBlockToLoop(LoopIncBlock, *LI);

  // Set up some types and constants that we intend to reuse.
  Type *I64Type = Builder.getInt64Ty();

  // Check the zero-extended iteration count > 0
  Builder.SetInsertPoint(MinItCheckBlock);
  Value *ExtStart = Builder.CreateZExt(Start, I64Type);
  Value *ExtEnd = Builder.CreateZExt(MaxLen, I64Type);
  // This check doesn't really cost us very much.

  Value *LimitCheck = Builder.CreateICmpULE(Start, MaxLen);
  BranchInst *MinItCheckBr =
      BranchInst::Create(MemCheckBlock, LoopPreHeaderBlock, LimitCheck);
  MinItCheckBr->setMetadata(
      LLVMContext::MD_prof,
      MDBuilder(MinItCheckBr->getContext()).createBranchWeights(99, 1));
  Builder.Insert(MinItCheckBr);

  DTU.applyUpdates(
      {{DominatorTree::Insert, MinItCheckBlock, MemCheckBlock},
       {DominatorTree::Insert, MinItCheckBlock, LoopPreHeaderBlock}});

  // For each of the arrays, check the start/end addresses are on the same
  // page.
  Builder.SetInsertPoint(MemCheckBlock);

  // The early exit in the original loop means that when performing vector
  // loads we are potentially reading ahead of the early exit. So we could
  // fault if crossing a page boundary. Therefore, we create runtime memory
  // checks based on the minimum page size as follows:
  //   1. Calculate the addresses of the first memory accesses in the loop,
  //      i.e. LhsStart and RhsStart.
  //   2. Get the last accessed addresses in the loop, i.e. LhsEnd and RhsEnd.
  //   3. Determine which pages correspond to all the memory accesses, i.e
  //      LhsStartPage, LhsEndPage, RhsStartPage, RhsEndPage.
  //   4. If LhsStartPage == LhsEndPage and RhsStartPage == RhsEndPage, then
  //      we know we won't cross any page boundaries in the loop so we can
  //      enter the vector loop! Otherwise we fall back on the scalar loop.
  Value *LhsStartGEP = Builder.CreateGEP(LoadType, PtrA, ExtStart);
  Value *RhsStartGEP = Builder.CreateGEP(LoadType, PtrB, ExtStart);
  Value *RhsStart = Builder.CreatePtrToInt(RhsStartGEP, I64Type);
  Value *LhsStart = Builder.CreatePtrToInt(LhsStartGEP, I64Type);
  Value *LhsEndGEP = Builder.CreateGEP(LoadType, PtrA, ExtEnd);
  Value *RhsEndGEP = Builder.CreateGEP(LoadType, PtrB, ExtEnd);
  Value *LhsEnd = Builder.CreatePtrToInt(LhsEndGEP, I64Type);
  Value *RhsEnd = Builder.CreatePtrToInt(RhsEndGEP, I64Type);

  const uint64_t MinPageSize = TTI->getMinPageSize().value();
  const uint64_t AddrShiftAmt = llvm::Log2_64(MinPageSize);
  Value *LhsStartPage = Builder.CreateLShr(LhsStart, AddrShiftAmt);
  Value *LhsEndPage = Builder.CreateLShr(LhsEnd, AddrShiftAmt);
  Value *RhsStartPage = Builder.CreateLShr(RhsStart, AddrShiftAmt);
  Value *RhsEndPage = Builder.CreateLShr(RhsEnd, AddrShiftAmt);
  Value *LhsPageCmp = Builder.CreateICmpNE(LhsStartPage, LhsEndPage);
  Value *RhsPageCmp = Builder.CreateICmpNE(RhsStartPage, RhsEndPage);

  Value *CombinedPageCmp = Builder.CreateOr(LhsPageCmp, RhsPageCmp);
  BranchInst *CombinedPageCmpCmpBr = BranchInst::Create(
      LoopPreHeaderBlock, SVELoopPreheaderBlock, CombinedPageCmp);
  CombinedPageCmpCmpBr->setMetadata(
      LLVMContext::MD_prof, MDBuilder(CombinedPageCmpCmpBr->getContext())
                                .createBranchWeights(10, 90));
  Builder.Insert(CombinedPageCmpCmpBr);

