aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVInsertVSETVLI.cpp
blob: fc0a983f6542632683ba5e376989f84945f3302a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
//===- RISCVInsertVSETVLI.cpp - Insert VSETVLI instructions ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a function pass that inserts VSETVLI instructions where
// needed and expands the vl outputs of VLEFF/VLSEGFF to PseudoReadVL
// instructions.
//
// This pass consists of 3 phases:
//
// Phase 1 collects how each basic block affects VL/VTYPE.
//
// Phase 2 uses the information from phase 1 to do a data flow analysis to
// propagate the VL/VTYPE changes through the function. This gives us the
// VL/VTYPE at the start of each basic block.
//
// Phase 3 inserts VSETVLI instructions in each basic block. Information from
// phase 2 is used to prevent inserting a VSETVLI before the first vector
// instruction in the block if possible.
//
//===----------------------------------------------------------------------===//

#include "RISCV.h"
#include "RISCVSubtarget.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include <queue>
using namespace llvm;

#define DEBUG_TYPE "riscv-insert-vsetvli"
#define RISCV_INSERT_VSETVLI_NAME "RISCV Insert VSETVLI pass"

static cl::opt<bool> DisableInsertVSETVLPHIOpt(
    "riscv-disable-insert-vsetvl-phi-opt", cl::init(false), cl::Hidden,
    cl::desc("Disable looking through phis when inserting vsetvlis."));

static cl::opt<bool> UseStrictAsserts(
    "riscv-insert-vsetvl-strict-asserts", cl::init(true), cl::Hidden,
    cl::desc("Enable strict assertion checking for the dataflow algorithm"));

namespace {

static unsigned getVLOpNum(const MachineInstr &MI) {
  return RISCVII::getVLOpNum(MI.getDesc());
}

static unsigned getSEWOpNum(const MachineInstr &MI) {
  return RISCVII::getSEWOpNum(MI.getDesc());
}

static bool isScalarMoveInstr(const MachineInstr &MI) {
  switch (MI.getOpcode()) {
  default:
    return false;
  case RISCV::PseudoVMV_S_X_M1:
  case RISCV::PseudoVMV_S_X_M2:
  case RISCV::PseudoVMV_S_X_M4:
  case RISCV::PseudoVMV_S_X_M8:
  case RISCV::PseudoVMV_S_X_MF2:
  case RISCV::PseudoVMV_S_X_MF4:
  case RISCV::PseudoVMV_S_X_MF8:
  case RISCV::PseudoVFMV_S_F16_M1:
  case RISCV::PseudoVFMV_S_F16_M2:
  case RISCV::PseudoVFMV_S_F16_M4:
  case RISCV::PseudoVFMV_S_F16_M8:
  case RISCV::PseudoVFMV_S_F16_MF2:
  case RISCV::PseudoVFMV_S_F16_MF4:
  case RISCV::PseudoVFMV_S_F32_M1:
  case RISCV::PseudoVFMV_S_F32_M2:
  case RISCV::PseudoVFMV_S_F32_M4:
  case RISCV::PseudoVFMV_S_F32_M8:
  case RISCV::PseudoVFMV_S_F32_MF2:
  case RISCV::PseudoVFMV_S_F64_M1:
  case RISCV::PseudoVFMV_S_F64_M2:
  case RISCV::PseudoVFMV_S_F64_M4:
  case RISCV::PseudoVFMV_S_F64_M8:
    return true;
  }
}

