aboutsummaryrefslogtreecommitdiff
path: root/en_US.ISO8859-1/books/handbook/advanced-networking/chapter.xml
blob: d402890e5029a903acc35cfc46dc59429f0e21a3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
<?xml version="1.0" encoding="iso-8859-1"?>
<!--
     The FreeBSD Documentation Project

     $FreeBSD$
-->

<chapter id="advanced-networking">
  <title>Advanced Networking</title>

  <sect1 id="advanced-networking-synopsis">
    <title>Synopsis</title>

    <para>This chapter will cover a number of advanced networking
      topics.</para>

    <para>After reading this chapter, you will know:</para>

    <itemizedlist>
      <listitem>
	<para>The basics of gateways and routes.</para>
      </listitem>

      <listitem>
	<para>How to set up &ieee; 802.11 and &bluetooth;
	  devices.</para>
      </listitem>

      <listitem>
	<para>How to make FreeBSD act as a bridge.</para>
      </listitem>

      <listitem>
	<para>How to set up network booting on a diskless
	  machine.</para>
      </listitem>

      <listitem>
	<para>How to set up network PXE booting with an NFS root file
	  system.</para>
      </listitem>

      <listitem>
	<para>How to set up network address translation.</para>
      </listitem>

      <listitem>
	<para>How to set up IPv6 on a FreeBSD machine.</para>
      </listitem>

      <listitem>
	<para>How to configure ATM.</para>
      </listitem>

      <listitem>
	<para>How to enable and utilize the features of CARP, the
	  Common Address Redundancy Protocol in &os;</para>
      </listitem>
    </itemizedlist>

    <para>Before reading this chapter, you should:</para>

    <itemizedlist>
      <listitem>
	<para>Understand the basics of the
	  <filename>/etc/rc</filename> scripts.</para>
      </listitem>

      <listitem>
	<para>Be familiar with basic network terminology.</para>
      </listitem>

      <listitem>
	<para>Know how to configure and install a new FreeBSD kernel
	  (<xref linkend="kernelconfig"/>).</para>
      </listitem>

      <listitem>
	<para>Know how to install additional third-party
	  software (<xref linkend="ports"/>).</para>
      </listitem>

    </itemizedlist>
  </sect1>

  <sect1 id="network-routing">
    <sect1info>
      <authorgroup>
	<author>
	  <firstname>Coranth</firstname>
	  <surname>Gryphon</surname>
	  <contrib>Contributed by </contrib>
	</author>
      </authorgroup>
    </sect1info>

    <title>Gateways and Routes</title>

    <indexterm><primary>routing</primary></indexterm>
    <indexterm><primary>gateway</primary></indexterm>
    <indexterm><primary>subnet</primary></indexterm>

    <para>For one machine to be able to find another over a network,
      there must be a mechanism in place to describe how to get from
      one to the other.  This is called
      <firstterm>routing</firstterm>.  A <quote>route</quote> is a
      defined pair of addresses: a <quote>destination</quote> and a
      <quote>gateway</quote>.  The pair indicates that if you are
      trying to get to this <emphasis>destination</emphasis>,
      communicate through this <emphasis>gateway</emphasis>.  There
      are three types of destinations: individual hosts, subnets, and
      <quote>default</quote>.  The <quote>default route</quote> is
      used if none of the other routes apply.  We will talk a little
      bit more about default routes later on.  There are also three
      types of gateways: individual hosts, interfaces (also called
      <quote>links</quote>), and Ethernet hardware addresses (MAC
      addresses).</para>

    <sect2>
      <title>An Example</title>

      <para>To illustrate different aspects of routing, we will use
	the following example from <command>netstat</command>:</para>

      <screen>&prompt.user; <userinput>netstat -r</userinput>
Routing tables

Destination      Gateway            Flags     Refs     Use     Netif Expire

default          outside-gw         UGSc       37      418      ppp0
localhost        localhost          UH          0      181       lo0
test0            0:e0:b5:36:cf:4f   UHLW        5    63288       ed0     77
10.20.30.255     link#1             UHLW        1     2421
example.com      link#1             UC          0        0
host1            0:e0:a8:37:8:1e    UHLW        3     4601       lo0
host2            0:e0:a8:37:8:1e    UHLW        0        5       lo0 =>
host2.example.com link#1             UC          0        0
224              link#1             UC          0        0</screen>

      <indexterm><primary>default route</primary></indexterm>
      <para>The first two lines specify the default route (which we
	will cover in the
	<link linkend="network-routing-default">next section</link>)
	and the <hostid>localhost</hostid> route.</para>

      <indexterm><primary>loopback device</primary></indexterm>
      <para>The interface (<literal>Netif</literal> column) that this
	routing table specifies to use for
	<literal>localhost</literal> is <devicename>lo0</devicename>,
	also known as the loopback device.  This says to keep all
	traffic for this destination internal, rather than sending it
	out over the LAN, since it will only end up back where it
	started.</para>

      <indexterm>
	<primary>Ethernet</primary>
	<secondary>MAC address</secondary>
      </indexterm>
      <para>The next thing that stands out are the addresses beginning
	with <hostid role="mac">0:e0:</hostid>.  These are Ethernet
	hardware addresses, which are also known as MAC addresses.
	FreeBSD will automatically identify any hosts
	(<hostid>test0</hostid> in the example) on the local Ethernet
	and add a route for that host, directly to it over the
	Ethernet interface, <devicename>ed0</devicename>.  There is
	also a timeout (<literal>Expire</literal> column) associated
	with this type of route, which is used if we fail to hear from
	the host in a specific amount of time.  When this happens, the
	route to this host will be automatically deleted.  These hosts
	are identified using a mechanism known as RIP (Routing
	Information Protocol), which figures out routes to local hosts
	based upon a shortest path determination.</para>

      <indexterm><primary>subnet</primary></indexterm>

      <para>FreeBSD will also add subnet routes for the local subnet
	(<hostid role="ipaddr">10.20.30.255</hostid> is the broadcast
	address for the subnet
	<hostid role="ipaddr">10.20.30</hostid>, and
	<hostid role="domainname">example.com</hostid> is the domain
	name associated with that subnet).  The designation
	<literal>link#1</literal> refers to the first Ethernet card in
	the machine.  You will notice no additional interface is
	specified for those.</para>

      <para>Both of these groups (local network hosts and local
	subnets) have their routes automatically configured by a
	daemon called <application>routed</application>.  If this is
	not run, then only routes which are statically defined (i.e.,
	entered explicitly) will exist.</para>

      <para>The <literal>host1</literal> line refers to our host,
	which it knows by Ethernet address.  Since we are the sending
	host, FreeBSD knows to use the loopback interface
	(<devicename>lo0</devicename>) rather than sending it out over
	the Ethernet interface.</para>

      <para>The two <literal>host2</literal> lines are an example of
	what happens when we use an &man.ifconfig.8; alias (see the
	section on Ethernet for reasons why we would do this).  The
	<literal>=&gt;</literal> symbol after the
	<devicename>lo0</devicename> interface says that not only are
	we using the loopback (since this address also refers to the
	local host), but specifically it is an alias.  Such routes
	only show up on the host that supports the alias; all other
	hosts on the local network will simply have a
	<literal>link#1</literal> line for such routes.</para>

      <para>The final line (destination subnet
	<hostid role="ipaddr">224</hostid>) deals with multicasting,
	which will be covered in another section.</para>

      <para>Finally, various attributes of each route can be seen in
	the <literal>Flags</literal> column.  Below is a short table
	of some of these flags and their meanings:</para>

      <informaltable frame="none" pgwide="1">
	<tgroup cols="2">
	  <colspec colwidth="1*"/>
	  <colspec colwidth="4*"/>

	  <tbody>
	    <row>
	      <entry>U</entry>
	      <entry>Up: The route is active.</entry>
	    </row>

	    <row>
	      <entry>H</entry>
	      <entry>Host: The route destination is a single
		host.</entry>
	    </row>

	    <row>
	      <entry>G</entry>
	      <entry>Gateway: Send anything for this destination on to
		this remote system, which will figure out from there
		where to send it.</entry>
	    </row>

	    <row>
	      <entry>S</entry>
	      <entry>Static: This route was configured manually, not
		automatically generated by the system.</entry>
	    </row>

	    <row>
	      <entry>C</entry>
	      <entry>Clone: Generates a new route based upon this
		route for machines we connect to.  This type of route
		is normally used for local networks.</entry>
	    </row>

	    <row>
	      <entry>W</entry>
	      <entry>WasCloned: Indicated a route that was
		auto-configured based upon a local area network
		(Clone) route.</entry>
	    </row>

