aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIOptimizeExecMasking.cpp
blob: 19a83ad53e2ed00d67c10b8a4f561fa5cf6f466d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
//===-- SIOptimizeExecMasking.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIRegisterInfo.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/InitializePasses.h"

using namespace llvm;

#define DEBUG_TYPE "si-optimize-exec-masking"

namespace {

class SIOptimizeExecMasking : public MachineFunctionPass {
  MachineFunction *MF = nullptr;
  const GCNSubtarget *ST = nullptr;
  const SIRegisterInfo *TRI = nullptr;
  const SIInstrInfo *TII = nullptr;
  const MachineRegisterInfo *MRI = nullptr;
  MCRegister Exec;

  DenseMap<MachineInstr *, MachineInstr *> SaveExecVCmpMapping;
  SmallVector<std::pair<MachineInstr *, MachineInstr *>, 1> OrXors;

  Register isCopyFromExec(const MachineInstr &MI) const;
  Register isCopyToExec(const MachineInstr &MI) const;
  bool removeTerminatorBit(MachineInstr &MI) const;
  MachineBasicBlock::reverse_iterator
  fixTerminators(MachineBasicBlock &MBB) const;
  MachineBasicBlock::reverse_iterator
  findExecCopy(MachineBasicBlock &MBB, MachineBasicBlock::reverse_iterator I,
               unsigned CopyToExec) const;

  bool isRegisterInUseBetween(MachineInstr &Stop, MachineInstr &Start,
                              MCRegister Reg, bool UseLiveOuts = false,
                              bool IgnoreStart = false) const;
  bool isRegisterInUseAfter(MachineInstr &Stop, MCRegister Reg) const;
  MachineInstr *findInstrBackwards(MachineInstr &Origin,
                                   std::function<bool(MachineInstr *)> Pred,
                                   ArrayRef<MCRegister> NonModifiableRegs,
                                   unsigned MaxInstructions = 20) const;
  bool optimizeExecSequence();
  void tryRecordVCmpxAndSaveexecSequence(MachineInstr &MI);
  bool optimizeVCMPSaveExecSequence(MachineInstr &SaveExecInstr,
                                    MachineInstr &VCmp, MCRegister Exec) const;

  void tryRecordOrSaveexecXorSequence(MachineInstr &MI);
  bool optimizeOrSaveexecXorSequences();

public:
  static char ID;

  SIOptimizeExecMasking() : MachineFunctionPass(ID) {
    initializeSIOptimizeExecMaskingPass(*PassRegistry::getPassRegistry());
  }

  bool runOnMachineFunction(MachineFunction &MF) override;

  StringRef getPassName() const override {
    return "SI optimize exec mask operations";
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    MachineFunctionPass::getAnalysisUsage(AU);
  }
};

} // End anonymous namespace.

INITIALIZE_PASS_BEGIN(SIOptimizeExecMasking, DEBUG_TYPE,
                      "SI optimize exec mask operations", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(SIOptimizeExecMasking, DEBUG_TYPE,
                    "SI optimize exec mask operations", false, false)

char SIOptimizeExecMasking::ID = 0;

char &llvm::SIOptimizeExecMaskingID = SIOptimizeExecMasking::ID;

/// If \p MI is a copy from exec, return the register copied to.
Register SIOptimizeExecMasking::isCopyFromExec(const MachineInstr &MI) const {
  switch (MI.getOpcode()) {
  case AMDGPU::COPY:
  case AMDGPU::S_MOV_B64:
  case AMDGPU::S_MOV_B64_term:
  case AMDGPU::S_MOV_B32:
  case AMDGPU::S_MOV_B32_term: {
    const MachineOperand &Src = MI.getOperand(1);
    if (Src.isReg() && Src.getReg() == Exec)
      return MI.getOperand(0).getReg();
  }
  }

