aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonVectorCombine.cpp
blob: bd0232c71d48b818122042f5bbe36b5566d85c0b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
//===-- HexagonVectorCombine.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// HexagonVectorCombine is a utility class implementing a variety of functions
// that assist in vector-based optimizations.
//
// AlignVectors: replace unaligned vector loads and stores with aligned ones.
//===----------------------------------------------------------------------===//

#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsHexagon.h"
#include "llvm/IR/Metadata.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"

#include "HexagonSubtarget.h"
#include "HexagonTargetMachine.h"

#include <algorithm>
#include <deque>
#include <map>
#include <set>
#include <utility>
#include <vector>

#define DEBUG_TYPE "hexagon-vc"

using namespace llvm;

namespace {
class HexagonVectorCombine {
public:
  HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_,
                       DominatorTree &DT_, TargetLibraryInfo &TLI_,
                       const TargetMachine &TM_)
      : F(F_), DL(F.getParent()->getDataLayout()), AA(AA_), AC(AC_), DT(DT_),
        TLI(TLI_),
        HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {}

  bool run();

  // Common integer type.
  IntegerType *getIntTy() const;
  // Byte type: either scalar (when Length = 0), or vector with given
  // element count.
  Type *getByteTy(int ElemCount = 0) const;
  // Boolean type: either scalar (when Length = 0), or vector with given
  // element count.
  Type *getBoolTy(int ElemCount = 0) const;
  // Create a ConstantInt of type returned by getIntTy with the value Val.
  ConstantInt *getConstInt(int Val) const;
  // Get the integer value of V, if it exists.
  Optional<APInt> getIntValue(const Value *Val) const;
  // Is V a constant 0, or a vector of 0s?
  bool isZero(const Value *Val) const;
  // Is V an undef value?
  bool isUndef(const Value *Val) const;

  int getSizeOf(const Value *Val) const;
  int getSizeOf(const Type *Ty) const;
  int getAllocSizeOf(const Type *Ty) const;
  int getTypeAlignment(Type *Ty) const;

  Constant *getNullValue(Type *Ty) const;
  Constant *getFullValue(Type *Ty) const;

  Value *insertb(IRBuilder<> &Builder, Value *Dest, Value *Src, int Start,
                 int Length, int Where) const;
  Value *vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const;
  Value *vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const;
  Value *concat(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) const;
  Value *vresize(IRBuilder<> &Builder, Value *Val, int NewSize,
                 Value *Pad) const;
  Value *rescale(IRBuilder<> &Builder, Value *Mask, Type *FromTy,
                 Type *ToTy) const;
  Value *vlsb(IRBuilder<> &Builder, Value *Val) const;
  Value *vbytes(IRBuilder<> &Builder, Value *Val) const;

  Value *createHvxIntrinsic(IRBuilder<> &Builder, Intrinsic::ID IntID,
                            Type *RetTy, ArrayRef<Value *> Args) const;

  Optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const;

  template <typename T = std::vector<Instruction *>>
  bool isSafeToMoveBeforeInBB(const Instruction &In,
                              BasicBlock::const_iterator To,
                              const T &Ignore = {}) const;

  Function &F;
  const DataLayout &DL;
  AliasAnalysis &AA;
  AssumptionCache &AC;
  DominatorTree &DT;
  TargetLibraryInfo &TLI;
  const HexagonSubtarget &HST;

private:
#ifndef NDEBUG
  // These two functions are only used for assertions at the moment.
  bool isByteVecTy(Type *Ty) const;
  bool isSectorTy(Type *Ty) const;
#endif
  Value *getElementRange(IRBuilder<> &Builder, Value *Lo, Value *Hi, int Start,
                         int Length) const;
};

class AlignVectors {
public:
  AlignVectors(HexagonVectorCombine &HVC_) : HVC(HVC_) {}

  bool run();

private:
  using InstList = std::vector<Instruction *>;

  struct Segment {
    void *Data;
    int Start;
    int Size;
  };

  struct AddrInfo {
    AddrInfo(const AddrInfo &) = default;
    AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T,
             Align H)
        : Inst(I), Addr(A), ValTy(T), HaveAlign(H),
          NeedAlign(HVC.getTypeAlignment(ValTy)) {}

    // XXX: add Size member?
    Instruction *Inst;
    Value *Addr;
    Type *ValTy;
    Align HaveAlign;
    Align NeedAlign;
    int Offset = 0; // Offset (in bytes) from the first member of the
                    // containing AddrList.
  };
  using AddrList = std::vector<AddrInfo>;

  struct InstrLess {
    bool operator()(const Instruction *A, const Instruction *B) const {
      return A->comesBefore(B);
    }
  };
  using DepList = std::set<Instruction *, InstrLess>;

  struct MoveGroup {
    MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load)
        : Base(B), Main{AI.Inst}, IsHvx(Hvx), IsLoad(Load) {}
    Instruction *Base; // Base instruction of the parent address group.
    InstList Main;     // Main group of instructions.
    InstList Deps;     // List of dependencies.
    bool IsHvx;        // Is this group of HVX instructions?
    bool IsLoad;       // Is this a load group?
  };
  using MoveList = std::vector<MoveGroup>;

  struct ByteSpan {
    struct Segment {
      // Segment of a Value: 'Len' bytes starting at byte 'Begin'.
      Segment(Value *Val, int Begin, int Len)
          : Val(Val), Start(Begin), Size(Len) {}
      Segment(const Segment &Seg) = default;
      Value *Val; // Value representable as a sequence of bytes.
      int Start;  // First byte of the value that belongs to the segment.
      int Size;   // Number of bytes in the segment.
    };

    struct Block {
      Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {}
      Block(Value *Val, int Off, int Len, int Pos)
          : Seg(Val, Off, Len), Pos(Pos) {}
      Block(const Block &Blk) = default;
      Segment Seg; // Value segment.
      int Pos;     // Position (offset) of the segment in the Block.
    };

    int extent() const;
    ByteSpan section(int Start, int Length) const;
    ByteSpan &shift(int Offset);
    SmallVector<Value *, 8> values() const;

    int size() const { return Blocks.size(); }
    Block &operator[](int i) { return Blocks[i]; }

    std::vector<Block> Blocks;

    using iterator = decltype(Blocks)::iterator;
    iterator begin() { return Blocks.begin(); }
    iterator end() { return Blocks.end(); }
    using const_iterator = decltype(Blocks)::const_iterator;
    const_iterator begin() const { return Blocks.begin(); }
    const_iterator end() const { return Blocks.end(); }
  };

  Align getAlignFromValue(const Value *V) const;
  Optional<MemoryLocation> getLocation(const Instruction &In) const;
  Optional<AddrInfo> getAddrInfo(Instruction &In) const;
  bool isHvx(const AddrInfo &AI) const;