/// Get the EEW for a load or store instruction.  Return None if MI is not
/// a load or store which ignores SEW.
static Optional<unsigned> getEEWForLoadStore(const MachineInstr &MI) {
  switch (MI.getOpcode()) {
  default:
    return None;
  case RISCV::PseudoVLE8_V_M1:
  case RISCV::PseudoVLE8_V_M1_MASK:
  case RISCV::PseudoVLE8_V_M2:
  case RISCV::PseudoVLE8_V_M2_MASK:
  case RISCV::PseudoVLE8_V_M4:
  case RISCV::PseudoVLE8_V_M4_MASK:
  case RISCV::PseudoVLE8_V_M8:
  case RISCV::PseudoVLE8_V_M8_MASK:
  case RISCV::PseudoVLE8_V_MF2:
  case RISCV::PseudoVLE8_V_MF2_MASK:
  case RISCV::PseudoVLE8_V_MF4:
  case RISCV::PseudoVLE8_V_MF4_MASK:
  case RISCV::PseudoVLE8_V_MF8:
  case RISCV::PseudoVLE8_V_MF8_MASK:
  case RISCV::PseudoVLSE8_V_M1:
  case RISCV::PseudoVLSE8_V_M1_MASK:
  case RISCV::PseudoVLSE8_V_M2:
  case RISCV::PseudoVLSE8_V_M2_MASK:
  case RISCV::PseudoVLSE8_V_M4:
  case RISCV::PseudoVLSE8_V_M4_MASK:
  case RISCV::PseudoVLSE8_V_M8:
  case RISCV::PseudoVLSE8_V_M8_MASK:
  case RISCV::PseudoVLSE8_V_MF2:
  case RISCV::PseudoVLSE8_V_MF2_MASK:
  case RISCV::PseudoVLSE8_V_MF4:
  case RISCV::PseudoVLSE8_V_MF4_MASK:
  case RISCV::PseudoVLSE8_V_MF8:
  case RISCV::PseudoVLSE8_V_MF8_MASK:
  case RISCV::PseudoVSE8_V_M1:
  case RISCV::PseudoVSE8_V_M1_MASK:
  case RISCV::PseudoVSE8_V_M2:
  case RISCV::PseudoVSE8_V_M2_MASK:
  case RISCV::PseudoVSE8_V_M4:
  case RISCV::PseudoVSE8_V_M4_MASK:
  case RISCV::PseudoVSE8_V_M8:
  case RISCV::PseudoVSE8_V_M8_MASK:
  case RISCV::PseudoVSE8_V_MF2:
  case RISCV::PseudoVSE8_V_MF2_MASK:
  case RISCV::PseudoVSE8_V_MF4:
  case RISCV::PseudoVSE8_V_MF4_MASK:
  case RISCV::PseudoVSE8_V_MF8:
  case RISCV::PseudoVSE8_V_MF8_MASK:
  case RISCV::PseudoVSSE8_V_M1:
  case RISCV::PseudoVSSE8_V_M1_MASK:
  case RISCV::PseudoVSSE8_V_M2:
  case RISCV::PseudoVSSE8_V_M2_MASK:
  case RISCV::PseudoVSSE8_V_M4:
  case RISCV::PseudoVSSE8_V_M4_MASK:
  case RISCV::PseudoVSSE8_V_M8:
  case RISCV::PseudoVSSE8_V_M8_MASK:
  case RISCV::PseudoVSSE8_V_MF2:
  case RISCV::PseudoVSSE8_V_MF2_MASK:
  case RISCV::PseudoVSSE8_V_MF4:
  case RISCV::PseudoVSSE8_V_MF4_MASK:
  case RISCV::PseudoVSSE8_V_MF8:
  case RISCV::PseudoVSSE8_V_MF8_MASK:
    return 8;
  case RISCV::PseudoVLE16_V_M1:
  case RISCV::PseudoVLE16_V_M1_MASK:
  case RISCV::PseudoVLE16_V_M2:
  case RISCV::PseudoVLE16_V_M2_MASK:
  case RISCV::PseudoVLE16_V_M4:
  case RISCV::PseudoVLE16_V_M4_MASK:
  case RISCV::PseudoVLE16_V_M8:
  case RISCV::PseudoVLE16_V_M8_MASK:
  case RISCV::PseudoVLE16_V_MF2:
  case RISCV::PseudoVLE16_V_MF2_MASK:
  case RISCV::PseudoVLE16_V_MF4:
  case RISCV::PseudoVLE16_V_MF4_MASK:
  case RISCV::PseudoVLSE16_V_M1:
  case RISCV::PseudoVLSE16_V_M1_MASK:
  case RISCV::PseudoVLSE16_V_M2:
  case RISCV::PseudoVLSE16_V_M2_MASK:
  case RISCV::PseudoVLSE16_V_M4:
  case RISCV::PseudoVLSE16_V_M4_MASK:
  case RISCV::PseudoVLSE16_V_M8:
  case RISCV::PseudoVLSE16_V_M8_MASK:
  case RISCV::PseudoVLSE16_V_MF2:
  case RISCV::PseudoVLSE16_V_MF2_MASK:
  case RISCV::PseudoVLSE16_V_MF4:
  case RISCV::PseudoVLSE16_V_MF4_MASK:
  case RISCV::PseudoVSE16_V_M1:
  case RISCV::PseudoVSE16_V_M1_MASK:
  case RISCV::PseudoVSE16_V_M2:
  case RISCV::PseudoVSE16_V_M2_MASK:
  case RISCV::PseudoVSE16_V_M4:
  case RISCV::PseudoVSE16_V_M4_MASK:
  case RISCV::PseudoVSE16_V_M8:
  case RISCV::PseudoVSE16_V_M8_MASK:
  case RISCV::PseudoVSE16_V_MF2:
  case RISCV::PseudoVSE16_V_MF2_MASK:
  case RISCV::PseudoVSE16_V_MF4:
  case RISCV::PseudoVSE16_V_MF4_MASK:
  case RISCV::PseudoVSSE16_V_M1:
  case RISCV::PseudoVSSE16_V_M1_MASK:
  case RISCV::PseudoVSSE16_V_M2:
  case RISCV::PseudoVSSE16_V_M2_MASK:
  case RISCV::PseudoVSSE16_V_M4:
  case RISCV::PseudoVSSE16_V_M4_MASK:
  case RISCV::PseudoVSSE16_V_M8:
  case RISCV::PseudoVSSE16_V_M8_MASK:
  case RISCV::PseudoVSSE16_V_MF2:
  case RISCV::PseudoVSSE16_V_MF2_MASK:
  case RISCV::PseudoVSSE16_V_MF4:
  case RISCV::PseudoVSSE16_V_MF4_MASK:
    return 16;
  case RISCV::PseudoVLE32_V_M1:
  case RISCV::PseudoVLE32_V_M1_MASK:
  case RISCV::PseudoVLE32_V_M2:
  case RISCV::PseudoVLE32_V_M2_MASK:
  case RISCV::PseudoVLE32_V_M4:
  case RISCV::PseudoVLE32_V_M4_MASK:
  case RISCV::PseudoVLE32_V_M8:
  case RISCV::PseudoVLE32_V_M8_MASK:
  case RISCV::PseudoVLE32_V_MF2:
  case RISCV::PseudoVLE32_V_MF2_MASK:
  case RISCV::PseudoVLSE32_V_M1:
  case RISCV::PseudoVLSE32_V_M1_MASK:
  case RISCV::PseudoVLSE32_V_M2:
  case RISCV::PseudoVLSE32_V_M2_MASK:
  case RISCV::PseudoVLSE32_V_M4:
  case RISCV::PseudoVLSE32_V_M4_MASK:
  case RISCV::PseudoVLSE32_V_M8:
  case RISCV::PseudoVLSE32_V_M8_MASK:
  case RISCV::PseudoVLSE32_V_MF2:
  case RISCV::PseudoVLSE32_V_MF2_MASK:
  case RISCV::PseudoVSE32_V_M1:
  case RISCV::PseudoVSE32_V_M1_MASK:
  case RISCV::PseudoVSE32_V_M2:
  case RISCV::PseudoVSE32_V_M2_MASK:
  case RISCV::PseudoVSE32_V_M4:
  case RISCV::PseudoVSE32_V_M4_MASK:
  case RISCV::PseudoVSE32_V_M8:
  case RISCV::PseudoVSE32_V_M8_MASK:
  case RISCV::PseudoVSE32_V_MF2:
  case RISCV::PseudoVSE32_V_MF2_MASK:
  case RISCV::PseudoVSSE32_V_M1:
  case RISCV::PseudoVSSE32_V_M1_MASK:
  case RISCV::PseudoVSSE32_V_M2:
  case RISCV::PseudoVSSE32_V_M2_MASK:
  case RISCV::PseudoVSSE32_V_M4:
  case RISCV::PseudoVSSE32_V_M4_MASK:
  case RISCV::PseudoVSSE32_V_M8:
  case RISCV::PseudoVSSE32_V_M8_MASK:
  case RISCV::PseudoVSSE32_V_MF2:
  case RISCV::PseudoVSSE32_V_MF2_MASK:
    return 32;
  case RISCV::PseudoVLE64_V_M1:
  case RISCV::PseudoVLE64_V_M1_MASK:
  case RISCV::PseudoVLE64_V_M2:
  case RISCV::PseudoVLE64_V_M2_MASK:
  case RISCV::PseudoVLE64_V_M4:
  case RISCV::PseudoVLE64_V_M4_MASK:
  case RISCV::PseudoVLE64_V_M8:
  case RISCV::PseudoVLE64_V_M8_MASK:
  case RISCV::PseudoVLSE64_V_M1:
  case RISCV::PseudoVLSE64_V_M1_MASK:
  case RISCV::PseudoVLSE64_V_M2:
  case RISCV::PseudoVLSE64_V_M2_MASK:
  case RISCV::PseudoVLSE64_V_M4:
  case RISCV::PseudoVLSE64_V_M4_MASK:
  case RISCV::PseudoVLSE64_V_M8:
  case RISCV::PseudoVLSE64_V_M8_MASK:
  case RISCV::PseudoVSE64_V_M1:
  case RISCV::PseudoVSE64_V_M1_MASK:
  case RISCV::PseudoVSE64_V_M2:
  case RISCV::PseudoVSE64_V_M2_MASK:
  case RISCV::PseudoVSE64_V_M4:
  case RISCV::PseudoVSE64_V_M4_MASK:
  case RISCV::PseudoVSE64_V_M8:
  case RISCV::PseudoVSE64_V_M8_MASK:
  case RISCV::PseudoVSSE64_V_M1:
  case RISCV::PseudoVSSE64_V_M1_MASK:
  case RISCV::PseudoVSSE64_V_M2:
  case RISCV::PseudoVSSE64_V_M2_MASK:
  case RISCV::PseudoVSSE64_V_M4:
  case RISCV::PseudoVSSE64_V_M4_MASK:
  case RISCV::PseudoVSSE64_V_M8:
  case RISCV::PseudoVSSE64_V_M8_MASK:
    return 64;
  }
}

/// Return true if this is an operation on mask registers.  Note that
/// this includes both arithmetic/logical ops and load/store (vlm/vsm).
static bool isMaskRegOp(const MachineInstr &MI) {
  if (RISCVII::hasSEWOp(MI.getDesc().TSFlags)) {
    const unsigned Log2SEW = MI.getOperand(getSEWOpNum(MI)).getImm();
    // A Log2SEW of 0 is an operation on mask registers only.
    return Log2SEW == 0;
  }
  return false;
}

static unsigned getSEWLMULRatio(unsigned SEW, RISCVII::VLMUL VLMul) {
  unsigned LMul;
  bool Fractional;
  std::tie(LMul, Fractional) = RISCVVType::decodeVLMUL(VLMul);

  // Convert LMul to a fixed point value with 3 fractional bits.
  LMul = Fractional ? (8 / LMul) : (LMul * 8);

  assert(SEW >= 8 && "Unexpected SEW value");
  return (SEW * 8) / LMul;
}

/// Which subfields of VL or VTYPE have values we need to preserve?
struct DemandedFields {
  bool VL = false;
  bool SEW = false;
  bool LMUL = false;
  bool SEWLMULRatio = false;
  bool TailPolicy = false;
  bool MaskPolicy = false;

  // Return true if any part of VTYPE was used
  bool usedVTYPE() {
    return SEW || LMUL || SEWLMULRatio || TailPolicy || MaskPolicy;
  }

  // Mark all VTYPE subfields and properties as demanded
  void demandVTYPE() {
    SEW = true;
    LMUL = true;
    SEWLMULRatio = true;
    TailPolicy = true;
    MaskPolicy = true;
  }
};

/// Return true if the two values of the VTYPE register provided are
/// indistinguishable from the perspective of an instruction (or set of
/// instructions) which use only the Used subfields and properties.
static bool areCompatibleVTYPEs(uint64_t VType1,
                                uint64_t VType2,
                                const DemandedFields &Used) {
  if (Used.SEW &&
      RISCVVType::getSEW(VType1) != RISCVVType::getSEW(VType2))
    return false;

  if (Used.LMUL &&
      RISCVVType::getVLMUL(VType1) != RISCVVType::getVLMUL(VType2))
    return false;

  if (Used.SEWLMULRatio) {
    auto Ratio1 = getSEWLMULRatio(RISCVVType::getSEW(VType1),
                                  RISCVVType::getVLMUL(VType1));
    auto Ratio2 = getSEWLMULRatio(RISCVVType::getSEW(VType2),
                                  RISCVVType::getVLMUL(VType2));
    if (Ratio1 != Ratio2)
      return false;
  }

  if (Used.TailPolicy &&
      RISCVVType::isTailAgnostic(VType1) != RISCVVType::isTailAgnostic(VType2))
    return false;
  if (Used.MaskPolicy &&
      RISCVVType::isMaskAgnostic(VType1) != RISCVVType::isMaskAgnostic(VType2))
    return false;
  return true;
}

/// Return the fields and properties demanded by the provided instruction.
static DemandedFields getDemanded(const MachineInstr &MI) {
  // Warning: This function has to work on both the lowered (i.e. post
  // emitVSETVLIs) and pre-lowering forms.  The main implication of this is
  // that it can't use the value of a SEW, VL, or Policy operand as they might
  // be stale after lowering.