  return AMDGPU::NoRegister;
}

/// If \p MI is a copy to exec, return the register copied from.
Register SIOptimizeExecMasking::isCopyToExec(const MachineInstr &MI) const {
  switch (MI.getOpcode()) {
  case AMDGPU::COPY:
  case AMDGPU::S_MOV_B64:
  case AMDGPU::S_MOV_B32: {
    const MachineOperand &Dst = MI.getOperand(0);
    if (Dst.isReg() && Dst.getReg() == Exec && MI.getOperand(1).isReg())
      return MI.getOperand(1).getReg();
    break;
  }
  case AMDGPU::S_MOV_B64_term:
  case AMDGPU::S_MOV_B32_term:
    llvm_unreachable("should have been replaced");
  }

  return Register();
}

/// If \p MI is a logical operation on an exec value,
/// return the register copied to.
static Register isLogicalOpOnExec(const MachineInstr &MI) {
  switch (MI.getOpcode()) {
  case AMDGPU::S_AND_B64:
  case AMDGPU::S_OR_B64:
  case AMDGPU::S_XOR_B64:
  case AMDGPU::S_ANDN2_B64:
  case AMDGPU::S_ORN2_B64:
  case AMDGPU::S_NAND_B64:
  case AMDGPU::S_NOR_B64:
  case AMDGPU::S_XNOR_B64: {
    const MachineOperand &Src1 = MI.getOperand(1);
    if (Src1.isReg() && Src1.getReg() == AMDGPU::EXEC)
      return MI.getOperand(0).getReg();
    const MachineOperand &Src2 = MI.getOperand(2);
    if (Src2.isReg() && Src2.getReg() == AMDGPU::EXEC)
      return MI.getOperand(0).getReg();
    break;
  }
  case AMDGPU::S_AND_B32:
  case AMDGPU::S_OR_B32:
  case AMDGPU::S_XOR_B32:
  case AMDGPU::S_ANDN2_B32:
  case AMDGPU::S_ORN2_B32:
  case AMDGPU::S_NAND_B32:
  case AMDGPU::S_NOR_B32:
  case AMDGPU::S_XNOR_B32: {
    const MachineOperand &Src1 = MI.getOperand(1);
    if (Src1.isReg() && Src1.getReg() == AMDGPU::EXEC_LO)
      return MI.getOperand(0).getReg();
    const MachineOperand &Src2 = MI.getOperand(2);
    if (Src2.isReg() && Src2.getReg() == AMDGPU::EXEC_LO)
      return MI.getOperand(0).getReg();
    break;
  }
  }

  return AMDGPU::NoRegister;
}

static unsigned getSaveExecOp(unsigned Opc) {
  switch (Opc) {
  case AMDGPU::S_AND_B64:
    return AMDGPU::S_AND_SAVEEXEC_B64;
  case AMDGPU::S_OR_B64:
    return AMDGPU::S_OR_SAVEEXEC_B64;
  case AMDGPU::S_XOR_B64:
    return AMDGPU::S_XOR_SAVEEXEC_B64;
  case AMDGPU::S_ANDN2_B64:
    return AMDGPU::S_ANDN2_SAVEEXEC_B64;
  case AMDGPU::S_ORN2_B64:
    return AMDGPU::S_ORN2_SAVEEXEC_B64;
  case AMDGPU::S_NAND_B64:
    return AMDGPU::S_NAND_SAVEEXEC_B64;
  case AMDGPU::S_NOR_B64:
    return AMDGPU::S_NOR_SAVEEXEC_B64;
  case AMDGPU::S_XNOR_B64:
    return AMDGPU::S_XNOR_SAVEEXEC_B64;
  case AMDGPU::S_AND_B32:
    return AMDGPU::S_AND_SAVEEXEC_B32;
  case AMDGPU::S_OR_B32:
    return AMDGPU::S_OR_SAVEEXEC_B32;
  case AMDGPU::S_XOR_B32:
    return AMDGPU::S_XOR_SAVEEXEC_B32;
  case AMDGPU::S_ANDN2_B32:
    return AMDGPU::S_ANDN2_SAVEEXEC_B32;
  case AMDGPU::S_ORN2_B32:
    return AMDGPU::S_ORN2_SAVEEXEC_B32;
  case AMDGPU::S_NAND_B32:
    return AMDGPU::S_NAND_SAVEEXEC_B32;
  case AMDGPU::S_NOR_B32:
    return AMDGPU::S_NOR_SAVEEXEC_B32;
  case AMDGPU::S_XNOR_B32:
    return AMDGPU::S_XNOR_SAVEEXEC_B32;
  default:
    return AMDGPU::INSTRUCTION_LIST_END;
  }
}