	    <row>
	      <entry>L</entry>
	      <entry>Link: Route involves references to Ethernet
		hardware.</entry>
	    </row>
	  </tbody>
	</tgroup>
      </informaltable>
    </sect2>

    <sect2 id="network-routing-default">
      <title>Default Routes</title>

      <indexterm><primary>default route</primary></indexterm>

      <para>When the local system needs to make a connection to a
	remote host, it checks the routing table to determine if a
	known path exists.  If the remote host falls into a subnet
	that we know how to reach (Cloned routes), then the system
	checks to see if it can connect along that interface.</para>

      <para>If all known paths fail, the system has one last option:
	the <quote>default</quote> route.  This route is a special
	type of gateway route (usually the only one present in the
	system), and is always marked with a <literal>c</literal> in
	the flags field.  For hosts on a local area network, this
	gateway is set to whatever machine has a direct connection to
	the outside world (whether via PPP link, DSL, cable modem, T1,
	or another network interface).</para>

      <para>If you are configuring the default route for a machine
	which itself is functioning as the gateway to the outside
	world, then the default route will be the gateway machine at
	your Internet Service Provider's (ISP) site.</para>

      <para>Let us look at an example of default routes.  This is a
	common configuration:</para>

      <mediaobject>
	<imageobject>
	  <imagedata fileref="advanced-networking/net-routing"/>
	</imageobject>

	<textobject>
	  <literallayout class="monospaced">
[Local2]  &lt;--ether--&gt;  [Local1]  &lt;--PPP--&gt; [ISP-Serv]  &lt;--ether--&gt;  [T1-GW]</literallayout>
	</textobject>
      </mediaobject>

      <para>The hosts <hostid>Local1</hostid> and
	<hostid>Local2</hostid> are at your site.
	<hostid>Local1</hostid> is connected to an ISP via a dial up
	PPP connection.  This PPP server computer is connected through
	a local area network to another gateway computer through an
	external interface to the ISPs Internet feed.</para>

      <para>The default routes for each of your machines will
	be:</para>

      <informaltable frame="none" pgwide="1">
	<tgroup cols="3">
	  <thead>
	    <row>
	      <entry>Host</entry>
	      <entry>Default Gateway</entry>
	      <entry>Interface</entry>
	    </row>
	  </thead>

	  <tbody>
	    <row>
	      <entry>Local2</entry>
	      <entry>Local1</entry>
	      <entry>Ethernet</entry>
	    </row>

	    <row>
	      <entry>Local1</entry>
	      <entry>T1-GW</entry>
	      <entry>PPP</entry>
	    </row>
	  </tbody>
	</tgroup>
      </informaltable>

      <para>A common question is <quote>Why (or how) would we set
	  the <hostid>T1-GW</hostid> to be the default gateway for
	  <hostid>Local1</hostid>, rather than the ISP server it is
	  connected to?</quote>.</para>

      <para>Remember, since the PPP interface is using an address on
	the ISP's local network for your side of the connection,
	routes for any other machines on the ISP's local network will
	be automatically generated.  Hence, you will already know how
	to reach the <hostid>T1-GW</hostid> machine, so there is no
	need for the intermediate step of sending traffic to the ISP
	server.</para>

      <para>It is common to use the address
	<hostid role="ipaddr">X.X.X.1</hostid> as the gateway address
	for your local network.  So (using the same example), if your
	local class-C address space was
	<hostid role="ipaddr">10.20.30</hostid> and your ISP was using
	<hostid role="ipaddr">10.9.9</hostid> then the default routes
	would be:</para>

      <informaltable frame="none" pgwide="1">
	<tgroup cols="2">
	  <thead>
	    <row>
	      <entry>Host</entry>
	      <entry>Default Route</entry>
	    </row>
	  </thead>
	  <tbody>
	    <row>
	      <entry>Local2 (10.20.30.2)</entry>
	      <entry>Local1 (10.20.30.1)</entry>
	    </row>

	    <row>
	      <entry>Local1 (10.20.30.1, 10.9.9.30)</entry>
	      <entry>T1-GW (10.9.9.1)</entry>
	    </row>
	  </tbody>
	</tgroup>
      </informaltable>

      <para>The default route can be easily defined in
	<filename>/etc/rc.conf</filename>.  In our example, on
	the <hostid>Local2</hostid> machine, we added the following
	line in <filename>/etc/rc.conf</filename>:</para>

      <programlisting>defaultrouter="10.20.30.1"</programlisting>

      <para>It is also possible to do it directly from the command
	line with the &man.route.8; command:</para>

      <screen>&prompt.root; <userinput>route add default 10.20.30.1</userinput></screen>

      <para>For more information on manual manipulation of network
	routing tables, consult the &man.route.8; manual page.</para>
    </sect2>

    <sect2 id="network-dual-homed-hosts">
      <title>Dual Homed Hosts</title>

      <indexterm><primary>dual homed hosts</primary></indexterm>

      <para>There is one other type of configuration that we should
	cover, and that is a host that sits on two different networks.
	Technically, any machine functioning as a gateway (in the
	example above, using a PPP connection) counts as a dual-homed
	host.  But the term is really only used to refer to a machine
	that sits on two local-area networks.</para>

      <para>In one case, the machine has two Ethernet cards, each
	having an address on the separate subnets.  Alternately, the
	machine may only have one Ethernet card, and be using
	&man.ifconfig.8; aliasing.  The former is used if two
	physically separate Ethernet networks are in use, the latter
	if there is one physical network segment, but two logically
	separate subnets.</para>

      <para>Either way, routing tables are set up so that each subnet
	knows that this machine is the defined gateway (inbound route)
	to the other subnet.  This configuration, with the machine
	acting as a router between the two subnets, is often used when
	we need to implement packet filtering or firewall security in
	either or both directions.</para>

      <para>If you want this machine to actually forward packets
	between the two interfaces, you need to tell FreeBSD to enable
	this ability.  See the next section for more details on how
	to do this.</para>
    </sect2>

    <sect2 id="network-dedicated-router">
      <title>Building a Router</title>

      <indexterm><primary>router</primary></indexterm>

      <para>A network router is simply a system that forwards packets
	from one interface to another.  Internet standards and good
	engineering practice prevent the FreeBSD Project from enabling
	this by default in FreeBSD.  You can enable this feature by
	changing the following variable to <literal>YES</literal> in
	&man.rc.conf.5;:</para>

      <programlisting>gateway_enable="YES"          # Set to YES if this host will be a gateway</programlisting>

      <para>This option will set the &man.sysctl.8; variable
	<varname>net.inet.ip.forwarding</varname> to
	<literal>1</literal>.  If you should need to stop routing
	temporarily, you can reset this to <literal>0</literal>
	temporarily.</para>

      <indexterm><primary>BGP</primary></indexterm>
      <indexterm><primary>RIP</primary></indexterm>
      <indexterm><primary>OSPF</primary></indexterm>
      <para>Your new router will need routes to know where to send the
	traffic.  If your network is simple enough you can use static
	routes.  FreeBSD also comes with the standard BSD routing
	daemon &man.routed.8;, which speaks RIP (both version 1 and
	version 2) and IRDP.  Support for BGP v4, OSPF v2, and other
	sophisticated routing protocols is available with the
	<filename role="package">net/zebra</filename> package.
	Commercial products such as <application>&gated;</application>
	are also available for more complex network routing
	solutions.</para>
    </sect2>

    <sect2 id="network-static-routes">
      <sect2info>
	<authorgroup>
	  <author>
	    <firstname>Al</firstname>
	    <surname>Hoang</surname>
	    <contrib>Contributed by </contrib>
	  </author>
	</authorgroup>
      </sect2info>
      <!-- Feb 2004 -->
      <title>Setting Up Static Routes</title>

      <sect3>
	<title>Manual Configuration</title>

	<para>Let us assume we have a network as follows:</para>

	<mediaobject>
	  <imageobject>
	    <imagedata fileref="advanced-networking/static-routes"/>
	  </imageobject>

	  <textobject>
	<literallayout class="monospaced">
    INTERNET
      | (10.0.0.1/24) Default Router to Internet
      |
      |Interface xl0
      |10.0.0.10/24
   +------+
   |      | RouterA
   |      | (FreeBSD gateway)
   +------+
      | Interface xl1
      | 192.168.1.1/24
      |
  +--------------------------------+
   Internal Net 1      | 192.168.1.2/24
                       |
                   +------+
                   |      | RouterB
                   |      |
                   +------+
                       | 192.168.2.1/24
                       |
                     Internal Net 2</literallayout>
	  </textobject>
	</mediaobject>

