aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp
blob: 4550cfdcf883441403ea5e76e96d9a8db30cb4fb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
//===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the lowering of LLVM calls to machine code calls for
/// GlobalISel.
///
//===----------------------------------------------------------------------===//

#include "AMDGPUCallLowering.h"
#include "AMDGPU.h"
#include "AMDGPULegalizerInfo.h"
#include "AMDGPUTargetMachine.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"

#define DEBUG_TYPE "amdgpu-call-lowering"

using namespace llvm;

namespace {

/// Wrapper around extendRegister to ensure we extend to a full 32-bit register.
static Register extendRegisterMin32(CallLowering::ValueHandler &Handler,
                                    Register ValVReg, CCValAssign &VA) {
  if (VA.getLocVT().getSizeInBits() < 32) {
    // 16-bit types are reported as legal for 32-bit registers. We need to
    // extend and do a 32-bit copy to avoid the verifier complaining about it.
    return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
  }

  return Handler.extendRegister(ValVReg, VA);
}

struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler {
  AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
                             MachineInstrBuilder MIB)
      : OutgoingValueHandler(B, MRI), MIB(MIB) {}

  MachineInstrBuilder MIB;

  Register getStackAddress(uint64_t Size, int64_t Offset,
                           MachinePointerInfo &MPO,
                           ISD::ArgFlagsTy Flags) override {
    llvm_unreachable("not implemented");
  }

  void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
                            MachinePointerInfo &MPO, CCValAssign &VA) override {
    llvm_unreachable("not implemented");
  }

  void assignValueToReg(Register ValVReg, Register PhysReg,
                        CCValAssign VA) override {
    Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);

    // If this is a scalar return, insert a readfirstlane just in case the value
    // ends up in a VGPR.
    // FIXME: Assert this is a shader return.
    const SIRegisterInfo *TRI
      = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
    if (TRI->isSGPRReg(MRI, PhysReg)) {
      auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
                                              {MRI.getType(ExtReg)}, false)
        .addReg(ExtReg);
      ExtReg = ToSGPR.getReg(0);
    }

    MIRBuilder.buildCopy(PhysReg, ExtReg);
    MIB.addUse(PhysReg, RegState::Implicit);
  }
};

struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler {
  uint64_t StackUsed = 0;

  AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
      : IncomingValueHandler(B, MRI) {}

  Register getStackAddress(uint64_t Size, int64_t Offset,
                           MachinePointerInfo &MPO,
                           ISD::ArgFlagsTy Flags) override {
    auto &MFI = MIRBuilder.getMF().getFrameInfo();

    // Byval is assumed to be writable memory, but other stack passed arguments
    // are not.
    const bool IsImmutable = !Flags.isByVal();
    int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable);
    MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
    auto AddrReg = MIRBuilder.buildFrameIndex(
        LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
    StackUsed = std::max(StackUsed, Size + Offset);
    return AddrReg.getReg(0);
  }

  void assignValueToReg(Register ValVReg, Register PhysReg,
                        CCValAssign VA) override {
    markPhysRegUsed(PhysReg);

    if (VA.getLocVT().getSizeInBits() < 32) {
      // 16-bit types are reported as legal for 32-bit registers. We need to do
      // a 32-bit copy, and truncate to avoid the verifier complaining about it.
      auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);

      // If we have signext/zeroext, it applies to the whole 32-bit register
      // before truncation.
      auto Extended =
          buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT()));
      MIRBuilder.buildTrunc(ValVReg, Extended);
      return;
    }

    IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA);
  }

  void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
                            MachinePointerInfo &MPO, CCValAssign &VA) override {
    MachineFunction &MF = MIRBuilder.getMF();

    auto MMO = MF.getMachineMemOperand(
        MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy,
        inferAlignFromPtrInfo(MF, MPO));
    MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
  }

  /// How the physical register gets marked varies between formal
  /// parameters (it's a basic-block live-in), and a call instruction
  /// (it's an implicit-def of the BL).
  virtual void markPhysRegUsed(unsigned PhysReg) = 0;
};

struct FormalArgHandler : public AMDGPUIncomingArgHandler {
  FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
      : AMDGPUIncomingArgHandler(B, MRI) {}

  void markPhysRegUsed(unsigned PhysReg) override {
    MIRBuilder.getMBB().addLiveIn(PhysReg);
  }
};

struct CallReturnHandler : public AMDGPUIncomingArgHandler {
  CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
                    MachineInstrBuilder MIB)
      : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {}

  void markPhysRegUsed(unsigned PhysReg) override {
    MIB.addDef(PhysReg, RegState::Implicit);
  }

  MachineInstrBuilder MIB;
};

struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler {
  /// For tail calls, the byte offset of the call's argument area from the
  /// callee's. Unused elsewhere.
  int FPDiff;

  // Cache the SP register vreg if we need it more than once in this call site.
  Register SPReg;

  bool IsTailCall;

  AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
                           MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
                           bool IsTailCall = false, int FPDiff = 0)
      : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff),
        IsTailCall(IsTailCall) {}