// These are only terminators to get correct spill code placement during
// register allocation, so turn them back into normal instructions.
bool SIOptimizeExecMasking::removeTerminatorBit(MachineInstr &MI) const {
  switch (MI.getOpcode()) {
  case AMDGPU::S_MOV_B32_term: {
    bool RegSrc = MI.getOperand(1).isReg();
    MI.setDesc(TII->get(RegSrc ? AMDGPU::COPY : AMDGPU::S_MOV_B32));
    return true;
  }
  case AMDGPU::S_MOV_B64_term: {
    bool RegSrc = MI.getOperand(1).isReg();
    MI.setDesc(TII->get(RegSrc ? AMDGPU::COPY : AMDGPU::S_MOV_B64));
    return true;
  }
  case AMDGPU::S_XOR_B64_term: {
    // This is only a terminator to get the correct spill code placement during
    // register allocation.
    MI.setDesc(TII->get(AMDGPU::S_XOR_B64));
    return true;
  }
  case AMDGPU::S_XOR_B32_term: {
    // This is only a terminator to get the correct spill code placement during
    // register allocation.
    MI.setDesc(TII->get(AMDGPU::S_XOR_B32));
    return true;
  }
  case AMDGPU::S_OR_B64_term: {
    // This is only a terminator to get the correct spill code placement during
    // register allocation.
    MI.setDesc(TII->get(AMDGPU::S_OR_B64));
    return true;
  }
  case AMDGPU::S_OR_B32_term: {
    // This is only a terminator to get the correct spill code placement during
    // register allocation.
    MI.setDesc(TII->get(AMDGPU::S_OR_B32));
    return true;
  }
  case AMDGPU::S_ANDN2_B64_term: {
    // This is only a terminator to get the correct spill code placement during
    // register allocation.
    MI.setDesc(TII->get(AMDGPU::S_ANDN2_B64));
    return true;
  }
  case AMDGPU::S_ANDN2_B32_term: {
    // This is only a terminator to get the correct spill code placement during
    // register allocation.
    MI.setDesc(TII->get(AMDGPU::S_ANDN2_B32));
    return true;
  }
  case AMDGPU::S_AND_B64_term: {
    // This is only a terminator to get the correct spill code placement during
    // register allocation.
    MI.setDesc(TII->get(AMDGPU::S_AND_B64));
    return true;
  }
  case AMDGPU::S_AND_B32_term: {
    // This is only a terminator to get the correct spill code placement during
    // register allocation.
    MI.setDesc(TII->get(AMDGPU::S_AND_B32));
    return true;
  }
  default:
    return false;
  }
}

// Turn all pseudoterminators in the block into their equivalent non-terminator
// instructions. Returns the reverse iterator to the first non-terminator
// instruction in the block.
MachineBasicBlock::reverse_iterator
SIOptimizeExecMasking::fixTerminators(MachineBasicBlock &MBB) const {
  MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend();

  bool Seen = false;
  MachineBasicBlock::reverse_iterator FirstNonTerm = I;
  for (; I != E; ++I) {
    if (!I->isTerminator())
      return Seen ? FirstNonTerm : I;

    if (removeTerminatorBit(*I)) {
      if (!Seen) {
        FirstNonTerm = I;
        Seen = true;
      }
    }
  }

  return FirstNonTerm;
}

MachineBasicBlock::reverse_iterator
SIOptimizeExecMasking::findExecCopy(MachineBasicBlock &MBB,
                                    MachineBasicBlock::reverse_iterator I,
                                    unsigned CopyToExec) const {
  const unsigned InstLimit = 25;