	<para>In this scenario, <hostid>RouterA</hostid> is our &os;
	  machine that is acting as a router to the rest of the
	  Internet.  It has a default route set to
	  <hostid role="ipaddr">10.0.0.1</hostid> which allows it to
	  connect with the outside world.  We will assume that
	  <hostid>RouterB</hostid> is already configured properly and
	  knows how to get wherever it needs to go.  (This is simple
	  in this picture.  Just add a default route on
	  <hostid>RouterB</hostid> using
	  <hostid role="ipaddr">192.168.1.1</hostid> as the
	  gateway.)</para>

	<para>If we look at the routing table for
	  <hostid>RouterA</hostid> we would see something like the
	  following:</para>

	<screen>&prompt.user; <userinput>netstat -nr</userinput>
Routing tables

Internet:
Destination        Gateway            Flags    Refs      Use  Netif  Expire
default            10.0.0.1           UGS         0    49378    xl0
127.0.0.1          127.0.0.1          UH          0        6    lo0
10.0.0.0/24        link#1             UC          0        0    xl0
192.168.1.0/24     link#2             UC          0        0    xl1</screen>

	<para>With the current routing table  <hostid>RouterA</hostid>
	  will not be able to reach our Internal Net 2.  It does not
	  have a route for
	  <hostid role="ipaddr">192.168.2.0/24</hostid>.  One way to
	  alleviate this is to manually add the route.  The following
	  command would add the Internal Net 2 network to
	  <hostid>RouterA</hostid>'s routing table using
	  <hostid role="ipaddr">192.168.1.2</hostid> as the next
	  hop:</para>

	<screen>&prompt.root; <userinput>route add -net 192.168.2.0/24 192.168.1.2</userinput></screen>

	<para>Now <hostid>RouterA</hostid> can reach any hosts on the
	  <hostid role="ipaddr">192.168.2.0/24</hostid>
	  network.</para>
      </sect3>

      <sect3>
	<title>Persistent Configuration</title>

	<para>The above example is perfect for configuring a static
	  route on a running system.  However, one problem is that the
	  routing information will not persist if you reboot your &os;
	  machine.  Additional static routes can be
	  entered in <filename>/etc/rc.conf</filename>:</para>

	<programlisting># Add Internal Net 2 as a static route
static_routes="internalnet2"
route_internalnet2="-net 192.168.2.0/24 192.168.1.2"</programlisting>

	<para>The <literal>static_routes</literal> configuration
	  variable is a list of strings separated by a space.  Each
	  string references to a route name.  In our above example we
	  only have one string in <literal>static_routes</literal>.
	  This string is <replaceable>internalnet2</replaceable>.  We
	  then add a configuration variable called
	  <literal>route_<replaceable>internalnet2</replaceable></literal>
	  where we put all of the configuration parameters we would
	  give to the &man.route.8; command.  For our example above we
	  would have used the command:</para>

	  <screen>&prompt.root; <userinput>route add -net 192.168.2.0/24 192.168.1.2</userinput></screen>

	<para>so we need <literal>"-net 192.168.2.0/24
	    192.168.1.2"</literal>.</para>

	<para>As said above, we can have more than one string in
	  <literal>static_routes</literal>.  This allows us to create
	  multiple static routes.  The following lines shows an
	  example of adding static routes for the
	  <hostid role="ipaddr">192.168.0.0/24</hostid> and
	  <hostid role="ipaddr">192.168.1.0/24</hostid> networks on an
	  imaginary router:</para>

	<programlisting>static_routes="net1 net2"
route_net1="-net 192.168.0.0/24 192.168.0.1"
route_net2="-net 192.168.1.0/24 192.168.1.1"</programlisting>
      </sect3>
    </sect2>

    <sect2 id="network-routing-propagation">
      <title>Routing Propagation</title>

      <indexterm><primary>routing propagation</primary></indexterm>
      <para>We have already talked about how we define our routes to
	the outside world, but not about how the outside world finds
	us.</para>

      <para>We already know that routing tables can be set up so that
	all traffic for a particular address space (in our examples, a
	class-C subnet) can be sent to a particular host on that
	network, which will forward the packets inbound.</para>

      <para>When you get an address space assigned to your site, your
	service provider will set up their routing tables so that all
	traffic for your subnet will be sent down your PPP link to
	your site.  But how do sites across the country know to send
	to your ISP?</para>

      <para>There is a system (much like the distributed DNS
	information) that keeps track of all assigned address-spaces,
	and defines their point of connection to the Internet
	Backbone.  The <quote>Backbone</quote> are the main trunk
	lines that carry Internet traffic across the country, and
	around the world.  Each backbone machine has a copy of a
	master set of tables, which direct traffic for a particular
	network to a specific backbone carrier, and from there down
	the chain of service providers until it reaches your
	network.</para>

      <para>It is the task of your service provider to advertise to
	the backbone sites that they are the point of connection (and
	thus the path inward) for your site.  This is known as route
	propagation.</para>
    </sect2>

    <sect2 id="network-routing-troubleshooting">
      <title>Troubleshooting</title>

      <indexterm>
	<primary><command>traceroute</command></primary>
      </indexterm>

      <para>Sometimes, there is a problem with routing propagation,
	and some sites are unable to connect to you.  Perhaps the most
	useful command for trying to figure out where routing is
	breaking down is the &man.traceroute.8; command.  It is
	equally useful if you cannot seem to make a connection to a
	remote machine (i.e., &man.ping.8; fails).</para>

      <para>The &man.traceroute.8; command is run with the name of the
	remote host you are trying to connect to.  It will show the
	gateway hosts along the path of the attempt, eventually either
	reaching the target host, or terminating because of a lack of
	connection.</para>

      <para>For more information, see the manual page for
	&man.traceroute.8;.</para>
    </sect2>

    <sect2 id="network-routing-multicast">
      <title>Multicast Routing</title>

      <indexterm>
	<primary>multicast routing</primary>
      </indexterm>
      <indexterm>
	<primary>kernel options</primary>
	<secondary>MROUTING</secondary>
      </indexterm>
      <para>FreeBSD supports both multicast applications and multicast
	routing natively.  Multicast applications do not require any
	special configuration of FreeBSD; applications will generally
	run out of the box.  Multicast routing
	requires that support be compiled into the kernel:</para>

      <programlisting>options MROUTING</programlisting>

      <para>In addition, the multicast routing daemon, &man.mrouted.8;
	must be configured to set up tunnels and
	<acronym>DVMRP</acronym> via
	<filename>/etc/mrouted.conf</filename>.  More details on
	multicast configuration may be found in the manual page for
	&man.mrouted.8;.</para>

      <note>
	<para>The &man.mrouted.8; multicast routing daemon implements
	  the <acronym>DVMRP</acronym> multicast routing protocol,
	  which has largely been replaced by &man.pim.4; in many
	  multicast installations.  &man.mrouted.8; and the related
	  &man.map-mbone.8; and &man.mrinfo.8; utilities are available
	  in the &os; Ports&nbsp;Collection as
	  <filename role="package">net/mrouted</filename>.</para>
      </note>
    </sect2>
  </sect1>

  <sect1 id="network-wireless">
    <sect1info>
      <authorgroup>
	<author>
	  <othername>Loader</othername>
	</author>

	<author>
	  <firstname>Marc</firstname>
	  <surname>Fonvieille</surname>
	</author>

	<author>
	  <firstname>Murray</firstname>
	  <surname>Stokely</surname>
	</author>
      </authorgroup>
    </sect1info>
    <title>Wireless Networking</title>

    <indexterm><primary>wireless networking</primary></indexterm>
    <indexterm>
      <primary>802.11</primary>
      <see>wireless networking</see>
    </indexterm>

    <sect2>
      <title>Wireless Networking Basics</title>

      <para>Most wireless networks are based on the &ieee; 802.11
	standards.  A basic wireless network consists of multiple
	stations communicating with radios that broadcast in either
	the 2.4GHz or 5GHz band (though this varies according to the
	locale and is also changing to enable communication in the
	2.3GHz and 4.9GHz ranges).</para>

      <para>802.11 networks are organized in two ways: in
	<emphasis>infrastructure mode</emphasis> one station acts as a
	master with all the other stations associating to it; the
	network is known as a BSS and the master station is termed an
	access point (AP).  In a BSS all communication passes through
	the AP; even when one station wants to communicate with
	another wireless station messages must go through the AP.  In
	the second form of network there is no master and stations
	communicate directly.  This form of network is termed an IBSS
	and is commonly known as an
	<emphasis>ad-hoc network</emphasis>.</para>

