aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopDataPrefetch.cpp
blob: fd2eaee8b47d7e989097016d25e3ffa1a08d2bd7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
//===-------- LoopDataPrefetch.cpp - Loop Data Prefetching Pass -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a Loop Data Prefetching Pass.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LoopDataPrefetch.h"
#include "llvm/InitializePasses.h"

#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"

#define DEBUG_TYPE "loop-data-prefetch"

using namespace llvm;

// By default, we limit this to creating 16 PHIs (which is a little over half
// of the allocatable register set).
static cl::opt<bool>
PrefetchWrites("loop-prefetch-writes", cl::Hidden, cl::init(false),
               cl::desc("Prefetch write addresses"));

static cl::opt<unsigned>
    PrefetchDistance("prefetch-distance",
                     cl::desc("Number of instructions to prefetch ahead"),
                     cl::Hidden);

static cl::opt<unsigned>
    MinPrefetchStride("min-prefetch-stride",
                      cl::desc("Min stride to add prefetches"), cl::Hidden);

static cl::opt<unsigned> MaxPrefetchIterationsAhead(
    "max-prefetch-iters-ahead",
    cl::desc("Max number of iterations to prefetch ahead"), cl::Hidden);

STATISTIC(NumPrefetches, "Number of prefetches inserted");

namespace {

/// Loop prefetch implementation class.
class LoopDataPrefetch {
public:
  LoopDataPrefetch(AssumptionCache *AC, DominatorTree *DT, LoopInfo *LI,
                   ScalarEvolution *SE, const TargetTransformInfo *TTI,
                   OptimizationRemarkEmitter *ORE)
      : AC(AC), DT(DT), LI(LI), SE(SE), TTI(TTI), ORE(ORE) {}

  bool run();

private:
  bool runOnLoop(Loop *L);

  /// Check if the stride of the accesses is large enough to
  /// warrant a prefetch.
  bool isStrideLargeEnough(const SCEVAddRecExpr *AR, unsigned TargetMinStride);

  unsigned getMinPrefetchStride(unsigned NumMemAccesses,
                                unsigned NumStridedMemAccesses,
                                unsigned NumPrefetches,
                                bool HasCall) {
    if (MinPrefetchStride.getNumOccurrences() > 0)
      return MinPrefetchStride;
    return TTI->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
                                     NumPrefetches, HasCall);
  }

  unsigned getPrefetchDistance() {
    if (PrefetchDistance.getNumOccurrences() > 0)
      return PrefetchDistance;
    return TTI->getPrefetchDistance();
  }

  unsigned getMaxPrefetchIterationsAhead() {
    if (MaxPrefetchIterationsAhead.getNumOccurrences() > 0)
      return MaxPrefetchIterationsAhead;
    return TTI->getMaxPrefetchIterationsAhead();
  }

  bool doPrefetchWrites() {
    if (PrefetchWrites.getNumOccurrences() > 0)
      return PrefetchWrites;
    return TTI->enableWritePrefetching();
  }

  AssumptionCache *AC;
  DominatorTree *DT;
  LoopInfo *LI;
  ScalarEvolution *SE;
  const TargetTransformInfo *TTI;
  OptimizationRemarkEmitter *ORE;
};

/// Legacy class for inserting loop data prefetches.
class LoopDataPrefetchLegacyPass : public FunctionPass {
public:
  static char ID; // Pass ID, replacement for typeid
  LoopDataPrefetchLegacyPass() : FunctionPass(ID) {
    initializeLoopDataPrefetchLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.addPreserved<LoopInfoWrapperPass>();
    AU.addRequiredID(LoopSimplifyID);
    AU.addPreservedID(LoopSimplifyID);
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addPreserved<ScalarEvolutionWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
  }

  bool runOnFunction(Function &F) override;
  };
}

char LoopDataPrefetchLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LoopDataPrefetchLegacyPass, "loop-data-prefetch",
                      "Loop Data Prefetch", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_END(LoopDataPrefetchLegacyPass, "loop-data-prefetch",
                    "Loop Data Prefetch", false, false)

FunctionPass *llvm::createLoopDataPrefetchPass() {
  return new LoopDataPrefetchLegacyPass();
}

bool LoopDataPrefetch::isStrideLargeEnough(const SCEVAddRecExpr *AR,
                                           unsigned TargetMinStride) {
  // No need to check if any stride goes.
  if (TargetMinStride <= 1)
    return true;

  const auto *ConstStride = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
  // If MinStride is set, don't prefetch unless we can ensure that stride is
  // larger.
  if (!ConstStride)
    return false;

  unsigned AbsStride = std::abs(ConstStride->getAPInt().getSExtValue());
  return TargetMinStride <= AbsStride;
}