  DTU.applyUpdates(
      {{DominatorTree::Insert, MemCheckBlock, LoopPreHeaderBlock},
       {DominatorTree::Insert, MemCheckBlock, SVELoopPreheaderBlock}});

  // Set up the SVE loop preheader, i.e. calculate initial loop predicate,
  // zero-extend MaxLen to 64-bits, determine the number of vector elements
  // processed in each iteration, etc.
  Builder.SetInsertPoint(SVELoopPreheaderBlock);

  // At this point we know two things must be true:
  //  1. Start <= End
  //  2. ExtMaxLen <= MinPageSize due to the page checks.
  // Therefore, we know that we can use a 64-bit induction variable that
  // starts from 0 -> ExtMaxLen and it will not overflow.
  ScalableVectorType *PredVTy =
      ScalableVectorType::get(Builder.getInt1Ty(), 16);

  Value *InitialPred = Builder.CreateIntrinsic(
      Intrinsic::get_active_lane_mask, {PredVTy, I64Type}, {ExtStart, ExtEnd});

  Value *VecLen = Builder.CreateIntrinsic(Intrinsic::vscale, {I64Type}, {});
  VecLen = Builder.CreateMul(VecLen, ConstantInt::get(I64Type, 16), "",
                             /*HasNUW=*/true, /*HasNSW=*/true);

  Value *PFalse = Builder.CreateVectorSplat(PredVTy->getElementCount(),
                                            Builder.getInt1(false));

  BranchInst *JumpToSVELoop = BranchInst::Create(SVELoopStartBlock);
  Builder.Insert(JumpToSVELoop);

  DTU.applyUpdates(
      {{DominatorTree::Insert, SVELoopPreheaderBlock, SVELoopStartBlock}});

  // Set up the first SVE loop block by creating the PHIs, doing the vector
  // loads and comparing the vectors.
  Builder.SetInsertPoint(SVELoopStartBlock);
  PHINode *LoopPred = Builder.CreatePHI(PredVTy, 2, "mismatch_sve_loop_pred");
  LoopPred->addIncoming(InitialPred, SVELoopPreheaderBlock);
  PHINode *SVEIndexPhi = Builder.CreatePHI(I64Type, 2, "mismatch_sve_index");
  SVEIndexPhi->addIncoming(ExtStart, SVELoopPreheaderBlock);
  Type *SVELoadType = ScalableVectorType::get(Builder.getInt8Ty(), 16);
  Value *Passthru = ConstantInt::getNullValue(SVELoadType);

  Value *SVELhsGep = Builder.CreateGEP(LoadType, PtrA, SVEIndexPhi);
  if (GEPA->isInBounds())
    cast<GetElementPtrInst>(SVELhsGep)->setIsInBounds(true);
  Value *SVELhsLoad = Builder.CreateMaskedLoad(SVELoadType, SVELhsGep, Align(1),
                                               LoopPred, Passthru);

  Value *SVERhsGep = Builder.CreateGEP(LoadType, PtrB, SVEIndexPhi);
  if (GEPB->isInBounds())
    cast<GetElementPtrInst>(SVERhsGep)->setIsInBounds(true);
  Value *SVERhsLoad = Builder.CreateMaskedLoad(SVELoadType, SVERhsGep, Align(1),
                                               LoopPred, Passthru);

  Value *SVEMatchCmp = Builder.CreateICmpNE(SVELhsLoad, SVERhsLoad);
  SVEMatchCmp = Builder.CreateSelect(LoopPred, SVEMatchCmp, PFalse);
  Value *SVEMatchHasActiveLanes = Builder.CreateOrReduce(SVEMatchCmp);
  BranchInst *SVEEarlyExit = BranchInst::Create(
      SVELoopMismatchBlock, SVELoopIncBlock, SVEMatchHasActiveLanes);
  Builder.Insert(SVEEarlyExit);