  Register getStackAddress(uint64_t Size, int64_t Offset,
                           MachinePointerInfo &MPO,
                           ISD::ArgFlagsTy Flags) override {
    MachineFunction &MF = MIRBuilder.getMF();
    const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
    const LLT S32 = LLT::scalar(32);

    if (IsTailCall) {
      Offset += FPDiff;
      int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
      auto FIReg = MIRBuilder.buildFrameIndex(PtrTy, FI);
      MPO = MachinePointerInfo::getFixedStack(MF, FI);
      return FIReg.getReg(0);
    }

    const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();

    if (!SPReg) {
      const GCNSubtarget &ST = MIRBuilder.getMF().getSubtarget<GCNSubtarget>();
      if (ST.enableFlatScratch()) {
        // The stack is accessed unswizzled, so we can use a regular copy.
        SPReg = MIRBuilder.buildCopy(PtrTy,
                                     MFI->getStackPtrOffsetReg()).getReg(0);
      } else {
        // The address we produce here, without knowing the use context, is going
        // to be interpreted as a vector address, so we need to convert to a
        // swizzled address.
        SPReg = MIRBuilder.buildInstr(AMDGPU::G_AMDGPU_WAVE_ADDRESS, {PtrTy},
                                      {MFI->getStackPtrOffsetReg()}).getReg(0);
      }
    }

    auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);

    auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
    MPO = MachinePointerInfo::getStack(MF, Offset);
    return AddrReg.getReg(0);
  }

  void assignValueToReg(Register ValVReg, Register PhysReg,
                        CCValAssign VA) override {
    MIB.addUse(PhysReg, RegState::Implicit);
    Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
    MIRBuilder.buildCopy(PhysReg, ExtReg);
  }

  void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
                            MachinePointerInfo &MPO, CCValAssign &VA) override {
    MachineFunction &MF = MIRBuilder.getMF();
    uint64_t LocMemOffset = VA.getLocMemOffset();
    const auto &ST = MF.getSubtarget<GCNSubtarget>();

    auto MMO = MF.getMachineMemOperand(
        MPO, MachineMemOperand::MOStore, MemTy,
        commonAlignment(ST.getStackAlignment(), LocMemOffset));
    MIRBuilder.buildStore(ValVReg, Addr, *MMO);
  }

  void assignValueToAddress(const CallLowering::ArgInfo &Arg,
                            unsigned ValRegIndex, Register Addr, LLT MemTy,
                            MachinePointerInfo &MPO, CCValAssign &VA) override {
    Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
                           ? extendRegister(Arg.Regs[ValRegIndex], VA)
                           : Arg.Regs[ValRegIndex];
    assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA);
  }
};
}

AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
  : CallLowering(&TLI) {
}

// FIXME: Compatibility shim
static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
  switch (MIOpc) {
  case TargetOpcode::G_SEXT:
    return ISD::SIGN_EXTEND;
  case TargetOpcode::G_ZEXT:
    return ISD::ZERO_EXTEND;
  case TargetOpcode::G_ANYEXT:
    return ISD::ANY_EXTEND;
  default:
    llvm_unreachable("not an extend opcode");
  }
}

bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF,
                                        CallingConv::ID CallConv,
                                        SmallVectorImpl<BaseArgInfo> &Outs,
                                        bool IsVarArg) const {
  // For shaders. Vector types should be explicitly handled by CC.
  if (AMDGPU::isEntryFunctionCC(CallConv))
    return true;

  SmallVector<CCValAssign, 16> ArgLocs;
  const SITargetLowering &TLI = *getTLI<SITargetLowering>();
  CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
                 MF.getFunction().getContext());

  return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg));
}

/// Lower the return value for the already existing \p Ret. This assumes that
/// \p B's insertion point is correct.
bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
                                        const Value *Val, ArrayRef<Register> VRegs,
                                        MachineInstrBuilder &Ret) const {
  if (!Val)
    return true;

  auto &MF = B.getMF();
  const auto &F = MF.getFunction();
  const DataLayout &DL = MF.getDataLayout();
  MachineRegisterInfo *MRI = B.getMRI();
  LLVMContext &Ctx = F.getContext();

  CallingConv::ID CC = F.getCallingConv();
  const SITargetLowering &TLI = *getTLI<SITargetLowering>();

  SmallVector<EVT, 8> SplitEVTs;
  ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
  assert(VRegs.size() == SplitEVTs.size() &&
         "For each split Type there should be exactly one VReg.");

  SmallVector<ArgInfo, 8> SplitRetInfos;

  for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
    EVT VT = SplitEVTs[i];
    Register Reg = VRegs[i];
    ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx), 0);
    setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);

    if (VT.isScalarInteger()) {
      unsigned ExtendOp = TargetOpcode::G_ANYEXT;
      if (RetInfo.Flags[0].isSExt()) {
        assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
        ExtendOp = TargetOpcode::G_SEXT;
      } else if (RetInfo.Flags[0].isZExt()) {
        assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
        ExtendOp = TargetOpcode::G_ZEXT;
      }

      EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
                                          extOpcodeToISDExtOpcode(ExtendOp));
      if (ExtVT != VT) {
        RetInfo.Ty = ExtVT.getTypeForEVT(Ctx);
        LLT ExtTy = getLLTForType(*RetInfo.Ty, DL);
        Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0);
      }
    }

    if (Reg != RetInfo.Regs[0]) {
      RetInfo.Regs[0] = Reg;
      // Reset the arg flags after modifying Reg.
      setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
    }

    splitToValueTypes(RetInfo, SplitRetInfos, DL, CC);
  }

  CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());

  OutgoingValueAssigner Assigner(AssignFn);
  AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret);
  return determineAndHandleAssignments(RetHandler, Assigner, SplitRetInfos, B,
                                       CC, F.isVarArg());
}

bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val,
                                     ArrayRef<Register> VRegs,
                                     FunctionLoweringInfo &FLI) const {

