aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIInsertWaitcnts.cpp
blob: 1cb1d32707f2d7282e8e927190241af0dae5f729 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
//===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Insert wait instructions for memory reads and writes.
///
/// Memory reads and writes are issued asynchronously, so we need to insert
/// S_WAITCNT instructions when we want to access any of their results or
/// overwrite any register that's used asynchronously.
///
/// TODO: This pass currently keeps one timeline per hardware counter. A more
/// finely-grained approach that keeps one timeline per event type could
/// sometimes get away with generating weaker s_waitcnt instructions. For
/// example, when both SMEM and LDS are in flight and we need to wait for
/// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient,
/// but the pass will currently generate a conservative lgkmcnt(0) because
/// multiple event types are in flight.
//
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIMachineFunctionInfo.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/TargetParser/TargetParser.h"
using namespace llvm;

#define DEBUG_TYPE "si-insert-waitcnts"

DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp",
              "Force emit s_waitcnt expcnt(0) instrs");
DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm",
              "Force emit s_waitcnt lgkmcnt(0) instrs");
DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm",
              "Force emit s_waitcnt vmcnt(0) instrs");

static cl::opt<bool> ForceEmitZeroFlag(
  "amdgpu-waitcnt-forcezero",
  cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"),
  cl::init(false), cl::Hidden);

namespace {
// Class of object that encapsulates latest instruction counter score
// associated with the operand.  Used for determining whether
// s_waitcnt instruction needs to be emitted.

enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS };
} // namespace

namespace llvm {
template <> struct enum_iteration_traits<InstCounterType> {
  static constexpr bool is_iterable = true;
};
} // namespace llvm

namespace {
auto inst_counter_types() { return enum_seq(VM_CNT, NUM_INST_CNTS); }

using RegInterval = std::pair<int, int>;

struct HardwareLimits {
  unsigned VmcntMax;
  unsigned ExpcntMax;
  unsigned LgkmcntMax;
  unsigned VscntMax;
};

struct RegisterEncoding {
  unsigned VGPR0;
  unsigned VGPRL;
  unsigned SGPR0;
  unsigned SGPRL;
};

enum WaitEventType {
  VMEM_ACCESS,          // vector-memory read & write
  VMEM_READ_ACCESS,     // vector-memory read
  VMEM_WRITE_ACCESS,    // vector-memory write that is not scratch
  SCRATCH_WRITE_ACCESS, // vector-memory write that may be scratch
  LDS_ACCESS,           // lds read & write
  GDS_ACCESS,           // gds read & write
  SQ_MESSAGE,           // send message
  SMEM_ACCESS,          // scalar-memory read & write
  EXP_GPR_LOCK,         // export holding on its data src
  GDS_GPR_LOCK,         // GDS holding on its data and addr src
  EXP_POS_ACCESS,       // write to export position
  EXP_PARAM_ACCESS,     // write to export parameter
  VMW_GPR_LOCK,         // vector-memory write holding on its data src
  EXP_LDS_ACCESS,       // read by ldsdir counting as export
  NUM_WAIT_EVENTS,
};

static const unsigned WaitEventMaskForInst[NUM_INST_CNTS] = {
    (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS),
    (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) |
        (1 << SQ_MESSAGE),
    (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) |
        (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS) | (1 << EXP_LDS_ACCESS),
    (1 << VMEM_WRITE_ACCESS) | (1 << SCRATCH_WRITE_ACCESS)};

// The mapping is:
//  0                .. SQ_MAX_PGM_VGPRS-1               real VGPRs
//  SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1                  extra VGPR-like slots
//  NUM_ALL_VGPRS    .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs
// We reserve a fixed number of VGPR slots in the scoring tables for
// special tokens like SCMEM_LDS (needed for buffer load to LDS).
enum RegisterMapping {
  SQ_MAX_PGM_VGPRS = 512, // Maximum programmable VGPRs across all targets.
  AGPR_OFFSET = 256,      // Maximum programmable ArchVGPRs across all targets.
  SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets.
  NUM_EXTRA_VGPRS = 1,    // A reserved slot for DS.
  EXTRA_VGPR_LDS = 0,     // An artificial register to track LDS writes.
  NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts.
};

// Enumerate different types of result-returning VMEM operations. Although
// s_waitcnt orders them all with a single vmcnt counter, in the absence of
// s_waitcnt only instructions of the same VmemType are guaranteed to write
// their results in order -- so there is no need to insert an s_waitcnt between
// two instructions of the same type that write the same vgpr.
enum VmemType {
  // BUF instructions and MIMG instructions without a sampler.
  VMEM_NOSAMPLER,
  // MIMG instructions with a sampler.
  VMEM_SAMPLER,
  // BVH instructions
  VMEM_BVH
};

static bool updateVMCntOnly(const MachineInstr &Inst) {
  return SIInstrInfo::isVMEM(Inst) || SIInstrInfo::isFLATGlobal(Inst) ||
         SIInstrInfo::isFLATScratch(Inst);
}

VmemType getVmemType(const MachineInstr &Inst) {
  assert(updateVMCntOnly(Inst));
  if (!SIInstrInfo::isMIMG(Inst))
    return VMEM_NOSAMPLER;
  const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Inst.getOpcode());
  const AMDGPU::MIMGBaseOpcodeInfo *BaseInfo =
      AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
  return BaseInfo->BVH ? VMEM_BVH
                       : BaseInfo->Sampler ? VMEM_SAMPLER : VMEM_NOSAMPLER;
}

void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) {
  switch (T) {
  case VM_CNT:
    Wait.VmCnt = std::min(Wait.VmCnt, Count);
    break;
  case EXP_CNT:
    Wait.ExpCnt = std::min(Wait.ExpCnt, Count);
    break;
  case LGKM_CNT:
    Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count);
    break;
  case VS_CNT:
    Wait.VsCnt = std::min(Wait.VsCnt, Count);
    break;
  default:
    llvm_unreachable("bad InstCounterType");
  }
}

// This objects maintains the current score brackets of each wait counter, and
// a per-register scoreboard for each wait counter.
//
// We also maintain the latest score for every event type that can change the
// waitcnt in order to know if there are multiple types of events within
// the brackets. When multiple types of event happen in the bracket,
// wait count may get decreased out of order, therefore we need to put in
// "s_waitcnt 0" before use.
class WaitcntBrackets {
public:
  WaitcntBrackets(const GCNSubtarget *SubTarget, HardwareLimits Limits,
                  RegisterEncoding Encoding)
      : ST(SubTarget), Limits(Limits), Encoding(Encoding) {}

  unsigned getWaitCountMax(InstCounterType T) const {
    switch (T) {
    case VM_CNT:
      return Limits.VmcntMax;
    case LGKM_CNT:
      return Limits.LgkmcntMax;
    case EXP_CNT:
      return Limits.ExpcntMax;
    case VS_CNT:
      return Limits.VscntMax;
    default:
      break;
    }
    return 0;
  }

  unsigned getScoreLB(InstCounterType T) const {
    assert(T < NUM_INST_CNTS);
    return ScoreLBs[T];
  }

  unsigned getScoreUB(InstCounterType T) const {
    assert(T < NUM_INST_CNTS);
    return ScoreUBs[T];
  }

  unsigned getScoreRange(InstCounterType T) const {
    return getScoreUB(T) - getScoreLB(T);
  }

  // Mapping from event to counter.
  InstCounterType eventCounter(WaitEventType E) const {
    for (auto T : inst_counter_types()) {
      if (WaitEventMaskForInst[T] & (1 << E))
        return T;
    }
    llvm_unreachable("event type has no associated counter");
  }

  unsigned getRegScore(int GprNo, InstCounterType T) const {
    if (GprNo < NUM_ALL_VGPRS) {
      return VgprScores[T][GprNo];
    }
    assert(T == LGKM_CNT);
    return SgprScores[GprNo - NUM_ALL_VGPRS];
  }

  bool merge(const WaitcntBrackets &Other);

  RegInterval getRegInterval(const MachineInstr *MI,
                             const MachineRegisterInfo *MRI,
                             const SIRegisterInfo *TRI, unsigned OpNo) const;

  bool counterOutOfOrder(InstCounterType T) const;
  void simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const;
  void simplifyWaitcnt(InstCounterType T, unsigned &Count) const;
  void determineWait(InstCounterType T, int RegNo, AMDGPU::Waitcnt &Wait) const;
  void applyWaitcnt(const AMDGPU::Waitcnt &Wait);
  void applyWaitcnt(InstCounterType T, unsigned Count);
  void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI,
                     const MachineRegisterInfo *MRI, WaitEventType E,
                     MachineInstr &MI);

  unsigned hasPendingEvent() const { return PendingEvents; }
  unsigned hasPendingEvent(WaitEventType E) const {
    return PendingEvents & (1 << E);
  }
  unsigned hasPendingEvent(InstCounterType T) const {
    unsigned HasPending = PendingEvents & WaitEventMaskForInst[T];
    assert((HasPending != 0) == (getScoreRange(T) != 0));
    return HasPending;
  }

  bool hasMixedPendingEvents(InstCounterType T) const {
    unsigned Events = hasPendingEvent(T);
    // Return true if more than one bit is set in Events.
    return Events & (Events - 1);
  }

  bool hasPendingFlat() const {
    return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] &&
             LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) ||
            (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] &&
             LastFlat[VM_CNT] <= ScoreUBs[VM_CNT]));
  }

  void setPendingFlat() {
    LastFlat[VM_CNT] = ScoreUBs[VM_CNT];
    LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT];
  }