  // Most instructions don't use any of these subfeilds.
  DemandedFields Res;
  // Start conservative if registers are used
  if (MI.isCall() || MI.isInlineAsm() || MI.readsRegister(RISCV::VL))
    Res.VL = true;
  if (MI.isCall() || MI.isInlineAsm() || MI.readsRegister(RISCV::VTYPE))
    Res.demandVTYPE();
  // Start conservative on the unlowered form too
  uint64_t TSFlags = MI.getDesc().TSFlags;
  if (RISCVII::hasSEWOp(TSFlags)) {
    Res.demandVTYPE();
    if (RISCVII::hasVLOp(TSFlags))
      Res.VL = true;
  }

  // Loads and stores with implicit EEW do not demand SEW or LMUL directly.
  // They instead demand the ratio of the two which is used in computing
  // EMUL, but which allows us the flexibility to change SEW and LMUL
  // provided we don't change the ratio.
  // Note: We assume that the instructions initial SEW is the EEW encoded
  // in the opcode.  This is asserted when constructing the VSETVLIInfo.
  if (getEEWForLoadStore(MI)) {
    Res.SEW = false;
    Res.LMUL = false;
  }

  // Store instructions don't use the policy fields.
  if (RISCVII::hasSEWOp(TSFlags) && MI.getNumExplicitDefs() == 0) {
    Res.TailPolicy = false;
    Res.MaskPolicy = false;
  }

  // If this is a mask reg operation, it only cares about VLMAX.
  // TODO: Possible extensions to this logic
  // * Probably ok if available VLMax is larger than demanded
  // * The policy bits can probably be ignored..
  if (isMaskRegOp(MI)) {
    Res.SEW = false;
    Res.LMUL = false;
  }

  return Res;
}

/// Defines the abstract state with which the forward dataflow models the
/// values of the VL and VTYPE registers after insertion.
class VSETVLIInfo {
  union {
    Register AVLReg;
    unsigned AVLImm;
  };

  enum : uint8_t {
    Uninitialized,
    AVLIsReg,
    AVLIsImm,
    Unknown,
  } State = Uninitialized;

  // Fields from VTYPE.
  RISCVII::VLMUL VLMul = RISCVII::LMUL_1;
  uint8_t SEW = 0;
  uint8_t TailAgnostic : 1;
  uint8_t MaskAgnostic : 1;
  uint8_t SEWLMULRatioOnly : 1;

public:
  VSETVLIInfo()
      : AVLImm(0), TailAgnostic(false), MaskAgnostic(false),
        SEWLMULRatioOnly(false) {}

  static VSETVLIInfo getUnknown() {
    VSETVLIInfo Info;
    Info.setUnknown();
    return Info;
  }

  bool isValid() const { return State != Uninitialized; }
  void setUnknown() { State = Unknown; }
  bool isUnknown() const { return State == Unknown; }

  void setAVLReg(Register Reg) {
    AVLReg = Reg;
    State = AVLIsReg;
  }

  void setAVLImm(unsigned Imm) {
    AVLImm = Imm;
    State = AVLIsImm;
  }

  bool hasAVLImm() const { return State == AVLIsImm; }
  bool hasAVLReg() const { return State == AVLIsReg; }
  Register getAVLReg() const {
    assert(hasAVLReg());
    return AVLReg;
  }
  unsigned getAVLImm() const {
    assert(hasAVLImm());
    return AVLImm;
  }

  unsigned getSEW() const { return SEW; }
  RISCVII::VLMUL getVLMUL() const { return VLMul; }

  bool hasNonZeroAVL() const {
    if (hasAVLImm())
      return getAVLImm() > 0;
    if (hasAVLReg())
      return getAVLReg() == RISCV::X0;
    return false;
  }

  bool hasSameAVL(const VSETVLIInfo &Other) const {
    assert(isValid() && Other.isValid() &&
           "Can't compare invalid VSETVLIInfos");
    assert(!isUnknown() && !Other.isUnknown() &&
           "Can't compare AVL in unknown state");
    if (hasAVLReg() && Other.hasAVLReg())
      return getAVLReg() == Other.getAVLReg();

    if (hasAVLImm() && Other.hasAVLImm())
      return getAVLImm() == Other.getAVLImm();

    return false;
  }

  void setVTYPE(unsigned VType) {
    assert(isValid() && !isUnknown() &&
           "Can't set VTYPE for uninitialized or unknown");
    VLMul = RISCVVType::getVLMUL(VType);
    SEW = RISCVVType::getSEW(VType);
    TailAgnostic = RISCVVType::isTailAgnostic(VType);
    MaskAgnostic = RISCVVType::isMaskAgnostic(VType);
  }
  void setVTYPE(RISCVII::VLMUL L, unsigned S, bool TA, bool MA) {
    assert(isValid() && !isUnknown() &&
           "Can't set VTYPE for uninitialized or unknown");
    VLMul = L;
    SEW = S;
    TailAgnostic = TA;
    MaskAgnostic = MA;
  }

  unsigned encodeVTYPE() const {
    assert(isValid() && !isUnknown() && !SEWLMULRatioOnly &&
           "Can't encode VTYPE for uninitialized or unknown");
    return RISCVVType::encodeVTYPE(VLMul, SEW, TailAgnostic, MaskAgnostic);
  }

  bool hasSEWLMULRatioOnly() const { return SEWLMULRatioOnly; }

  bool hasSameSEW(const VSETVLIInfo &Other) const {
    assert(isValid() && Other.isValid() &&
           "Can't compare invalid VSETVLIInfos");
    assert(!isUnknown() && !Other.isUnknown() &&
           "Can't compare VTYPE in unknown state");
    assert(!SEWLMULRatioOnly && !Other.SEWLMULRatioOnly &&
           "Can't compare when only LMUL/SEW ratio is valid.");
    return SEW == Other.SEW;
  }

  bool hasSameVTYPE(const VSETVLIInfo &Other) const {
    assert(isValid() && Other.isValid() &&
           "Can't compare invalid VSETVLIInfos");
    assert(!isUnknown() && !Other.isUnknown() &&
           "Can't compare VTYPE in unknown state");
    assert(!SEWLMULRatioOnly && !Other.SEWLMULRatioOnly &&
           "Can't compare when only LMUL/SEW ratio is valid.");
    return std::tie(VLMul, SEW, TailAgnostic, MaskAgnostic) ==
           std::tie(Other.VLMul, Other.SEW, Other.TailAgnostic,
                    Other.MaskAgnostic);
  }

  unsigned getSEWLMULRatio() const {
    assert(isValid() && !isUnknown() &&
           "Can't use VTYPE for uninitialized or unknown");
    return ::getSEWLMULRatio(SEW, VLMul);
  }

  // Check if the VTYPE for these two VSETVLIInfos produce the same VLMAX.
  // Note that having the same VLMAX ensures that both share the same
  // function from AVL to VL; that is, they must produce the same VL value
  // for any given AVL value.
  bool hasSameVLMAX(const VSETVLIInfo &Other) const {
    assert(isValid() && Other.isValid() &&
           "Can't compare invalid VSETVLIInfos");
    assert(!isUnknown() && !Other.isUnknown() &&
           "Can't compare VTYPE in unknown state");
    return getSEWLMULRatio() == Other.getSEWLMULRatio();
  }

  bool hasSamePolicy(const VSETVLIInfo &Other) const {
    assert(isValid() && Other.isValid() &&
           "Can't compare invalid VSETVLIInfos");
    assert(!isUnknown() && !Other.isUnknown() &&
           "Can't compare VTYPE in unknown state");
    return TailAgnostic == Other.TailAgnostic &&
           MaskAgnostic == Other.MaskAgnostic;
  }

  bool hasCompatibleVTYPE(const MachineInstr &MI,
                          const VSETVLIInfo &Require) const {
    const DemandedFields Used = getDemanded(MI);
    return areCompatibleVTYPEs(encodeVTYPE(), Require.encodeVTYPE(), Used);
  }