      <para>802.11 networks were first deployed in the 2.4GHz band
	using protocols defined by the &ieee; 802.11 and 802.11b
	standard.  These specifications include the operating
	frequencies, MAC layer characteristics including framing and
	transmission rates (communication can be done at various
	rates).  Later the 802.11a standard defined operation in the
	5GHz band, including different signalling mechanisms and
	higher transmission rates.  Still later the 802.11g standard
	was defined to enable use of 802.11a signalling and
	transmission mechanisms in the 2.4GHz band in such a way as to
	be backwards compatible with 802.11b networks.</para>

      <para>Separate from the underlying transmission techniques
	802.11 networks have a variety of security mechanisms.  The
	original 802.11 specifications defined a simple security
	protocol called WEP. This protocol uses a fixed pre-shared key
	and the RC4 cryptographic cipher to encode data transmitted on
	a network.  Stations must all agree on the fixed key in order
	to communicate.  This scheme was shown to be easily broken and
	is now rarely used except to discourage transient users from
	joining networks.  Current security practice is given by the
	&ieee; 802.11i specification that defines new cryptographic
	ciphers and an additional protocol to authenticate stations to
	an access point and exchange keys for doing data
	communication.  Further, cryptographic keys are periodically
	refreshed and there are mechanisms for detecting intrusion
	attempts (and for countering intrusion attempts).  Another
	security protocol specification commonly used in wireless
	networks is termed WPA.  This was a precursor to 802.11i
	defined by an industry group as an interim measure while
	waiting for 802.11i to be ratified.  WPA specifies a subset of
	the requirements found in 802.11i and is designed for
	implementation on legacy hardware.  Specifically WPA requires
	only the TKIP cipher that is derived from the original WEP
	cipher.  802.11i permits use of TKIP but also requires support
	for a stronger cipher, AES-CCM, for encrypting data.  (The AES
	cipher was not required in WPA because it was deemed too
	computationally costly to be implemented on legacy
	hardware.)</para>

      <para>Other than the above protocol standards the other
	important standard to be aware of is 802.11e.  This defines
	protocols for deploying multi-media applications such as
	streaming video and voice over IP (VoIP) in an 802.11 network.
	Like 802.11i, 802.11e also has a precursor specification
	termed WME (later renamed WMM) that has been defined by an
	industry group as a subset of 802.11e that can be deployed now
	to enable multi-media applications while waiting for the final
	ratification of 802.11e.  The most important thing to know
	about 802.11e and WME/WMM is that it enables prioritized
	traffic use of a wireless network through Quality of Service
	(QoS) protocols and enhanced media access protocols.  Proper
	implementation of these protocols enable high speed bursting
	of data and prioritized traffic flow.</para>

      <para>&os; supports networks that operate
	using 802.11a, 802.11b, and 802.11g.  The WPA and 802.11i
	security protocols are likewise supported (in conjunction with
	any of 11a, 11b, and 11g) and QoS and traffic prioritization
	required by the WME/WMM protocols are supported for a limited
	set of wireless devices.</para>
    </sect2>

    <sect2 id="network-wireless-basic">
      <title>Basic Setup</title>

      <sect3>
	<title>Kernel Configuration</title>

	<para>To use wireless networking, you need a wireless
	  networking card and to configure the kernel with the
	  appropriate wireless networking support.  The latter is
	  separated into multiple modules so that you only need to
	  configure the software you are actually going to use.</para>

	<para>The first thing you need is a wireless device.  The most
	  commonly used devices are those that use parts made by
	  Atheros.  These devices are supported by the &man.ath.4;
	  driver and require the following line to be added to
	  <filename>/boot/loader.conf</filename>:</para>

	<programlisting>if_ath_load="YES"</programlisting>

	<para>The Atheros driver is split up into three separate
	  pieces: the proper driver (&man.ath.4;), the hardware
	  support layer that handles chip-specific functions
	  (&man.ath.hal.4;), and an algorithm for selecting which of
	  several possible rates for transmitting frames
	  (ath_rate_sample here).  When this support is loaded as
	  kernel modules, these dependencies are automatically handled
	  for you.  If, instead of an Atheros device, you had another
	  device you would select the module for that device;
	  e.g.:</para>

	<programlisting>if_wi_load="YES"</programlisting>

	<para>for devices based on the Intersil Prism parts
	  (&man.wi.4; driver).</para>

	<note>
	  <para>In the rest of this document, we will use an
	    &man.ath.4; device, the device name in the examples must
	    be changed according to your configuration.  A list of
	    available wireless drivers and supported adapters can be
	    found in the &os; Hardware Notes.  Copies of these notes
	    for various releases and architectures are available on
	    the <ulink
	      url="http://www.FreeBSD.org/releases/index.html">Release
	      Information</ulink> page of the &os; Web site.  If a
	    native &os; driver for your wireless device does not
	    exist, it may be possible to directly use the &windows;
	    driver with the help of the
	    <link linkend="config-network-ndis">NDIS</link> driver
	    wrapper.</para>
	</note>

	<para>With that, you will need the modules that implement
	  cryptographic support for the security protocols you intend
	  to use.  These are intended to be dynamically loaded on
	  demand by the &man.wlan.4; module but for now they must be
	  manually configured.  The following modules are available:
	  &man.wlan.wep.4;, &man.wlan.ccmp.4; and &man.wlan.tkip.4;.
	  Both &man.wlan.ccmp.4; and &man.wlan.tkip.4; drivers are
	  only needed if you intend to use the WPA and/or 802.11i
	  security protocols.  If your network does not use
	  encryption, you will not need &man.wlan.wep.4; support.  To
	  load these modules at boot time, add the following lines to
	  <filename>/boot/loader.conf</filename>:</para>

	<programlisting>wlan_wep_load="YES"
wlan_ccmp_load="YES"
wlan_tkip_load="YES"</programlisting>

	<para>With this information in the system bootstrap
	  configuration file (i.e.,
	  <filename>/boot/loader.conf</filename>), you have to reboot
	  your &os; box.  If you do not want to reboot your machine
	  for the moment, you can load the modules by hand using
	  &man.kldload.8;.</para>

	<note>
	  <para>If you do not want to use modules, it is possible to
	    compile these drivers into the kernel by adding the
	    following lines to your kernel configuration file:</para>

	  <programlisting>device wlan              # 802.11 support
device wlan_wep          # 802.11 WEP support
device wlan_ccmp         # 802.11 CCMP support
device wlan_tkip         # 802.11 TKIP support
device wlan_amrr         # AMRR transmit rate control algorithm
device ath               # Atheros pci/cardbus NIC's
device ath_hal           # pci/cardbus chip support
options AH_SUPPORT_AR5416 # enable AR5416 tx/rx descriptors
device ath_rate_sample   # SampleRate tx rate control for ath</programlisting>

	  <para>With this information in the kernel configuration
	    file, recompile the kernel and reboot your &os;
	    machine.</para>
	</note>

	<para>When the system is up, we could find some information
	  about the wireless device in the boot messages, like
	  this:</para>

	<screen>ath0: &lt;Atheros 5212&gt; mem 0x88000000-0x8800ffff irq 11 at device 0.0 on cardbus1
ath0: [ITHREAD]
ath0: AR2413 mac 7.9 RF2413 phy 4.5</screen>
      </sect3>
    </sect2>

    <sect2>
      <title>Infrastructure Mode</title>

      <para>The infrastructure mode or BSS mode is the mode that is
	typically used.  In this mode, a number of wireless access
	points are connected to a wired network.  Each wireless
	network has its own name, this name is called the SSID of the
	network.  Wireless clients connect to the wireless access
	points.</para>

      <sect3>
	<title>&os; Clients</title>

	<sect4>
	  <title>How to Find Access Points</title>

	  <para>To scan for networks, use the
	    <command>ifconfig</command> command.  This request may
	    take a few moments to complete as it requires that the
	    system switches to each available wireless frequency and
	    probes for available access points.  Only the super-user
	    can initiate such a scan:</para>

	  <screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> create wlandev <replaceable>ath0</replaceable></userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> up scan</userinput>
SSID/MESH ID    BSSID              CHAN RATE   S:N     INT CAPS
dlinkap         00:13:46:49:41:76   11   54M -90:96   100 EPS  WPA WME
freebsdap       00:11:95:c3:0d:ac    1   54M -83:96   100 EPS  WPA</screen>

	  <note>
	    <para>You must mark the interface <option>up</option>
	      before you can scan.  Subsequent scan requests do not
	      require you to mark the interface up again.</para>
	  </note>

	  <para>The output of a scan request lists each BSS/IBSS
	    network found.  Beside the name of the network,
	    <literal>SSID</literal>, we find the
	    <literal>BSSID</literal> which is the MAC address of the
	    access point.  The <literal>CAPS</literal> field
	    identifies the type of each network and the capabilities
	    of the stations operating there:</para>