  // Return true if there might be pending writes to the specified vgpr by VMEM
  // instructions with types different from V.
  bool hasOtherPendingVmemTypes(int GprNo, VmemType V) const {
    assert(GprNo < NUM_ALL_VGPRS);
    return VgprVmemTypes[GprNo] & ~(1 << V);
  }

  void clearVgprVmemTypes(int GprNo) {
    assert(GprNo < NUM_ALL_VGPRS);
    VgprVmemTypes[GprNo] = 0;
  }

  void setNonKernelFunctionInitialState() {
    setScoreUB(VS_CNT, getWaitCountMax(VS_CNT));
    PendingEvents |= WaitEventMaskForInst[VS_CNT];
  }

  void print(raw_ostream &);
  void dump() { print(dbgs()); }

private:
  struct MergeInfo {
    unsigned OldLB;
    unsigned OtherLB;
    unsigned MyShift;
    unsigned OtherShift;
  };
  static bool mergeScore(const MergeInfo &M, unsigned &Score,
                         unsigned OtherScore);

  void setScoreLB(InstCounterType T, unsigned Val) {
    assert(T < NUM_INST_CNTS);
    ScoreLBs[T] = Val;
  }

  void setScoreUB(InstCounterType T, unsigned Val) {
    assert(T < NUM_INST_CNTS);
    ScoreUBs[T] = Val;

    if (T != EXP_CNT)
      return;

    if (getScoreRange(EXP_CNT) > getWaitCountMax(EXP_CNT))
      ScoreLBs[EXP_CNT] = ScoreUBs[EXP_CNT] - getWaitCountMax(EXP_CNT);
  }

  void setRegScore(int GprNo, InstCounterType T, unsigned Val) {
    if (GprNo < NUM_ALL_VGPRS) {
      VgprUB = std::max(VgprUB, GprNo);
      VgprScores[T][GprNo] = Val;
    } else {
      assert(T == LGKM_CNT);
      SgprUB = std::max(SgprUB, GprNo - NUM_ALL_VGPRS);
      SgprScores[GprNo - NUM_ALL_VGPRS] = Val;
    }
  }

  void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII,
                   const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI,
                   unsigned OpNo, unsigned Val);

  const GCNSubtarget *ST = nullptr;
  HardwareLimits Limits = {};
  RegisterEncoding Encoding = {};
  unsigned ScoreLBs[NUM_INST_CNTS] = {0};
  unsigned ScoreUBs[NUM_INST_CNTS] = {0};
  unsigned PendingEvents = 0;
  // Remember the last flat memory operation.
  unsigned LastFlat[NUM_INST_CNTS] = {0};
  // wait_cnt scores for every vgpr.
  // Keep track of the VgprUB and SgprUB to make merge at join efficient.
  int VgprUB = -1;
  int SgprUB = -1;
  unsigned VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS] = {{0}};
  // Wait cnt scores for every sgpr, only lgkmcnt is relevant.
  unsigned SgprScores[SQ_MAX_PGM_SGPRS] = {0};
  // Bitmask of the VmemTypes of VMEM instructions that might have a pending
  // write to each vgpr.
  unsigned char VgprVmemTypes[NUM_ALL_VGPRS] = {0};
};

class SIInsertWaitcnts : public MachineFunctionPass {
private:
  const GCNSubtarget *ST = nullptr;
  const SIInstrInfo *TII = nullptr;
  const SIRegisterInfo *TRI = nullptr;
  const MachineRegisterInfo *MRI = nullptr;
  AMDGPU::IsaVersion IV;

  DenseMap<const Value *, MachineBasicBlock *> SLoadAddresses;
  DenseMap<MachineBasicBlock *, bool> PreheadersToFlush;
  MachineLoopInfo *MLI;
  MachinePostDominatorTree *PDT;

  struct BlockInfo {
    std::unique_ptr<WaitcntBrackets> Incoming;
    bool Dirty = true;
  };

  MapVector<MachineBasicBlock *, BlockInfo> BlockInfos;

  // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0
  // because of amdgpu-waitcnt-forcezero flag
  bool ForceEmitZeroWaitcnts;
  bool ForceEmitWaitcnt[NUM_INST_CNTS];

  bool OptNone;

  // S_ENDPGM instructions before which we should insert a DEALLOC_VGPRS
  // message.
  DenseSet<MachineInstr *> ReleaseVGPRInsts;

public:
  static char ID;

  SIInsertWaitcnts() : MachineFunctionPass(ID) {
    (void)ForceExpCounter;
    (void)ForceLgkmCounter;
    (void)ForceVMCounter;
  }

  bool shouldFlushVmCnt(MachineLoop *ML, WaitcntBrackets &Brackets);
  bool isPreheaderToFlush(MachineBasicBlock &MBB,
                          WaitcntBrackets &ScoreBrackets);
  bool isVMEMOrFlatVMEM(const MachineInstr &MI) const;
  bool runOnMachineFunction(MachineFunction &MF) override;

  StringRef getPassName() const override {
    return "SI insert wait instructions";
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<MachineLoopInfo>();
    AU.addRequired<MachinePostDominatorTree>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  bool isForceEmitWaitcnt() const {
    for (auto T : inst_counter_types())
      if (ForceEmitWaitcnt[T])
        return true;
    return false;
  }

  void setForceEmitWaitcnt() {
// For non-debug builds, ForceEmitWaitcnt has been initialized to false;
// For debug builds, get the debug counter info and adjust if need be
#ifndef NDEBUG
    if (DebugCounter::isCounterSet(ForceExpCounter) &&
        DebugCounter::shouldExecute(ForceExpCounter)) {
      ForceEmitWaitcnt[EXP_CNT] = true;
    } else {
      ForceEmitWaitcnt[EXP_CNT] = false;
    }

    if (DebugCounter::isCounterSet(ForceLgkmCounter) &&
        DebugCounter::shouldExecute(ForceLgkmCounter)) {
      ForceEmitWaitcnt[LGKM_CNT] = true;
    } else {
      ForceEmitWaitcnt[LGKM_CNT] = false;
    }

    if (DebugCounter::isCounterSet(ForceVMCounter) &&
        DebugCounter::shouldExecute(ForceVMCounter)) {
      ForceEmitWaitcnt[VM_CNT] = true;
    } else {
      ForceEmitWaitcnt[VM_CNT] = false;
    }
#endif // NDEBUG
  }

  // Return the appropriate VMEM_*_ACCESS type for Inst, which must be a VMEM or
  // FLAT instruction.
  WaitEventType getVmemWaitEventType(const MachineInstr &Inst) const {
    assert(SIInstrInfo::isVMEM(Inst) || SIInstrInfo::isFLAT(Inst));
    // LDS DMA loads are also stores, but on the LDS side. On the VMEM side
    // these should use VM_CNT.
    if (!ST->hasVscnt() || SIInstrInfo::mayWriteLDSThroughDMA(Inst))
      return VMEM_ACCESS;
    if (Inst.mayStore() && !SIInstrInfo::isAtomicRet(Inst)) {
      // FLAT and SCRATCH instructions may access scratch. Other VMEM
      // instructions do not.
      if (SIInstrInfo::isFLAT(Inst) && mayAccessScratchThroughFlat(Inst))
        return SCRATCH_WRITE_ACCESS;
      return VMEM_WRITE_ACCESS;
    }
    return VMEM_READ_ACCESS;
  }

  bool mayAccessVMEMThroughFlat(const MachineInstr &MI) const;
  bool mayAccessLDSThroughFlat(const MachineInstr &MI) const;
  bool mayAccessScratchThroughFlat(const MachineInstr &MI) const;
  bool generateWaitcntInstBefore(MachineInstr &MI,
                                 WaitcntBrackets &ScoreBrackets,
                                 MachineInstr *OldWaitcntInstr,
                                 bool FlushVmCnt);
  bool generateWaitcntBlockEnd(MachineBasicBlock &Block,
                               WaitcntBrackets &ScoreBrackets,
                               MachineInstr *OldWaitcntInstr);
  bool generateWaitcnt(AMDGPU::Waitcnt Wait,
                       MachineBasicBlock::instr_iterator It,
                       MachineBasicBlock &Block, WaitcntBrackets &ScoreBrackets,
                       MachineInstr *OldWaitcntInstr);
  void updateEventWaitcntAfter(MachineInstr &Inst,
                               WaitcntBrackets *ScoreBrackets);
  bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block,
                            WaitcntBrackets &ScoreBrackets);
  bool applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets,
                               MachineInstr &OldWaitcntInstr,
                               AMDGPU::Waitcnt &Wait,
                               MachineBasicBlock::instr_iterator It) const;

  // Transform a soft waitcnt into a normal one.
  bool promoteSoftWaitCnt(MachineInstr *Waitcnt) const;
};

} // end anonymous namespace

RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI,
                                            const MachineRegisterInfo *MRI,
                                            const SIRegisterInfo *TRI,
                                            unsigned OpNo) const {
  const MachineOperand &Op = MI->getOperand(OpNo);
  if (!TRI->isInAllocatableClass(Op.getReg()))
    return {-1, -1};

  // A use via a PW operand does not need a waitcnt.
  // A partial write is not a WAW.
  assert(!Op.getSubReg() || !Op.isUndef());