  // Determine whether the vector instructions requirements represented by
  // Require are compatible with the previous vsetvli instruction represented
  // by this.  MI is the instruction whose requirements we're considering.
  bool isCompatible(const MachineInstr &MI, const VSETVLIInfo &Require) const {
    assert(isValid() && Require.isValid() &&
           "Can't compare invalid VSETVLIInfos");
    assert(!Require.SEWLMULRatioOnly &&
           "Expected a valid VTYPE for instruction!");
    // Nothing is compatible with Unknown.
    if (isUnknown() || Require.isUnknown())
      return false;

    // If only our VLMAX ratio is valid, then this isn't compatible.
    if (SEWLMULRatioOnly)
      return false;

    // If the instruction doesn't need an AVLReg and the SEW matches, consider
    // it compatible.
    if (Require.hasAVLReg() && Require.AVLReg == RISCV::NoRegister)
      if (SEW == Require.SEW)
        return true;

    return hasSameAVL(Require) && hasCompatibleVTYPE(MI, Require);
  }

  bool operator==(const VSETVLIInfo &Other) const {
    // Uninitialized is only equal to another Uninitialized.
    if (!isValid())
      return !Other.isValid();
    if (!Other.isValid())
      return !isValid();

    // Unknown is only equal to another Unknown.
    if (isUnknown())
      return Other.isUnknown();
    if (Other.isUnknown())
      return isUnknown();

    if (!hasSameAVL(Other))
      return false;

    // If the SEWLMULRatioOnly bits are different, then they aren't equal.
    if (SEWLMULRatioOnly != Other.SEWLMULRatioOnly)
      return false;

    // If only the VLMAX is valid, check that it is the same.
    if (SEWLMULRatioOnly)
      return hasSameVLMAX(Other);

    // If the full VTYPE is valid, check that it is the same.
    return hasSameVTYPE(Other);
  }

  bool operator!=(const VSETVLIInfo &Other) const {
    return !(*this == Other);
  }

  // Calculate the VSETVLIInfo visible to a block assuming this and Other are
  // both predecessors.
  VSETVLIInfo intersect(const VSETVLIInfo &Other) const {
    // If the new value isn't valid, ignore it.
    if (!Other.isValid())
      return *this;

    // If this value isn't valid, this must be the first predecessor, use it.
    if (!isValid())
      return Other;

    // If either is unknown, the result is unknown.
    if (isUnknown() || Other.isUnknown())
      return VSETVLIInfo::getUnknown();

    // If we have an exact, match return this.
    if (*this == Other)
      return *this;

    // Not an exact match, but maybe the AVL and VLMAX are the same. If so,
    // return an SEW/LMUL ratio only value.
    if (hasSameAVL(Other) && hasSameVLMAX(Other)) {
      VSETVLIInfo MergeInfo = *this;
      MergeInfo.SEWLMULRatioOnly = true;
      return MergeInfo;
    }

    // Otherwise the result is unknown.
    return VSETVLIInfo::getUnknown();
  }

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  /// Support for debugging, callable in GDB: V->dump()
  LLVM_DUMP_METHOD void dump() const {
    print(dbgs());
    dbgs() << "\n";
  }

  /// Implement operator<<.
  /// @{
  void print(raw_ostream &OS) const {
    OS << "{";
    if (!isValid())
      OS << "Uninitialized";
    if (isUnknown())
      OS << "unknown";
    if (hasAVLReg())
      OS << "AVLReg=" << (unsigned)AVLReg;
    if (hasAVLImm())
      OS << "AVLImm=" << (unsigned)AVLImm;
    OS << ", "
       << "VLMul=" << (unsigned)VLMul << ", "
       << "SEW=" << (unsigned)SEW << ", "
       << "TailAgnostic=" << (bool)TailAgnostic << ", "
       << "MaskAgnostic=" << (bool)MaskAgnostic << ", "
       << "SEWLMULRatioOnly=" << (bool)SEWLMULRatioOnly << "}";
  }
#endif
};

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_ATTRIBUTE_USED
inline raw_ostream &operator<<(raw_ostream &OS, const VSETVLIInfo &V) {
  V.print(OS);
  return OS;
}
#endif

struct BlockData {
  // The VSETVLIInfo that represents the net changes to the VL/VTYPE registers
  // made by this block. Calculated in Phase 1.
  VSETVLIInfo Change;

  // The VSETVLIInfo that represents the VL/VTYPE settings on exit from this
  // block. Calculated in Phase 2.
  VSETVLIInfo Exit;

  // The VSETVLIInfo that represents the VL/VTYPE settings from all predecessor
  // blocks. Calculated in Phase 2, and used by Phase 3.
  VSETVLIInfo Pred;

  // Keeps track of whether the block is already in the queue.
  bool InQueue = false;

  BlockData() = default;
};

class RISCVInsertVSETVLI : public MachineFunctionPass {
  const TargetInstrInfo *TII;
  MachineRegisterInfo *MRI;

  std::vector<BlockData> BlockInfo;
  std::queue<const MachineBasicBlock *> WorkList;

public:
  static char ID;

  RISCVInsertVSETVLI() : MachineFunctionPass(ID) {
    initializeRISCVInsertVSETVLIPass(*PassRegistry::getPassRegistry());
  }
  bool runOnMachineFunction(MachineFunction &MF) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  StringRef getPassName() const override { return RISCV_INSERT_VSETVLI_NAME; }

private:
  bool needVSETVLI(const MachineInstr &MI, const VSETVLIInfo &Require,
                   const VSETVLIInfo &CurInfo) const;
  bool needVSETVLIPHI(const VSETVLIInfo &Require,
                      const MachineBasicBlock &MBB) const;
  void insertVSETVLI(MachineBasicBlock &MBB, MachineInstr &MI,
                     const VSETVLIInfo &Info, const VSETVLIInfo &PrevInfo);
  void insertVSETVLI(MachineBasicBlock &MBB,
                     MachineBasicBlock::iterator InsertPt, DebugLoc DL,
                     const VSETVLIInfo &Info, const VSETVLIInfo &PrevInfo);

  void transferBefore(VSETVLIInfo &Info, const MachineInstr &MI);
  void transferAfter(VSETVLIInfo &Info, const MachineInstr &MI);
  bool computeVLVTYPEChanges(const MachineBasicBlock &MBB);
  void computeIncomingVLVTYPE(const MachineBasicBlock &MBB);
  void emitVSETVLIs(MachineBasicBlock &MBB);
  void doLocalPostpass(MachineBasicBlock &MBB);
  void doPRE(MachineBasicBlock &MBB);
  void insertReadVL(MachineBasicBlock &MBB);
};

} // end anonymous namespace

char RISCVInsertVSETVLI::ID = 0;

INITIALIZE_PASS(RISCVInsertVSETVLI, DEBUG_TYPE, RISCV_INSERT_VSETVLI_NAME,
                false, false)

static bool isVectorConfigInstr(const MachineInstr &MI) {
  return MI.getOpcode() == RISCV::PseudoVSETVLI ||
         MI.getOpcode() == RISCV::PseudoVSETVLIX0 ||
         MI.getOpcode() == RISCV::PseudoVSETIVLI;
}

/// Return true if this is 'vsetvli x0, x0, vtype' which preserves
/// VL and only sets VTYPE.
static bool isVLPreservingConfig(const MachineInstr &MI) {
  if (MI.getOpcode() != RISCV::PseudoVSETVLIX0)
    return false;
  assert(RISCV::X0 == MI.getOperand(1).getReg());
  return RISCV::X0 == MI.getOperand(0).getReg();
}

static VSETVLIInfo computeInfoForInstr(const MachineInstr &MI, uint64_t TSFlags,
                                       const MachineRegisterInfo *MRI) {
  VSETVLIInfo InstrInfo;