	  <table frame="none" pgwide="0">
	    <title>Station Capability Codes</title>

	    <tgroup cols="2">
	      <thead>
		<row>
		  <entry>Capability Code</entry>
		  <entry>Meaning</entry>
		</row>
	      </thead>

	      <tbody>
		<row>
		  <entry><literal>E</literal></entry>
		  <entry>Extended Service Set (ESS).  Indicates that
		    the station is part of an infrastructure network
		    (in contrast to an IBSS/ad-hoc network).</entry>
		</row>

		<row>
		  <entry><literal>I</literal></entry>
		  <entry>IBSS/ad-hoc network.  Indicates that the
		    station is part of an ad-hoc network (in contrast
		    to an ESS network).</entry>
		</row>

		<row>
		  <entry><literal>P</literal></entry>
		  <entry>Privacy.  Data confidentiality is required
		    for all data frames exchanged within the BSS.
		    This means that this BSS requires the station to
		    use cryptographic means such as WEP, TKIP or
		    AES-CCMP to encrypt/decrypt data frames being
		    exchanged with others.</entry>
		</row>

		<row>
		  <entry><literal>S</literal></entry>
		  <entry>Short Preamble.  Indicates that the network
		    is using short preambles (defined in 802.11b High
		    Rate/DSSS PHY, short preamble utilizes a 56 bit
		    sync field in contrast to a 128 bit field used in
		    long preamble mode).</entry>
		</row>

		<row>
		  <entry><literal>s</literal></entry>
		  <entry>Short slot time.  Indicates that the 802.11g
		    network is using a short slot time because there
		    are no legacy (802.11b) stations present.</entry>
		</row>
	      </tbody>
	    </tgroup>
	  </table>

	  <para>One can also display the current list of known
	    networks with:</para>

	  <screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> list scan</userinput></screen>

	  <para>This information may be updated automatically by the
	    adapter or manually with a <option>scan</option> request.
	    Old data is automatically removed from the cache, so over
	    time this list may shrink unless more scans are
	    done.</para>
	</sect4>

	<sect4>
	  <title>Basic Settings</title>

	  <para>This section provides a simple example of how to make
	    the wireless network adapter work in &os; without
	    encryption.  After you are familiar with these concepts,
	    we strongly recommend using
	    <link linkend="network-wireless-wpa">WPA</link> to set up
	    your wireless network.</para>

	  <para>There are three basic steps to configure a wireless
	    network: selecting an access point, authenticating your
	    station, and configuring an IP address.  The following
	    sections discuss each step.</para>

	  <sect5>
	    <title>Selecting an Access Point</title>

	    <para>Most of time it is sufficient to let the system
	      choose an access point using the builtin heuristics.
	      This is the default behaviour when you mark an interface
	      up or otherwise configure an interface by listing it in
	      <filename>/etc/rc.conf</filename>, e.g.:</para>

	    <programlisting>wlans_ath0="wlan0"
ifconfig_wlan0="DHCP"</programlisting>

	    <para>If there are multiple access points and you want to
	      select a specific one, you can select it by its
	      SSID:</para>

	    <programlisting>wlans_ath0="wlan0"
ifconfig_wlan0="ssid <replaceable>your_ssid_here</replaceable> DHCP"</programlisting>

	    <para>In an environment where there are multiple access
	      points with the same SSID (often done to simplify
	      roaming) it may be necessary to associate to one
	      specific device.  In this case you can also specify the
	      BSSID of the access point (you can also leave off the
	      SSID):</para>

	    <programlisting>wlans_ath0="wlan0"
ifconfig_wlan0="ssid <replaceable>your_ssid_here</replaceable> bssid <replaceable>xx:xx:xx:xx:xx:xx</replaceable> DHCP"</programlisting>

	    <para>There are other ways to constrain the choice of an
	      access point such as limiting the set of frequencies the
	      system will scan on.  This may be useful if you have a
	      multi-band wireless card as scanning all the possible
	      channels can be time-consuming.  To limit operation to a
	      specific band you can use the <option>mode</option>
	      parameter; e.g.:</para>

	    <programlisting>wlans_ath0="wlan0"
ifconfig_wlan0="mode <replaceable>11g</replaceable> ssid <replaceable>your_ssid_here</replaceable> DHCP"</programlisting>

	    <para>will force the card to operate in 802.11g which is
	      defined only for 2.4GHz frequencies so any 5GHz channels
	      will not be considered.  Other ways to do this are the
	      <option>channel</option> parameter, to lock operation to
	      one specific frequency, and the
	      <option>chanlist</option> parameter, to specify a list
	      of channels for scanning.  More information about these
	      parameters can be found in the &man.ifconfig.8; manual
	      page.</para>
	  </sect5>

	  <sect5>
	    <title>Authentication</title>

	    <para>Once you have selected an access point your station
	      needs to authenticate before it can pass data.
	      Authentication can happen in several ways.  The most
	      common scheme used is termed open authentication and
	      allows any station to join the network and communicate.
	      This is the authentication you should use for test
	      purpose the first time you set up a wireless network.
	      Other schemes require cryptographic handshakes be
	      completed before data traffic can flow; either using
	      pre-shared keys or secrets, or more complex schemes that
	      involve backend services such as RADIUS.  Most users
	      will use open authentication which is the default
	      setting.  Next most common setup is WPA-PSK, also known
	      as WPA Personal, which is described <link
		linkend="network-wireless-wpa-wpa-psk">below</link>.</para>

	    <note>
	      <para>If you have an &apple; &airport; Extreme base
		station for an access point you may need to configure
		shared-key authentication together with a WEP key.
		This can be done in the
		<filename>/etc/rc.conf</filename> file or using the
		&man.wpa.supplicant.8; program.  If you have a single
		&airport; base station you can setup access with
		something like:</para>

	      <programlisting>wlans_ath0="wlan0"
ifconfig_wlan0="authmode shared wepmode on weptxkey <replaceable>1</replaceable> wepkey <replaceable>01234567</replaceable> DHCP"</programlisting>

	      <para>In general shared key authentication is to be
		avoided because it uses the WEP key material in a
		highly-constrained manner making it even easier to
		crack the key.  If WEP must be used (e.g., for
		compatibility with legacy devices) it is better to use
		WEP with <literal>open</literal> authentication.  More
		information regarding WEP can be found in the
		<xref linkend="network-wireless-wep"/>.</para>
	    </note>
	  </sect5>

	  <sect5>
	    <title>Getting an IP Address with DHCP</title>

	    <para>Once you have selected an access point and set the
	      authentication parameters, you will have to get an IP
	      address to communicate.  Most of time you will obtain
	      your wireless IP address via DHCP.  To achieve that,
	      edit <filename>/etc/rc.conf</filename> and add
	      <literal>DHCP</literal> to the configuration for your
	      device as shown in various examples above:</para>

	    <programlisting>wlans_ath0="wlan0"
ifconfig_wlan0="DHCP"</programlisting>

	    <para>At this point, you are ready to bring up the
	      wireless interface:</para>

	    <screen>&prompt.root; <userinput>service netif start</userinput></screen>

	    <para>Once the interface is running, use
	      <command>ifconfig</command> to see the status of the
	      interface <devicename>ath0</devicename>:</para>

	    <screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable></userinput>
wlan0: flags=8843&lt;UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST&gt; mtu 1500
        ether 00:11:95:d5:43:62
        inet 192.168.1.100 netmask 0xffffff00 broadcast 192.168.1.255
        media: IEEE 802.11 Wireless Ethernet OFDM/54Mbps mode 11g
        status: associated
        ssid dlinkap channel 11 (2462 Mhz 11g) bssid 00:13:46:49:41:76
        country US ecm authmode OPEN privacy OFF txpower 21.5 bmiss 7
        scanvalid 60 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7
        roam:rate 5 protmode CTS wme burst</screen>

	    <para>The <literal>status: associated</literal> means you
	      are connected to the wireless network (to the
	      <literal>dlinkap</literal> network in our case).  The
	      <literal>bssid 00:13:46:49:41:76</literal> part is the
	      MAC address of your access point; the
	      <literal>authmode OPEN</literal> part informs you that
	      the communication is not encrypted.</para>
	  </sect5>

	  <sect5>
	    <title>Static IP Address</title>

	    <para>In the case you cannot obtain an IP address from a
	      DHCP server, you can set a fixed IP address.  Replace
	      the <literal>DHCP</literal> keyword shown above with the
	      address information.  Be sure to retain any other
	      parameters you have set up for selecting an access
	      point:</para>

	    <programlisting>wlans_ath0="wlan0"
ifconfig_wlan0="inet <replaceable>192.168.1.100</replaceable> netmask <replaceable>255.255.255.0</replaceable> ssid <replaceable>your_ssid_here</replaceable>"</programlisting>
	  </sect5>
	</sect4>