  auto E = MBB.rend();
  for (unsigned N = 0; N <= InstLimit && I != E; ++I, ++N) {
    Register CopyFromExec = isCopyFromExec(*I);
    if (CopyFromExec.isValid())
      return I;
  }

  return E;
}

// XXX - Seems LivePhysRegs doesn't work correctly since it will incorrectly
// report the register as unavailable because a super-register with a lane mask
// is unavailable.
static bool isLiveOut(const MachineBasicBlock &MBB, unsigned Reg) {
  for (MachineBasicBlock *Succ : MBB.successors()) {
    if (Succ->isLiveIn(Reg))
      return true;
  }

  return false;
}

// Backwards-iterate from Origin (for n=MaxInstructions iterations) until either
// the beginning of the BB is reached or Pred evaluates to true - which can be
// an arbitrary condition based on the current MachineInstr, for instance an
// target instruction. Breaks prematurely by returning nullptr if  one of the
// registers given in NonModifiableRegs is modified by the current instruction.
MachineInstr *SIOptimizeExecMasking::findInstrBackwards(
    MachineInstr &Origin, std::function<bool(MachineInstr *)> Pred,
    ArrayRef<MCRegister> NonModifiableRegs, unsigned MaxInstructions) const {
  MachineBasicBlock::reverse_iterator A = Origin.getReverseIterator(),
                                      E = Origin.getParent()->rend();
  unsigned CurrentIteration = 0;

  for (++A; CurrentIteration < MaxInstructions && A != E; ++A) {
    if (A->isDebugInstr())
      continue;

    if (Pred(&*A))
      return &*A;

    for (MCRegister Reg : NonModifiableRegs) {
      if (A->modifiesRegister(Reg, TRI))
        return nullptr;
    }

    ++CurrentIteration;
  }

  return nullptr;
}

// Determine if a register Reg is not re-defined and still in use
// in the range (Stop..Start].
// It does so by backwards calculating liveness from the end of the BB until
// either Stop or the beginning of the BB is reached.
// After liveness is calculated, we can determine if Reg is still in use and not
// defined inbetween the instructions.
bool SIOptimizeExecMasking::isRegisterInUseBetween(MachineInstr &Stop,
                                                   MachineInstr &Start,
                                                   MCRegister Reg,
                                                   bool UseLiveOuts,
                                                   bool IgnoreStart) const {
  LivePhysRegs LR(*TRI);
  if (UseLiveOuts)
    LR.addLiveOuts(*Stop.getParent());

  MachineBasicBlock::reverse_iterator A(Start);
  MachineBasicBlock::reverse_iterator E(Stop);

  if (IgnoreStart)
    ++A;

  for (; A != Stop.getParent()->rend() && A != Stop; ++A) {
    LR.stepBackward(*A);
  }

  return !LR.available(*MRI, Reg);
}

// Determine if a register Reg is not re-defined and still in use
// in the range (Stop..BB.end].
bool SIOptimizeExecMasking::isRegisterInUseAfter(MachineInstr &Stop,
                                                 MCRegister Reg) const {
  return isRegisterInUseBetween(Stop, *Stop.getParent()->rbegin(), Reg, true);
}

// Optimize sequences emitted for control flow lowering. They are originally
// emitted as the separate operations because spill code may need to be
// inserted for the saved copy of exec.
//
//     x = copy exec
//     z = s_<op>_b64 x, y
//     exec = copy z
// =>
//     x = s_<op>_saveexec_b64 y
//
bool SIOptimizeExecMasking::optimizeExecSequence() {
  bool Changed = false;
  for (MachineBasicBlock &MBB : *MF) {
    MachineBasicBlock::reverse_iterator I = fixTerminators(MBB);
    MachineBasicBlock::reverse_iterator E = MBB.rend();
    if (I == E)
      continue;