  Value *getPayload(Value *Val) const;
  Value *getMask(Value *Val) const;
  Value *getPassThrough(Value *Val) const;

  Value *createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy,
                               int Adjust) const;
  Value *createAlignedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy,
                              int Alignment) const;
  Value *createAlignedLoad(IRBuilder<> &Builder, Type *ValTy, Value *Ptr,
                           int Alignment, Value *Mask, Value *PassThru) const;
  Value *createAlignedStore(IRBuilder<> &Builder, Value *Val, Value *Ptr,
                            int Alignment, Value *Mask) const;

  bool createAddressGroups();
  MoveList createLoadGroups(const AddrList &Group) const;
  MoveList createStoreGroups(const AddrList &Group) const;
  bool move(const MoveGroup &Move) const;
  bool realignGroup(const MoveGroup &Move) const;

  friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI);
  friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG);
  friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS);

  std::map<Instruction *, AddrList> AddrGroups;
  HexagonVectorCombine &HVC;
};

LLVM_ATTRIBUTE_UNUSED
raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) {
  OS << "Inst: " << AI.Inst << "  " << *AI.Inst << '\n';
  OS << "Addr: " << *AI.Addr << '\n';
  OS << "Type: " << *AI.ValTy << '\n';
  OS << "HaveAlign: " << AI.HaveAlign.value() << '\n';
  OS << "NeedAlign: " << AI.NeedAlign.value() << '\n';
  OS << "Offset: " << AI.Offset;
  return OS;
}

LLVM_ATTRIBUTE_UNUSED
raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) {
  OS << "Main\n";
  for (Instruction *I : MG.Main)
    OS << "  " << *I << '\n';
  OS << "Deps\n";
  for (Instruction *I : MG.Deps)
    OS << "  " << *I << '\n';
  return OS;
}

LLVM_ATTRIBUTE_UNUSED
raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) {
  OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n';
  for (const AlignVectors::ByteSpan::Block &B : BS) {
    OS << "  @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] "
       << *B.Seg.Val << '\n';
  }
  OS << ']';
  return OS;
}

} // namespace

namespace {

template <typename T> T *getIfUnordered(T *MaybeT) {
  return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr;
}
template <typename T> T *isCandidate(Instruction *In) {
  return dyn_cast<T>(In);
}
template <> LoadInst *isCandidate<LoadInst>(Instruction *In) {
  return getIfUnordered(dyn_cast<LoadInst>(In));
}
template <> StoreInst *isCandidate<StoreInst>(Instruction *In) {
  return getIfUnordered(dyn_cast<StoreInst>(In));
}

#if !defined(_MSC_VER) || _MSC_VER >= 1926
// VS2017 and some versions of VS2019 have trouble compiling this:
// error C2976: 'std::map': too few template arguments
// VS 2019 16.x is known to work, except for 16.4/16.5 (MSC_VER 1924/1925)
template <typename Pred, typename... Ts>
void erase_if(std::map<Ts...> &map, Pred p)
#else
template <typename Pred, typename T, typename U>
void erase_if(std::map<T, U> &map, Pred p)
#endif
{
  for (auto i = map.begin(), e = map.end(); i != e;) {
    if (p(*i))
      i = map.erase(i);
    else
      i = std::next(i);
  }
}

// Forward other erase_ifs to the LLVM implementations.
template <typename Pred, typename T> void erase_if(T &&container, Pred p) {
  llvm::erase_if(std::forward<T>(container), p);
}

} // namespace

// --- Begin AlignVectors

auto AlignVectors::ByteSpan::extent() const -> int {
  if (size() == 0)
    return 0;
  int Min = Blocks[0].Pos;
  int Max = Blocks[0].Pos + Blocks[0].Seg.Size;
  for (int i = 1, e = size(); i != e; ++i) {
    Min = std::min(Min, Blocks[i].Pos);
    Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size);
  }
  return Max - Min;
}

auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan {
  ByteSpan Section;
  for (const ByteSpan::Block &B : Blocks) {
    int L = std::max(B.Pos, Start);                       // Left end.
    int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1.
    if (L < R) {
      // How much to chop off the beginning of the segment:
      int Off = L > B.Pos ? L - B.Pos : 0;
      Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L);
    }
  }
  return Section;
}

auto AlignVectors::ByteSpan::shift(int Offset) -> ByteSpan & {
  for (Block &B : Blocks)
    B.Pos += Offset;
  return *this;
}

auto AlignVectors::ByteSpan::values() const -> SmallVector<Value *, 8> {
  SmallVector<Value *, 8> Values(Blocks.size());
  for (int i = 0, e = Blocks.size(); i != e; ++i)
    Values[i] = Blocks[i].Seg.Val;
  return Values;
}

auto AlignVectors::getAlignFromValue(const Value *V) const -> Align {
  const auto *C = dyn_cast<ConstantInt>(V);
  assert(C && "Alignment must be a compile-time constant integer");
  return C->getAlignValue();
}

auto AlignVectors::getAddrInfo(Instruction &In) const -> Optional<AddrInfo> {
  if (auto *L = isCandidate<LoadInst>(&In))
    return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(),
                    L->getAlign());
  if (auto *S = isCandidate<StoreInst>(&In))
    return AddrInfo(HVC, S, S->getPointerOperand(),
                    S->getValueOperand()->getType(), S->getAlign());
  if (auto *II = isCandidate<IntrinsicInst>(&In)) {
    Intrinsic::ID ID = II->getIntrinsicID();
    switch (ID) {
    case Intrinsic::masked_load:
      return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(),
                      getAlignFromValue(II->getArgOperand(1)));
    case Intrinsic::masked_store:
      return AddrInfo(HVC, II, II->getArgOperand(1),
                      II->getArgOperand(0)->getType(),
                      getAlignFromValue(II->getArgOperand(2)));
    }
  }
  return Optional<AddrInfo>();
}

auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool {
  return HVC.HST.isTypeForHVX(AI.ValTy);
}

auto AlignVectors::getPayload(Value *Val) const -> Value * {
  if (auto *In = dyn_cast<Instruction>(Val)) {
    Intrinsic::ID ID = 0;
    if (auto *II = dyn_cast<IntrinsicInst>(In))
      ID = II->getIntrinsicID();
    if (isa<StoreInst>(In) || ID == Intrinsic::masked_store)
      return In->getOperand(0);
  }
  return Val;
}

auto AlignVectors::getMask(Value *Val) const -> Value * {
  if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
    switch (II->getIntrinsicID()) {
    case Intrinsic::masked_load:
      return II->getArgOperand(2);
    case Intrinsic::masked_store:
      return II->getArgOperand(3);
    }
  }