  // If the instruction has policy argument, use the argument.
  // If there is no policy argument, default to tail agnostic unless the
  // destination is tied to a source. Unless the source is undef. In that case
  // the user would have some control over the policy values.
  bool TailAgnostic = true;
  bool UsesMaskPolicy = RISCVII::usesMaskPolicy(TSFlags);
  // FIXME: Could we look at the above or below instructions to choose the
  // matched mask policy to reduce vsetvli instructions? Default mask policy is
  // agnostic if instructions use mask policy, otherwise is undisturbed. Because
  // most mask operations are mask undisturbed, so we could possibly reduce the
  // vsetvli between mask and nomasked instruction sequence.
  bool MaskAgnostic = UsesMaskPolicy;
  unsigned UseOpIdx;
  if (RISCVII::hasVecPolicyOp(TSFlags)) {
    const MachineOperand &Op = MI.getOperand(MI.getNumExplicitOperands() - 1);
    uint64_t Policy = Op.getImm();
    assert(Policy <= (RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC) &&
           "Invalid Policy Value");
    // Although in some cases, mismatched passthru/maskedoff with policy value
    // does not make sense (ex. tied operand is IMPLICIT_DEF with non-TAMA
    // policy, or tied operand is not IMPLICIT_DEF with TAMA policy), but users
    // have set the policy value explicitly, so compiler would not fix it.
    TailAgnostic = Policy & RISCVII::TAIL_AGNOSTIC;
    MaskAgnostic = Policy & RISCVII::MASK_AGNOSTIC;
  } else if (MI.isRegTiedToUseOperand(0, &UseOpIdx)) {
    TailAgnostic = false;
    if (UsesMaskPolicy)
      MaskAgnostic = false;
    // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic.
    const MachineOperand &UseMO = MI.getOperand(UseOpIdx);
    MachineInstr *UseMI = MRI->getVRegDef(UseMO.getReg());
    if (UseMI && UseMI->isImplicitDef()) {
      TailAgnostic = true;
      if (UsesMaskPolicy)
        MaskAgnostic = true;
    }
    // Some pseudo instructions force a tail agnostic policy despite having a
    // tied def.
    if (RISCVII::doesForceTailAgnostic(TSFlags))
      TailAgnostic = true;
  }

  RISCVII::VLMUL VLMul = RISCVII::getLMul(TSFlags);

  unsigned Log2SEW = MI.getOperand(getSEWOpNum(MI)).getImm();
  // A Log2SEW of 0 is an operation on mask registers only.
  unsigned SEW = Log2SEW ? 1 << Log2SEW : 8;
  assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW");

  if (RISCVII::hasVLOp(TSFlags)) {
    const MachineOperand &VLOp = MI.getOperand(getVLOpNum(MI));
    if (VLOp.isImm()) {
      int64_t Imm = VLOp.getImm();
      // Conver the VLMax sentintel to X0 register.
      if (Imm == RISCV::VLMaxSentinel)
        InstrInfo.setAVLReg(RISCV::X0);
      else
        InstrInfo.setAVLImm(Imm);
    } else {
      InstrInfo.setAVLReg(VLOp.getReg());
    }
  } else {
    InstrInfo.setAVLReg(RISCV::NoRegister);
  }
#ifndef NDEBUG
  if (Optional<unsigned> EEW = getEEWForLoadStore(MI)) {
    assert(SEW == EEW && "Initial SEW doesn't match expected EEW");
  }
#endif
  InstrInfo.setVTYPE(VLMul, SEW, TailAgnostic, MaskAgnostic);

  return InstrInfo;
}

void RISCVInsertVSETVLI::insertVSETVLI(MachineBasicBlock &MBB, MachineInstr &MI,
                                       const VSETVLIInfo &Info,
                                       const VSETVLIInfo &PrevInfo) {
  DebugLoc DL = MI.getDebugLoc();
  insertVSETVLI(MBB, MachineBasicBlock::iterator(&MI), DL, Info, PrevInfo);
}

void RISCVInsertVSETVLI::insertVSETVLI(MachineBasicBlock &MBB,
                     MachineBasicBlock::iterator InsertPt, DebugLoc DL,
                     const VSETVLIInfo &Info, const VSETVLIInfo &PrevInfo) {

  // Use X0, X0 form if the AVL is the same and the SEW+LMUL gives the same
  // VLMAX.
  if (PrevInfo.isValid() && !PrevInfo.isUnknown() &&
      Info.hasSameAVL(PrevInfo) && Info.hasSameVLMAX(PrevInfo)) {
    BuildMI(MBB, InsertPt, DL, TII->get(RISCV::PseudoVSETVLIX0))
        .addReg(RISCV::X0, RegState::Define | RegState::Dead)
        .addReg(RISCV::X0, RegState::Kill)
        .addImm(Info.encodeVTYPE())
        .addReg(RISCV::VL, RegState::Implicit);
    return;
  }

  if (Info.hasAVLImm()) {
    BuildMI(MBB, InsertPt, DL, TII->get(RISCV::PseudoVSETIVLI))
        .addReg(RISCV::X0, RegState::Define | RegState::Dead)
        .addImm(Info.getAVLImm())
        .addImm(Info.encodeVTYPE());
    return;
  }

  Register AVLReg = Info.getAVLReg();
  if (AVLReg == RISCV::NoRegister) {
    // We can only use x0, x0 if there's no chance of the vtype change causing
    // the previous vl to become invalid.
    if (PrevInfo.isValid() && !PrevInfo.isUnknown() &&
        Info.hasSameVLMAX(PrevInfo)) {
      BuildMI(MBB, InsertPt, DL, TII->get(RISCV::PseudoVSETVLIX0))
          .addReg(RISCV::X0, RegState::Define | RegState::Dead)
          .addReg(RISCV::X0, RegState::Kill)
          .addImm(Info.encodeVTYPE())
          .addReg(RISCV::VL, RegState::Implicit);
      return;
    }
    // Otherwise use an AVL of 0 to avoid depending on previous vl.
    BuildMI(MBB, InsertPt, DL, TII->get(RISCV::PseudoVSETIVLI))
        .addReg(RISCV::X0, RegState::Define | RegState::Dead)
        .addImm(0)
        .addImm(Info.encodeVTYPE());
    return;
  }

  if (AVLReg.isVirtual())
    MRI->constrainRegClass(AVLReg, &RISCV::GPRNoX0RegClass);

  // Use X0 as the DestReg unless AVLReg is X0. We also need to change the
  // opcode if the AVLReg is X0 as they have different register classes for
  // the AVL operand.
  Register DestReg = RISCV::X0;
  unsigned Opcode = RISCV::PseudoVSETVLI;
  if (AVLReg == RISCV::X0) {
    DestReg = MRI->createVirtualRegister(&RISCV::GPRRegClass);
    Opcode = RISCV::PseudoVSETVLIX0;
  }
  BuildMI(MBB, InsertPt, DL, TII->get(Opcode))
      .addReg(DestReg, RegState::Define | RegState::Dead)
      .addReg(AVLReg)
      .addImm(Info.encodeVTYPE());
}

// Return a VSETVLIInfo representing the changes made by this VSETVLI or
// VSETIVLI instruction.
static VSETVLIInfo getInfoForVSETVLI(const MachineInstr &MI) {
  VSETVLIInfo NewInfo;
  if (MI.getOpcode() == RISCV::PseudoVSETIVLI) {
    NewInfo.setAVLImm(MI.getOperand(1).getImm());
  } else {
    assert(MI.getOpcode() == RISCV::PseudoVSETVLI ||
           MI.getOpcode() == RISCV::PseudoVSETVLIX0);
    Register AVLReg = MI.getOperand(1).getReg();
    assert((AVLReg != RISCV::X0 || MI.getOperand(0).getReg() != RISCV::X0) &&
           "Can't handle X0, X0 vsetvli yet");
    NewInfo.setAVLReg(AVLReg);
  }
  NewInfo.setVTYPE(MI.getOperand(2).getImm());

  return NewInfo;
}

/// Return true if a VSETVLI is required to transition from CurInfo to Require
/// before MI.
bool RISCVInsertVSETVLI::needVSETVLI(const MachineInstr &MI,
                                     const VSETVLIInfo &Require,
                                     const VSETVLIInfo &CurInfo) const {
  assert(Require == computeInfoForInstr(MI, MI.getDesc().TSFlags, MRI));

  if (CurInfo.isCompatible(MI, Require))
    return false;

  if (!CurInfo.isValid() || CurInfo.isUnknown() || CurInfo.hasSEWLMULRatioOnly())
    return true;