	<sect4 id="network-wireless-wpa">
	  <title>WPA</title>

	  <para>WPA (Wi-Fi Protected Access) is a security protocol
	    used together with 802.11 networks to address the lack of
	    proper authentication and the weakness of
	    <link linkend="network-wireless-wep">WEP</link>.  WPA
	    leverages the 802.1X authentication protocol and uses one
	    of several ciphers instead of WEP for data integrity.  The
	    only cipher required by WPA is TKIP (Temporary Key
	    Integrity Protocol).  TKIP is a cipher that extends the
	    basic RC4 cipher used by WEP by adding integrity checking,
	    tamper detection, and measures for responding to any
	    detected intrusions.  TKIP is designed to work on legacy
	    hardware with only software modification; it represents a
	    compromise that improves security but is still not
	    entirely immune to attack.  WPA also specifies the
	    AES-CCMP cipher as an alternative to TKIP and that is
	    preferred when possible; for this specification the term
	    WPA2 (or RSN) is commonly used.</para>

	  <para>WPA defines authentication and encryption protocols.
	    Authentication is most commonly done using one of two
	    techniques: by 802.1X and a backend authentication service
	    such as RADIUS, or by a minimal handshake between the
	    station and the access point using a pre-shared secret.
	    The former is commonly termed WPA Enterprise with the
	    latter known as WPA Personal.  Since most people will not
	    set up a RADIUS backend server for their wireless network,
	    WPA-PSK is by far the most commonly encountered
	    configuration for WPA.</para>

	  <para>The control of the wireless connection and the
	    authentication (key negotiation or authentication with a
	    server) is done with the &man.wpa.supplicant.8; utility.
	    This program requires a configuration file,
	    <filename>/etc/wpa_supplicant.conf</filename>, to run.
	    More information regarding this file can be found in the
	    &man.wpa.supplicant.conf.5; manual page.</para>

	  <sect5 id="network-wireless-wpa-wpa-psk">
	    <title>WPA-PSK</title>

	    <para>WPA-PSK, also known as WPA-Personal, is based on a
	      pre-shared key (PSK) generated from a given password and
	      that will be used as the master key in the wireless
	      network.  This means every wireless user will share the
	      same key.  WPA-PSK is intended for small networks where
	      the use of an authentication server is not possible or
	      desired.</para>

	    <warning>
	      <para>Always use strong passwords that are
		sufficiently long and made from a rich alphabet so
		they will not be guessed and/or attacked.</para>
	    </warning>

	    <para>The first step is the configuration of the
	      <filename>/etc/wpa_supplicant.conf</filename> file with
	      the SSID and the pre-shared key of your network:</para>

	    <programlisting>network={
  ssid="freebsdap"
  psk="freebsdmall"
}</programlisting>

	    <para>Then, in <filename>/etc/rc.conf</filename>, we
	      indicate that the wireless device configuration will be
	      done with WPA and the IP address will be obtained with
	      DHCP:</para>

	    <programlisting>wlans_ath0="wlan0"
ifconfig_wlan0="WPA DHCP"</programlisting>

	    <para>Then we can bring up the interface:</para>

	    <screen>&prompt.root; <userinput>service netif start</userinput>
Starting wpa_supplicant.
DHCPDISCOVER on wlan0 to 255.255.255.255 port 67 interval 5
DHCPDISCOVER on wlan0 to 255.255.255.255 port 67 interval 6
DHCPOFFER from 192.168.0.1
DHCPREQUEST on wlan0 to 255.255.255.255 port 67
DHCPACK from 192.168.0.1
bound to 192.168.0.254 -- renewal in 300 seconds.
wlan0: flags=8843&lt;UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST&gt; mtu 1500
      ether 00:11:95:d5:43:62
      inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255
      media: IEEE 802.11 Wireless Ethernet OFDM/36Mbps mode 11g
      status: associated
      ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
      country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF
      AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan
      bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS
      wme burst roaming MANUAL</screen>

	    <para>Or you can try to configure it manually using the
	      same <filename>/etc/wpa_supplicant.conf</filename> <link
	      linkend="network-wireless-wpa-wpa-psk">above</link>, and
	      run:</para>

	    <screen>&prompt.root; <userinput>wpa_supplicant -i <replaceable>wlan0</replaceable> -c /etc/wpa_supplicant.conf</userinput>
Trying to associate with 00:11:95:c3:0d:ac (SSID='freebsdap' freq=2412 MHz)
Associated with 00:11:95:c3:0d:ac
WPA: Key negotiation completed with 00:11:95:c3:0d:ac [PTK=CCMP GTK=CCMP]
CTRL-EVENT-CONNECTED - Connection to 00:11:95:c3:0d:ac completed (auth) [id=0 id_str=]</screen>

	    <para>The next operation is the launch of the
	      <command>dhclient</command> command to get the IP
	      address from the DHCP server:</para>

	    <screen>&prompt.root; <userinput>dhclient <replaceable>wlan0</replaceable></userinput>
DHCPREQUEST on wlan0 to 255.255.255.255 port 67
DHCPACK from 192.168.0.1
bound to 192.168.0.254 -- renewal in 300 seconds.
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable></userinput>
wlan0: flags=8843&lt;UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST&gt; mtu 1500
      ether 00:11:95:d5:43:62
      inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255
      media: IEEE 802.11 Wireless Ethernet OFDM/36Mbps mode 11g
      status: associated
      ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
      country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF
      AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan
      bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS
      wme burst roaming MANUAL</screen>

	    <note>
	      <para>If <filename>/etc/rc.conf</filename> has an
		<literal>ifconfig_wlan0</literal> entry with the
		<literal>DHCP</literal> string (like
		<literal>ifconfig_wlan0="DHCP"</literal>),
		<command>dhclient</command> will be launched
		automatically after <command>wpa_supplicant</command>
		associates with the access point.</para>
	    </note>

	    <para>If DHCP is not possible or desired,
	      you can set a static IP address after
	      <command>wpa_supplicant</command> has authenticated the
	      station:</para>

	    <screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> inet <replaceable>192.168.0.100</replaceable> netmask <replaceable>255.255.255.0</replaceable></userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable></userinput>
wlan0: flags=8843&lt;UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST&gt; mtu 1500
      ether 00:11:95:d5:43:62
      inet 192.168.0.100 netmask 0xffffff00 broadcast 192.168.0.255
      media: IEEE 802.11 Wireless Ethernet OFDM/36Mbps mode 11g
      status: associated
      ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
      country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF
      AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan
      bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS
      wme burst roaming MANUAL</screen>

	    <para>When DHCP is not used, you also have to manually set
	      the default gateway and the nameserver:</para>

	    <screen>&prompt.root; <userinput>route add default <replaceable>your_default_router</replaceable></userinput>
&prompt.root; <userinput>echo "nameserver <replaceable>your_DNS_server</replaceable>" &gt;&gt; /etc/resolv.conf</userinput></screen>
	  </sect5>

	  <sect5 id="network-wireless-wpa-eap-tls">
	    <title>WPA with EAP-TLS</title>

	    <para>The second way to use WPA is with an 802.1X backend
	      authentication server.  In this case WPA is called
	      WPA-Enterprise to differentiate it from the less secure
	      WPA-Personal with its pre-shared key.
	      Authentication in WPA-Enterprise is based on the
	      Extensible Authentication Protocol (EAP).</para>

	    <para>EAP does not come with an encryption method.
	      Instead, it was decided to embed EAP inside an encrypted
	      tunnel.  There are many EAP authentication methods, but
	      EAP-TLS, EAP-TTLS, and EAP-PEAP are the most
	      common.</para>

	    <para>EAP-TLS (EAP with Transport Layer Security) is a
	      very well-supported authentication protocol in the
	      wireless world since it was the first EAP method to be
	      certified by the <ulink
	      url="http://www.wi-fi.org/">Wi-Fi alliance</ulink>.
	      EAP-TLS will require three certificates to run: the CA
	      certificate (installed on all machines), the server
	      certificate for your authentication server, and one
	      client certificate for each wireless client.  In this
	      EAP method, both authentication server and wireless
	      client authenticate each other in presenting their
	      respective certificates, and they verify that these
	      certificates were signed by your organization's
	      certificate authority (CA).</para>

	    <para>As previously, the configuration is done via
	      <filename>/etc/wpa_supplicant.conf</filename>:</para>