  RegInterval Result;

  unsigned Reg = TRI->getEncodingValue(AMDGPU::getMCReg(Op.getReg(), *ST)) &
                 AMDGPU::HWEncoding::REG_IDX_MASK;

  if (TRI->isVectorRegister(*MRI, Op.getReg())) {
    assert(Reg >= Encoding.VGPR0 && Reg <= Encoding.VGPRL);
    Result.first = Reg - Encoding.VGPR0;
    if (TRI->isAGPR(*MRI, Op.getReg()))
      Result.first += AGPR_OFFSET;
    assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS);
  } else if (TRI->isSGPRReg(*MRI, Op.getReg())) {
    assert(Reg >= Encoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS);
    Result.first = Reg - Encoding.SGPR0 + NUM_ALL_VGPRS;
    assert(Result.first >= NUM_ALL_VGPRS &&
           Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS);
  }
  // TODO: Handle TTMP
  // else if (TRI->isTTMP(*MRI, Reg.getReg())) ...
  else
    return {-1, -1};

  const TargetRegisterClass *RC = TRI->getPhysRegBaseClass(Op.getReg());
  unsigned Size = TRI->getRegSizeInBits(*RC);
  Result.second = Result.first + ((Size + 16) / 32);

  return Result;
}

void WaitcntBrackets::setExpScore(const MachineInstr *MI,
                                  const SIInstrInfo *TII,
                                  const SIRegisterInfo *TRI,
                                  const MachineRegisterInfo *MRI, unsigned OpNo,
                                  unsigned Val) {
  RegInterval Interval = getRegInterval(MI, MRI, TRI, OpNo);
  assert(TRI->isVectorRegister(*MRI, MI->getOperand(OpNo).getReg()));
  for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
    setRegScore(RegNo, EXP_CNT, Val);
  }
}

void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII,
                                    const SIRegisterInfo *TRI,
                                    const MachineRegisterInfo *MRI,
                                    WaitEventType E, MachineInstr &Inst) {
  InstCounterType T = eventCounter(E);
  unsigned CurrScore = getScoreUB(T) + 1;
  if (CurrScore == 0)
    report_fatal_error("InsertWaitcnt score wraparound");
  // PendingEvents and ScoreUB need to be update regardless if this event
  // changes the score of a register or not.
  // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message.
  PendingEvents |= 1 << E;
  setScoreUB(T, CurrScore);

  if (T == EXP_CNT) {
    // Put score on the source vgprs. If this is a store, just use those
    // specific register(s).
    if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) {
      int AddrOpIdx =
          AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr);
      // All GDS operations must protect their address register (same as
      // export.)
      if (AddrOpIdx != -1) {
        setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore);
      }

      if (Inst.mayStore()) {
        if (AMDGPU::hasNamedOperand(Inst.getOpcode(), AMDGPU::OpName::data0)) {
          setExpScore(
              &Inst, TII, TRI, MRI,
              AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0),
              CurrScore);
        }
        if (AMDGPU::hasNamedOperand(Inst.getOpcode(), AMDGPU::OpName::data1)) {
          setExpScore(&Inst, TII, TRI, MRI,
                      AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
                                                 AMDGPU::OpName::data1),
                      CurrScore);
        }
      } else if (SIInstrInfo::isAtomicRet(Inst) && !SIInstrInfo::isGWS(Inst) &&
                 Inst.getOpcode() != AMDGPU::DS_APPEND &&
                 Inst.getOpcode() != AMDGPU::DS_CONSUME &&
                 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) {
        for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
          const MachineOperand &Op = Inst.getOperand(I);
          if (Op.isReg() && !Op.isDef() &&
              TRI->isVectorRegister(*MRI, Op.getReg())) {
            setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
          }
        }
      }
    } else if (TII->isFLAT(Inst)) {
      if (Inst.mayStore()) {
        setExpScore(
            &Inst, TII, TRI, MRI,
            AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
            CurrScore);
      } else if (SIInstrInfo::isAtomicRet(Inst)) {
        setExpScore(
            &Inst, TII, TRI, MRI,
            AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
            CurrScore);
      }
    } else if (TII->isMIMG(Inst)) {
      if (Inst.mayStore()) {
        setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
      } else if (SIInstrInfo::isAtomicRet(Inst)) {
        setExpScore(
            &Inst, TII, TRI, MRI,
            AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
            CurrScore);
      }
    } else if (TII->isMTBUF(Inst)) {
      if (Inst.mayStore()) {
        setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
      }
    } else if (TII->isMUBUF(Inst)) {
      if (Inst.mayStore()) {
        setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
      } else if (SIInstrInfo::isAtomicRet(Inst)) {
        setExpScore(
            &Inst, TII, TRI, MRI,
            AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
            CurrScore);
      }
    } else if (TII->isLDSDIR(Inst)) {
      // LDSDIR instructions attach the score to the destination.
      setExpScore(
          &Inst, TII, TRI, MRI,
          AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdst),
          CurrScore);
    } else {
      if (TII->isEXP(Inst)) {
        // For export the destination registers are really temps that
        // can be used as the actual source after export patching, so
        // we need to treat them like sources and set the EXP_CNT
        // score.
        for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
          MachineOperand &DefMO = Inst.getOperand(I);
          if (DefMO.isReg() && DefMO.isDef() &&
              TRI->isVGPR(*MRI, DefMO.getReg())) {
            setRegScore(
                TRI->getEncodingValue(AMDGPU::getMCReg(DefMO.getReg(), *ST)),
                EXP_CNT, CurrScore);
          }
        }
      }
      for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
        MachineOperand &MO = Inst.getOperand(I);
        if (MO.isReg() && !MO.isDef() &&
            TRI->isVectorRegister(*MRI, MO.getReg())) {
          setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
        }
      }
    }
#if 0 // TODO: check if this is handled by MUBUF code above.
  } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD ||
       Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 ||
       Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) {
    MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data);
    unsigned OpNo;//TODO: find the OpNo for this operand;
    RegInterval Interval = getRegInterval(&Inst, MRI, TRI, OpNo);
    for (int RegNo = Interval.first; RegNo < Interval.second;
    ++RegNo) {
      setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore);
    }
#endif
  } else /* LGKM_CNT || EXP_CNT || VS_CNT || NUM_INST_CNTS */ {
    // Match the score to the destination registers.
    for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
      auto &Op = Inst.getOperand(I);
      if (!Op.isReg() || !Op.isDef())
        continue;
      RegInterval Interval = getRegInterval(&Inst, MRI, TRI, I);
      if (T == VM_CNT) {
        if (Interval.first >= NUM_ALL_VGPRS)
          continue;
        if (updateVMCntOnly(Inst)) {
          // updateVMCntOnly should only leave us with VGPRs
          // MUBUF, MTBUF, MIMG, FlatGlobal, and FlatScratch only have VGPR/AGPR
          // defs. That's required for a sane index into `VgprMemTypes` below
          assert(TRI->isVectorRegister(*MRI, Op.getReg()));
          VmemType V = getVmemType(Inst);
          for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo)
            VgprVmemTypes[RegNo] |= 1 << V;
        }
      }
      for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
        setRegScore(RegNo, T, CurrScore);
      }
    }
    if (Inst.mayStore() &&
        (TII->isDS(Inst) || TII->mayWriteLDSThroughDMA(Inst))) {
      // MUBUF and FLAT LDS DMA operations need a wait on vmcnt before LDS
      // written can be accessed. A load from LDS to VMEM does not need a wait.
      setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore);
    }
  }
}

void WaitcntBrackets::print(raw_ostream &OS) {
  OS << '\n';
  for (auto T : inst_counter_types()) {
    unsigned SR = getScoreRange(T);

    switch (T) {
    case VM_CNT:
      OS << "    VM_CNT(" << SR << "): ";
      break;
    case LGKM_CNT:
      OS << "    LGKM_CNT(" << SR << "): ";
      break;
    case EXP_CNT:
      OS << "    EXP_CNT(" << SR << "): ";
      break;
    case VS_CNT:
      OS << "    VS_CNT(" << SR << "): ";
      break;
    default:
      OS << "    UNKNOWN(" << SR << "): ";
      break;
    }

    if (SR != 0) {
      // Print vgpr scores.
      unsigned LB = getScoreLB(T);

      for (int J = 0; J <= VgprUB; J++) {
        unsigned RegScore = getRegScore(J, T);
        if (RegScore <= LB)
          continue;
        unsigned RelScore = RegScore - LB - 1;
        if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) {
          OS << RelScore << ":v" << J << " ";
        } else {
          OS << RelScore << ":ds ";
        }
      }
      // Also need to print sgpr scores for lgkm_cnt.
      if (T == LGKM_CNT) {
        for (int J = 0; J <= SgprUB; J++) {
          unsigned RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
          if (RegScore <= LB)
            continue;
          unsigned RelScore = RegScore - LB - 1;
          OS << RelScore << ":s" << J << " ";
        }
      }
    }
    OS << '\n';
  }
  OS << '\n';
}

/// Simplify the waitcnt, in the sense of removing redundant counts, and return
/// whether a waitcnt instruction is needed at all.
void WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const {
  simplifyWaitcnt(VM_CNT, Wait.VmCnt);
  simplifyWaitcnt(EXP_CNT, Wait.ExpCnt);
  simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt);
  simplifyWaitcnt(VS_CNT, Wait.VsCnt);
}

void WaitcntBrackets::simplifyWaitcnt(InstCounterType T,
                                      unsigned &Count) const {
  // The number of outstanding events for this type, T, can be calculated
  // as (UB - LB). If the current Count is greater than or equal to the number
  // of outstanding events, then the wait for this counter is redundant.
  if (Count >= getScoreRange(T))
    Count = ~0u;
}

void WaitcntBrackets::determineWait(InstCounterType T, int RegNo,
                                    AMDGPU::Waitcnt &Wait) const {
  unsigned ScoreToWait = getRegScore(RegNo, T);