  DTU.applyUpdates(
      {{DominatorTree::Insert, SVELoopStartBlock, SVELoopMismatchBlock},
       {DominatorTree::Insert, SVELoopStartBlock, SVELoopIncBlock}});

  // Increment the index counter and calculate the predicate for the next
  // iteration of the loop. We branch back to the start of the loop if there
  // is at least one active lane.
  Builder.SetInsertPoint(SVELoopIncBlock);
  Value *NewSVEIndexPhi = Builder.CreateAdd(SVEIndexPhi, VecLen, "",
                                            /*HasNUW=*/true, /*HasNSW=*/true);
  SVEIndexPhi->addIncoming(NewSVEIndexPhi, SVELoopIncBlock);
  Value *NewPred =
      Builder.CreateIntrinsic(Intrinsic::get_active_lane_mask,
                              {PredVTy, I64Type}, {NewSVEIndexPhi, ExtEnd});
  LoopPred->addIncoming(NewPred, SVELoopIncBlock);

  Value *PredHasActiveLanes =
      Builder.CreateExtractElement(NewPred, uint64_t(0));
  BranchInst *SVELoopBranchBack =
      BranchInst::Create(SVELoopStartBlock, EndBlock, PredHasActiveLanes);
  Builder.Insert(SVELoopBranchBack);

  DTU.applyUpdates({{DominatorTree::Insert, SVELoopIncBlock, SVELoopStartBlock},
                    {DominatorTree::Insert, SVELoopIncBlock, EndBlock}});

  // If we found a mismatch then we need to calculate which lane in the vector
  // had a mismatch and add that on to the current loop index.
  Builder.SetInsertPoint(SVELoopMismatchBlock);
  PHINode *FoundPred = Builder.CreatePHI(PredVTy, 1, "mismatch_sve_found_pred");
  FoundPred->addIncoming(SVEMatchCmp, SVELoopStartBlock);
  PHINode *LastLoopPred =
      Builder.CreatePHI(PredVTy, 1, "mismatch_sve_last_loop_pred");
  LastLoopPred->addIncoming(LoopPred, SVELoopStartBlock);
  PHINode *SVEFoundIndex =
      Builder.CreatePHI(I64Type, 1, "mismatch_sve_found_index");
  SVEFoundIndex->addIncoming(SVEIndexPhi, SVELoopStartBlock);

  Value *PredMatchCmp = Builder.CreateAnd(LastLoopPred, FoundPred);
  Value *Ctz = Builder.CreateIntrinsic(
      Intrinsic::experimental_cttz_elts, {ResType, PredMatchCmp->getType()},
      {PredMatchCmp, /*ZeroIsPoison=*/Builder.getInt1(true)});
  Ctz = Builder.CreateZExt(Ctz, I64Type);
  Value *SVELoopRes64 = Builder.CreateAdd(SVEFoundIndex, Ctz, "",
                                          /*HasNUW=*/true, /*HasNSW=*/true);
  Value *SVELoopRes = Builder.CreateTrunc(SVELoopRes64, ResType);

  Builder.Insert(BranchInst::Create(EndBlock));

  DTU.applyUpdates({{DominatorTree::Insert, SVELoopMismatchBlock, EndBlock}});

  // Generate code for scalar loop.
  Builder.SetInsertPoint(LoopPreHeaderBlock);
  Builder.Insert(BranchInst::Create(LoopStartBlock));

  DTU.applyUpdates(
      {{DominatorTree::Insert, LoopPreHeaderBlock, LoopStartBlock}});

  Builder.SetInsertPoint(LoopStartBlock);
  PHINode *IndexPhi = Builder.CreatePHI(ResType, 2, "mismatch_index");
  IndexPhi->addIncoming(Start, LoopPreHeaderBlock);

  // Otherwise compare the values
  // Load bytes from each array and compare them.
  Value *GepOffset = Builder.CreateZExt(IndexPhi, I64Type);

  Value *LhsGep = Builder.CreateGEP(LoadType, PtrA, GepOffset);
  if (GEPA->isInBounds())
    cast<GetElementPtrInst>(LhsGep)->setIsInBounds(true);
  Value *LhsLoad = Builder.CreateLoad(LoadType, LhsGep);