	    <programlisting>network={
  ssid="freebsdap" <co id="co-tls-ssid"/>
  proto=RSN  <co id="co-tls-proto"/>
  key_mgmt=WPA-EAP <co id="co-tls-kmgmt"/>
  eap=TLS <co id="co-tls-eap"/>
  identity="loader" <co id="co-tls-id"/>
  ca_cert="/etc/certs/cacert.pem" <co id="co-tls-cacert"/>
  client_cert="/etc/certs/clientcert.pem" <co id="co-tls-clientcert"/>
  private_key="/etc/certs/clientkey.pem" <co id="co-tls-pkey"/>
  private_key_passwd="freebsdmallclient" <co id="co-tls-pwd"/>
}</programlisting>

	    <calloutlist>
	      <callout arearefs="co-tls-ssid">
		<para>This field indicates the network name
		  (SSID).</para>
	      </callout>

	      <callout arearefs="co-tls-proto">
		<para>Here, we use RSN (&ieee; 802.11i) protocol,
		  i.e., WPA2.</para>
	      </callout>

	      <callout arearefs="co-tls-kmgmt">
		<para>The <literal>key_mgmt</literal> line refers to
		  the key management protocol we use.  In our case it
		  is WPA using EAP authentication:
		  <literal>WPA-EAP</literal>.</para>
	      </callout>

	      <callout arearefs="co-tls-eap">
		<para>In this field, we mention the EAP method for our
		  connection.</para>
	      </callout>

	      <callout arearefs="co-tls-id">
		<para>The <literal>identity</literal> field contains
		  the identity string for EAP.</para>
	      </callout>

	      <callout arearefs="co-tls-cacert">
		<para>The <literal>ca_cert</literal> field indicates
		  the pathname of the CA certificate file.  This file
		  is needed to verify the server certificate.</para>
	      </callout>

	      <callout arearefs="co-tls-clientcert">
		<para>The <literal>client_cert</literal> line gives
		  the pathname to the client certificate file.  This
		  certificate is unique to each wireless client of the
		  network.</para>
	      </callout>

	      <callout arearefs="co-tls-pkey">
		<para>The <literal>private_key</literal> field is the
		  pathname to the client certificate private key
		  file.</para>
	      </callout>

	      <callout arearefs="co-tls-pwd">
		<para>The <literal>private_key_passwd</literal> field
		  contains the passphrase for the private key.</para>
	      </callout>
	    </calloutlist>

	    <para>Then add the following lines to
	      <filename>/etc/rc.conf</filename>:</para>

	    <programlisting>wlans_ath0="wlan0"
ifconfig_wlan0="WPA DHCP"</programlisting>

	    <para>The next step is to bring up the interface:</para>

	    <screen>&prompt.root; <userinput>service netif start</userinput>
Starting wpa_supplicant.
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 7
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 15
DHCPACK from 192.168.0.20
bound to 192.168.0.254 -- renewal in 300 seconds.
wlan0: flags=8843&lt;UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST&gt; mtu 1500
      ether 00:11:95:d5:43:62
      inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255
      media: IEEE 802.11 Wireless Ethernet DS/11Mbps mode 11g
      status: associated
      ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
      country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF
      AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan
      bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS
      wme burst roaming MANUAL</screen>

	    <para>As previously shown, it is also possible to bring up
	      the interface manually with both
	      <command>wpa_supplicant</command> and
	      <command>ifconfig</command> commands.</para>
	  </sect5>

	  <sect5 id="network-wireless-wpa-eap-ttls">
	    <title>WPA with EAP-TTLS</title>

	    <para>With EAP-TLS both the authentication server and the
	      client need a certificate, with EAP-TTLS (EAP-Tunneled
	      Transport Layer Security) a client certificate is
	      optional.  This method is close to what some secure web
	      sites do , where the web server can create a secure SSL
	      tunnel even if the visitors do not have client-side
	      certificates.  EAP-TTLS will use the encrypted TLS
	      tunnel for safe transport of the authentication
	      data.</para>

	    <para>The configuration is done via the
	      <filename>/etc/wpa_supplicant.conf</filename>
	      file:</para>

	    <programlisting>network={
  ssid="freebsdap"
  proto=RSN
  key_mgmt=WPA-EAP
  eap=TTLS <co id="co-ttls-eap"/>
  identity="test" <co id="co-ttls-id"/>
  password="test" <co id="co-ttls-passwd"/>
  ca_cert="/etc/certs/cacert.pem" <co id="co-ttls-cacert"/>
  phase2="auth=MD5" <co id="co-ttls-pha2"/>
}</programlisting>

	    <calloutlist>
	      <callout arearefs="co-ttls-eap">
		<para>In this field, we mention the EAP method for our
		  connection.</para>
	      </callout>

	      <callout arearefs="co-ttls-id">
		<para>The <literal>identity</literal> field contains
		  the identity string for EAP authentication inside
		  the encrypted TLS tunnel.</para>
	      </callout>

	      <callout arearefs="co-ttls-passwd">
		<para>The <literal>password</literal> field contains
		  the passphrase for the EAP authentication.</para>
	      </callout>

	      <callout arearefs="co-ttls-cacert">
		<para>The <literal>ca_cert</literal> field indicates
		  the pathname of the CA certificate file.  This file
		  is needed to verify the server certificate.</para>
	      </callout>

	      <callout arearefs="co-ttls-pha2">
		<para>In this field, we mention the authentication
		  method used in the encrypted TLS tunnel.  In our
		  case, EAP with MD5-Challenge has been used.  The
		  <quote>inner authentication</quote> phase is often
		  called <quote>phase2</quote>.</para>
	      </callout>
	    </calloutlist>

	    <para>You also have to add the following lines to
	      <filename>/etc/rc.conf</filename>:</para>

	    <programlisting>wlans_ath0="wlan0"
ifconfig_wlan0="WPA DHCP"</programlisting>

	    <para>The next step is to bring up the interface:</para>

	    <screen>&prompt.root; <userinput>service netif start</userinput>
Starting wpa_supplicant.
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 7
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 15
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 21
DHCPACK from 192.168.0.20
bound to 192.168.0.254 -- renewal in 300 seconds.
wlan0: flags=8843&lt;UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST&gt; mtu 1500
      ether 00:11:95:d5:43:62
      inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255
      media: IEEE 802.11 Wireless Ethernet DS/11Mbps mode 11g
      status: associated
      ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
      country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF
      AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan
      bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS
      wme burst roaming MANUAL</screen>
	  </sect5>

	  <sect5 id="network-wireless-wpa-eap-peap">
	    <title>WPA with EAP-PEAP</title>

	    <note>
	      <para>PEAPv0/EAP-MSCHAPv2 is the most common PEAP
		method.  In the rest of this document, we will use the
		PEAP term to refer to that method.</para>
	    </note>

	    <para>PEAP (Protected EAP) has been designed as an
	      alternative to EAP-TTLS, and is the most used EAP
	      standard after EAP-TLS.  In other words, if you have a
	      network with mixed OSes, PEAP should be the most
	      supported standard after EAP-TLS.</para>

	    <para>PEAP is similar to EAP-TTLS: it uses a server-side
	      certificate to authenticate clients by creating an
	      encrypted TLS tunnel between the client and the
	      authentication server, which protects the ensuing
	      exchange of authentication information.  In terms of
	      security, the difference between EAP-TTLS and PEAP is
	      that PEAP authentication broadcasts the username in the
	      clear, with only the password sent in the encrypted TLS
	      tunnel.  EAP-TTLS will use the TLS tunnel for both
	      username and password.</para>

	    <para>We have to edit the
	      <filename>/etc/wpa_supplicant.conf</filename> file and
	      add the EAP-PEAP related settings:</para>

	    <programlisting>network={
  ssid="freebsdap"
  proto=RSN
  key_mgmt=WPA-EAP
  eap=PEAP <co id="co-peap-eap"/>
  identity="test" <co id="co-peap-id"/>
  password="test" <co id="co-peap-passwd"/>
  ca_cert="/etc/certs/cacert.pem" <co id="co-peap-cacert"/>
  phase1="peaplabel=0" <co id="co-peap-pha1"/>
  phase2="auth=MSCHAPV2" <co id="co-peap-pha2"/>
}</programlisting>

	    <calloutlist>
	      <callout arearefs="co-peap-eap">
		<para>In this field, we mention the EAP method for our
		  connection.</para>
	      </callout>

	      <callout arearefs="co-peap-id">
		<para>The <literal>identity</literal> field contains
		  the identity string for EAP authentication inside
		  the encrypted TLS tunnel.</para>
	      </callout>

	      <callout arearefs="co-peap-passwd">
		<para>The <literal>password</literal> field contains
		  the passphrase for the EAP authentication.</para>
	      </callout>

	      <callout arearefs="co-peap-cacert">
		<para>The <literal>ca_cert</literal> field indicates
		  the pathname of the CA certificate file.  This file
		  is needed to verify the server certificate.</para>
	      </callout>