  // For vmv.s.x and vfmv.s.f, there is only two behaviors, VL = 0 and VL > 0.
  // VL=0 is uninteresting (as it should have been deleted already), so it is
  // compatible if we can prove both are non-zero.  Additionally, if writing
  // to an implicit_def operand, we don't need to preserve any other bits and
  // are thus compatible with any larger etype, and can disregard policy bits.
  if (isScalarMoveInstr(MI) &&
      CurInfo.hasNonZeroAVL() && Require.hasNonZeroAVL()) {
    auto *VRegDef = MRI->getVRegDef(MI.getOperand(1).getReg());
    if (VRegDef && VRegDef->isImplicitDef() &&
        CurInfo.getSEW() >= Require.getSEW())
      return false;
    if (CurInfo.hasSameSEW(Require) && CurInfo.hasSamePolicy(Require))
      return false;
  }

  // We didn't find a compatible value. If our AVL is a virtual register,
  // it might be defined by a VSET(I)VLI. If it has the same VLMAX we need
  // and the last VL/VTYPE we observed is the same, we don't need a
  // VSETVLI here.
  if (Require.hasAVLReg() && Require.getAVLReg().isVirtual() &&
      CurInfo.hasCompatibleVTYPE(MI, Require)) {
    if (MachineInstr *DefMI = MRI->getVRegDef(Require.getAVLReg())) {
      if (isVectorConfigInstr(*DefMI)) {
        VSETVLIInfo DefInfo = getInfoForVSETVLI(*DefMI);
        if (DefInfo.hasSameAVL(CurInfo) && DefInfo.hasSameVLMAX(CurInfo))
          return false;
      }
    }
  }

  return true;
}

// Given an incoming state reaching MI, modifies that state so that it is minimally
// compatible with MI.  The resulting state is guaranteed to be semantically legal
// for MI, but may not be the state requested by MI.
void RISCVInsertVSETVLI::transferBefore(VSETVLIInfo &Info, const MachineInstr &MI) {
  uint64_t TSFlags = MI.getDesc().TSFlags;
  if (!RISCVII::hasSEWOp(TSFlags))
    return;

  const VSETVLIInfo NewInfo = computeInfoForInstr(MI, TSFlags, MRI);
  if (Info.isValid() && !needVSETVLI(MI, NewInfo, Info))
    return;

  const VSETVLIInfo PrevInfo = Info;
  Info = NewInfo;

  if (!RISCVII::hasVLOp(TSFlags))
    return;

  // For vmv.s.x and vfmv.s.f, there are only two behaviors, VL = 0 and
  // VL > 0. We can discard the user requested AVL and just use the last
  // one if we can prove it equally zero.  This removes a vsetvli entirely
  // if the types match or allows use of cheaper avl preserving variant
  // if VLMAX doesn't change.  If VLMAX might change, we couldn't use
  // the 'vsetvli x0, x0, vtype" variant, so we avoid the transform to
  // prevent extending live range of an avl register operand.
  // TODO: We can probably relax this for immediates.
  if (isScalarMoveInstr(MI) && PrevInfo.isValid() &&
      PrevInfo.hasNonZeroAVL() && Info.hasNonZeroAVL() &&
      Info.hasSameVLMAX(PrevInfo)) {
    if (PrevInfo.hasAVLImm())
      Info.setAVLImm(PrevInfo.getAVLImm());
    else
      Info.setAVLReg(PrevInfo.getAVLReg());
    return;
  }

  // Two cases involving an AVL resulting from a previous vsetvli.
  // 1) If the AVL is the result of a previous vsetvli which has the
  //    same AVL and VLMAX as our current state, we can reuse the AVL
  //    from the current state for the new one.  This allows us to
  //    generate 'vsetvli x0, x0, vtype" or possible skip the transition
  //    entirely.
  // 2) If AVL is defined by a vsetvli with the same VLMAX, we can
  //    replace the AVL operand with the AVL of the defining vsetvli.
  //    We avoid general register AVLs to avoid extending live ranges
  //    without being sure we can kill the original source reg entirely.
  if (!Info.hasAVLReg() || !Info.getAVLReg().isVirtual())
    return;
  MachineInstr *DefMI = MRI->getVRegDef(Info.getAVLReg());
  if (!DefMI || !isVectorConfigInstr(*DefMI))
    return;

  VSETVLIInfo DefInfo = getInfoForVSETVLI(*DefMI);
  // case 1
  if (PrevInfo.isValid() && !PrevInfo.isUnknown() &&
      DefInfo.hasSameAVL(PrevInfo) &&
      DefInfo.hasSameVLMAX(PrevInfo)) {
    if (PrevInfo.hasAVLImm())
      Info.setAVLImm(PrevInfo.getAVLImm());
    else
      Info.setAVLReg(PrevInfo.getAVLReg());
    return;
  }
  // case 2
  if (DefInfo.hasSameVLMAX(Info) &&
      (DefInfo.hasAVLImm() || DefInfo.getAVLReg() == RISCV::X0)) {
    if (DefInfo.hasAVLImm())
      Info.setAVLImm(DefInfo.getAVLImm());
    else
      Info.setAVLReg(DefInfo.getAVLReg());
    return;
  }
}

// Given a state with which we evaluated MI (see transferBefore above for why
// this might be different that the state MI requested), modify the state to
// reflect the changes MI might make.
void RISCVInsertVSETVLI::transferAfter(VSETVLIInfo &Info, const MachineInstr &MI) {
  if (isVectorConfigInstr(MI)) {
    Info = getInfoForVSETVLI(MI);
    return;
  }

  if (RISCV::isFaultFirstLoad(MI)) {
    // Update AVL to vl-output of the fault first load.
    Info.setAVLReg(MI.getOperand(1).getReg());
    return;
  }

  // If this is something that updates VL/VTYPE that we don't know about, set
  // the state to unknown.
  if (MI.isCall() || MI.isInlineAsm() || MI.modifiesRegister(RISCV::VL) ||
      MI.modifiesRegister(RISCV::VTYPE))
    Info = VSETVLIInfo::getUnknown();
}

bool RISCVInsertVSETVLI::computeVLVTYPEChanges(const MachineBasicBlock &MBB) {
  bool HadVectorOp = false;

  BlockData &BBInfo = BlockInfo[MBB.getNumber()];
  BBInfo.Change = BBInfo.Pred;
  for (const MachineInstr &MI : MBB) {
    transferBefore(BBInfo.Change, MI);

    if (isVectorConfigInstr(MI) || RISCVII::hasSEWOp(MI.getDesc().TSFlags))
      HadVectorOp = true;

    transferAfter(BBInfo.Change, MI);
  }

  return HadVectorOp;
}

void RISCVInsertVSETVLI::computeIncomingVLVTYPE(const MachineBasicBlock &MBB) {

  BlockData &BBInfo = BlockInfo[MBB.getNumber()];

  BBInfo.InQueue = false;

  VSETVLIInfo InInfo;
  if (MBB.pred_empty()) {
    // There are no predecessors, so use the default starting status.
    InInfo.setUnknown();
  } else {
    for (MachineBasicBlock *P : MBB.predecessors())
      InInfo = InInfo.intersect(BlockInfo[P->getNumber()].Exit);
  }

  // If we don't have any valid predecessor value, wait until we do.
  if (!InInfo.isValid())
    return;

  // If no change, no need to rerun block
  if (InInfo == BBInfo.Pred)
    return;

  BBInfo.Pred = InInfo;
  LLVM_DEBUG(dbgs() << "Entry state of " << printMBBReference(MBB)
                    << " changed to " << BBInfo.Pred << "\n");

  // Note: It's tempting to cache the state changes here, but due to the
  // compatibility checks performed a blocks output state can change based on
  // the input state.  To cache, we'd have to add logic for finding
  // never-compatible state changes.
  computeVLVTYPEChanges(MBB);
  VSETVLIInfo TmpStatus = BBInfo.Change;

  // If the new exit value matches the old exit value, we don't need to revisit
  // any blocks.
  if (BBInfo.Exit == TmpStatus)
    return;

  BBInfo.Exit = TmpStatus;
  LLVM_DEBUG(dbgs() << "Exit state of " << printMBBReference(MBB)
                    << " changed to " << BBInfo.Exit << "\n");

  // Add the successors to the work list so we can propagate the changed exit
  // status.
  for (MachineBasicBlock *S : MBB.successors())
    if (!BlockInfo[S->getNumber()].InQueue)
      WorkList.push(S);
}

// If we weren't able to prove a vsetvli was directly unneeded, it might still
// be unneeded if the AVL is a phi node where all incoming values are VL
// outputs from the last VSETVLI in their respective basic blocks.
bool RISCVInsertVSETVLI::needVSETVLIPHI(const VSETVLIInfo &Require,
                                        const MachineBasicBlock &MBB) const {
  if (DisableInsertVSETVLPHIOpt)
    return true;

  if (!Require.hasAVLReg())
    return true;