  MachineFunction &MF = B.getMF();
  SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
  MFI->setIfReturnsVoid(!Val);

  assert(!Val == VRegs.empty() && "Return value without a vreg");

  CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
  const bool IsShader = AMDGPU::isShader(CC);
  const bool IsWaveEnd =
      (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC);
  if (IsWaveEnd) {
    B.buildInstr(AMDGPU::S_ENDPGM)
      .addImm(0);
    return true;
  }

  unsigned ReturnOpc =
      IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::SI_RETURN;
  auto Ret = B.buildInstrNoInsert(ReturnOpc);

  if (!FLI.CanLowerReturn)
    insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister);
  else if (!lowerReturnVal(B, Val, VRegs, Ret))
    return false;

  // TODO: Handle CalleeSavedRegsViaCopy.

  B.insertInstr(Ret);
  return true;
}

void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
                                           uint64_t Offset) const {
  MachineFunction &MF = B.getMF();
  const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  Register KernArgSegmentPtr =
    MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
  Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);

  auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);

  B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
}

void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, ArgInfo &OrigArg,
                                        uint64_t Offset,
                                        Align Alignment) const {
  MachineFunction &MF = B.getMF();
  const Function &F = MF.getFunction();
  const DataLayout &DL = F.getParent()->getDataLayout();
  MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);

  LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);

  SmallVector<ArgInfo, 32> SplitArgs;
  SmallVector<uint64_t> FieldOffsets;
  splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv(), &FieldOffsets);

  unsigned Idx = 0;
  for (ArgInfo &SplitArg : SplitArgs) {
    Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
    lowerParameterPtr(PtrReg, B, Offset + FieldOffsets[Idx]);

    LLT ArgTy = getLLTForType(*SplitArg.Ty, DL);
    if (SplitArg.Flags[0].isPointer()) {
      // Compensate for losing pointeriness in splitValueTypes.
      LLT PtrTy = LLT::pointer(SplitArg.Flags[0].getPointerAddrSpace(),
                               ArgTy.getScalarSizeInBits());
      ArgTy = ArgTy.isVector() ? LLT::vector(ArgTy.getElementCount(), PtrTy)
                               : PtrTy;
    }

    MachineMemOperand *MMO = MF.getMachineMemOperand(
        PtrInfo,
        MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
            MachineMemOperand::MOInvariant,
        ArgTy, commonAlignment(Alignment, FieldOffsets[Idx]));

    assert(SplitArg.Regs.size() == 1);

    B.buildLoad(SplitArg.Regs[0], PtrReg, *MMO);
    ++Idx;
  }
}

// Allocate special inputs passed in user SGPRs.
static void allocateHSAUserSGPRs(CCState &CCInfo,
                                 MachineIRBuilder &B,
                                 MachineFunction &MF,
                                 const SIRegisterInfo &TRI,
                                 SIMachineFunctionInfo &Info) {
  // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
  if (Info.hasPrivateSegmentBuffer()) {
    Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
    MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
    CCInfo.AllocateReg(PrivateSegmentBufferReg);
  }

  if (Info.hasDispatchPtr()) {
    Register DispatchPtrReg = Info.addDispatchPtr(TRI);
    MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
    CCInfo.AllocateReg(DispatchPtrReg);
  }

  if (Info.hasQueuePtr() && AMDGPU::getAmdhsaCodeObjectVersion() < 5) {
    Register QueuePtrReg = Info.addQueuePtr(TRI);
    MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
    CCInfo.AllocateReg(QueuePtrReg);
  }

  if (Info.hasKernargSegmentPtr()) {
    MachineRegisterInfo &MRI = MF.getRegInfo();
    Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
    const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
    Register VReg = MRI.createGenericVirtualRegister(P4);
    MRI.addLiveIn(InputPtrReg, VReg);
    B.getMBB().addLiveIn(InputPtrReg);
    B.buildCopy(VReg, InputPtrReg);
    CCInfo.AllocateReg(InputPtrReg);
  }

  if (Info.hasDispatchID()) {
    Register DispatchIDReg = Info.addDispatchID(TRI);
    MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
    CCInfo.AllocateReg(DispatchIDReg);
  }

  if (Info.hasFlatScratchInit()) {
    Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
    MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
    CCInfo.AllocateReg(FlatScratchInitReg);
  }

  // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
  // these from the dispatch pointer.
}

bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
    MachineIRBuilder &B, const Function &F,
    ArrayRef<ArrayRef<Register>> VRegs) const {
  MachineFunction &MF = B.getMF();
  const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
  const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
  const SITargetLowering &TLI = *getTLI<SITargetLowering>();
  const DataLayout &DL = F.getParent()->getDataLayout();

  Info->allocateModuleLDSGlobal(F);

  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());

  allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);

  unsigned i = 0;
  const Align KernArgBaseAlign(16);
  const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
  uint64_t ExplicitArgOffset = 0;

  // TODO: Align down to dword alignment and extract bits for extending loads.
  for (auto &Arg : F.args()) {
    const bool IsByRef = Arg.hasByRefAttr();
    Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
    unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
    if (AllocSize == 0)
      continue;