  // If the score of src_operand falls within the bracket, we need an
  // s_waitcnt instruction.
  const unsigned LB = getScoreLB(T);
  const unsigned UB = getScoreUB(T);
  if ((UB >= ScoreToWait) && (ScoreToWait > LB)) {
    if ((T == VM_CNT || T == LGKM_CNT) &&
        hasPendingFlat() &&
        !ST->hasFlatLgkmVMemCountInOrder()) {
      // If there is a pending FLAT operation, and this is a VMem or LGKM
      // waitcnt and the target can report early completion, then we need
      // to force a waitcnt 0.
      addWait(Wait, T, 0);
    } else if (counterOutOfOrder(T)) {
      // Counter can get decremented out-of-order when there
      // are multiple types event in the bracket. Also emit an s_wait counter
      // with a conservative value of 0 for the counter.
      addWait(Wait, T, 0);
    } else {
      // If a counter has been maxed out avoid overflow by waiting for
      // MAX(CounterType) - 1 instead.
      unsigned NeededWait = std::min(UB - ScoreToWait, getWaitCountMax(T) - 1);
      addWait(Wait, T, NeededWait);
    }
  }
}

void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) {
  applyWaitcnt(VM_CNT, Wait.VmCnt);
  applyWaitcnt(EXP_CNT, Wait.ExpCnt);
  applyWaitcnt(LGKM_CNT, Wait.LgkmCnt);
  applyWaitcnt(VS_CNT, Wait.VsCnt);
}

void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) {
  const unsigned UB = getScoreUB(T);
  if (Count >= UB)
    return;
  if (Count != 0) {
    if (counterOutOfOrder(T))
      return;
    setScoreLB(T, std::max(getScoreLB(T), UB - Count));
  } else {
    setScoreLB(T, UB);
    PendingEvents &= ~WaitEventMaskForInst[T];
  }
}

// Where there are multiple types of event in the bracket of a counter,
// the decrement may go out of order.
bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const {
  // Scalar memory read always can go out of order.
  if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS))
    return true;
  return hasMixedPendingEvents(T);
}

INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
                    false)

char SIInsertWaitcnts::ID = 0;

char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID;

FunctionPass *llvm::createSIInsertWaitcntsPass() {
  return new SIInsertWaitcnts();
}

static bool updateOperandIfDifferent(MachineInstr &MI, uint16_t OpName,
                                     unsigned NewEnc) {
  int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OpName);
  assert(OpIdx >= 0);

  MachineOperand &MO = MI.getOperand(OpIdx);

  if (NewEnc == MO.getImm())
    return false;

  MO.setImm(NewEnc);
  return true;
}

bool SIInsertWaitcnts::promoteSoftWaitCnt(MachineInstr *Waitcnt) const {
  unsigned Opcode = Waitcnt->getOpcode();
  if (!SIInstrInfo::isSoftWaitcnt(Opcode))
    return false;

  Waitcnt->setDesc(TII->get(SIInstrInfo::getNonSoftWaitcntOpcode(Opcode)));
  return true;
}

/// Combine consecutive waitcnt instructions that precede \p It and follow
/// \p OldWaitcntInstr and apply any extra wait from waitcnt that were added
/// by previous passes. Currently this pass conservatively assumes that these
/// preexisting waitcnt are required for correctness.
bool SIInsertWaitcnts::applyPreexistingWaitcnt(
    WaitcntBrackets &ScoreBrackets, MachineInstr &OldWaitcntInstr,
    AMDGPU::Waitcnt &Wait, MachineBasicBlock::instr_iterator It) const {
  bool Modified = false;
  MachineInstr *WaitcntInstr = nullptr;
  MachineInstr *WaitcntVsCntInstr = nullptr;

  for (auto &II :
       make_early_inc_range(make_range(OldWaitcntInstr.getIterator(), It))) {
    if (II.isMetaInstruction())
      continue;

    unsigned Opcode = II.getOpcode();
    bool IsSoft = SIInstrInfo::isSoftWaitcnt(Opcode);

    if (SIInstrInfo::isWaitcnt(Opcode)) {
      // Update required wait count. If this is a soft waitcnt (= it was added
      // by an earlier pass), it may be entirely removed.
      unsigned IEnc = II.getOperand(0).getImm();
      AMDGPU::Waitcnt OldWait = AMDGPU::decodeWaitcnt(IV, IEnc);
      if (IsSoft)
        ScoreBrackets.simplifyWaitcnt(OldWait);
      Wait = Wait.combined(OldWait);

      // Merge consecutive waitcnt of the same type by erasing multiples.
      if (WaitcntInstr || (!Wait.hasWaitExceptVsCnt() && IsSoft)) {
        II.eraseFromParent();
        Modified = true;
      } else
        WaitcntInstr = &II;

    } else {
      assert(SIInstrInfo::isWaitcntVsCnt(Opcode));
      assert(II.getOperand(0).getReg() == AMDGPU::SGPR_NULL);

      unsigned OldVSCnt =
          TII->getNamedOperand(II, AMDGPU::OpName::simm16)->getImm();
      if (IsSoft)
        ScoreBrackets.simplifyWaitcnt(InstCounterType::VS_CNT, OldVSCnt);
      Wait.VsCnt = std::min(Wait.VsCnt, OldVSCnt);

      if (WaitcntVsCntInstr || (!Wait.hasWaitVsCnt() && IsSoft)) {
        II.eraseFromParent();
        Modified = true;
      } else
        WaitcntVsCntInstr = &II;
    }
  }

  // Updated encoding of merged waitcnt with the required wait.
  if (WaitcntInstr) {
    Modified |= updateOperandIfDifferent(*WaitcntInstr, AMDGPU::OpName::simm16,
                                         AMDGPU::encodeWaitcnt(IV, Wait));
    Modified |= promoteSoftWaitCnt(WaitcntInstr);

    ScoreBrackets.applyWaitcnt(Wait);
    Wait.VmCnt = ~0u;
    Wait.LgkmCnt = ~0u;
    Wait.ExpCnt = ~0u;

    LLVM_DEBUG(It == OldWaitcntInstr.getParent()->end()
                   ? dbgs()
                         << "applyPreexistingWaitcnt\n"
                         << "New Instr at block end: " << *WaitcntInstr << '\n'
                   : dbgs() << "applyPreexistingWaitcnt\n"
                            << "Old Instr: " << *It
                            << "New Instr: " << *WaitcntInstr << '\n');
  }

  if (WaitcntVsCntInstr) {
    Modified |= updateOperandIfDifferent(*WaitcntVsCntInstr,
                                         AMDGPU::OpName::simm16, Wait.VsCnt);
    Modified |= promoteSoftWaitCnt(WaitcntVsCntInstr);
    ScoreBrackets.applyWaitcnt(Wait);
    Wait.VsCnt = ~0u;

    LLVM_DEBUG(It == OldWaitcntInstr.getParent()->end()
                   ? dbgs() << "applyPreexistingWaitcnt\n"
                            << "New Instr at block end: " << *WaitcntVsCntInstr
                            << '\n'
                   : dbgs() << "applyPreexistingWaitcnt\n"
                            << "Old Instr: " << *It
                            << "New Instr: " << *WaitcntVsCntInstr << '\n');
  }

  return Modified;
}

static bool readsVCCZ(const MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) &&
         !MI.getOperand(1).isUndef();
}

/// \returns true if the callee inserts an s_waitcnt 0 on function entry.
static bool callWaitsOnFunctionEntry(const MachineInstr &MI) {
  // Currently all conventions wait, but this may not always be the case.
  //
  // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make
  // senses to omit the wait and do it in the caller.
  return true;
}

/// \returns true if the callee is expected to wait for any outstanding waits
/// before returning.
static bool callWaitsOnFunctionReturn(const MachineInstr &MI) {
  return true;
}

///  Generate s_waitcnt instruction to be placed before cur_Inst.
///  Instructions of a given type are returned in order,
///  but instructions of different types can complete out of order.
///  We rely on this in-order completion
///  and simply assign a score to the memory access instructions.
///  We keep track of the active "score bracket" to determine
///  if an access of a memory read requires an s_waitcnt
///  and if so what the value of each counter is.
///  The "score bracket" is bound by the lower bound and upper bound
///  scores (*_score_LB and *_score_ub respectively).
///  If FlushVmCnt is true, that means that we want to generate a s_waitcnt to
///  flush the vmcnt counter here.
bool SIInsertWaitcnts::generateWaitcntInstBefore(MachineInstr &MI,
                                                 WaitcntBrackets &ScoreBrackets,
                                                 MachineInstr *OldWaitcntInstr,
                                                 bool FlushVmCnt) {
  setForceEmitWaitcnt();

  if (MI.isMetaInstruction())
    return false;

  AMDGPU::Waitcnt Wait;

  // FIXME: This should have already been handled by the memory legalizer.
  // Removing this currently doesn't affect any lit tests, but we need to
  // verify that nothing was relying on this. The number of buffer invalidates
  // being handled here should not be expanded.
  if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 ||
      MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC ||
      MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL ||
      MI.getOpcode() == AMDGPU::BUFFER_GL0_INV ||
      MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) {
    Wait.VmCnt = 0;
  }