  Type *ValTy = getPayload(Val)->getType();
  if (auto *VecTy = dyn_cast<VectorType>(ValTy)) {
    int ElemCount = VecTy->getElementCount().getFixedValue();
    return HVC.getFullValue(HVC.getBoolTy(ElemCount));
  }
  return HVC.getFullValue(HVC.getBoolTy());
}

auto AlignVectors::getPassThrough(Value *Val) const -> Value * {
  if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
    if (II->getIntrinsicID() == Intrinsic::masked_load)
      return II->getArgOperand(3);
  }
  return UndefValue::get(getPayload(Val)->getType());
}

auto AlignVectors::createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr,
                                         Type *ValTy, int Adjust) const
    -> Value * {
  // The adjustment is in bytes, but if it's a multiple of the type size,
  // we don't need to do pointer casts.
  auto *PtrTy = cast<PointerType>(Ptr->getType());
  if (!PtrTy->isOpaque()) {
    Type *ElemTy = PtrTy->getNonOpaquePointerElementType();
    int ElemSize = HVC.getAllocSizeOf(ElemTy);
    if (Adjust % ElemSize == 0 && Adjust != 0) {
      Value *Tmp0 =
          Builder.CreateGEP(ElemTy, Ptr, HVC.getConstInt(Adjust / ElemSize));
      return Builder.CreatePointerCast(Tmp0, ValTy->getPointerTo());
    }
  }

  PointerType *CharPtrTy = Type::getInt8PtrTy(HVC.F.getContext());
  Value *Tmp0 = Builder.CreatePointerCast(Ptr, CharPtrTy);
  Value *Tmp1 = Builder.CreateGEP(Type::getInt8Ty(HVC.F.getContext()), Tmp0,
                                  HVC.getConstInt(Adjust));
  return Builder.CreatePointerCast(Tmp1, ValTy->getPointerTo());
}

auto AlignVectors::createAlignedPointer(IRBuilder<> &Builder, Value *Ptr,
                                        Type *ValTy, int Alignment) const
    -> Value * {
  Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy());
  Value *Mask = HVC.getConstInt(-Alignment);
  Value *And = Builder.CreateAnd(AsInt, Mask);
  return Builder.CreateIntToPtr(And, ValTy->getPointerTo());
}

auto AlignVectors::createAlignedLoad(IRBuilder<> &Builder, Type *ValTy,
                                     Value *Ptr, int Alignment, Value *Mask,
                                     Value *PassThru) const -> Value * {
  assert(!HVC.isUndef(Mask)); // Should this be allowed?
  if (HVC.isZero(Mask))
    return PassThru;
  if (Mask == ConstantInt::getTrue(Mask->getType()))
    return Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment));
  return Builder.CreateMaskedLoad(ValTy, Ptr, Align(Alignment), Mask, PassThru);
}

auto AlignVectors::createAlignedStore(IRBuilder<> &Builder, Value *Val,
                                      Value *Ptr, int Alignment,
                                      Value *Mask) const -> Value * {
  if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask))
    return UndefValue::get(Val->getType());
  if (Mask == ConstantInt::getTrue(Mask->getType()))
    return Builder.CreateAlignedStore(Val, Ptr, Align(Alignment));
  return Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask);
}

auto AlignVectors::createAddressGroups() -> bool {
  // An address group created here may contain instructions spanning
  // multiple basic blocks.
  AddrList WorkStack;

  auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> {
    for (AddrInfo &W : WorkStack) {
      if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr))
        return std::make_pair(W.Inst, *D);
    }
    return std::make_pair(nullptr, 0);
  };

  auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void {
    BasicBlock &Block = *DomN->getBlock();
    for (Instruction &I : Block) {
      auto AI = this->getAddrInfo(I); // Use this-> for gcc6.
      if (!AI)
        continue;
      auto F = findBaseAndOffset(*AI);
      Instruction *GroupInst;
      if (Instruction *BI = F.first) {
        AI->Offset = F.second;
        GroupInst = BI;
      } else {
        WorkStack.push_back(*AI);
        GroupInst = AI->Inst;
      }
      AddrGroups[GroupInst].push_back(*AI);
    }

    for (DomTreeNode *C : DomN->children())
      Visit(C, Visit);

    while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block)
      WorkStack.pop_back();
  };

  traverseBlock(HVC.DT.getRootNode(), traverseBlock);
  assert(WorkStack.empty());

  // AddrGroups are formed.

  // Remove groups of size 1.
  erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; });
  // Remove groups that don't use HVX types.
  erase_if(AddrGroups, [&](auto &G) {
    return llvm::none_of(
        G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); });
  });

  return !AddrGroups.empty();
}

auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList {
  // Form load groups.
  // To avoid complications with moving code across basic blocks, only form
  // groups that are contained within a single basic block.

  auto getUpwardDeps = [](Instruction *In, Instruction *Base) {
    BasicBlock *Parent = Base->getParent();
    assert(In->getParent() == Parent &&
           "Base and In should be in the same block");
    assert(Base->comesBefore(In) && "Base should come before In");

    DepList Deps;
    std::deque<Instruction *> WorkQ = {In};
    while (!WorkQ.empty()) {
      Instruction *D = WorkQ.front();
      WorkQ.pop_front();
      Deps.insert(D);
      for (Value *Op : D->operands()) {
        if (auto *I = dyn_cast<Instruction>(Op)) {
          if (I->getParent() == Parent && Base->comesBefore(I))
            WorkQ.push_back(I);
        }
      }
    }
    return Deps;
  };

  auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
    assert(!Move.Main.empty() && "Move group should have non-empty Main");
    // Don't mix HVX and non-HVX instructions.
    if (Move.IsHvx != isHvx(Info))
      return false;
    // Leading instruction in the load group.
    Instruction *Base = Move.Main.front();
    if (Base->getParent() != Info.Inst->getParent())
      return false;

    auto isSafeToMoveToBase = [&](const Instruction *I) {
      return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator());
    };
    DepList Deps = getUpwardDeps(Info.Inst, Base);
    if (!llvm::all_of(Deps, isSafeToMoveToBase))
      return false;

    // The dependencies will be moved together with the load, so make sure
    // that none of them could be moved independently in another group.
    Deps.erase(Info.Inst);
    auto inAddrMap = [&](Instruction *I) { return AddrGroups.count(I) > 0; };
    if (llvm::any_of(Deps, inAddrMap))
      return false;
    Move.Main.push_back(Info.Inst);
    llvm::append_range(Move.Deps, Deps);
    return true;
  };

  MoveList LoadGroups;

  for (const AddrInfo &Info : Group) {
    if (!Info.Inst->mayReadFromMemory())
      continue;
    if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back()))
      LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true);
  }

  // Erase singleton groups.
  erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
  return LoadGroups;
}

auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList {
  // Form store groups.
  // To avoid complications with moving code across basic blocks, only form
  // groups that are contained within a single basic block.

  auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
    assert(!Move.Main.empty() && "Move group should have non-empty Main");
    // For stores with return values we'd have to collect downward depenencies.
    // There are no such stores that we handle at the moment, so omit that.
    assert(Info.Inst->getType()->isVoidTy() &&
           "Not handling stores with return values");
    // Don't mix HVX and non-HVX instructions.
    if (Move.IsHvx != isHvx(Info))
      return false;
    // For stores we need to be careful whether it's safe to move them.
    // Stores that are otherwise safe to move together may not appear safe
    // to move over one another (i.e. isSafeToMoveBefore may return false).
    Instruction *Base = Move.Main.front();
    if (Base->getParent() != Info.Inst->getParent())
      return false;
    if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main))
      return false;
    Move.Main.push_back(Info.Inst);
    return true;
  };

  MoveList StoreGroups;

  for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) {
    const AddrInfo &Info = *I;
    if (!Info.Inst->mayWriteToMemory())
      continue;
    if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back()))
      StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false);
  }

  // Erase singleton groups.
  erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
  return StoreGroups;
}

auto AlignVectors::move(const MoveGroup &Move) const -> bool {
  assert(!Move.Main.empty() && "Move group should have non-empty Main");
  Instruction *Where = Move.Main.front();

  if (Move.IsLoad) {
    // Move all deps to before Where, keeping order.
    for (Instruction *D : Move.Deps)
      D->moveBefore(Where);
    // Move all main instructions to after Where, keeping order.
    ArrayRef<Instruction *> Main(Move.Main);
    for (Instruction *M : Main.drop_front(1)) {
      M->moveAfter(Where);
      Where = M;
    }
  } else {
    // NOTE: Deps are empty for "store" groups. If they need to be
    // non-empty, decide on the order.
    assert(Move.Deps.empty());
    // Move all main instructions to before Where, inverting order.
    ArrayRef<Instruction *> Main(Move.Main);
    for (Instruction *M : Main.drop_front(1)) {
      M->moveBefore(Where);
      Where = M;
    }
  }

  return Move.Main.size() + Move.Deps.size() > 1;
}

auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool {
  // TODO: Needs support for masked loads/stores of "scalar" vectors.
  if (!Move.IsHvx)
    return false;

  // Return the element with the maximum alignment from Range,
  // where GetValue obtains the value to compare from an element.
  auto getMaxOf = [](auto Range, auto GetValue) {
    return *std::max_element(
        Range.begin(), Range.end(),
        [&GetValue](auto &A, auto &B) { return GetValue(A) < GetValue(B); });
  };

  const AddrList &BaseInfos = AddrGroups.at(Move.Base);

  // Conceptually, there is a vector of N bytes covering the addresses
  // starting from the minimum offset (i.e. Base.Addr+Start). This vector
  // represents a contiguous memory region that spans all accessed memory
  // locations.
  // The correspondence between loaded or stored values will be expressed
  // in terms of this vector. For example, the 0th element of the vector
  // from the Base address info will start at byte Start from the beginning
  // of this conceptual vector.
  //
  // This vector will be loaded/stored starting at the nearest down-aligned
  // address and the amount od the down-alignment will be AlignVal:
  //   valign(load_vector(align_down(Base+Start)), AlignVal)

  std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end());
  AddrList MoveInfos;
  llvm::copy_if(
      BaseInfos, std::back_inserter(MoveInfos),
      [&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); });

  // Maximum alignment present in the whole address group.
  const AddrInfo &WithMaxAlign =
      getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.HaveAlign; });
  Align MaxGiven = WithMaxAlign.HaveAlign;

  // Minimum alignment present in the move address group.
  const AddrInfo &WithMinOffset =
      getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; });

  const AddrInfo &WithMaxNeeded =
      getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; });
  Align MinNeeded = WithMaxNeeded.NeedAlign;

  // Set the builder at the top instruction in the move group.
  Instruction *TopIn = Move.IsLoad ? Move.Main.front() : Move.Main.back();
  IRBuilder<> Builder(TopIn);
  Value *AlignAddr = nullptr; // Actual aligned address.
  Value *AlignVal = nullptr;  // Right-shift amount (for valign).

  if (MinNeeded <= MaxGiven) {
    int Start = WithMinOffset.Offset;
    int OffAtMax = WithMaxAlign.Offset;
    // Shift the offset of the maximally aligned instruction (OffAtMax)
    // back by just enough multiples of the required alignment to cover the
    // distance from Start to OffAtMax.
    // Calculate the address adjustment amount based on the address with the
    // maximum alignment. This is to allow a simple gep instruction instead
    // of potential bitcasts to i8*.
    int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value());
    AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr,
                                      WithMaxAlign.ValTy, Adjust);
    int Diff = Start - (OffAtMax + Adjust);
    AlignVal = HVC.getConstInt(Diff);
    assert(Diff >= 0);
    assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value());
  } else {
    // WithMinOffset is the lowest address in the group,
    //   WithMinOffset.Addr = Base+Start.
    // Align instructions for both HVX (V6_valign) and scalar (S2_valignrb)
    // mask off unnecessary bits, so it's ok to just the original pointer as
    // the alignment amount.
    // Do an explicit down-alignment of the address to avoid creating an
    // aligned instruction with an address that is not really aligned.
    AlignAddr = createAlignedPointer(Builder, WithMinOffset.Addr,
                                     WithMinOffset.ValTy, MinNeeded.value());
    AlignVal = Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy());
  }

  ByteSpan VSpan;
  for (const AddrInfo &AI : MoveInfos) {
    VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy),
                              AI.Offset - WithMinOffset.Offset);
  }

  // The aligned loads/stores will use blocks that are either scalars,
  // or HVX vectors. Let "sector" be the unified term for such a block.
  // blend(scalar, vector) -> sector...
  int ScLen = Move.IsHvx ? HVC.HST.getVectorLength()
                         : std::max<int>(MinNeeded.value(), 4);
  assert(!Move.IsHvx || ScLen == 64 || ScLen == 128);
  assert(Move.IsHvx || ScLen == 4 || ScLen == 8);