    MaybeAlign ParamAlign = IsByRef ? Arg.getParamAlign() : None;
    Align ABIAlign = DL.getValueOrABITypeAlignment(ParamAlign, ArgTy);

    uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
    ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;

    if (Arg.use_empty()) {
      ++i;
      continue;
    }

    Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);

    if (IsByRef) {
      unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();

      assert(VRegs[i].size() == 1 &&
             "expected only one register for byval pointers");
      if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
        lowerParameterPtr(VRegs[i][0], B, ArgOffset);
      } else {
        const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
        Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
        lowerParameterPtr(PtrReg, B, ArgOffset);

        B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
      }
    } else {
      ArgInfo OrigArg(VRegs[i], Arg, i);
      const unsigned OrigArgIdx = i + AttributeList::FirstArgIndex;
      setArgFlags(OrigArg, OrigArgIdx, DL, F);
      lowerParameter(B, OrigArg, ArgOffset, Alignment);
    }

    ++i;
  }

  TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
  TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
  return true;
}

bool AMDGPUCallLowering::lowerFormalArguments(
    MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs,
    FunctionLoweringInfo &FLI) const {
  CallingConv::ID CC = F.getCallingConv();

  // The infrastructure for normal calling convention lowering is essentially
  // useless for kernels. We want to avoid any kind of legalization or argument
  // splitting.
  if (CC == CallingConv::AMDGPU_KERNEL)
    return lowerFormalArgumentsKernel(B, F, VRegs);

  const bool IsGraphics = AMDGPU::isGraphics(CC);
  const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);

  MachineFunction &MF = B.getMF();
  MachineBasicBlock &MBB = B.getMBB();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
  const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
  const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
  const DataLayout &DL = F.getParent()->getDataLayout();

  Info->allocateModuleLDSGlobal(F);

  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());

  if (Info->hasImplicitBufferPtr()) {
    Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
    MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
    CCInfo.AllocateReg(ImplicitBufferPtrReg);
  }

  // FIXME: This probably isn't defined for mesa
  if (Info->hasFlatScratchInit() && !Subtarget.isAmdPalOS()) {
    Register FlatScratchInitReg = Info->addFlatScratchInit(*TRI);
    MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
    CCInfo.AllocateReg(FlatScratchInitReg);
  }

  SmallVector<ArgInfo, 32> SplitArgs;
  unsigned Idx = 0;
  unsigned PSInputNum = 0;

  // Insert the hidden sret parameter if the return value won't fit in the
  // return registers.
  if (!FLI.CanLowerReturn)
    insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL);

  for (auto &Arg : F.args()) {
    if (DL.getTypeStoreSize(Arg.getType()) == 0)
      continue;

    const bool InReg = Arg.hasAttribute(Attribute::InReg);

    // SGPR arguments to functions not implemented.
    if (!IsGraphics && InReg)
      return false;

    if (Arg.hasAttribute(Attribute::SwiftSelf) ||
        Arg.hasAttribute(Attribute::SwiftError) ||
        Arg.hasAttribute(Attribute::Nest))
      return false;

    if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
      const bool ArgUsed = !Arg.use_empty();
      bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);

      if (!SkipArg) {
        Info->markPSInputAllocated(PSInputNum);
        if (ArgUsed)
          Info->markPSInputEnabled(PSInputNum);
      }

      ++PSInputNum;

      if (SkipArg) {
        for (Register R : VRegs[Idx])
          B.buildUndef(R);

        ++Idx;
        continue;
      }
    }

    ArgInfo OrigArg(VRegs[Idx], Arg, Idx);
    const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
    setArgFlags(OrigArg, OrigArgIdx, DL, F);

    splitToValueTypes(OrigArg, SplitArgs, DL, CC);
    ++Idx;
  }

  // At least one interpolation mode must be enabled or else the GPU will
  // hang.
  //
  // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
  // set PSInputAddr, the user wants to enable some bits after the compilation
  // based on run-time states. Since we can't know what the final PSInputEna
  // will look like, so we shouldn't do anything here and the user should take
  // responsibility for the correct programming.
  //
  // Otherwise, the following restrictions apply:
  // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
  // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
  //   enabled too.
  if (CC == CallingConv::AMDGPU_PS) {
    if ((Info->getPSInputAddr() & 0x7F) == 0 ||
        ((Info->getPSInputAddr() & 0xF) == 0 &&
         Info->isPSInputAllocated(11))) {
      CCInfo.AllocateReg(AMDGPU::VGPR0);
      CCInfo.AllocateReg(AMDGPU::VGPR1);
      Info->markPSInputAllocated(0);
      Info->markPSInputEnabled(0);
    }

    if (Subtarget.isAmdPalOS()) {
      // For isAmdPalOS, the user does not enable some bits after compilation
      // based on run-time states; the register values being generated here are
      // the final ones set in hardware. Therefore we need to apply the
      // workaround to PSInputAddr and PSInputEnable together.  (The case where
      // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
      // set up an input arg for a particular interpolation mode, but nothing
      // uses that input arg. Really we should have an earlier pass that removes
      // such an arg.)
      unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
      if ((PsInputBits & 0x7F) == 0 ||
          ((PsInputBits & 0xF) == 0 &&
           (PsInputBits >> 11 & 1)))
        Info->markPSInputEnabled(
          countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
    }
  }

  const SITargetLowering &TLI = *getTLI<SITargetLowering>();
  CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());

  if (!MBB.empty())
    B.setInstr(*MBB.begin());

  if (!IsEntryFunc && !IsGraphics) {
    // For the fixed ABI, pass workitem IDs in the last argument register.
    TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
  }

  IncomingValueAssigner Assigner(AssignFn);
  if (!determineAssignments(Assigner, SplitArgs, CCInfo))
    return false;