  // All waits must be resolved at call return.
  // NOTE: this could be improved with knowledge of all call sites or
  //   with knowledge of the called routines.
  if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG ||
      MI.getOpcode() == AMDGPU::SI_RETURN ||
      MI.getOpcode() == AMDGPU::S_SETPC_B64_return ||
      (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) {
    Wait = Wait.combined(AMDGPU::Waitcnt::allZeroExceptVsCnt());
  }
  // Identify S_ENDPGM instructions which may have to wait for outstanding VMEM
  // stores. In this case it can be useful to send a message to explicitly
  // release all VGPRs before the stores have completed, but it is only safe to
  // do this if there are no outstanding scratch stores.
  else if (MI.getOpcode() == AMDGPU::S_ENDPGM ||
           MI.getOpcode() == AMDGPU::S_ENDPGM_SAVED) {
    if (ST->getGeneration() >= AMDGPUSubtarget::GFX11 && !OptNone &&
        ScoreBrackets.getScoreRange(VS_CNT) != 0 &&
        !ScoreBrackets.hasPendingEvent(SCRATCH_WRITE_ACCESS))
      ReleaseVGPRInsts.insert(&MI);
  }
  // Resolve vm waits before gs-done.
  else if ((MI.getOpcode() == AMDGPU::S_SENDMSG ||
            MI.getOpcode() == AMDGPU::S_SENDMSGHALT) &&
           ST->hasLegacyGeometry() &&
           ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_PreGFX11_) ==
            AMDGPU::SendMsg::ID_GS_DONE_PreGFX11)) {
    Wait.VmCnt = 0;
  }
#if 0 // TODO: the following blocks of logic when we have fence.
  else if (MI.getOpcode() == SC_FENCE) {
    const unsigned int group_size =
      context->shader_info->GetMaxThreadGroupSize();
    // group_size == 0 means thread group size is unknown at compile time
    const bool group_is_multi_wave =
      (group_size == 0 || group_size > target_info->GetWaveFrontSize());
    const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence();

    for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) {
      SCRegType src_type = Inst->GetSrcType(i);
      switch (src_type) {
        case SCMEM_LDS:
          if (group_is_multi_wave ||
            context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) {
            EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
                               ScoreBrackets->getScoreUB(LGKM_CNT));
            // LDS may have to wait for VM_CNT after buffer load to LDS
            if (target_info->HasBufferLoadToLDS()) {
              EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
                                 ScoreBrackets->getScoreUB(VM_CNT));
            }
          }
          break;

        case SCMEM_GDS:
          if (group_is_multi_wave || fence_is_global) {
            EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
              ScoreBrackets->getScoreUB(EXP_CNT));
            EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
              ScoreBrackets->getScoreUB(LGKM_CNT));
          }
          break;

        case SCMEM_UAV:
        case SCMEM_TFBUF:
        case SCMEM_RING:
        case SCMEM_SCATTER:
          if (group_is_multi_wave || fence_is_global) {
            EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
              ScoreBrackets->getScoreUB(EXP_CNT));
            EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
              ScoreBrackets->getScoreUB(VM_CNT));
          }
          break;

        case SCMEM_SCRATCH:
        default:
          break;
      }
    }
  }
#endif

  // Export & GDS instructions do not read the EXEC mask until after the export
  // is granted (which can occur well after the instruction is issued).
  // The shader program must flush all EXP operations on the export-count
  // before overwriting the EXEC mask.
  else {
    if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) {
      // Export and GDS are tracked individually, either may trigger a waitcnt
      // for EXEC.
      if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) ||
          ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) ||
          ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) ||
          ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) {
        Wait.ExpCnt = 0;
      }
    }

    if (MI.isCall() && callWaitsOnFunctionEntry(MI)) {
      // The function is going to insert a wait on everything in its prolog.
      // This still needs to be careful if the call target is a load (e.g. a GOT
      // load). We also need to check WAW dependency with saved PC.
      Wait = AMDGPU::Waitcnt();

      int CallAddrOpIdx =
          AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);

      if (MI.getOperand(CallAddrOpIdx).isReg()) {
        RegInterval CallAddrOpInterval =
            ScoreBrackets.getRegInterval(&MI, MRI, TRI, CallAddrOpIdx);

        for (int RegNo = CallAddrOpInterval.first;
             RegNo < CallAddrOpInterval.second; ++RegNo)
          ScoreBrackets.determineWait(LGKM_CNT, RegNo, Wait);

        int RtnAddrOpIdx =
          AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst);
        if (RtnAddrOpIdx != -1) {
          RegInterval RtnAddrOpInterval =
              ScoreBrackets.getRegInterval(&MI, MRI, TRI, RtnAddrOpIdx);

          for (int RegNo = RtnAddrOpInterval.first;
               RegNo < RtnAddrOpInterval.second; ++RegNo)
            ScoreBrackets.determineWait(LGKM_CNT, RegNo, Wait);
        }
      }
    } else {
      // FIXME: Should not be relying on memoperands.
      // Look at the source operands of every instruction to see if
      // any of them results from a previous memory operation that affects
      // its current usage. If so, an s_waitcnt instruction needs to be
      // emitted.
      // If the source operand was defined by a load, add the s_waitcnt
      // instruction.
      //
      // Two cases are handled for destination operands:
      // 1) If the destination operand was defined by a load, add the s_waitcnt
      // instruction to guarantee the right WAW order.
      // 2) If a destination operand that was used by a recent export/store ins,
      // add s_waitcnt on exp_cnt to guarantee the WAR order.
      for (const MachineMemOperand *Memop : MI.memoperands()) {
        const Value *Ptr = Memop->getValue();
        if (Memop->isStore() && SLoadAddresses.count(Ptr)) {
          addWait(Wait, LGKM_CNT, 0);
          if (PDT->dominates(MI.getParent(), SLoadAddresses.find(Ptr)->second))
            SLoadAddresses.erase(Ptr);
        }
        unsigned AS = Memop->getAddrSpace();
        if (AS != AMDGPUAS::LOCAL_ADDRESS && AS != AMDGPUAS::FLAT_ADDRESS)
          continue;
        // No need to wait before load from VMEM to LDS.
        if (TII->mayWriteLDSThroughDMA(MI))
          continue;
        unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
        // VM_CNT is only relevant to vgpr or LDS.
        ScoreBrackets.determineWait(VM_CNT, RegNo, Wait);
        if (Memop->isStore()) {
          ScoreBrackets.determineWait(EXP_CNT, RegNo, Wait);
        }
      }

      // Loop over use and def operands.
      for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
        MachineOperand &Op = MI.getOperand(I);
        if (!Op.isReg())
          continue;

        // If the instruction does not read tied source, skip the operand.
        if (Op.isTied() && Op.isUse() && TII->doesNotReadTiedSource(MI))
          continue;

        RegInterval Interval = ScoreBrackets.getRegInterval(&MI, MRI, TRI, I);

        const bool IsVGPR = TRI->isVectorRegister(*MRI, Op.getReg());
        for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
          if (IsVGPR) {
            // RAW always needs an s_waitcnt. WAW needs an s_waitcnt unless the
            // previous write and this write are the same type of VMEM
            // instruction, in which case they're guaranteed to write their
            // results in order anyway.
            if (Op.isUse() || !updateVMCntOnly(MI) ||
                ScoreBrackets.hasOtherPendingVmemTypes(RegNo,
                                                       getVmemType(MI))) {
              ScoreBrackets.determineWait(VM_CNT, RegNo, Wait);
              ScoreBrackets.clearVgprVmemTypes(RegNo);
            }
            if (Op.isDef() || ScoreBrackets.hasPendingEvent(EXP_LDS_ACCESS)) {
              ScoreBrackets.determineWait(EXP_CNT, RegNo, Wait);
            }
          }
          ScoreBrackets.determineWait(LGKM_CNT, RegNo, Wait);
        }
      }
    }
  }

  // The subtarget may have an implicit S_WAITCNT 0 before barriers. If it does
  // not, we need to ensure the subtarget is capable of backing off barrier
  // instructions in case there are any outstanding memory operations that may
  // cause an exception. Otherwise, insert an explicit S_WAITCNT 0 here.
  if (MI.getOpcode() == AMDGPU::S_BARRIER &&
      !ST->hasAutoWaitcntBeforeBarrier() && !ST->supportsBackOffBarrier()) {
    Wait = Wait.combined(AMDGPU::Waitcnt::allZero(ST->hasVscnt()));
  }

  // TODO: Remove this work-around, enable the assert for Bug 457939
  //       after fixing the scheduler. Also, the Shader Compiler code is
  //       independent of target.
  if (readsVCCZ(MI) && ST->hasReadVCCZBug()) {
    if (ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
      Wait.LgkmCnt = 0;
    }
  }

  // Verify that the wait is actually needed.
  ScoreBrackets.simplifyWaitcnt(Wait);

  if (ForceEmitZeroWaitcnts)
    Wait = AMDGPU::Waitcnt::allZeroExceptVsCnt();

  if (ForceEmitWaitcnt[VM_CNT])
    Wait.VmCnt = 0;
  if (ForceEmitWaitcnt[EXP_CNT])
    Wait.ExpCnt = 0;
  if (ForceEmitWaitcnt[LGKM_CNT])
    Wait.LgkmCnt = 0;

  if (FlushVmCnt) {
    if (ScoreBrackets.hasPendingEvent(VM_CNT))
      Wait.VmCnt = 0;
  }

  return generateWaitcnt(Wait, MI.getIterator(), *MI.getParent(), ScoreBrackets,
                         OldWaitcntInstr);
}