  Value *RhsGep = Builder.CreateGEP(LoadType, PtrB, GepOffset);
  if (GEPB->isInBounds())
    cast<GetElementPtrInst>(RhsGep)->setIsInBounds(true);
  Value *RhsLoad = Builder.CreateLoad(LoadType, RhsGep);

  Value *MatchCmp = Builder.CreateICmpEQ(LhsLoad, RhsLoad);
  // If we have a mismatch then exit the loop ...
  BranchInst *MatchCmpBr = BranchInst::Create(LoopIncBlock, EndBlock, MatchCmp);
  Builder.Insert(MatchCmpBr);

  DTU.applyUpdates({{DominatorTree::Insert, LoopStartBlock, LoopIncBlock},
                    {DominatorTree::Insert, LoopStartBlock, EndBlock}});

  // Have we reached the maximum permitted length for the loop?
  Builder.SetInsertPoint(LoopIncBlock);
  Value *PhiInc = Builder.CreateAdd(IndexPhi, ConstantInt::get(ResType, 1), "",
                                    /*HasNUW=*/Index->hasNoUnsignedWrap(),
                                    /*HasNSW=*/Index->hasNoSignedWrap());
  IndexPhi->addIncoming(PhiInc, LoopIncBlock);
  Value *IVCmp = Builder.CreateICmpEQ(PhiInc, MaxLen);
  BranchInst *IVCmpBr = BranchInst::Create(EndBlock, LoopStartBlock, IVCmp);
  Builder.Insert(IVCmpBr);

  DTU.applyUpdates({{DominatorTree::Insert, LoopIncBlock, EndBlock},
                    {DominatorTree::Insert, LoopIncBlock, LoopStartBlock}});

  // In the end block we need to insert a PHI node to deal with three cases:
  //  1. We didn't find a mismatch in the scalar loop, so we return MaxLen.
  //  2. We exitted the scalar loop early due to a mismatch and need to return
  //  the index that we found.
  //  3. We didn't find a mismatch in the SVE loop, so we return MaxLen.
  //  4. We exitted the SVE loop early due to a mismatch and need to return
  //  the index that we found.
  Builder.SetInsertPoint(EndBlock, EndBlock->getFirstInsertionPt());
  PHINode *ResPhi = Builder.CreatePHI(ResType, 4, "mismatch_result");
  ResPhi->addIncoming(MaxLen, LoopIncBlock);
  ResPhi->addIncoming(IndexPhi, LoopStartBlock);
  ResPhi->addIncoming(MaxLen, SVELoopIncBlock);
  ResPhi->addIncoming(SVELoopRes, SVELoopMismatchBlock);

  Value *FinalRes = Builder.CreateTrunc(ResPhi, ResType);

  if (VerifyLoops) {
    ScalarLoop->verifyLoop();
    SVELoop->verifyLoop();
    if (!SVELoop->isRecursivelyLCSSAForm(*DT, *LI))
      report_fatal_error("Loops must remain in LCSSA form!");
    if (!ScalarLoop->isRecursivelyLCSSAForm(*DT, *LI))
      report_fatal_error("Loops must remain in LCSSA form!");
  }

  return FinalRes;
}

void AArch64LoopIdiomTransform::transformByteCompare(
    GetElementPtrInst *GEPA, GetElementPtrInst *GEPB, PHINode *IndPhi,
    Value *MaxLen, Instruction *Index, Value *Start, bool IncIdx,
    BasicBlock *FoundBB, BasicBlock *EndBB) {

  // Insert the byte compare code at the end of the preheader block
  BasicBlock *Preheader = CurLoop->getLoopPreheader();
  BasicBlock *Header = CurLoop->getHeader();
  BranchInst *PHBranch = cast<BranchInst>(Preheader->getTerminator());
  IRBuilder<> Builder(PHBranch);
  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
  Builder.SetCurrentDebugLocation(PHBranch->getDebugLoc());