    // It's possible to see other terminator copies after the exec copy. This
    // can happen if control flow pseudos had their outputs used by phis.
    Register CopyToExec;

    unsigned SearchCount = 0;
    const unsigned SearchLimit = 5;
    while (I != E && SearchCount++ < SearchLimit) {
      CopyToExec = isCopyToExec(*I);
      if (CopyToExec)
        break;
      ++I;
    }

    if (!CopyToExec)
      continue;

    // Scan backwards to find the def.
    auto *CopyToExecInst = &*I;
    auto CopyFromExecInst = findExecCopy(MBB, I, CopyToExec);
    if (CopyFromExecInst == E) {
      auto PrepareExecInst = std::next(I);
      if (PrepareExecInst == E)
        continue;
      // Fold exec = COPY (S_AND_B64 reg, exec) -> exec = S_AND_B64 reg, exec
      if (CopyToExecInst->getOperand(1).isKill() &&
          isLogicalOpOnExec(*PrepareExecInst) == CopyToExec) {
        LLVM_DEBUG(dbgs() << "Fold exec copy: " << *PrepareExecInst);

        PrepareExecInst->getOperand(0).setReg(Exec);

        LLVM_DEBUG(dbgs() << "into: " << *PrepareExecInst << '\n');

        CopyToExecInst->eraseFromParent();
        Changed = true;
      }

      continue;
    }

    if (isLiveOut(MBB, CopyToExec)) {
      // The copied register is live out and has a second use in another block.
      LLVM_DEBUG(dbgs() << "Exec copy source register is live out\n");
      continue;
    }

    Register CopyFromExec = CopyFromExecInst->getOperand(0).getReg();
    MachineInstr *SaveExecInst = nullptr;
    SmallVector<MachineInstr *, 4> OtherUseInsts;

    for (MachineBasicBlock::iterator
             J = std::next(CopyFromExecInst->getIterator()),
             JE = I->getIterator();
         J != JE; ++J) {
      if (SaveExecInst && J->readsRegister(Exec, TRI)) {
        LLVM_DEBUG(dbgs() << "exec read prevents saveexec: " << *J << '\n');
        // Make sure this is inserted after any VALU ops that may have been
        // scheduled in between.
        SaveExecInst = nullptr;
        break;
      }

      bool ReadsCopyFromExec = J->readsRegister(CopyFromExec, TRI);

      if (J->modifiesRegister(CopyToExec, TRI)) {
        if (SaveExecInst) {
          LLVM_DEBUG(dbgs() << "Multiple instructions modify "
                            << printReg(CopyToExec, TRI) << '\n');
          SaveExecInst = nullptr;
          break;
        }

        unsigned SaveExecOp = getSaveExecOp(J->getOpcode());
        if (SaveExecOp == AMDGPU::INSTRUCTION_LIST_END)
          break;

        if (ReadsCopyFromExec) {
          SaveExecInst = &*J;
          LLVM_DEBUG(dbgs() << "Found save exec op: " << *SaveExecInst << '\n');
          continue;
        } else {
          LLVM_DEBUG(dbgs()
                     << "Instruction does not read exec copy: " << *J << '\n');
          break;
        }
      } else if (ReadsCopyFromExec && !SaveExecInst) {
        // Make sure no other instruction is trying to use this copy, before it
        // will be rewritten by the saveexec, i.e. hasOneUse. There may have
        // been another use, such as an inserted spill. For example:
        //
        // %sgpr0_sgpr1 = COPY %exec
        // spill %sgpr0_sgpr1
        // %sgpr2_sgpr3 = S_AND_B64 %sgpr0_sgpr1
        //
        LLVM_DEBUG(dbgs() << "Found second use of save inst candidate: " << *J
                          << '\n');
        break;
      }

      if (SaveExecInst && J->readsRegister(CopyToExec, TRI)) {
        assert(SaveExecInst != &*J);
        OtherUseInsts.push_back(&*J);
      }
    }

    if (!SaveExecInst)
      continue;

    LLVM_DEBUG(dbgs() << "Insert save exec op: " << *SaveExecInst << '\n');