  Type *SecTy = HVC.getByteTy(ScLen);
  int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen;
  bool DoAlign = !HVC.isZero(AlignVal);

  if (Move.IsLoad) {
    ByteSpan ASpan;
    auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen));
    auto *Undef = UndefValue::get(SecTy);

    for (int i = 0; i != NumSectors + DoAlign; ++i) {
      Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen);
      // FIXME: generate a predicated load?
      Value *Load = createAlignedLoad(Builder, SecTy, Ptr, ScLen, True, Undef);
      // If vector shifting is potentially needed, accumulate metadata
      // from source sections of twice the load width.
      int Start = (i - DoAlign) * ScLen;
      int Width = (1 + DoAlign) * ScLen;
      propagateMetadata(cast<Instruction>(Load),
                        VSpan.section(Start, Width).values());
      ASpan.Blocks.emplace_back(Load, ScLen, i * ScLen);
    }

    if (DoAlign) {
      for (int j = 0; j != NumSectors; ++j) {
        ASpan[j].Seg.Val = HVC.vralignb(Builder, ASpan[j].Seg.Val,
                                        ASpan[j + 1].Seg.Val, AlignVal);
      }
    }

    for (ByteSpan::Block &B : VSpan) {
      ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size).shift(-B.Pos);
      Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size));
      for (ByteSpan::Block &S : ASection) {
        Value *Pay = HVC.vbytes(Builder, getPayload(S.Seg.Val));
        Accum =
            HVC.insertb(Builder, Accum, Pay, S.Seg.Start, S.Seg.Size, S.Pos);
      }
      // Instead of casting everything to bytes for the vselect, cast to the
      // original value type. This will avoid complications with casting masks.
      // For example, in cases when the original mask applied to i32, it could
      // be converted to a mask applicable to i8 via pred_typecast intrinsic,
      // but if the mask is not exactly of HVX length, extra handling would be
      // needed to make it work.
      Type *ValTy = getPayload(B.Seg.Val)->getType();
      Value *Cast = Builder.CreateBitCast(Accum, ValTy);
      Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast,
                                        getPassThrough(B.Seg.Val));
      B.Seg.Val->replaceAllUsesWith(Sel);
    }
  } else {
    // Stores.
    ByteSpan ASpanV, ASpanM;

    // Return a vector value corresponding to the input value Val:
    // either <1 x Val> for scalar Val, or Val itself for vector Val.
    auto MakeVec = [](IRBuilder<> &Builder, Value *Val) -> Value * {
      Type *Ty = Val->getType();
      if (Ty->isVectorTy())
        return Val;
      auto *VecTy = VectorType::get(Ty, 1, /*Scalable*/ false);
      return Builder.CreateBitCast(Val, VecTy);
    };

    // Create an extra "undef" sector at the beginning and at the end.
    // They will be used as the left/right filler in the vlalign step.
    for (int i = (DoAlign ? -1 : 0); i != NumSectors + DoAlign; ++i) {
      // For stores, the size of each section is an aligned vector length.
      // Adjust the store offsets relative to the section start offset.
      ByteSpan VSection = VSpan.section(i * ScLen, ScLen).shift(-i * ScLen);
      Value *AccumV = UndefValue::get(SecTy);
      Value *AccumM = HVC.getNullValue(SecTy);
      for (ByteSpan::Block &S : VSection) {
        Value *Pay = getPayload(S.Seg.Val);
        Value *Mask = HVC.rescale(Builder, MakeVec(Builder, getMask(S.Seg.Val)),
                                  Pay->getType(), HVC.getByteTy());
        AccumM = HVC.insertb(Builder, AccumM, HVC.vbytes(Builder, Mask),
                             S.Seg.Start, S.Seg.Size, S.Pos);
        AccumV = HVC.insertb(Builder, AccumV, HVC.vbytes(Builder, Pay),
                             S.Seg.Start, S.Seg.Size, S.Pos);
      }
      ASpanV.Blocks.emplace_back(AccumV, ScLen, i * ScLen);
      ASpanM.Blocks.emplace_back(AccumM, ScLen, i * ScLen);
    }

    // vlalign
    if (DoAlign) {
      for (int j = 1; j != NumSectors + 2; ++j) {
        ASpanV[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanV[j - 1].Seg.Val,
                                             ASpanV[j].Seg.Val, AlignVal);
        ASpanM[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanM[j - 1].Seg.Val,
                                             ASpanM[j].Seg.Val, AlignVal);
      }
    }

    for (int i = 0; i != NumSectors + DoAlign; ++i) {
      Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen);
      Value *Val = ASpanV[i].Seg.Val;
      Value *Mask = ASpanM[i].Seg.Val; // bytes
      if (!HVC.isUndef(Val) && !HVC.isZero(Mask)) {
        Value *Store = createAlignedStore(Builder, Val, Ptr, ScLen,
                                          HVC.vlsb(Builder, Mask));
        // If vector shifting is potentially needed, accumulate metadata
        // from source sections of twice the store width.
        int Start = (i - DoAlign) * ScLen;
        int Width = (1 + DoAlign) * ScLen;
        propagateMetadata(cast<Instruction>(Store),
                          VSpan.section(Start, Width).values());
      }
    }
  }

  for (auto *Inst : Move.Main)
    Inst->eraseFromParent();

  return true;
}

auto AlignVectors::run() -> bool {
  if (!createAddressGroups())
    return false;

  bool Changed = false;
  MoveList LoadGroups, StoreGroups;

  for (auto &G : AddrGroups) {
    llvm::append_range(LoadGroups, createLoadGroups(G.second));
    llvm::append_range(StoreGroups, createStoreGroups(G.second));
  }

  for (auto &M : LoadGroups)
    Changed |= move(M);
  for (auto &M : StoreGroups)
    Changed |= move(M);

  for (auto &M : LoadGroups)
    Changed |= realignGroup(M);
  for (auto &M : StoreGroups)
    Changed |= realignGroup(M);

  return Changed;
}

// --- End AlignVectors

auto HexagonVectorCombine::run() -> bool {
  if (!HST.useHVXOps())
    return false;

  bool Changed = AlignVectors(*this).run();
  return Changed;
}

auto HexagonVectorCombine::getIntTy() const -> IntegerType * {
  return Type::getInt32Ty(F.getContext());
}

auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * {
  assert(ElemCount >= 0);
  IntegerType *ByteTy = Type::getInt8Ty(F.getContext());
  if (ElemCount == 0)
    return ByteTy;
  return VectorType::get(ByteTy, ElemCount, /*Scalable*/ false);
}

auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * {
  assert(ElemCount >= 0);
  IntegerType *BoolTy = Type::getInt1Ty(F.getContext());
  if (ElemCount == 0)
    return BoolTy;
  return VectorType::get(BoolTy, ElemCount, /*Scalable*/ false);
}

auto HexagonVectorCombine::getConstInt(int Val) const -> ConstantInt * {
  return ConstantInt::getSigned(getIntTy(), Val);
}

auto HexagonVectorCombine::isZero(const Value *Val) const -> bool {
  if (auto *C = dyn_cast<Constant>(Val))
    return C->isZeroValue();
  return false;
}

auto HexagonVectorCombine::getIntValue(const Value *Val) const
    -> Optional<APInt> {
  if (auto *CI = dyn_cast<ConstantInt>(Val))
    return CI->getValue();
  return None;
}

auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool {
  return isa<UndefValue>(Val);
}

auto HexagonVectorCombine::getSizeOf(const Value *Val) const -> int {
  return getSizeOf(Val->getType());
}

auto HexagonVectorCombine::getSizeOf(const Type *Ty) const -> int {
  return DL.getTypeStoreSize(const_cast<Type *>(Ty)).getFixedValue();
}

auto HexagonVectorCombine::getAllocSizeOf(const Type *Ty) const -> int {
  return DL.getTypeAllocSize(const_cast<Type *>(Ty)).getFixedValue();
}

auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int {
  // The actual type may be shorter than the HVX vector, so determine
  // the alignment based on subtarget info.
  if (HST.isTypeForHVX(Ty))
    return HST.getVectorLength();
  return DL.getABITypeAlign(Ty).value();
}

auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * {
  assert(Ty->isIntOrIntVectorTy());
  auto Zero = ConstantInt::get(Ty->getScalarType(), 0);
  if (auto *VecTy = dyn_cast<VectorType>(Ty))
    return ConstantVector::getSplat(VecTy->getElementCount(), Zero);
  return Zero;
}

auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * {
  assert(Ty->isIntOrIntVectorTy());
  auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1);
  if (auto *VecTy = dyn_cast<VectorType>(Ty))
    return ConstantVector::getSplat(VecTy->getElementCount(), Minus1);
  return Minus1;
}

// Insert bytes [Start..Start+Length) of Src into Dst at byte Where.
auto HexagonVectorCombine::insertb(IRBuilder<> &Builder, Value *Dst, Value *Src,
                                   int Start, int Length, int Where) const
    -> Value * {
  assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType()));
  int SrcLen = getSizeOf(Src);
  int DstLen = getSizeOf(Dst);
  assert(0 <= Start && Start + Length <= SrcLen);
  assert(0 <= Where && Where + Length <= DstLen);

  int P2Len = PowerOf2Ceil(SrcLen | DstLen);
  auto *Undef = UndefValue::get(getByteTy());
  Value *P2Src = vresize(Builder, Src, P2Len, Undef);
  Value *P2Dst = vresize(Builder, Dst, P2Len, Undef);

  SmallVector<int, 256> SMask(P2Len);
  for (int i = 0; i != P2Len; ++i) {
    // If i is in [Where, Where+Length), pick Src[Start+(i-Where)].
    // Otherwise, pick Dst[i];
    SMask[i] =
        (Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i;
  }

  Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask);
  return vresize(Builder, P2Insert, DstLen, Undef);
}

auto HexagonVectorCombine::vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi,
                                    Value *Amt) const -> Value * {
  assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
  assert(isSectorTy(Hi->getType()));
  if (isZero(Amt))
    return Hi;
  int VecLen = getSizeOf(Hi);
  if (auto IntAmt = getIntValue(Amt))
    return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(),
                           VecLen);

  if (HST.isTypeForHVX(Hi->getType())) {
    int HwLen = HST.getVectorLength();
    assert(VecLen == HwLen && "Expecting an exact HVX type");
    Intrinsic::ID V6_vlalignb = HwLen == 64
                                    ? Intrinsic::hexagon_V6_vlalignb
                                    : Intrinsic::hexagon_V6_vlalignb_128B;
    return createHvxIntrinsic(Builder, V6_vlalignb, Hi->getType(),
                              {Hi, Lo, Amt});
  }

  if (VecLen == 4) {
    Value *Pair = concat(Builder, {Lo, Hi});
    Value *Shift = Builder.CreateLShr(Builder.CreateShl(Pair, Amt), 32);
    Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()));
    return Builder.CreateBitCast(Trunc, Hi->getType());
  }
  if (VecLen == 8) {
    Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt);
    return vralignb(Builder, Lo, Hi, Sub);
  }
  llvm_unreachable("Unexpected vector length");
}

auto HexagonVectorCombine::vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi,
                                    Value *Amt) const -> Value * {
  assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
  assert(isSectorTy(Lo->getType()));
  if (isZero(Amt))
    return Lo;
  int VecLen = getSizeOf(Lo);
  if (auto IntAmt = getIntValue(Amt))
    return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen);

  if (HST.isTypeForHVX(Lo->getType())) {
    int HwLen = HST.getVectorLength();
    assert(VecLen == HwLen && "Expecting an exact HVX type");
    Intrinsic::ID V6_valignb = HwLen == 64 ? Intrinsic::hexagon_V6_valignb
                                           : Intrinsic::hexagon_V6_valignb_128B;
    return createHvxIntrinsic(Builder, V6_valignb, Lo->getType(),
                              {Hi, Lo, Amt});
  }

  if (VecLen == 4) {
    Value *Pair = concat(Builder, {Lo, Hi});
    Value *Shift = Builder.CreateLShr(Pair, Amt);
    Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()));
    return Builder.CreateBitCast(Trunc, Lo->getType());
  }
  if (VecLen == 8) {
    Type *Int64Ty = Type::getInt64Ty(F.getContext());
    Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty);
    Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty);
    Function *FI = Intrinsic::getDeclaration(F.getParent(),
                                             Intrinsic::hexagon_S2_valignrb);
    Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt});
    return Builder.CreateBitCast(Call, Lo->getType());
  }
  llvm_unreachable("Unexpected vector length");
}

// Concatenates a sequence of vectors of the same type.
auto HexagonVectorCombine::concat(IRBuilder<> &Builder,
                                  ArrayRef<Value *> Vecs) const -> Value * {
  assert(!Vecs.empty());
  SmallVector<int, 256> SMask;
  std::vector<Value *> Work[2];
  int ThisW = 0, OtherW = 1;

  Work[ThisW].assign(Vecs.begin(), Vecs.end());
  while (Work[ThisW].size() > 1) {
    auto *Ty = cast<VectorType>(Work[ThisW].front()->getType());
    int ElemCount = Ty->getElementCount().getFixedValue();
    SMask.resize(ElemCount * 2);
    std::iota(SMask.begin(), SMask.end(), 0);

    Work[OtherW].clear();
    if (Work[ThisW].size() % 2 != 0)
      Work[ThisW].push_back(UndefValue::get(Ty));
    for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) {
      Value *Joined = Builder.CreateShuffleVector(Work[ThisW][i],
                                                  Work[ThisW][i + 1], SMask);
      Work[OtherW].push_back(Joined);
    }
    std::swap(ThisW, OtherW);
  }