  Register AVLReg = Require.getAVLReg();
  if (!AVLReg.isVirtual())
    return true;

  // We need the AVL to be produce by a PHI node in this basic block.
  MachineInstr *PHI = MRI->getVRegDef(AVLReg);
  if (!PHI || PHI->getOpcode() != RISCV::PHI || PHI->getParent() != &MBB)
    return true;

  for (unsigned PHIOp = 1, NumOps = PHI->getNumOperands(); PHIOp != NumOps;
       PHIOp += 2) {
    Register InReg = PHI->getOperand(PHIOp).getReg();
    MachineBasicBlock *PBB = PHI->getOperand(PHIOp + 1).getMBB();
    const BlockData &PBBInfo = BlockInfo[PBB->getNumber()];
    // If the exit from the predecessor has the VTYPE we are looking for
    // we might be able to avoid a VSETVLI.
    if (PBBInfo.Exit.isUnknown() || !PBBInfo.Exit.hasSameVTYPE(Require))
      return true;

    // We need the PHI input to the be the output of a VSET(I)VLI.
    MachineInstr *DefMI = MRI->getVRegDef(InReg);
    if (!DefMI || !isVectorConfigInstr(*DefMI))
      return true;

    // We found a VSET(I)VLI make sure it matches the output of the
    // predecessor block.
    VSETVLIInfo DefInfo = getInfoForVSETVLI(*DefMI);
    if (!DefInfo.hasSameAVL(PBBInfo.Exit) ||
        !DefInfo.hasSameVTYPE(PBBInfo.Exit))
      return true;
  }

  // If all the incoming values to the PHI checked out, we don't need
  // to insert a VSETVLI.
  return false;
}

void RISCVInsertVSETVLI::emitVSETVLIs(MachineBasicBlock &MBB) {
  VSETVLIInfo CurInfo = BlockInfo[MBB.getNumber()].Pred;
  // Track whether the prefix of the block we've scanned is transparent
  // (meaning has not yet changed the abstract state).
  bool PrefixTransparent = true;
  for (MachineInstr &MI : MBB) {
    const VSETVLIInfo PrevInfo = CurInfo;
    transferBefore(CurInfo, MI);

    // If this is an explicit VSETVLI or VSETIVLI, update our state.
    if (isVectorConfigInstr(MI)) {
      // Conservatively, mark the VL and VTYPE as live.
      assert(MI.getOperand(3).getReg() == RISCV::VL &&
             MI.getOperand(4).getReg() == RISCV::VTYPE &&
             "Unexpected operands where VL and VTYPE should be");
      MI.getOperand(3).setIsDead(false);
      MI.getOperand(4).setIsDead(false);
      PrefixTransparent = false;
    }

    uint64_t TSFlags = MI.getDesc().TSFlags;
    if (RISCVII::hasSEWOp(TSFlags)) {
      if (PrevInfo != CurInfo) {
        // If this is the first implicit state change, and the state change
        // requested can be proven to produce the same register contents, we
        // can skip emitting the actual state change and continue as if we
        // had since we know the GPR result of the implicit state change
        // wouldn't be used and VL/VTYPE registers are correct.  Note that
        // we *do* need to model the state as if it changed as while the
        // register contents are unchanged, the abstract model can change.
        if (!PrefixTransparent || needVSETVLIPHI(CurInfo, MBB))
          insertVSETVLI(MBB, MI, CurInfo, PrevInfo);
        PrefixTransparent = false;
      }

      if (RISCVII::hasVLOp(TSFlags)) {
        MachineOperand &VLOp = MI.getOperand(getVLOpNum(MI));
        if (VLOp.isReg()) {
          // Erase the AVL operand from the instruction.
          VLOp.setReg(RISCV::NoRegister);
          VLOp.setIsKill(false);
        }
        MI.addOperand(MachineOperand::CreateReg(RISCV::VL, /*isDef*/ false,
                                                /*isImp*/ true));
      }
      MI.addOperand(MachineOperand::CreateReg(RISCV::VTYPE, /*isDef*/ false,
                                              /*isImp*/ true));
    }

    if (MI.isCall() || MI.isInlineAsm() || MI.modifiesRegister(RISCV::VL) ||
        MI.modifiesRegister(RISCV::VTYPE))
      PrefixTransparent = false;

    transferAfter(CurInfo, MI);
  }

  // If we reach the end of the block and our current info doesn't match the
  // expected info, insert a vsetvli to correct.
  if (!UseStrictAsserts) {
    const VSETVLIInfo &ExitInfo = BlockInfo[MBB.getNumber()].Exit;
    if (CurInfo.isValid() && ExitInfo.isValid() && !ExitInfo.isUnknown() &&
        CurInfo != ExitInfo) {
      // Note there's an implicit assumption here that terminators never use
      // or modify VL or VTYPE.  Also, fallthrough will return end().
      auto InsertPt = MBB.getFirstInstrTerminator();
      insertVSETVLI(MBB, InsertPt, MBB.findDebugLoc(InsertPt), ExitInfo,
                    CurInfo);
      CurInfo = ExitInfo;
    }
  }

  if (UseStrictAsserts && CurInfo.isValid()) {
    const auto &Info = BlockInfo[MBB.getNumber()];
    if (CurInfo != Info.Exit) {
      LLVM_DEBUG(dbgs() << "in block " << printMBBReference(MBB) << "\n");
      LLVM_DEBUG(dbgs() << "  begin        state: " << Info.Pred << "\n");
      LLVM_DEBUG(dbgs() << "  expected end state: " << Info.Exit << "\n");
      LLVM_DEBUG(dbgs() << "  actual   end state: " << CurInfo << "\n");
    }
    assert(CurInfo == Info.Exit &&
           "InsertVSETVLI dataflow invariant violated");
  }
}

/// Return true if the VL value configured must be equal to the requested one.
static bool hasFixedResult(const VSETVLIInfo &Info, const RISCVSubtarget &ST) {
  if (!Info.hasAVLImm())
    // VLMAX is always the same value.
    // TODO: Could extend to other registers by looking at the associated vreg
    // def placement.
    return RISCV::X0 == Info.getAVLReg();

  unsigned AVL = Info.getAVLImm();
  unsigned SEW = Info.getSEW();
  unsigned AVLInBits = AVL * SEW;

  unsigned LMul;
  bool Fractional;
  std::tie(LMul, Fractional) = RISCVVType::decodeVLMUL(Info.getVLMUL());

  if (Fractional)
    return ST.getRealMinVLen() / LMul >= AVLInBits;
  return ST.getRealMinVLen() * LMul >= AVLInBits;
}

/// Perform simple partial redundancy elimination of the VSETVLI instructions
/// we're about to insert by looking for cases where we can PRE from the
/// beginning of one block to the end of one of its predecessors.  Specifically,
/// this is geared to catch the common case of a fixed length vsetvl in a single
/// block loop when it could execute once in the preheader instead.
void RISCVInsertVSETVLI::doPRE(MachineBasicBlock &MBB) {
  const MachineFunction &MF = *MBB.getParent();
  const RISCVSubtarget &ST = MF.getSubtarget<RISCVSubtarget>();

  if (!BlockInfo[MBB.getNumber()].Pred.isUnknown())
    return;

  MachineBasicBlock *UnavailablePred = nullptr;
  VSETVLIInfo AvailableInfo;
  for (MachineBasicBlock *P : MBB.predecessors()) {
    const VSETVLIInfo &PredInfo = BlockInfo[P->getNumber()].Exit;
    if (PredInfo.isUnknown()) {
      if (UnavailablePred)
        return;
      UnavailablePred = P;
    } else if (!AvailableInfo.isValid()) {
      AvailableInfo = PredInfo;
    } else if (AvailableInfo != PredInfo) {
      return;
    }
  }

  // Unreachable, single pred, or full redundancy. Note that FRE is handled by
  // phase 3.
  if (!UnavailablePred || !AvailableInfo.isValid())
    return;

  // Critical edge - TODO: consider splitting?
  if (UnavailablePred->succ_size() != 1)
    return;

  // If VL can be less than AVL, then we can't reduce the frequency of exec.
  if (!hasFixedResult(AvailableInfo, ST))
    return;

  // Does it actually let us remove an implicit transition in MBB?
  bool Found = false;
  for (auto &MI : MBB) {
    if (isVectorConfigInstr(MI))
      return;

    const uint64_t TSFlags = MI.getDesc().TSFlags;
    if (RISCVII::hasSEWOp(TSFlags)) {
      if (AvailableInfo != computeInfoForInstr(MI, TSFlags, MRI))
        return;
      Found = true;
      break;
    }
  }
  if (!Found)
    return;