    MachineOperand &Src0 = SaveExecInst->getOperand(1);
    MachineOperand &Src1 = SaveExecInst->getOperand(2);

    MachineOperand *OtherOp = nullptr;

    if (Src0.isReg() && Src0.getReg() == CopyFromExec) {
      OtherOp = &Src1;
    } else if (Src1.isReg() && Src1.getReg() == CopyFromExec) {
      if (!SaveExecInst->isCommutable())
        break;

      OtherOp = &Src0;
    } else
      llvm_unreachable("unexpected");

    CopyFromExecInst->eraseFromParent();

    auto InsPt = SaveExecInst->getIterator();
    const DebugLoc &DL = SaveExecInst->getDebugLoc();

    BuildMI(MBB, InsPt, DL, TII->get(getSaveExecOp(SaveExecInst->getOpcode())),
            CopyFromExec)
        .addReg(OtherOp->getReg());
    SaveExecInst->eraseFromParent();

    CopyToExecInst->eraseFromParent();

    for (MachineInstr *OtherInst : OtherUseInsts) {
      OtherInst->substituteRegister(CopyToExec, Exec, AMDGPU::NoSubRegister,
                                    *TRI);
    }

    Changed = true;
  }

  return Changed;
}

// Inserts the optimized s_mov_b32 / v_cmpx sequence based on the
// operands extracted from a v_cmp ..., s_and_saveexec pattern.
bool SIOptimizeExecMasking::optimizeVCMPSaveExecSequence(
    MachineInstr &SaveExecInstr, MachineInstr &VCmp, MCRegister Exec) const {
  const int NewOpcode = AMDGPU::getVCMPXOpFromVCMP(VCmp.getOpcode());

  if (NewOpcode == -1)
    return false;

  MachineOperand *Src0 = TII->getNamedOperand(VCmp, AMDGPU::OpName::src0);
  MachineOperand *Src1 = TII->getNamedOperand(VCmp, AMDGPU::OpName::src1);

  Register MoveDest = SaveExecInstr.getOperand(0).getReg();

  MachineBasicBlock::instr_iterator InsertPosIt = SaveExecInstr.getIterator();
  if (!SaveExecInstr.uses().empty()) {
    bool IsSGPR32 = TRI->getRegSizeInBits(MoveDest, *MRI) == 32;
    unsigned MovOpcode = IsSGPR32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
    BuildMI(*SaveExecInstr.getParent(), InsertPosIt,
            SaveExecInstr.getDebugLoc(), TII->get(MovOpcode), MoveDest)
        .addReg(Exec);
  }

  // Omit dst as V_CMPX is implicitly writing to EXEC.
  // Add dummy src and clamp modifiers, if needed.
  auto Builder = BuildMI(*VCmp.getParent(), std::next(InsertPosIt),
                         VCmp.getDebugLoc(), TII->get(NewOpcode));

  auto TryAddImmediateValueFromNamedOperand =
      [&](unsigned OperandName) -> void {
    if (auto *Mod = TII->getNamedOperand(VCmp, OperandName))
      Builder.addImm(Mod->getImm());
  };

  TryAddImmediateValueFromNamedOperand(AMDGPU::OpName::src0_modifiers);
  Builder.add(*Src0);

  TryAddImmediateValueFromNamedOperand(AMDGPU::OpName::src1_modifiers);
  Builder.add(*Src1);

  TryAddImmediateValueFromNamedOperand(AMDGPU::OpName::clamp);

  // The kill flags may no longer be correct.
  if (Src0->isReg())
    MRI->clearKillFlags(Src0->getReg());
  if (Src1->isReg())
    MRI->clearKillFlags(Src1->getReg());