PreservedAnalyses LoopDataPrefetchPass::run(Function &F,
                                            FunctionAnalysisManager &AM) {
  DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
  LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
  ScalarEvolution *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
  AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
  OptimizationRemarkEmitter *ORE =
      &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
  const TargetTransformInfo *TTI = &AM.getResult<TargetIRAnalysis>(F);

  LoopDataPrefetch LDP(AC, DT, LI, SE, TTI, ORE);
  bool Changed = LDP.run();

  if (Changed) {
    PreservedAnalyses PA;
    PA.preserve<DominatorTreeAnalysis>();
    PA.preserve<LoopAnalysis>();
    return PA;
  }

  return PreservedAnalyses::all();
}

bool LoopDataPrefetchLegacyPass::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  AssumptionCache *AC =
      &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
  OptimizationRemarkEmitter *ORE =
      &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
  const TargetTransformInfo *TTI =
      &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);

  LoopDataPrefetch LDP(AC, DT, LI, SE, TTI, ORE);
  return LDP.run();
}

bool LoopDataPrefetch::run() {
  // If PrefetchDistance is not set, don't run the pass.  This gives an
  // opportunity for targets to run this pass for selected subtargets only
  // (whose TTI sets PrefetchDistance).
  if (getPrefetchDistance() == 0)
    return false;
  assert(TTI->getCacheLineSize() && "Cache line size is not set for target");

  bool MadeChange = false;

  for (Loop *I : *LI)
    for (Loop *L : depth_first(I))
      MadeChange |= runOnLoop(L);

  return MadeChange;
}

/// A record for a potential prefetch made during the initial scan of the
/// loop. This is used to let a single prefetch target multiple memory accesses.
struct Prefetch {
  /// The address formula for this prefetch as returned by ScalarEvolution.
  const SCEVAddRecExpr *LSCEVAddRec;
  /// The point of insertion for the prefetch instruction.
  Instruction *InsertPt = nullptr;
  /// True if targeting a write memory access.
  bool Writes = false;
  /// The (first seen) prefetched instruction.
  Instruction *MemI = nullptr;

  /// Constructor to create a new Prefetch for \p I.
  Prefetch(const SCEVAddRecExpr *L, Instruction *I) : LSCEVAddRec(L) {
    addInstruction(I);
  };

  /// Add the instruction \param I to this prefetch. If it's not the first
  /// one, 'InsertPt' and 'Writes' will be updated as required.
  /// \param PtrDiff the known constant address difference to the first added
  /// instruction.
  void addInstruction(Instruction *I, DominatorTree *DT = nullptr,
                      int64_t PtrDiff = 0) {
    if (!InsertPt) {
      MemI = I;
      InsertPt = I;
      Writes = isa<StoreInst>(I);
    } else {
      BasicBlock *PrefBB = InsertPt->getParent();
      BasicBlock *InsBB = I->getParent();
      if (PrefBB != InsBB) {
        BasicBlock *DomBB = DT->findNearestCommonDominator(PrefBB, InsBB);
        if (DomBB != PrefBB)
          InsertPt = DomBB->getTerminator();
      }

      if (isa<StoreInst>(I) && PtrDiff == 0)
        Writes = true;
    }
  }
};

bool LoopDataPrefetch::runOnLoop(Loop *L) {
  bool MadeChange = false;

  // Only prefetch in the inner-most loop
  if (!L->isInnermost())
    return MadeChange;

  SmallPtrSet<const Value *, 32> EphValues;
  CodeMetrics::collectEphemeralValues(L, AC, EphValues);

  // Calculate the number of iterations ahead to prefetch
  CodeMetrics Metrics;
  bool HasCall = false;
  for (const auto BB : L->blocks()) {
    // If the loop already has prefetches, then assume that the user knows
    // what they are doing and don't add any more.
    for (auto &I : *BB) {
      if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
        if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
          if (F->getIntrinsicID() == Intrinsic::prefetch)
            return MadeChange;
          if (TTI->isLoweredToCall(F))
            HasCall = true;
        } else { // indirect call.
          HasCall = true;
        }
      }
    }
    Metrics.analyzeBasicBlock(BB, *TTI, EphValues);
  }

  if (!Metrics.NumInsts.isValid())
    return MadeChange;

  unsigned LoopSize = *Metrics.NumInsts.getValue();
  if (!LoopSize)
    LoopSize = 1;

  unsigned ItersAhead = getPrefetchDistance() / LoopSize;
  if (!ItersAhead)
    ItersAhead = 1;

  if (ItersAhead > getMaxPrefetchIterationsAhead())
    return MadeChange;

  unsigned ConstantMaxTripCount = SE->getSmallConstantMaxTripCount(L);
  if (ConstantMaxTripCount && ConstantMaxTripCount < ItersAhead + 1)
    return MadeChange;