  // Finally, update both data flow state and insert the actual vsetvli.
  // Doing both keeps the code in sync with the dataflow results, which
  // is critical for correctness of phase 3.
  auto OldInfo = BlockInfo[UnavailablePred->getNumber()].Exit;
  LLVM_DEBUG(dbgs() << "PRE VSETVLI from " << MBB.getName() << " to "
                    << UnavailablePred->getName() << " with state "
                    << AvailableInfo << "\n");
  BlockInfo[UnavailablePred->getNumber()].Exit = AvailableInfo;
  BlockInfo[MBB.getNumber()].Pred = AvailableInfo;

  // Note there's an implicit assumption here that terminators never use
  // or modify VL or VTYPE.  Also, fallthrough will return end().
  auto InsertPt = UnavailablePred->getFirstInstrTerminator();
  insertVSETVLI(*UnavailablePred, InsertPt,
                UnavailablePred->findDebugLoc(InsertPt),
                AvailableInfo, OldInfo);
}

static void doUnion(DemandedFields &A, DemandedFields B) {
  A.VL |= B.VL;
  A.SEW |= B.SEW;
  A.LMUL |= B.LMUL;
  A.SEWLMULRatio |= B.SEWLMULRatio;
  A.TailPolicy |= B.TailPolicy;
  A.MaskPolicy |= B.MaskPolicy;
}

// Return true if we can mutate PrevMI's VTYPE to match MI's
// without changing any the fields which have been used.
// TODO: Restructure code to allow code reuse between this and isCompatible
// above.
static bool canMutatePriorConfig(const MachineInstr &PrevMI,
                                 const MachineInstr &MI,
                                 const DemandedFields &Used) {
  // TODO: Extend this to handle cases where VL does change, but VL
  // has not been used.  (e.g. over a vmv.x.s)
  if (!isVLPreservingConfig(MI))
    // Note: `vsetvli x0, x0, vtype' is the canonical instruction
    // for this case.  If you find yourself wanting to add other forms
    // to this "unused VTYPE" case, we're probably missing a
    // canonicalization earlier.
    return false;

  if (!PrevMI.getOperand(2).isImm() || !MI.getOperand(2).isImm())
    return false;

  auto PriorVType = PrevMI.getOperand(2).getImm();
  auto VType = MI.getOperand(2).getImm();
  return areCompatibleVTYPEs(PriorVType, VType, Used);
}

void RISCVInsertVSETVLI::doLocalPostpass(MachineBasicBlock &MBB) {
  MachineInstr *PrevMI = nullptr;
  DemandedFields Used;
  SmallVector<MachineInstr*> ToDelete;
  for (MachineInstr &MI : MBB) {
    // Note: Must be *before* vsetvli handling to account for config cases
    // which only change some subfields.
    doUnion(Used, getDemanded(MI));

    if (!isVectorConfigInstr(MI))
      continue;

    if (PrevMI) {
      if (!Used.VL && !Used.usedVTYPE()) {
        ToDelete.push_back(PrevMI);
        // fallthrough
      } else if (canMutatePriorConfig(*PrevMI, MI, Used)) {
        PrevMI->getOperand(2).setImm(MI.getOperand(2).getImm());
        ToDelete.push_back(&MI);
        // Leave PrevMI unchanged
        continue;
      }
    }
    PrevMI = &MI;
    Used = getDemanded(MI);
    Register VRegDef = MI.getOperand(0).getReg();
    if (VRegDef != RISCV::X0 &&
        !(VRegDef.isVirtual() && MRI->use_nodbg_empty(VRegDef)))
      Used.VL = true;
  }

  for (auto *MI : ToDelete)
    MI->eraseFromParent();
}

void RISCVInsertVSETVLI::insertReadVL(MachineBasicBlock &MBB) {
  for (auto I = MBB.begin(), E = MBB.end(); I != E;) {
    MachineInstr &MI = *I++;
    if (RISCV::isFaultFirstLoad(MI)) {
      Register VLOutput = MI.getOperand(1).getReg();
      if (!MRI->use_nodbg_empty(VLOutput))
        BuildMI(MBB, I, MI.getDebugLoc(), TII->get(RISCV::PseudoReadVL),
                VLOutput);
      // We don't use the vl output of the VLEFF/VLSEGFF anymore.
      MI.getOperand(1).setReg(RISCV::X0);
    }
  }
}

bool RISCVInsertVSETVLI::runOnMachineFunction(MachineFunction &MF) {
  // Skip if the vector extension is not enabled.
  const RISCVSubtarget &ST = MF.getSubtarget<RISCVSubtarget>();
  if (!ST.hasVInstructions())
    return false;

  LLVM_DEBUG(dbgs() << "Entering InsertVSETVLI for " << MF.getName() << "\n");

  TII = ST.getInstrInfo();
  MRI = &MF.getRegInfo();

  assert(BlockInfo.empty() && "Expect empty block infos");
  BlockInfo.resize(MF.getNumBlockIDs());

  bool HaveVectorOp = false;

  // Phase 1 - determine how VL/VTYPE are affected by the each block.
  for (const MachineBasicBlock &MBB : MF) {
    HaveVectorOp |= computeVLVTYPEChanges(MBB);
    // Initial exit state is whatever change we found in the block.
    BlockData &BBInfo = BlockInfo[MBB.getNumber()];
    BBInfo.Exit = BBInfo.Change;
    LLVM_DEBUG(dbgs() << "Initial exit state of " << printMBBReference(MBB)
                      << " is " << BBInfo.Exit << "\n");

  }

  // If we didn't find any instructions that need VSETVLI, we're done.
  if (!HaveVectorOp) {
    BlockInfo.clear();
    return false;
  }

  // Phase 2 - determine the exit VL/VTYPE from each block. We add all
  // blocks to the list here, but will also add any that need to be revisited
  // during Phase 2 processing.
  for (const MachineBasicBlock &MBB : MF) {
    WorkList.push(&MBB);
    BlockInfo[MBB.getNumber()].InQueue = true;
  }
  while (!WorkList.empty()) {
    const MachineBasicBlock &MBB = *WorkList.front();
    WorkList.pop();
    computeIncomingVLVTYPE(MBB);
  }

  // Perform partial redundancy elimination of vsetvli transitions.
  for (MachineBasicBlock &MBB : MF)
    doPRE(MBB);

  // Phase 3 - add any vsetvli instructions needed in the block. Use the
  // Phase 2 information to avoid adding vsetvlis before the first vector
  // instruction in the block if the VL/VTYPE is satisfied by its
  // predecessors.
  for (MachineBasicBlock &MBB : MF)
    emitVSETVLIs(MBB);

  // Now that all vsetvlis are explicit, go through and do block local
  // DSE and peephole based demanded fields based transforms.  Note that
  // this *must* be done outside the main dataflow so long as we allow
  // any cross block analysis within the dataflow.  We can't have both
  // demanded fields based mutation and non-local analysis in the
  // dataflow at the same time without introducing inconsistencies.
  for (MachineBasicBlock &MBB : MF)
    doLocalPostpass(MBB);

  // Once we're fully done rewriting all the instructions, do a final pass
  // through to check for VSETVLIs which write to an unused destination.
  // For the non X0, X0 variant, we can replace the destination register
  // with X0 to reduce register pressure.  This is really a generic
  // optimization which can be applied to any dead def (TODO: generalize).
  for (MachineBasicBlock &MBB : MF) {
    for (MachineInstr &MI : MBB) {
      if (MI.getOpcode() == RISCV::PseudoVSETVLI ||
          MI.getOpcode() == RISCV::PseudoVSETIVLI) {
        Register VRegDef = MI.getOperand(0).getReg();
        if (VRegDef != RISCV::X0 && MRI->use_nodbg_empty(VRegDef))
          MI.getOperand(0).setReg(RISCV::X0);
      }
    }
  }

  // Insert PseudoReadVL after VLEFF/VLSEGFF and replace it with the vl output
  // of VLEFF/VLSEGFF.
  for (MachineBasicBlock &MBB : MF)
    insertReadVL(MBB);

  BlockInfo.clear();
  return HaveVectorOp;
}

/// Returns an instance of the Insert VSETVLI pass.
FunctionPass *llvm::createRISCVInsertVSETVLIPass() {
  return new RISCVInsertVSETVLI();
}