  SaveExecInstr.eraseFromParent();
  VCmp.eraseFromParent();

  return true;
}

// Record (on GFX10.3 and later) occurences of
// v_cmp_* SGPR, IMM, VGPR
// s_and_saveexec_b32 EXEC_SGPR_DEST, SGPR
// to be replaced with
// s_mov_b32 EXEC_SGPR_DEST, exec_lo
// v_cmpx_* IMM, VGPR
// to reduce pipeline stalls.
void SIOptimizeExecMasking::tryRecordVCmpxAndSaveexecSequence(
    MachineInstr &MI) {
  if (!ST->hasGFX10_3Insts())
    return;

  const unsigned AndSaveExecOpcode =
      ST->isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64;

  if (MI.getOpcode() != AndSaveExecOpcode)
    return;

  Register SaveExecDest = MI.getOperand(0).getReg();
  if (!TRI->isSGPRReg(*MRI, SaveExecDest))
    return;

  MachineOperand *SaveExecSrc0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
  if (!SaveExecSrc0->isReg())
    return;

  // Tries to find a possibility to optimize a v_cmp ..., s_and_saveexec
  // sequence by looking at an instance of a s_and_saveexec instruction. Returns
  // a pointer to the v_cmp instruction if it is safe to replace the sequence
  // (see the conditions in the function body). This is after register
  // allocation, so some checks on operand dependencies need to be considered.
  MachineInstr *VCmp = nullptr;

  // Try to find the last v_cmp instruction that defs the saveexec input
  // operand without any write to Exec or the saveexec input operand inbetween.
  VCmp = findInstrBackwards(
      MI,
      [&](MachineInstr *Check) {
        return AMDGPU::getVCMPXOpFromVCMP(Check->getOpcode()) != -1 &&
               Check->modifiesRegister(SaveExecSrc0->getReg(), TRI);
      },
      {Exec, SaveExecSrc0->getReg()});

  if (!VCmp)
    return;

  MachineOperand *VCmpDest = TII->getNamedOperand(*VCmp, AMDGPU::OpName::sdst);
  assert(VCmpDest && "Should have an sdst operand!");

  // Check if any of the v_cmp source operands is written by the saveexec.
  MachineOperand *Src0 = TII->getNamedOperand(*VCmp, AMDGPU::OpName::src0);
  if (Src0->isReg() && TRI->isSGPRReg(*MRI, Src0->getReg()) &&
      MI.modifiesRegister(Src0->getReg(), TRI))
    return;

  MachineOperand *Src1 = TII->getNamedOperand(*VCmp, AMDGPU::OpName::src1);
  if (Src1->isReg() && TRI->isSGPRReg(*MRI, Src1->getReg()) &&
      MI.modifiesRegister(Src1->getReg(), TRI))
    return;

  // Don't do the transformation if the destination operand is included in
  // it's MBB Live-outs, meaning it's used in any of it's successors, leading
  // to incorrect code if the v_cmp and therefore the def of
  // the dest operand is removed.
  if (isLiveOut(*VCmp->getParent(), VCmpDest->getReg()))
    return;

  // If the v_cmp target is in use between v_cmp and s_and_saveexec or after the
  // s_and_saveexec, skip the optimization.
  if (isRegisterInUseBetween(*VCmp, MI, VCmpDest->getReg(), false, true) ||
      isRegisterInUseAfter(MI, VCmpDest->getReg()))
    return;

  // Try to determine if there is a write to any of the VCmp
  // operands between the saveexec and the vcmp.
  // If yes, additional VGPR spilling might need to be inserted. In this case,
  // it's not worth replacing the instruction sequence.
  SmallVector<MCRegister, 2> NonDefRegs;
  if (Src0->isReg())
    NonDefRegs.push_back(Src0->getReg());

  if (Src1->isReg())
    NonDefRegs.push_back(Src1->getReg());

  if (!findInstrBackwards(
          MI, [&](MachineInstr *Check) { return Check == VCmp; }, NonDefRegs))
    return;

  if (VCmp)
    SaveExecVCmpMapping[&MI] = VCmp;
}

// Record occurences of
// s_or_saveexec s_o, s_i
// s_xor exec, exec, s_o
// to be replaced with
// s_andn2_saveexec s_o, s_i.
void SIOptimizeExecMasking::tryRecordOrSaveexecXorSequence(MachineInstr &MI) {
  const unsigned XorOpcode =
      ST->isWave32() ? AMDGPU::S_XOR_B32 : AMDGPU::S_XOR_B64;