  // Since there may have been some undefs appended to make shuffle operands
  // have the same type, perform the last shuffle to only pick the original
  // elements.
  SMask.resize(Vecs.size() * getSizeOf(Vecs.front()->getType()));
  std::iota(SMask.begin(), SMask.end(), 0);
  Value *Total = Work[OtherW].front();
  return Builder.CreateShuffleVector(Total, SMask);
}

auto HexagonVectorCombine::vresize(IRBuilder<> &Builder, Value *Val,
                                   int NewSize, Value *Pad) const -> Value * {
  assert(isa<VectorType>(Val->getType()));
  auto *ValTy = cast<VectorType>(Val->getType());
  assert(ValTy->getElementType() == Pad->getType());

  int CurSize = ValTy->getElementCount().getFixedValue();
  if (CurSize == NewSize)
    return Val;
  // Truncate?
  if (CurSize > NewSize)
    return getElementRange(Builder, Val, /*Unused*/ Val, 0, NewSize);
  // Extend.
  SmallVector<int, 128> SMask(NewSize);
  std::iota(SMask.begin(), SMask.begin() + CurSize, 0);
  std::fill(SMask.begin() + CurSize, SMask.end(), CurSize);
  Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad);
  return Builder.CreateShuffleVector(Val, PadVec, SMask);
}

auto HexagonVectorCombine::rescale(IRBuilder<> &Builder, Value *Mask,
                                   Type *FromTy, Type *ToTy) const -> Value * {
  // Mask is a vector <N x i1>, where each element corresponds to an
  // element of FromTy. Remap it so that each element will correspond
  // to an element of ToTy.
  assert(isa<VectorType>(Mask->getType()));

  Type *FromSTy = FromTy->getScalarType();
  Type *ToSTy = ToTy->getScalarType();
  if (FromSTy == ToSTy)
    return Mask;

  int FromSize = getSizeOf(FromSTy);
  int ToSize = getSizeOf(ToSTy);
  assert(FromSize % ToSize == 0 || ToSize % FromSize == 0);

  auto *MaskTy = cast<VectorType>(Mask->getType());
  int FromCount = MaskTy->getElementCount().getFixedValue();
  int ToCount = (FromCount * FromSize) / ToSize;
  assert((FromCount * FromSize) % ToSize == 0);

  auto *FromITy = IntegerType::get(F.getContext(), FromSize * 8);
  auto *ToITy = IntegerType::get(F.getContext(), ToSize * 8);

  // Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> ->
  // -> trunc to <M x i1>.
  Value *Ext = Builder.CreateSExt(
      Mask, VectorType::get(FromITy, FromCount, /*Scalable*/ false));
  Value *Cast = Builder.CreateBitCast(
      Ext, VectorType::get(ToITy, ToCount, /*Scalable*/ false));
  return Builder.CreateTrunc(
      Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable*/ false));
}

// Bitcast to bytes, and return least significant bits.
auto HexagonVectorCombine::vlsb(IRBuilder<> &Builder, Value *Val) const
    -> Value * {
  Type *ScalarTy = Val->getType()->getScalarType();
  if (ScalarTy == getBoolTy())
    return Val;

  Value *Bytes = vbytes(Builder, Val);
  if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType()))
    return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(VecTy)));
  // If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not
  // <1 x i1>.
  return Builder.CreateTrunc(Bytes, getBoolTy());
}

// Bitcast to bytes for non-bool. For bool, convert i1 -> i8.
auto HexagonVectorCombine::vbytes(IRBuilder<> &Builder, Value *Val) const
    -> Value * {
  Type *ScalarTy = Val->getType()->getScalarType();
  if (ScalarTy == getByteTy())
    return Val;

  if (ScalarTy != getBoolTy())
    return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val)));
  // For bool, return a sext from i1 to i8.
  if (auto *VecTy = dyn_cast<VectorType>(Val->getType()))
    return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy));
  return Builder.CreateSExt(Val, getByteTy());
}

auto HexagonVectorCombine::createHvxIntrinsic(IRBuilder<> &Builder,
                                              Intrinsic::ID IntID, Type *RetTy,
                                              ArrayRef<Value *> Args) const
    -> Value * {
  int HwLen = HST.getVectorLength();
  Type *BoolTy = Type::getInt1Ty(F.getContext());
  Type *Int32Ty = Type::getInt32Ty(F.getContext());
  // HVX vector -> v16i32/v32i32
  // HVX vector predicate -> v512i1/v1024i1
  auto getTypeForIntrin = [&](Type *Ty) -> Type * {
    if (HST.isTypeForHVX(Ty, /*IncludeBool*/ true)) {
      Type *ElemTy = cast<VectorType>(Ty)->getElementType();
      if (ElemTy == Int32Ty)
        return Ty;
      if (ElemTy == BoolTy)
        return VectorType::get(BoolTy, 8 * HwLen, /*Scalable*/ false);
      return VectorType::get(Int32Ty, HwLen / 4, /*Scalable*/ false);
    }
    // Non-HVX type. It should be a scalar.
    assert(Ty == Int32Ty || Ty->isIntegerTy(64));
    return Ty;
  };

  auto getCast = [&](IRBuilder<> &Builder, Value *Val,
                     Type *DestTy) -> Value * {
    Type *SrcTy = Val->getType();
    if (SrcTy == DestTy)
      return Val;
    if (HST.isTypeForHVX(SrcTy, /*IncludeBool*/ true)) {
      if (cast<VectorType>(SrcTy)->getElementType() == BoolTy) {
        // This should take care of casts the other way too, for example
        // v1024i1 -> v32i1.
        Intrinsic::ID TC = HwLen == 64
                               ? Intrinsic::hexagon_V6_pred_typecast
                               : Intrinsic::hexagon_V6_pred_typecast_128B;
        Function *FI = Intrinsic::getDeclaration(F.getParent(), TC,
                                                 {DestTy, Val->getType()});
        return Builder.CreateCall(FI, {Val});
      }
      // Non-predicate HVX vector.
      return Builder.CreateBitCast(Val, DestTy);
    }
    // Non-HVX type. It should be a scalar, and it should already have
    // a valid type.
    llvm_unreachable("Unexpected type");
  };

  SmallVector<Value *, 4> IntOps;
  for (Value *A : Args)
    IntOps.push_back(getCast(Builder, A, getTypeForIntrin(A->getType())));
  Function *FI = Intrinsic::getDeclaration(F.getParent(), IntID);
  Value *Call = Builder.CreateCall(FI, IntOps);

  Type *CallTy = Call->getType();
  if (CallTy == RetTy)
    return Call;
  // Scalar types should have RetTy matching the call return type.
  assert(HST.isTypeForHVX(CallTy, /*IncludeBool*/ true));
  if (cast<VectorType>(CallTy)->getElementType() == BoolTy)
    return getCast(Builder, Call, RetTy);
  return Builder.CreateBitCast(Call, RetTy);
}

auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0,
                                                      Value *Ptr1) const
    -> Optional<int> {
  struct Builder : IRBuilder<> {
    Builder(BasicBlock *B) : IRBuilder<>(B) {}
    ~Builder() {
      for (Instruction *I : llvm::reverse(ToErase))
        I->eraseFromParent();
    }
    SmallVector<Instruction *, 8> ToErase;
  };