  unsigned NumMemAccesses = 0;
  unsigned NumStridedMemAccesses = 0;
  SmallVector<Prefetch, 16> Prefetches;
  for (const auto BB : L->blocks())
    for (auto &I : *BB) {
      Value *PtrValue;
      Instruction *MemI;

      if (LoadInst *LMemI = dyn_cast<LoadInst>(&I)) {
        MemI = LMemI;
        PtrValue = LMemI->getPointerOperand();
      } else if (StoreInst *SMemI = dyn_cast<StoreInst>(&I)) {
        if (!doPrefetchWrites()) continue;
        MemI = SMemI;
        PtrValue = SMemI->getPointerOperand();
      } else continue;

      unsigned PtrAddrSpace = PtrValue->getType()->getPointerAddressSpace();
      if (PtrAddrSpace)
        continue;
      NumMemAccesses++;
      if (L->isLoopInvariant(PtrValue))
        continue;

      const SCEV *LSCEV = SE->getSCEV(PtrValue);
      const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
      if (!LSCEVAddRec)
        continue;
      NumStridedMemAccesses++;

      // We don't want to double prefetch individual cache lines. If this
      // access is known to be within one cache line of some other one that
      // has already been prefetched, then don't prefetch this one as well.
      bool DupPref = false;
      for (auto &Pref : Prefetches) {
        const SCEV *PtrDiff = SE->getMinusSCEV(LSCEVAddRec, Pref.LSCEVAddRec);
        if (const SCEVConstant *ConstPtrDiff =
            dyn_cast<SCEVConstant>(PtrDiff)) {
          int64_t PD = std::abs(ConstPtrDiff->getValue()->getSExtValue());
          if (PD < (int64_t) TTI->getCacheLineSize()) {
            Pref.addInstruction(MemI, DT, PD);
            DupPref = true;
            break;
          }
        }
      }
      if (!DupPref)
        Prefetches.push_back(Prefetch(LSCEVAddRec, MemI));
    }

  unsigned TargetMinStride =
    getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
                         Prefetches.size(), HasCall);

  LLVM_DEBUG(dbgs() << "Prefetching " << ItersAhead
             << " iterations ahead (loop size: " << LoopSize << ") in "
             << L->getHeader()->getParent()->getName() << ": " << *L);
  LLVM_DEBUG(dbgs() << "Loop has: "
             << NumMemAccesses << " memory accesses, "
             << NumStridedMemAccesses << " strided memory accesses, "
             << Prefetches.size() << " potential prefetch(es), "
             << "a minimum stride of " << TargetMinStride << ", "
             << (HasCall ? "calls" : "no calls") << ".\n");

  for (auto &P : Prefetches) {
    // Check if the stride of the accesses is large enough to warrant a
    // prefetch.
    if (!isStrideLargeEnough(P.LSCEVAddRec, TargetMinStride))
      continue;

    BasicBlock *BB = P.InsertPt->getParent();
    SCEVExpander SCEVE(*SE, BB->getModule()->getDataLayout(), "prefaddr");
    const SCEV *NextLSCEV = SE->getAddExpr(P.LSCEVAddRec, SE->getMulExpr(
      SE->getConstant(P.LSCEVAddRec->getType(), ItersAhead),
      P.LSCEVAddRec->getStepRecurrence(*SE)));
    if (!SCEVE.isSafeToExpand(NextLSCEV))
      continue;

    Type *I8Ptr = Type::getInt8PtrTy(BB->getContext(), 0/*PtrAddrSpace*/);
    Value *PrefPtrValue = SCEVE.expandCodeFor(NextLSCEV, I8Ptr, P.InsertPt);

    IRBuilder<> Builder(P.InsertPt);
    Module *M = BB->getParent()->getParent();
    Type *I32 = Type::getInt32Ty(BB->getContext());
    Function *PrefetchFunc = Intrinsic::getDeclaration(
        M, Intrinsic::prefetch, PrefPtrValue->getType());
    Builder.CreateCall(
        PrefetchFunc,
        {PrefPtrValue,
         ConstantInt::get(I32, P.Writes),
         ConstantInt::get(I32, 3), ConstantInt::get(I32, 1)});
    ++NumPrefetches;
    LLVM_DEBUG(dbgs() << "  Access: "
               << *P.MemI->getOperand(isa<LoadInst>(P.MemI) ? 0 : 1)
               << ", SCEV: " << *P.LSCEVAddRec << "\n");
    ORE->emit([&]() {
        return OptimizationRemark(DEBUG_TYPE, "Prefetched", P.MemI)
          << "prefetched memory access";
      });

    MadeChange = true;
  }

  return MadeChange;
}