// Add a waitcnt to flush the vmcnt counter at the end of the given block if
// needed.
bool SIInsertWaitcnts::generateWaitcntBlockEnd(MachineBasicBlock &Block,
                                               WaitcntBrackets &ScoreBrackets,
                                               MachineInstr *OldWaitcntInstr) {
  AMDGPU::Waitcnt Wait;

  if (!ScoreBrackets.hasPendingEvent(VM_CNT))
    return false;

  Wait.VmCnt = 0;

  return generateWaitcnt(Wait, Block.instr_end(), Block, ScoreBrackets,
                         OldWaitcntInstr);
}

bool SIInsertWaitcnts::generateWaitcnt(AMDGPU::Waitcnt Wait,
                                       MachineBasicBlock::instr_iterator It,
                                       MachineBasicBlock &Block,
                                       WaitcntBrackets &ScoreBrackets,
                                       MachineInstr *OldWaitcntInstr) {
  bool Modified = false;
  const DebugLoc &DL = Block.findDebugLoc(It);

  if (OldWaitcntInstr)
    // Try to merge the required wait with preexisting waitcnt instructions.
    // Also erase redundant waitcnt.
    Modified =
        applyPreexistingWaitcnt(ScoreBrackets, *OldWaitcntInstr, Wait, It);
  else
    ScoreBrackets.applyWaitcnt(Wait);

  // ExpCnt can be merged into VINTERP.
  if (Wait.ExpCnt != ~0u && It != Block.instr_end() &&
      SIInstrInfo::isVINTERP(*It)) {
    MachineOperand *WaitExp =
        TII->getNamedOperand(*It, AMDGPU::OpName::waitexp);
    if (Wait.ExpCnt < WaitExp->getImm()) {
      WaitExp->setImm(Wait.ExpCnt);
      Modified = true;
    }
    Wait.ExpCnt = ~0u;

    LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
                      << "Update Instr: " << *It);
  }

  // Build new waitcnt instructions unless no wait is needed or the old waitcnt
  // instruction was modified to handle the required wait.
  if (Wait.hasWaitExceptVsCnt()) {
    unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait);
    [[maybe_unused]] auto SWaitInst =
        BuildMI(Block, It, DL, TII->get(AMDGPU::S_WAITCNT)).addImm(Enc);
    Modified = true;

    LLVM_DEBUG(dbgs() << "generateWaitcnt\n";
               if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It;
               dbgs() << "New Instr: " << *SWaitInst << '\n');
  }

  if (Wait.hasWaitVsCnt()) {
    assert(ST->hasVscnt());

    [[maybe_unused]] auto SWaitInst = BuildMI(Block, It, DL, TII->get(AMDGPU::S_WAITCNT_VSCNT))
                         .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
                         .addImm(Wait.VsCnt);
    Modified = true;

    LLVM_DEBUG(dbgs() << "generateWaitcnt\n";
               if (It != Block.instr_end()) dbgs() << "Old Instr: " << *It;
               dbgs() << "New Instr: " << *SWaitInst << '\n');
  }
  return Modified;
}

// This is a flat memory operation. Check to see if it has memory tokens other
// than LDS. Other address spaces supported by flat memory operations involve
// global memory.
bool SIInsertWaitcnts::mayAccessVMEMThroughFlat(const MachineInstr &MI) const {
  assert(TII->isFLAT(MI));

  // All flat instructions use the VMEM counter.
  assert(TII->usesVM_CNT(MI));

  // If there are no memory operands then conservatively assume the flat
  // operation may access VMEM.
  if (MI.memoperands_empty())
    return true;

  // See if any memory operand specifies an address space that involves VMEM.
  // Flat operations only supported FLAT, LOCAL (LDS), or address spaces
  // involving VMEM such as GLOBAL, CONSTANT, PRIVATE (SCRATCH), etc. The REGION
  // (GDS) address space is not supported by flat operations. Therefore, simply
  // return true unless only the LDS address space is found.
  for (const MachineMemOperand *Memop : MI.memoperands()) {
    unsigned AS = Memop->getAddrSpace();
    assert(AS != AMDGPUAS::REGION_ADDRESS);
    if (AS != AMDGPUAS::LOCAL_ADDRESS)
      return true;
  }

  return false;
}

// This is a flat memory operation. Check to see if it has memory tokens for
// either LDS or FLAT.
bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const {
  assert(TII->isFLAT(MI));

  // Flat instruction such as SCRATCH and GLOBAL do not use the lgkm counter.
  if (!TII->usesLGKM_CNT(MI))
    return false;

  // If in tgsplit mode then there can be no use of LDS.
  if (ST->isTgSplitEnabled())
    return false;

  // If there are no memory operands then conservatively assume the flat
  // operation may access LDS.
  if (MI.memoperands_empty())
    return true;

  // See if any memory operand specifies an address space that involves LDS.
  for (const MachineMemOperand *Memop : MI.memoperands()) {
    unsigned AS = Memop->getAddrSpace();
    if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS)
      return true;
  }

  return false;
}

// This is a flat memory operation. Check to see if it has memory tokens for
// either scratch or FLAT.
bool SIInsertWaitcnts::mayAccessScratchThroughFlat(
    const MachineInstr &MI) const {
  assert(TII->isFLAT(MI));

  // SCRATCH instructions always access scratch.
  if (TII->isFLATScratch(MI))
    return true;

  // GLOBAL instructions never access scratch.
  if (TII->isFLATGlobal(MI))
    return false;

  // If there are no memory operands then conservatively assume the flat
  // operation may access scratch.
  if (MI.memoperands_empty())
    return true;

  // See if any memory operand specifies an address space that involves scratch.
  return any_of(MI.memoperands(), [](const MachineMemOperand *Memop) {
    unsigned AS = Memop->getAddrSpace();
    return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
  });
}

static bool isCacheInvOrWBInst(MachineInstr &Inst) {
  auto Opc = Inst.getOpcode();
  return Opc == AMDGPU::GLOBAL_INV || Opc == AMDGPU::GLOBAL_WB ||
         Opc == AMDGPU::GLOBAL_WBINV;
}

void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst,
                                               WaitcntBrackets *ScoreBrackets) {
  // Now look at the instruction opcode. If it is a memory access
  // instruction, update the upper-bound of the appropriate counter's
  // bracket and the destination operand scores.
  // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere.
  if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) {
    if (TII->isAlwaysGDS(Inst.getOpcode()) ||
        TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) {
      ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst);
      ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst);
    } else {
      ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
    }
  } else if (TII->isFLAT(Inst)) {
    // TODO: Track this properly.
    if (isCacheInvOrWBInst(Inst))
      return;

    assert(Inst.mayLoadOrStore());

    int FlatASCount = 0;

    if (mayAccessVMEMThroughFlat(Inst)) {
      ++FlatASCount;
      ScoreBrackets->updateByEvent(TII, TRI, MRI, getVmemWaitEventType(Inst),
                                   Inst);
    }

    if (mayAccessLDSThroughFlat(Inst)) {
      ++FlatASCount;
      ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
    }

    // A Flat memory operation must access at least one address space.
    assert(FlatASCount);

    // This is a flat memory operation that access both VMEM and LDS, so note it
    // - it will require that both the VM and LGKM be flushed to zero if it is
    // pending when a VM or LGKM dependency occurs.
    if (FlatASCount > 1)
      ScoreBrackets->setPendingFlat();
  } else if (SIInstrInfo::isVMEM(Inst) &&
             !llvm::AMDGPU::getMUBUFIsBufferInv(Inst.getOpcode())) {
    ScoreBrackets->updateByEvent(TII, TRI, MRI, getVmemWaitEventType(Inst),
                                 Inst);

    if (ST->vmemWriteNeedsExpWaitcnt() &&
        (Inst.mayStore() || SIInstrInfo::isAtomicRet(Inst))) {
      ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst);
    }
  } else if (TII->isSMRD(Inst)) {
    ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
  } else if (Inst.isCall()) {
    if (callWaitsOnFunctionReturn(Inst)) {
      // Act as a wait on everything
      ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZeroExceptVsCnt());
    } else {
      // May need to way wait for anything.
      ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt());
    }
  } else if (SIInstrInfo::isLDSDIR(Inst)) {
    ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_LDS_ACCESS, Inst);
  } else if (TII->isVINTERP(Inst)) {
    int64_t Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::waitexp)->getImm();
    ScoreBrackets->applyWaitcnt(EXP_CNT, Imm);
  } else if (SIInstrInfo::isEXP(Inst)) {
    unsigned Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm();
    if (Imm >= AMDGPU::Exp::ET_PARAM0 && Imm <= AMDGPU::Exp::ET_PARAM31)
      ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst);
    else if (Imm >= AMDGPU::Exp::ET_POS0 && Imm <= AMDGPU::Exp::ET_POS_LAST)
      ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst);
    else
      ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst);
  } else {
    switch (Inst.getOpcode()) {
    case AMDGPU::S_SENDMSG:
    case AMDGPU::S_SENDMSG_RTN_B32:
    case AMDGPU::S_SENDMSG_RTN_B64:
    case AMDGPU::S_SENDMSGHALT:
      ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst);
      break;
    case AMDGPU::S_MEMTIME:
    case AMDGPU::S_MEMREALTIME:
    case AMDGPU::S_BARRIER_SIGNAL_ISFIRST_M0:
    case AMDGPU::S_BARRIER_SIGNAL_ISFIRST_IMM:
    case AMDGPU::S_BARRIER_LEAVE:
    case AMDGPU::S_GET_BARRIER_STATE_M0:
    case AMDGPU::S_GET_BARRIER_STATE_IMM:
      ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
      break;
    }
  }
}

bool WaitcntBrackets::mergeScore(const MergeInfo &M, unsigned &Score,
                                 unsigned OtherScore) {
  unsigned MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift;
  unsigned OtherShifted =
      OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift;
  Score = std::max(MyShifted, OtherShifted);
  return OtherShifted > MyShifted;
}