#define CallBuilder(B, F)                                                      \
  [&](auto &B_) {                                                              \
    Value *V = B_.F;                                                           \
    if (auto *I = dyn_cast<Instruction>(V))                                    \
      B_.ToErase.push_back(I);                                                 \
    return V;                                                                  \
  }(B)

  auto Simplify = [&](Value *V) {
    if (auto *I = dyn_cast<Instruction>(V)) {
      SimplifyQuery Q(DL, &TLI, &DT, &AC, I);
      if (Value *S = simplifyInstruction(I, Q))
        return S;
    }
    return V;
  };

  auto StripBitCast = [](Value *V) {
    while (auto *C = dyn_cast<BitCastInst>(V))
      V = C->getOperand(0);
    return V;
  };

  Ptr0 = StripBitCast(Ptr0);
  Ptr1 = StripBitCast(Ptr1);
  if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1))
    return None;

  auto *Gep0 = cast<GetElementPtrInst>(Ptr0);
  auto *Gep1 = cast<GetElementPtrInst>(Ptr1);
  if (Gep0->getPointerOperand() != Gep1->getPointerOperand())
    return None;

  Builder B(Gep0->getParent());
  int Scale = getAllocSizeOf(Gep0->getSourceElementType());

  // FIXME: for now only check GEPs with a single index.
  if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2)
    return None;

  Value *Idx0 = Gep0->getOperand(1);
  Value *Idx1 = Gep1->getOperand(1);

  // First, try to simplify the subtraction directly.
  if (auto *Diff = dyn_cast<ConstantInt>(
          Simplify(CallBuilder(B, CreateSub(Idx0, Idx1)))))
    return Diff->getSExtValue() * Scale;

  KnownBits Known0 = computeKnownBits(Idx0, DL, 0, &AC, Gep0, &DT);
  KnownBits Known1 = computeKnownBits(Idx1, DL, 0, &AC, Gep1, &DT);
  APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One);
  if (Unknown.isAllOnes())
    return None;

  Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown);
  Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU)));
  Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU)));
  Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1)));
  int Diff0 = 0;
  if (auto *C = dyn_cast<ConstantInt>(SubU)) {
    Diff0 = C->getSExtValue();
  } else {
    return None;
  }

  Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown);
  Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK)));
  Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK)));
  Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1)));
  int Diff1 = 0;
  if (auto *C = dyn_cast<ConstantInt>(SubK)) {
    Diff1 = C->getSExtValue();
  } else {
    return None;
  }

  return (Diff0 + Diff1) * Scale;

#undef CallBuilder
}

template <typename T>
auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In,
                                                  BasicBlock::const_iterator To,
                                                  const T &Ignore) const
    -> bool {
  auto getLocOrNone = [this](const Instruction &I) -> Optional<MemoryLocation> {
    if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
      switch (II->getIntrinsicID()) {
      case Intrinsic::masked_load:
        return MemoryLocation::getForArgument(II, 0, TLI);
      case Intrinsic::masked_store:
        return MemoryLocation::getForArgument(II, 1, TLI);
      }
    }
    return MemoryLocation::getOrNone(&I);
  };

  // The source and the destination must be in the same basic block.
  const BasicBlock &Block = *In.getParent();
  assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block);
  // No PHIs.
  if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To)))
    return false;

  if (!mayHaveNonDefUseDependency(In))
    return true;
  bool MayWrite = In.mayWriteToMemory();
  auto MaybeLoc = getLocOrNone(In);

  auto From = In.getIterator();
  if (From == To)
    return true;
  bool MoveUp = (To != Block.end() && To->comesBefore(&In));
  auto Range =
      MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To);
  for (auto It = Range.first; It != Range.second; ++It) {
    const Instruction &I = *It;
    if (llvm::is_contained(Ignore, &I))
      continue;
    // assume intrinsic can be ignored
    if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
      if (II->getIntrinsicID() == Intrinsic::assume)
        continue;
    }
    // Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp.
    if (I.mayThrow())
      return false;
    if (auto *CB = dyn_cast<CallBase>(&I)) {
      if (!CB->hasFnAttr(Attribute::WillReturn))
        return false;
      if (!CB->hasFnAttr(Attribute::NoSync))
        return false;
    }
    if (I.mayReadOrWriteMemory()) {
      auto MaybeLocI = getLocOrNone(I);
      if (MayWrite || I.mayWriteToMemory()) {
        if (!MaybeLoc || !MaybeLocI)
          return false;
        if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI))
          return false;
      }
    }
  }
  return true;
}

#ifndef NDEBUG
auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool {
  if (auto *VecTy = dyn_cast<VectorType>(Ty))
    return VecTy->getElementType() == getByteTy();
  return false;
}

auto HexagonVectorCombine::isSectorTy(Type *Ty) const -> bool {
  if (!isByteVecTy(Ty))
    return false;
  int Size = getSizeOf(Ty);
  if (HST.isTypeForHVX(Ty))
    return Size == static_cast<int>(HST.getVectorLength());
  return Size == 4 || Size == 8;
}
#endif

auto HexagonVectorCombine::getElementRange(IRBuilder<> &Builder, Value *Lo,
                                           Value *Hi, int Start,
                                           int Length) const -> Value * {
  assert(0 <= Start && Start < Length);
  SmallVector<int, 128> SMask(Length);
  std::iota(SMask.begin(), SMask.end(), Start);
  return Builder.CreateShuffleVector(Lo, Hi, SMask);
}

// Pass management.

namespace llvm {
void initializeHexagonVectorCombineLegacyPass(PassRegistry &);
FunctionPass *createHexagonVectorCombineLegacyPass();
} // namespace llvm

namespace {
class HexagonVectorCombineLegacy : public FunctionPass {
public:
  static char ID;

  HexagonVectorCombineLegacy() : FunctionPass(ID) {}

  StringRef getPassName() const override { return "Hexagon Vector Combine"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<TargetPassConfig>();
    FunctionPass::getAnalysisUsage(AU);
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;
    AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
    AssumptionCache &AC =
        getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    TargetLibraryInfo &TLI =
        getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
    auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>();
    HexagonVectorCombine HVC(F, AA, AC, DT, TLI, TM);
    return HVC.run();
  }
};
} // namespace

char HexagonVectorCombineLegacy::ID = 0;

INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE,
                      "Hexagon Vector Combine", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE,
                    "Hexagon Vector Combine", false, false)

FunctionPass *llvm::createHexagonVectorCombineLegacyPass() {
  return new HexagonVectorCombineLegacy();
}