  FormalArgHandler Handler(B, MRI);
  if (!handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, B))
    return false;

  uint64_t StackOffset = Assigner.StackOffset;

  // Start adding system SGPRs.
  if (IsEntryFunc) {
    TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics);
  } else {
    if (!Subtarget.enableFlatScratch())
      CCInfo.AllocateReg(Info->getScratchRSrcReg());
    TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
  }

  // When we tail call, we need to check if the callee's arguments will fit on
  // the caller's stack. So, whenever we lower formal arguments, we should keep
  // track of this information, since we might lower a tail call in this
  // function later.
  Info->setBytesInStackArgArea(StackOffset);

  // Move back to the end of the basic block.
  B.setMBB(MBB);

  return true;
}

bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
                                           CCState &CCInfo,
                                           SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
                                           CallLoweringInfo &Info) const {
  MachineFunction &MF = MIRBuilder.getMF();

  // If there's no call site, this doesn't correspond to a call from the IR and
  // doesn't need implicit inputs.
  if (!Info.CB)
    return true;

  const AMDGPUFunctionArgInfo *CalleeArgInfo
    = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;

  const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
  const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();


  // TODO: Unify with private memory register handling. This is complicated by
  // the fact that at least in kernels, the input argument is not necessarily
  // in the same location as the input.
  AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
    AMDGPUFunctionArgInfo::DISPATCH_PTR,
    AMDGPUFunctionArgInfo::QUEUE_PTR,
    AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
    AMDGPUFunctionArgInfo::DISPATCH_ID,
    AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
    AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
    AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,
    AMDGPUFunctionArgInfo::LDS_KERNEL_ID,
  };

  static constexpr StringLiteral ImplicitAttrNames[] = {
    "amdgpu-no-dispatch-ptr",
    "amdgpu-no-queue-ptr",
    "amdgpu-no-implicitarg-ptr",
    "amdgpu-no-dispatch-id",
    "amdgpu-no-workgroup-id-x",
    "amdgpu-no-workgroup-id-y",
    "amdgpu-no-workgroup-id-z",
    "amdgpu-no-lds-kernel-id",
  };

  MachineRegisterInfo &MRI = MF.getRegInfo();

  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
  const AMDGPULegalizerInfo *LI
    = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());

  unsigned I = 0;
  for (auto InputID : InputRegs) {
    const ArgDescriptor *OutgoingArg;
    const TargetRegisterClass *ArgRC;
    LLT ArgTy;

    // If the callee does not use the attribute value, skip copying the value.
    if (Info.CB->hasFnAttr(ImplicitAttrNames[I++]))
      continue;

    std::tie(OutgoingArg, ArgRC, ArgTy) =
        CalleeArgInfo->getPreloadedValue(InputID);
    if (!OutgoingArg)
      continue;

    const ArgDescriptor *IncomingArg;
    const TargetRegisterClass *IncomingArgRC;
    std::tie(IncomingArg, IncomingArgRC, ArgTy) =
        CallerArgInfo.getPreloadedValue(InputID);
    assert(IncomingArgRC == ArgRC);

    Register InputReg = MRI.createGenericVirtualRegister(ArgTy);

    if (IncomingArg) {
      LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
    } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) {
      LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
    } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) {
      Optional<uint32_t> Id =
          AMDGPUMachineFunction::getLDSKernelIdMetadata(MF.getFunction());
      if (Id.has_value()) {
        MIRBuilder.buildConstant(InputReg, Id.value());
      } else {
        MIRBuilder.buildUndef(InputReg);
      }
    } else {
      // We may have proven the input wasn't needed, although the ABI is
      // requiring it. We just need to allocate the register appropriately.
      MIRBuilder.buildUndef(InputReg);
    }

    if (OutgoingArg->isRegister()) {
      ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
      if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
        report_fatal_error("failed to allocate implicit input argument");
    } else {
      LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
      return false;
    }
  }

  // Pack workitem IDs into a single register or pass it as is if already
  // packed.
  const ArgDescriptor *OutgoingArg;
  const TargetRegisterClass *ArgRC;
  LLT ArgTy;

  std::tie(OutgoingArg, ArgRC, ArgTy) =
      CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
  if (!OutgoingArg)
    std::tie(OutgoingArg, ArgRC, ArgTy) =
        CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
  if (!OutgoingArg)
    std::tie(OutgoingArg, ArgRC, ArgTy) =
        CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
  if (!OutgoingArg)
    return false;

  auto WorkitemIDX =
      CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
  auto WorkitemIDY =
      CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
  auto WorkitemIDZ =
      CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);

  const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
  const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
  const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
  const LLT S32 = LLT::scalar(32);

  const bool NeedWorkItemIDX = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-x");
  const bool NeedWorkItemIDY = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-y");
  const bool NeedWorkItemIDZ = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-z");

  // If incoming ids are not packed we need to pack them.
  // FIXME: Should consider known workgroup size to eliminate known 0 cases.
  Register InputReg;
  if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX &&
      NeedWorkItemIDX) {
    if (ST.getMaxWorkitemID(MF.getFunction(), 0) != 0) {
      InputReg = MRI.createGenericVirtualRegister(S32);
      LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
                         std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
    } else {
      InputReg = MIRBuilder.buildConstant(S32, 0).getReg(0);
    }
  }

  if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY &&
      NeedWorkItemIDY && ST.getMaxWorkitemID(MF.getFunction(), 1) != 0) {
    Register Y = MRI.createGenericVirtualRegister(S32);
    LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
                       std::get<2>(WorkitemIDY));

    Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
    InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
  }

  if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ &&
      NeedWorkItemIDZ && ST.getMaxWorkitemID(MF.getFunction(), 2) != 0) {
    Register Z = MRI.createGenericVirtualRegister(S32);
    LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
                       std::get<2>(WorkitemIDZ));

    Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
    InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
  }

  if (!InputReg &&
      (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
    InputReg = MRI.createGenericVirtualRegister(S32);
    if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
      // We're in a situation where the outgoing function requires the workitem
      // ID, but the calling function does not have it (e.g a graphics function
      // calling a C calling convention function). This is illegal, but we need
      // to produce something.
      MIRBuilder.buildUndef(InputReg);
    } else {
      // Workitem ids are already packed, any of present incoming arguments will
      // carry all required fields.
      ArgDescriptor IncomingArg = ArgDescriptor::createArg(
        IncomingArgX ? *IncomingArgX :
        IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
      LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
                         &AMDGPU::VGPR_32RegClass, S32);
    }
  }

  if (OutgoingArg->isRegister()) {
    if (InputReg)
      ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);

    if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
      report_fatal_error("failed to allocate implicit input argument");
  } else {
    LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
    return false;
  }

  return true;
}

/// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
/// CC.
static std::pair<CCAssignFn *, CCAssignFn *>
getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
  return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
}

static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
                              bool IsTailCall) {
  assert(!(IsIndirect && IsTailCall) && "Indirect calls can't be tail calls, "
                                        "because the address can be divergent");
  return IsTailCall ? AMDGPU::SI_TCRETURN : AMDGPU::G_SI_CALL;
}

// Add operands to call instruction to track the callee.
static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
                                  MachineIRBuilder &MIRBuilder,
                                  AMDGPUCallLowering::CallLoweringInfo &Info) {
  if (Info.Callee.isReg()) {
    CallInst.addReg(Info.Callee.getReg());
    CallInst.addImm(0);
  } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
    // The call lowering lightly assumed we can directly encode a call target in
    // the instruction, which is not the case. Materialize the address here.
    const GlobalValue *GV = Info.Callee.getGlobal();
    auto Ptr = MIRBuilder.buildGlobalValue(
      LLT::pointer(GV->getAddressSpace(), 64), GV);
    CallInst.addReg(Ptr.getReg(0));
    CallInst.add(Info.Callee);
  } else
    return false;

  return true;
}

bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay(
    CallLoweringInfo &Info, MachineFunction &MF,
    SmallVectorImpl<ArgInfo> &InArgs) const {
  const Function &CallerF = MF.getFunction();
  CallingConv::ID CalleeCC = Info.CallConv;
  CallingConv::ID CallerCC = CallerF.getCallingConv();

  // If the calling conventions match, then everything must be the same.
  if (CalleeCC == CallerCC)
    return true;

  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();

  // Make sure that the caller and callee preserve all of the same registers.
  auto TRI = ST.getRegisterInfo();

  const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
  const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
  if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
    return false;

  // Check if the caller and callee will handle arguments in the same way.
  const SITargetLowering &TLI = *getTLI<SITargetLowering>();
  CCAssignFn *CalleeAssignFnFixed;
  CCAssignFn *CalleeAssignFnVarArg;
  std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
      getAssignFnsForCC(CalleeCC, TLI);

  CCAssignFn *CallerAssignFnFixed;
  CCAssignFn *CallerAssignFnVarArg;
  std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
      getAssignFnsForCC(CallerCC, TLI);

  // FIXME: We are not accounting for potential differences in implicitly passed
  // inputs, but only the fixed ABI is supported now anyway.
  IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed,
                                       CalleeAssignFnVarArg);
  IncomingValueAssigner CallerAssigner(CallerAssignFnFixed,
                                       CallerAssignFnVarArg);
  return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner);
}

bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable(
    CallLoweringInfo &Info, MachineFunction &MF,
    SmallVectorImpl<ArgInfo> &OutArgs) const {
  // If there are no outgoing arguments, then we are done.
  if (OutArgs.empty())
    return true;

  const Function &CallerF = MF.getFunction();
  CallingConv::ID CalleeCC = Info.CallConv;
  CallingConv::ID CallerCC = CallerF.getCallingConv();
  const SITargetLowering &TLI = *getTLI<SITargetLowering>();

  CCAssignFn *AssignFnFixed;
  CCAssignFn *AssignFnVarArg;
  std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);

  // We have outgoing arguments. Make sure that we can tail call with them.
  SmallVector<CCValAssign, 16> OutLocs;
  CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext());
  OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);

  if (!determineAssignments(Assigner, OutArgs, OutInfo)) {
    LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
    return false;
  }

  // Make sure that they can fit on the caller's stack.
  const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
  if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) {
    LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
    return false;
  }

  // Verify that the parameters in callee-saved registers match.
  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
  const SIRegisterInfo *TRI = ST.getRegisterInfo();
  const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
  MachineRegisterInfo &MRI = MF.getRegInfo();
  return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs);
}

/// Return true if the calling convention is one that we can guarantee TCO for.
static bool canGuaranteeTCO(CallingConv::ID CC) {
  return CC == CallingConv::Fast;
}