/// Merge the pending events and associater score brackets of \p Other into
/// this brackets status.
///
/// Returns whether the merge resulted in a change that requires tighter waits
/// (i.e. the merged brackets strictly dominate the original brackets).
bool WaitcntBrackets::merge(const WaitcntBrackets &Other) {
  bool StrictDom = false;

  VgprUB = std::max(VgprUB, Other.VgprUB);
  SgprUB = std::max(SgprUB, Other.SgprUB);

  for (auto T : inst_counter_types()) {
    // Merge event flags for this counter
    const unsigned OldEvents = PendingEvents & WaitEventMaskForInst[T];
    const unsigned OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T];
    if (OtherEvents & ~OldEvents)
      StrictDom = true;
    PendingEvents |= OtherEvents;

    // Merge scores for this counter
    const unsigned MyPending = ScoreUBs[T] - ScoreLBs[T];
    const unsigned OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T];
    const unsigned NewUB = ScoreLBs[T] + std::max(MyPending, OtherPending);
    if (NewUB < ScoreLBs[T])
      report_fatal_error("waitcnt score overflow");

    MergeInfo M;
    M.OldLB = ScoreLBs[T];
    M.OtherLB = Other.ScoreLBs[T];
    M.MyShift = NewUB - ScoreUBs[T];
    M.OtherShift = NewUB - Other.ScoreUBs[T];

    ScoreUBs[T] = NewUB;

    StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]);

    for (int J = 0; J <= VgprUB; J++)
      StrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]);

    if (T == LGKM_CNT) {
      for (int J = 0; J <= SgprUB; J++)
        StrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]);
    }
  }

  for (int J = 0; J <= VgprUB; J++) {
    unsigned char NewVmemTypes = VgprVmemTypes[J] | Other.VgprVmemTypes[J];
    StrictDom |= NewVmemTypes != VgprVmemTypes[J];
    VgprVmemTypes[J] = NewVmemTypes;
  }

  return StrictDom;
}

static bool isWaitInstr(MachineInstr &Inst) {
  auto Opcode = Inst.getOpcode();
  return SIInstrInfo::isWaitcnt(Opcode) ||
         (SIInstrInfo::isWaitcntVsCnt(Opcode) && Inst.getOperand(0).isReg() &&
          Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL);
}

// Generate s_waitcnt instructions where needed.
bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF,
                                            MachineBasicBlock &Block,
                                            WaitcntBrackets &ScoreBrackets) {
  bool Modified = false;

  LLVM_DEBUG({
    dbgs() << "*** Block" << Block.getNumber() << " ***";
    ScoreBrackets.dump();
  });

  // Track the correctness of vccz through this basic block. There are two
  // reasons why it might be incorrect; see ST->hasReadVCCZBug() and
  // ST->partialVCCWritesUpdateVCCZ().
  bool VCCZCorrect = true;
  if (ST->hasReadVCCZBug()) {
    // vccz could be incorrect at a basic block boundary if a predecessor wrote
    // to vcc and then issued an smem load.
    VCCZCorrect = false;
  } else if (!ST->partialVCCWritesUpdateVCCZ()) {
    // vccz could be incorrect at a basic block boundary if a predecessor wrote
    // to vcc_lo or vcc_hi.
    VCCZCorrect = false;
  }

  // Walk over the instructions.
  MachineInstr *OldWaitcntInstr = nullptr;

  for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(),
                                         E = Block.instr_end();
       Iter != E;) {
    MachineInstr &Inst = *Iter;

    // Track pre-existing waitcnts that were added in earlier iterations or by
    // the memory legalizer.
    if (isWaitInstr(Inst)) {
      if (!OldWaitcntInstr)
        OldWaitcntInstr = &Inst;
      ++Iter;
      continue;
    }

    bool FlushVmCnt = Block.getFirstTerminator() == Inst &&
                      isPreheaderToFlush(Block, ScoreBrackets);

    // Generate an s_waitcnt instruction to be placed before Inst, if needed.
    Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr,
                                          FlushVmCnt);
    OldWaitcntInstr = nullptr;

    // Restore vccz if it's not known to be correct already.
    bool RestoreVCCZ = !VCCZCorrect && readsVCCZ(Inst);

    // Don't examine operands unless we need to track vccz correctness.
    if (ST->hasReadVCCZBug() || !ST->partialVCCWritesUpdateVCCZ()) {
      if (Inst.definesRegister(AMDGPU::VCC_LO) ||
          Inst.definesRegister(AMDGPU::VCC_HI)) {
        // Up to gfx9, writes to vcc_lo and vcc_hi don't update vccz.
        if (!ST->partialVCCWritesUpdateVCCZ())
          VCCZCorrect = false;
      } else if (Inst.definesRegister(AMDGPU::VCC)) {
        // There is a hardware bug on CI/SI where SMRD instruction may corrupt
        // vccz bit, so when we detect that an instruction may read from a
        // corrupt vccz bit, we need to:
        // 1. Insert s_waitcnt lgkm(0) to wait for all outstanding SMRD
        //    operations to complete.
        // 2. Restore the correct value of vccz by writing the current value
        //    of vcc back to vcc.
        if (ST->hasReadVCCZBug() &&
            ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
          // Writes to vcc while there's an outstanding smem read may get
          // clobbered as soon as any read completes.
          VCCZCorrect = false;
        } else {
          // Writes to vcc will fix any incorrect value in vccz.
          VCCZCorrect = true;
        }
      }
    }

    if (TII->isSMRD(Inst)) {
      for (const MachineMemOperand *Memop : Inst.memoperands()) {
        // No need to handle invariant loads when avoiding WAR conflicts, as
        // there cannot be a vector store to the same memory location.
        if (!Memop->isInvariant()) {
          const Value *Ptr = Memop->getValue();
          SLoadAddresses.insert(std::pair(Ptr, Inst.getParent()));
        }
      }
      if (ST->hasReadVCCZBug()) {
        // This smem read could complete and clobber vccz at any time.
        VCCZCorrect = false;
      }
    }

    updateEventWaitcntAfter(Inst, &ScoreBrackets);

#if 0 // TODO: implement resource type check controlled by options with ub = LB.
    // If this instruction generates a S_SETVSKIP because it is an
    // indexed resource, and we are on Tahiti, then it will also force
    // an S_WAITCNT vmcnt(0)
    if (RequireCheckResourceType(Inst, context)) {
      // Force the score to as if an S_WAITCNT vmcnt(0) is emitted.
      ScoreBrackets->setScoreLB(VM_CNT,
      ScoreBrackets->getScoreUB(VM_CNT));
    }
#endif

    LLVM_DEBUG({
      Inst.print(dbgs());
      ScoreBrackets.dump();
    });

    // TODO: Remove this work-around after fixing the scheduler and enable the
    // assert above.
    if (RestoreVCCZ) {
      // Restore the vccz bit.  Any time a value is written to vcc, the vcc
      // bit is updated, so we can restore the bit by reading the value of
      // vcc and then writing it back to the register.
      BuildMI(Block, Inst, Inst.getDebugLoc(),
              TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64),
              TRI->getVCC())
          .addReg(TRI->getVCC());
      VCCZCorrect = true;
      Modified = true;
    }

    ++Iter;
  }

  if (Block.getFirstTerminator() == Block.end() &&
      isPreheaderToFlush(Block, ScoreBrackets))
    Modified |= generateWaitcntBlockEnd(Block, ScoreBrackets, OldWaitcntInstr);

  return Modified;
}

// Return true if the given machine basic block is a preheader of a loop in
// which we want to flush the vmcnt counter, and false otherwise.
bool SIInsertWaitcnts::isPreheaderToFlush(MachineBasicBlock &MBB,
                                          WaitcntBrackets &ScoreBrackets) {
  auto [Iterator, IsInserted] = PreheadersToFlush.try_emplace(&MBB, false);
  if (!IsInserted)
    return Iterator->second;

  MachineBasicBlock *Succ = MBB.getSingleSuccessor();
  if (!Succ)
    return false;

  MachineLoop *Loop = MLI->getLoopFor(Succ);
  if (!Loop)
    return false;

  if (Loop->getLoopPreheader() == &MBB &&
      shouldFlushVmCnt(Loop, ScoreBrackets)) {
    Iterator->second = true;
    return true;
  }

  return false;
}

bool SIInsertWaitcnts::isVMEMOrFlatVMEM(const MachineInstr &MI) const {
  return SIInstrInfo::isVMEM(MI) ||
         (SIInstrInfo::isFLAT(MI) && mayAccessVMEMThroughFlat(MI));
}