  if (MI.getOpcode() == XorOpcode && &MI != &MI.getParent()->front()) {
    const MachineOperand &XorDst = MI.getOperand(0);
    const MachineOperand &XorSrc0 = MI.getOperand(1);
    const MachineOperand &XorSrc1 = MI.getOperand(2);

    if (XorDst.isReg() && XorDst.getReg() == Exec && XorSrc0.isReg() &&
        XorSrc1.isReg() &&
        (XorSrc0.getReg() == Exec || XorSrc1.getReg() == Exec)) {
      const unsigned OrSaveexecOpcode = ST->isWave32()
                                            ? AMDGPU::S_OR_SAVEEXEC_B32
                                            : AMDGPU::S_OR_SAVEEXEC_B64;

      // Peek at the previous instruction and check if this is a relevant
      // s_or_saveexec instruction.
      MachineInstr &PossibleOrSaveexec = *MI.getPrevNode();
      if (PossibleOrSaveexec.getOpcode() != OrSaveexecOpcode)
        return;

      const MachineOperand &OrDst = PossibleOrSaveexec.getOperand(0);
      const MachineOperand &OrSrc0 = PossibleOrSaveexec.getOperand(1);
      if (OrDst.isReg() && OrSrc0.isReg()) {
        if ((XorSrc0.getReg() == Exec && XorSrc1.getReg() == OrDst.getReg()) ||
            (XorSrc0.getReg() == OrDst.getReg() && XorSrc1.getReg() == Exec)) {
          OrXors.emplace_back(&PossibleOrSaveexec, &MI);
        }
      }
    }
  }
}

bool SIOptimizeExecMasking::optimizeOrSaveexecXorSequences() {
  if (OrXors.empty()) {
    return false;
  }

  bool Changed = false;
  const unsigned Andn2Opcode = ST->isWave32() ? AMDGPU::S_ANDN2_SAVEEXEC_B32
                                              : AMDGPU::S_ANDN2_SAVEEXEC_B64;

  for (const auto &Pair : OrXors) {
    MachineInstr *Or = nullptr;
    MachineInstr *Xor = nullptr;
    std::tie(Or, Xor) = Pair;
    BuildMI(*Or->getParent(), Or->getIterator(), Or->getDebugLoc(),
            TII->get(Andn2Opcode), Or->getOperand(0).getReg())
        .addReg(Or->getOperand(1).getReg());

    Or->eraseFromParent();
    Xor->eraseFromParent();

    Changed = true;
  }

  return Changed;
}

bool SIOptimizeExecMasking::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  this->MF = &MF;
  ST = &MF.getSubtarget<GCNSubtarget>();
  TRI = ST->getRegisterInfo();
  TII = ST->getInstrInfo();
  MRI = &MF.getRegInfo();
  Exec = TRI->getExec();

  bool Changed = optimizeExecSequence();

  OrXors.clear();
  SaveExecVCmpMapping.clear();
  static unsigned SearchWindow = 10;
  for (MachineBasicBlock &MBB : MF) {
    unsigned SearchCount = 0;

    for (auto &MI : llvm::reverse(MBB)) {
      if (MI.isDebugInstr())
        continue;

      if (SearchCount >= SearchWindow) {
        break;
      }

      tryRecordOrSaveexecXorSequence(MI);
      tryRecordVCmpxAndSaveexecSequence(MI);

      if (MI.modifiesRegister(Exec, TRI)) {
        break;
      }

      ++SearchCount;
    }
  }

  Changed |= optimizeOrSaveexecXorSequences();
  for (const auto &Entry : SaveExecVCmpMapping) {
    MachineInstr *SaveExecInstr = Entry.getFirst();
    MachineInstr *VCmpInstr = Entry.getSecond();

    Changed |= optimizeVCMPSaveExecSequence(*SaveExecInstr, *VCmpInstr, Exec);
  }

  return Changed;
}