/// Return true if we might ever do TCO for calls with this calling convention.
static bool mayTailCallThisCC(CallingConv::ID CC) {
  switch (CC) {
  case CallingConv::C:
  case CallingConv::AMDGPU_Gfx:
    return true;
  default:
    return canGuaranteeTCO(CC);
  }
}

bool AMDGPUCallLowering::isEligibleForTailCallOptimization(
    MachineIRBuilder &B, CallLoweringInfo &Info,
    SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const {
  // Must pass all target-independent checks in order to tail call optimize.
  if (!Info.IsTailCall)
    return false;

  // Indirect calls can't be tail calls, because the address can be divergent.
  // TODO Check divergence info if the call really is divergent.
  if (Info.Callee.isReg())
    return false;

  MachineFunction &MF = B.getMF();
  const Function &CallerF = MF.getFunction();
  CallingConv::ID CalleeCC = Info.CallConv;
  CallingConv::ID CallerCC = CallerF.getCallingConv();

  const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo();
  const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
  // Kernels aren't callable, and don't have a live in return address so it
  // doesn't make sense to do a tail call with entry functions.
  if (!CallerPreserved)
    return false;

  if (!mayTailCallThisCC(CalleeCC)) {
    LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
    return false;
  }

  if (any_of(CallerF.args(), [](const Argument &A) {
        return A.hasByValAttr() || A.hasSwiftErrorAttr();
      })) {
    LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval "
                         "or swifterror arguments\n");
    return false;
  }

  // If we have -tailcallopt, then we're done.
  if (MF.getTarget().Options.GuaranteedTailCallOpt)
    return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv();

  // Verify that the incoming and outgoing arguments from the callee are
  // safe to tail call.
  if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
    LLVM_DEBUG(
        dbgs()
        << "... Caller and callee have incompatible calling conventions.\n");
    return false;
  }

  if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
    return false;

  LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n");
  return true;
}

// Insert outgoing implicit arguments for a call, by inserting copies to the
// implicit argument registers and adding the necessary implicit uses to the
// call instruction.
void AMDGPUCallLowering::handleImplicitCallArguments(
    MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst,
    const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo,
    ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const {
  if (!ST.enableFlatScratch()) {
    // Insert copies for the SRD. In the HSA case, this should be an identity
    // copy.
    auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::fixed_vector(4, 32),
                                               FuncInfo.getScratchRSrcReg());
    MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
    CallInst.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit);
  }

  for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
    MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
    CallInst.addReg(ArgReg.first, RegState::Implicit);
  }
}

bool AMDGPUCallLowering::lowerTailCall(
    MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
    SmallVectorImpl<ArgInfo> &OutArgs) const {
  MachineFunction &MF = MIRBuilder.getMF();
  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
  SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
  const Function &F = MF.getFunction();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const SITargetLowering &TLI = *getTLI<SITargetLowering>();

  // True when we're tail calling, but without -tailcallopt.
  bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt;

  // Find out which ABI gets to decide where things go.
  CallingConv::ID CalleeCC = Info.CallConv;
  CCAssignFn *AssignFnFixed;
  CCAssignFn *AssignFnVarArg;
  std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);

  MachineInstrBuilder CallSeqStart;
  if (!IsSibCall)
    CallSeqStart = MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP);

  unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true);
  auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
  if (!addCallTargetOperands(MIB, MIRBuilder, Info))
    return false;

  // Byte offset for the tail call. When we are sibcalling, this will always
  // be 0.
  MIB.addImm(0);

  // Tell the call which registers are clobbered.
  const SIRegisterInfo *TRI = ST.getRegisterInfo();
  const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC);
  MIB.addRegMask(Mask);

  // FPDiff is the byte offset of the call's argument area from the callee's.
  // Stores to callee stack arguments will be placed in FixedStackSlots offset
  // by this amount for a tail call. In a sibling call it must be 0 because the
  // caller will deallocate the entire stack and the callee still expects its
  // arguments to begin at SP+0.
  int FPDiff = 0;

  // This will be 0 for sibcalls, potentially nonzero for tail calls produced
  // by -tailcallopt. For sibcalls, the memory operands for the call are
  // already available in the caller's incoming argument space.
  unsigned NumBytes = 0;
  if (!IsSibCall) {
    // We aren't sibcalling, so we need to compute FPDiff. We need to do this
    // before handling assignments, because FPDiff must be known for memory
    // arguments.
    unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
    SmallVector<CCValAssign, 16> OutLocs;
    CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());

    // FIXME: Not accounting for callee implicit inputs
    OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg);
    if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo))
      return false;

    // The callee will pop the argument stack as a tail call. Thus, we must
    // keep it 16-byte aligned.
    NumBytes = alignTo(OutInfo.getNextStackOffset(), ST.getStackAlignment());

    // FPDiff will be negative if this tail call requires more space than we
    // would automatically have in our incoming argument space. Positive if we
    // actually shrink the stack.
    FPDiff = NumReusableBytes - NumBytes;

    // The stack pointer must be 16-byte aligned at all times it's used for a
    // memory operation, which in practice means at *all* times and in
    // particular across call boundaries. Therefore our own arguments started at
    // a 16-byte aligned SP and the delta applied for the tail call should
    // satisfy the same constraint.
    assert(isAligned(ST.getStackAlignment(), FPDiff) &&
           "unaligned stack on tail call");
  }

  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());

  // We could pass MIB and directly add the implicit uses to the call
  // now. However, as an aesthetic choice, place implicit argument operands
  // after the ordinary user argument registers.
  SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;

  if (Info.CallConv != CallingConv::AMDGPU_Gfx) {
    // With a fixed ABI, allocate fixed registers before user arguments.
    if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
      return false;
  }

  OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);

  if (!determineAssignments(Assigner, OutArgs, CCInfo))
    return false;

  // Do the actual argument marshalling.
  AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff);
  if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
    return false;

  handleImplicitCallArguments(MIRBuilder, MIB, ST, *FuncInfo, ImplicitArgRegs);

  // If we have -tailcallopt, we need to adjust the stack. We'll do the call
  // sequence start and end here.
  if (!IsSibCall) {
    MIB->getOperand(1).setImm(FPDiff);
    CallSeqStart.addImm(NumBytes).addImm(0);
    // End the call sequence *before* emitting the call. Normally, we would
    // tidy the frame up after the call. However, here, we've laid out the
    // parameters so that when SP is reset, they will be in the correct
    // location.
    MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN).addImm(NumBytes).addImm(0);
  }

  // Now we can add the actual call instruction to the correct basic block.
  MIRBuilder.insertInstr(MIB);

  // If Callee is a reg, since it is used by a target specific
  // instruction, it must have a register class matching the
  // constraint of that instruction.

  // FIXME: We should define regbankselectable call instructions to handle
  // divergent call targets.
  if (MIB->getOperand(0).isReg()) {
    MIB->getOperand(0).setReg(constrainOperandRegClass(
        MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB,
        MIB->getDesc(), MIB->getOperand(0), 0));
  }

  MF.getFrameInfo().setHasTailCall();
  Info.LoweredTailCall = true;
  return true;
}

bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
                                   CallLoweringInfo &Info) const {
  if (Info.IsVarArg) {
    LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
    return false;
  }

  MachineFunction &MF = MIRBuilder.getMF();
  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
  const SIRegisterInfo *TRI = ST.getRegisterInfo();

  const Function &F = MF.getFunction();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const SITargetLowering &TLI = *getTLI<SITargetLowering>();
  const DataLayout &DL = F.getParent()->getDataLayout();

  SmallVector<ArgInfo, 8> OutArgs;
  for (auto &OrigArg : Info.OrigArgs)
    splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv);

  SmallVector<ArgInfo, 8> InArgs;
  if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy())
    splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv);

  // If we can lower as a tail call, do that instead.
  bool CanTailCallOpt =
      isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);

  // We must emit a tail call if we have musttail.
  if (Info.IsMustTailCall && !CanTailCallOpt) {
    LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
    return false;
  }

  Info.IsTailCall = CanTailCallOpt;
  if (CanTailCallOpt)
    return lowerTailCall(MIRBuilder, Info, OutArgs);

  // Find out which ABI gets to decide where things go.
  CCAssignFn *AssignFnFixed;
  CCAssignFn *AssignFnVarArg;
  std::tie(AssignFnFixed, AssignFnVarArg) =
      getAssignFnsForCC(Info.CallConv, TLI);

  MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
    .addImm(0)
    .addImm(0);

  // Create a temporarily-floating call instruction so we can add the implicit
  // uses of arg registers.
  unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);

  auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
  MIB.addDef(TRI->getReturnAddressReg(MF));

  if (!addCallTargetOperands(MIB, MIRBuilder, Info))
    return false;

  // Tell the call which registers are clobbered.
  const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
  MIB.addRegMask(Mask);

  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());

  // We could pass MIB and directly add the implicit uses to the call
  // now. However, as an aesthetic choice, place implicit argument operands
  // after the ordinary user argument registers.
  SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;

  if (Info.CallConv != CallingConv::AMDGPU_Gfx) {
    // With a fixed ABI, allocate fixed registers before user arguments.
    if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
      return false;
  }

  // Do the actual argument marshalling.
  SmallVector<Register, 8> PhysRegs;

  OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
  if (!determineAssignments(Assigner, OutArgs, CCInfo))
    return false;

  AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false);
  if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
    return false;

  const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();

  handleImplicitCallArguments(MIRBuilder, MIB, ST, *MFI, ImplicitArgRegs);

  // Get a count of how many bytes are to be pushed on the stack.
  unsigned NumBytes = CCInfo.getNextStackOffset();

  // If Callee is a reg, since it is used by a target specific
  // instruction, it must have a register class matching the
  // constraint of that instruction.

  // FIXME: We should define regbankselectable call instructions to handle
  // divergent call targets.
  if (MIB->getOperand(1).isReg()) {
    MIB->getOperand(1).setReg(constrainOperandRegClass(
        MF, *TRI, MRI, *ST.getInstrInfo(),
        *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
        1));
  }

  // Now we can add the actual call instruction to the correct position.
  MIRBuilder.insertInstr(MIB);

  // Finally we can copy the returned value back into its virtual-register. In
  // symmetry with the arguments, the physical register must be an
  // implicit-define of the call instruction.
  if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) {
    CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
                                                      Info.IsVarArg);
    IncomingValueAssigner Assigner(RetAssignFn);
    CallReturnHandler Handler(MIRBuilder, MRI, MIB);
    if (!determineAndHandleAssignments(Handler, Assigner, InArgs, MIRBuilder,
                                       Info.CallConv, Info.IsVarArg))
      return false;
  }

  uint64_t CalleePopBytes = NumBytes;

  MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN)
            .addImm(0)
            .addImm(CalleePopBytes);

  if (!Info.CanLowerReturn) {
    insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs,
                    Info.DemoteRegister, Info.DemoteStackIndex);
  }

  return true;
}