// Return true if it is better to flush the vmcnt counter in the preheader of
// the given loop. We currently decide to flush in two situations:
// 1. The loop contains vmem store(s), no vmem load and at least one use of a
//    vgpr containing a value that is loaded outside of the loop. (Only on
//    targets with no vscnt counter).
// 2. The loop contains vmem load(s), but the loaded values are not used in the
//    loop, and at least one use of a vgpr containing a value that is loaded
//    outside of the loop.
bool SIInsertWaitcnts::shouldFlushVmCnt(MachineLoop *ML,
                                        WaitcntBrackets &Brackets) {
  bool HasVMemLoad = false;
  bool HasVMemStore = false;
  bool UsesVgprLoadedOutside = false;
  DenseSet<Register> VgprUse;
  DenseSet<Register> VgprDef;

  for (MachineBasicBlock *MBB : ML->blocks()) {
    for (MachineInstr &MI : *MBB) {
      if (isVMEMOrFlatVMEM(MI)) {
        if (MI.mayLoad())
          HasVMemLoad = true;
        if (MI.mayStore())
          HasVMemStore = true;
      }
      for (unsigned I = 0; I < MI.getNumOperands(); I++) {
        MachineOperand &Op = MI.getOperand(I);
        if (!Op.isReg() || !TRI->isVectorRegister(*MRI, Op.getReg()))
          continue;
        RegInterval Interval = Brackets.getRegInterval(&MI, MRI, TRI, I);
        // Vgpr use
        if (Op.isUse()) {
          for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
            // If we find a register that is loaded inside the loop, 1. and 2.
            // are invalidated and we can exit.
            if (VgprDef.contains(RegNo))
              return false;
            VgprUse.insert(RegNo);
            // If at least one of Op's registers is in the score brackets, the
            // value is likely loaded outside of the loop.
            if (Brackets.getRegScore(RegNo, VM_CNT) > Brackets.getScoreLB(VM_CNT)) {
              UsesVgprLoadedOutside = true;
              break;
            }
          }
        }
        // VMem load vgpr def
        else if (isVMEMOrFlatVMEM(MI) && MI.mayLoad() && Op.isDef())
          for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
            // If we find a register that is loaded inside the loop, 1. and 2.
            // are invalidated and we can exit.
            if (VgprUse.contains(RegNo))
              return false;
            VgprDef.insert(RegNo);
          }
      }
    }
  }
  if (!ST->hasVscnt() && HasVMemStore && !HasVMemLoad && UsesVgprLoadedOutside)
    return true;
  return HasVMemLoad && UsesVgprLoadedOutside;
}

bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) {
  ST = &MF.getSubtarget<GCNSubtarget>();
  TII = ST->getInstrInfo();
  TRI = &TII->getRegisterInfo();
  MRI = &MF.getRegInfo();
  IV = AMDGPU::getIsaVersion(ST->getCPU());
  const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
  MLI = &getAnalysis<MachineLoopInfo>();
  PDT = &getAnalysis<MachinePostDominatorTree>();

  ForceEmitZeroWaitcnts = ForceEmitZeroFlag;
  for (auto T : inst_counter_types())
    ForceEmitWaitcnt[T] = false;

  OptNone = MF.getFunction().hasOptNone() ||
            MF.getTarget().getOptLevel() == CodeGenOptLevel::None;

  HardwareLimits Limits = {};
  Limits.VmcntMax = AMDGPU::getVmcntBitMask(IV);
  Limits.ExpcntMax = AMDGPU::getExpcntBitMask(IV);
  Limits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV);
  Limits.VscntMax = ST->hasVscnt() ? 63 : 0;

  unsigned NumVGPRsMax = ST->getAddressableNumVGPRs();
  unsigned NumSGPRsMax = ST->getAddressableNumSGPRs();
  assert(NumVGPRsMax <= SQ_MAX_PGM_VGPRS);
  assert(NumSGPRsMax <= SQ_MAX_PGM_SGPRS);

  RegisterEncoding Encoding = {};
  Encoding.VGPR0 =
      TRI->getEncodingValue(AMDGPU::VGPR0) & AMDGPU::HWEncoding::REG_IDX_MASK;
  Encoding.VGPRL = Encoding.VGPR0 + NumVGPRsMax - 1;
  Encoding.SGPR0 =
      TRI->getEncodingValue(AMDGPU::SGPR0) & AMDGPU::HWEncoding::REG_IDX_MASK;
  Encoding.SGPRL = Encoding.SGPR0 + NumSGPRsMax - 1;

  BlockInfos.clear();
  bool Modified = false;

  if (!MFI->isEntryFunction()) {
    // Wait for any outstanding memory operations that the input registers may
    // depend on. We can't track them and it's better to do the wait after the
    // costly call sequence.

    // TODO: Could insert earlier and schedule more liberally with operations
    // that only use caller preserved registers.
    MachineBasicBlock &EntryBB = MF.front();
    MachineBasicBlock::iterator I = EntryBB.begin();
    for (MachineBasicBlock::iterator E = EntryBB.end();
         I != E && (I->isPHI() || I->isMetaInstruction()); ++I)
      ;
    BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT)).addImm(0);

    auto NonKernelInitialState =
        std::make_unique<WaitcntBrackets>(ST, Limits, Encoding);
    NonKernelInitialState->setNonKernelFunctionInitialState();
    BlockInfos[&EntryBB].Incoming = std::move(NonKernelInitialState);

    Modified = true;
  }

  // Keep iterating over the blocks in reverse post order, inserting and
  // updating s_waitcnt where needed, until a fix point is reached.
  for (auto *MBB : ReversePostOrderTraversal<MachineFunction *>(&MF))
    BlockInfos.insert({MBB, BlockInfo()});

  std::unique_ptr<WaitcntBrackets> Brackets;
  bool Repeat;
  do {
    Repeat = false;

    for (auto BII = BlockInfos.begin(), BIE = BlockInfos.end(); BII != BIE;
         ++BII) {
      MachineBasicBlock *MBB = BII->first;
      BlockInfo &BI = BII->second;
      if (!BI.Dirty)
        continue;

      if (BI.Incoming) {
        if (!Brackets)
          Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming);
        else
          *Brackets = *BI.Incoming;
      } else {
        if (!Brackets)
          Brackets = std::make_unique<WaitcntBrackets>(ST, Limits, Encoding);
        else
          *Brackets = WaitcntBrackets(ST, Limits, Encoding);
      }

      Modified |= insertWaitcntInBlock(MF, *MBB, *Brackets);
      BI.Dirty = false;

      if (Brackets->hasPendingEvent()) {
        BlockInfo *MoveBracketsToSucc = nullptr;
        for (MachineBasicBlock *Succ : MBB->successors()) {
          auto SuccBII = BlockInfos.find(Succ);
          BlockInfo &SuccBI = SuccBII->second;
          if (!SuccBI.Incoming) {
            SuccBI.Dirty = true;
            if (SuccBII <= BII)
              Repeat = true;
            if (!MoveBracketsToSucc) {
              MoveBracketsToSucc = &SuccBI;
            } else {
              SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets);
            }
          } else if (SuccBI.Incoming->merge(*Brackets)) {
            SuccBI.Dirty = true;
            if (SuccBII <= BII)
              Repeat = true;
          }
        }
        if (MoveBracketsToSucc)
          MoveBracketsToSucc->Incoming = std::move(Brackets);
      }
    }
  } while (Repeat);

  if (ST->hasScalarStores()) {
    SmallVector<MachineBasicBlock *, 4> EndPgmBlocks;
    bool HaveScalarStores = false;

    for (MachineBasicBlock &MBB : MF) {
      for (MachineInstr &MI : MBB) {
        if (!HaveScalarStores && TII->isScalarStore(MI))
          HaveScalarStores = true;

        if (MI.getOpcode() == AMDGPU::S_ENDPGM ||
            MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG)
          EndPgmBlocks.push_back(&MBB);
      }
    }

    if (HaveScalarStores) {
      // If scalar writes are used, the cache must be flushed or else the next
      // wave to reuse the same scratch memory can be clobbered.
      //
      // Insert s_dcache_wb at wave termination points if there were any scalar
      // stores, and only if the cache hasn't already been flushed. This could
      // be improved by looking across blocks for flushes in postdominating
      // blocks from the stores but an explicitly requested flush is probably
      // very rare.
      for (MachineBasicBlock *MBB : EndPgmBlocks) {
        bool SeenDCacheWB = false;

        for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
             I != E; ++I) {
          if (I->getOpcode() == AMDGPU::S_DCACHE_WB)
            SeenDCacheWB = true;
          else if (TII->isScalarStore(*I))
            SeenDCacheWB = false;

          // FIXME: It would be better to insert this before a waitcnt if any.
          if ((I->getOpcode() == AMDGPU::S_ENDPGM ||
               I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) &&
              !SeenDCacheWB) {
            Modified = true;
            BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB));
          }
        }
      }
    }
  }

  // Insert DEALLOC_VGPR messages before previously identified S_ENDPGM
  // instructions.
  for (MachineInstr *MI : ReleaseVGPRInsts) {
    if (ST->requiresNopBeforeDeallocVGPRs()) {
      BuildMI(*MI->getParent(), MI, DebugLoc(), TII->get(AMDGPU::S_NOP))
          .addImm(0);
    }
    BuildMI(*MI->getParent(), MI, DebugLoc(), TII->get(AMDGPU::S_SENDMSG))
        .addImm(AMDGPU::SendMsg::ID_DEALLOC_VGPRS_GFX11Plus);
    Modified = true;
  }
  ReleaseVGPRInsts.clear();

  return Modified;
}