  // Increment the pointer if this was done before the loads in the loop.
  if (IncIdx)
    Start = Builder.CreateAdd(Start, ConstantInt::get(Start->getType(), 1));

  Value *ByteCmpRes =
      expandFindMismatch(Builder, DTU, GEPA, GEPB, Index, Start, MaxLen);

  // Replaces uses of index & induction Phi with intrinsic (we already
  // checked that the the first instruction of Header is the Phi above).
  assert(IndPhi->hasOneUse() && "Index phi node has more than one use!");
  Index->replaceAllUsesWith(ByteCmpRes);

  assert(PHBranch->isUnconditional() &&
         "Expected preheader to terminate with an unconditional branch.");

  // If no mismatch was found, we can jump to the end block. Create a
  // new basic block for the compare instruction.
  auto *CmpBB = BasicBlock::Create(Preheader->getContext(), "byte.compare",
                                   Preheader->getParent());
  CmpBB->moveBefore(EndBB);

  // Replace the branch in the preheader with an always-true conditional branch.
  // This ensures there is still a reference to the original loop.
  Builder.CreateCondBr(Builder.getTrue(), CmpBB, Header);
  PHBranch->eraseFromParent();

  BasicBlock *MismatchEnd = cast<Instruction>(ByteCmpRes)->getParent();
  DTU.applyUpdates({{DominatorTree::Insert, MismatchEnd, CmpBB}});

  // Create the branch to either the end or found block depending on the value
  // returned by the intrinsic.
  Builder.SetInsertPoint(CmpBB);
  if (FoundBB != EndBB) {
    Value *FoundCmp = Builder.CreateICmpEQ(ByteCmpRes, MaxLen);
    Builder.CreateCondBr(FoundCmp, EndBB, FoundBB);
    DTU.applyUpdates({{DominatorTree::Insert, CmpBB, FoundBB},
                      {DominatorTree::Insert, CmpBB, EndBB}});

  } else {
    Builder.CreateBr(FoundBB);
    DTU.applyUpdates({{DominatorTree::Insert, CmpBB, FoundBB}});
  }

  auto fixSuccessorPhis = [&](BasicBlock *SuccBB) {
    for (PHINode &PN : SuccBB->phis()) {
      // At this point we've already replaced all uses of the result from the
      // loop with ByteCmp. Look through the incoming values to find ByteCmp,
      // meaning this is a Phi collecting the results of the byte compare.
      bool ResPhi = false;
      for (Value *Op : PN.incoming_values())
        if (Op == ByteCmpRes) {
          ResPhi = true;
          break;
        }

      // Any PHI that depended upon the result of the byte compare needs a new
      // incoming value from CmpBB. This is because the original loop will get
      // deleted.
      if (ResPhi)
        PN.addIncoming(ByteCmpRes, CmpBB);
      else {
        // There should be no other outside uses of other values in the
        // original loop. Any incoming values should either:
        //   1. Be for blocks outside the loop, which aren't interesting. Or ..
        //   2. These are from blocks in the loop with values defined outside
        //      the loop. We should a similar incoming value from CmpBB.
        for (BasicBlock *BB : PN.blocks())
          if (CurLoop->contains(BB)) {
            PN.addIncoming(PN.getIncomingValueForBlock(BB), CmpBB);
            break;
          }
      }
    }
  };

  // Ensure all Phis in the successors of CmpBB have an incoming value from it.
  fixSuccessorPhis(EndBB);
  if (EndBB != FoundBB)
    fixSuccessorPhis(FoundBB);

  // The new CmpBB block isn't part of the loop, but will need to be added to
  // the outer loop if there is one.
  if (!CurLoop->isOutermost())
    CurLoop->getParentLoop()->addBasicBlockToLoop(CmpBB, *LI);

  if (VerifyLoops && CurLoop->getParentLoop()) {
    CurLoop->getParentLoop()->verifyLoop();
    if (!CurLoop->getParentLoop()->isRecursivelyLCSSAForm(*DT, *LI))
      report_fatal_error("Loops must remain in LCSSA form!");
  }
}