	      <callout arearefs="co-peap-pha1">
		<para>This field contains the parameters for the
		  first phase of authentication (the TLS tunnel).
		  According to the authentication server used, you
		  will have to specify a specific label for
		  authentication.  Most of the time, the label will be
		  <quote>client EAP encryption</quote> which is set by
		  using <literal>peaplabel=0</literal>.  More
		  information can be found in the
		  &man.wpa.supplicant.conf.5; manual page.</para>
	      </callout>

	      <callout arearefs="co-peap-pha2">
		<para>In this field, we mention the authentication
		  protocol used in the encrypted TLS tunnel.  In the
		  case of PEAP, it is
		  <literal>auth=MSCHAPV2</literal>.</para>
	      </callout>
	    </calloutlist>

	    <para>The following must be added to
	      <filename>/etc/rc.conf</filename>:</para>

	    <programlisting>wlans_ath0="wlan0"
ifconfig_wlan0="WPA DHCP"</programlisting>

	    <para>Then we can bring up the interface:</para>

	    <screen>&prompt.root; <userinput>service netif start</userinput>
Starting wpa_supplicant.
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 7
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 15
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 21
DHCPACK from 192.168.0.20
bound to 192.168.0.254 -- renewal in 300 seconds.
wlan0: flags=8843&lt;UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST&gt; mtu 1500
      ether 00:11:95:d5:43:62
      inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255
      media: IEEE 802.11 Wireless Ethernet DS/11Mbps mode 11g
      status: associated
      ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
      country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF
      AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan
      bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS
      wme burst roaming MANUAL</screen>
	  </sect5>
	</sect4>

	<sect4 id="network-wireless-wep">
	  <title>WEP</title>

	  <para>WEP (Wired Equivalent Privacy) is part of the original
	    802.11 standard.  There is no authentication mechanism,
	    only a weak form of access control, and it is easily
	    cracked.</para>

	  <para>WEP can be set up with
	    <command>ifconfig</command>:</para>

	  <screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> create wlandev <replaceable>ath0</replaceable></userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> inet <replaceable>192.168.1.100</replaceable> netmask <replaceable>255.255.255.0</replaceable> \
	    ssid <replaceable>my_net</replaceable> wepmode on weptxkey <replaceable>3</replaceable> wepkey <replaceable>3:0x3456789012</replaceable></userinput></screen>

	  <itemizedlist>
	    <listitem>

	      <para>The <literal>weptxkey</literal> means which WEP
		key will be used in the transmission.  Here we used
		the third key.  This must match the setting in the
		access point.  If you do not have any idea of which
		key is used by the access point, try
		<literal>1</literal> (i.e., the first key) for this
		value.</para>
	    </listitem>

	    <listitem>
	      <para>The <literal>wepkey</literal> selects one of the
		WEP keys.  It should be in the format
		<replaceable>index:key</replaceable>.  Key
		<literal>1</literal> is used by default; the index
		only needs to be set if we use a key other
		than the first key.</para>

	      <note>
		<para>You must replace the
		  <literal>0x3456789012</literal> with the key
		  configured for use on the access point.</para>
	      </note>
	    </listitem>
	  </itemizedlist>

	  <para>You are encouraged to read the &man.ifconfig.8; manual
	    page for further information.</para>

	  <para>The <command>wpa_supplicant</command> facility also
	    can be used to configure your wireless interface with WEP.
	    The example above can be set up by adding the following
	    lines to
	    <filename>/etc/wpa_supplicant.conf</filename>:</para>

	  <programlisting>network={
  ssid="my_net"
  key_mgmt=NONE
  wep_key3=3456789012
  wep_tx_keyidx=3
}</programlisting>

	  <para>Then:</para>

	  <screen>&prompt.root; <userinput>wpa_supplicant -i <replaceable>wlan0</replaceable> -c /etc/wpa_supplicant.conf</userinput>
Trying to associate with 00:13:46:49:41:76 (SSID='dlinkap' freq=2437 MHz)
Associated with 00:13:46:49:41:76</screen>
	</sect4>
      </sect3>
    </sect2>

    <sect2>
      <title>Ad-hoc Mode</title>

      <para>IBSS mode, also called ad-hoc mode, is designed for point
	to point connections.  For example, to establish an ad-hoc
	network between the machine <hostid>A</hostid> and the machine
	<hostid>B</hostid>, we will just need to choose two IP
	addresses and a SSID.</para>

      <para>On the box <hostid>A</hostid>:</para>

      <screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> create wlandev <replaceable>ath0</replaceable> wlanmode adhoc</userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> inet <replaceable>192.168.0.1</replaceable> netmask <replaceable>255.255.255.0</replaceable> ssid <replaceable>freebsdap</replaceable></userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable></userinput>
  wlan0: flags=8843&lt;UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST&gt; metric 0 mtu 1500
	  ether 00:11:95:c3:0d:ac
	  inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255
	  media: IEEE 802.11 Wireless Ethernet autoselect mode 11g &lt;adhoc&gt;
	  status: running
	  ssid freebsdap channel 2 (2417 Mhz 11g) bssid 02:11:95:c3:0d:ac
	  country US ecm authmode OPEN privacy OFF txpower 21.5 scanvalid 60
	  protmode CTS wme burst</screen>

      <para>The <literal>adhoc</literal> parameter indicates the
	interface is running in the IBSS mode.</para>

      <para>On <hostid>B</hostid>, we should be able to detect
	<hostid>A</hostid>:</para>

      <screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> create wlandev <replaceable>ath0</replaceable> wlanmode adhoc</userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> up scan</userinput>
  SSID/MESH ID    BSSID              CHAN RATE   S:N     INT CAPS
  freebsdap       02:11:95:c3:0d:ac    2   54M -64:-96  100 IS   WME</screen>

      <para>The <literal>I</literal> in the output confirms the
	machine <hostid>A</hostid> is in ad-hoc mode.  We just have to
	configure <hostid>B</hostid> with a different IP
	address:</para>

      <screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> inet <replaceable>192.168.0.2</replaceable> netmask <replaceable>255.255.255.0</replaceable> ssid <replaceable>freebsdap</replaceable></userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable></userinput>
  wlan0: flags=8843&lt;UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST&gt; metric 0 mtu 1500
	  ether 00:11:95:d5:43:62
	  inet 192.168.0.2 netmask 0xffffff00 broadcast 192.168.0.255
	  media: IEEE 802.11 Wireless Ethernet autoselect mode 11g &lt;adhoc&gt;
	  status: running
	  ssid freebsdap channel 2 (2417 Mhz 11g) bssid 02:11:95:c3:0d:ac
	  country US ecm authmode OPEN privacy OFF txpower 21.5 scanvalid 60
	  protmode CTS wme burst</screen>

      <para>Both <hostid>A</hostid> and <hostid>B</hostid> are now
	ready to exchange information.</para>
    </sect2>

    <sect2 id="network-wireless-ap">
      <title>&os; Host Access Points</title>

      <para>&os; can act as an Access Point (AP) which eliminates the
	need to buy a hardware AP or run an ad-hoc network.  This can
	be particularly useful when your &os; machine is acting as a
	gateway to another network (e.g., the Internet).</para>

      <sect3 id="network-wireless-ap-basic">
	<title>Basic Settings</title>

	<para>Before configuring your &os; machine as an AP, the
	  kernel must be configured with the appropriate wireless
	  networking support for your wireless card.  You also have to
	  add support for the security protocols you intend to
	  use.  For more details, see
	  <xref linkend="network-wireless-basic"/>.</para>

	<note>
	  <para>The use of the NDIS driver wrapper and the &windows;
	    drivers do not currently allow AP operation.  Only native
	    &os; wireless drivers support AP mode.</para>
	</note>

	<para>Once wireless networking support is loaded, you can
	  check if your wireless device supports the host-based access
	  point mode (also known as hostap mode):</para>

	<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> create wlandev <replaceable>ath0</replaceable></userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> list caps</userinput>
drivercaps=6f85edc1&lt;STA,FF,TURBOP,IBSS,HOSTAP,AHDEMO,TXPMGT,SHSLOT,SHPREAMBLE,MONITOR,MBSS,WPA1,WPA2,BURST,WME,WDS,BGSCAN,TXFRAG&gt;
cryptocaps=1f&lt;WEP,TKIP,AES,AES_CCM,TKIPMIC&gt;</screen>

	<para>This output displays the card capabilities; the
	  <literal>HOSTAP</literal> word confirms this wireless card
	  can act as an Access Point.  Various supported ciphers are
	  also mentioned: WEP, TKIP, AES, etc.  This information
	  is important to know what security protocols can be used
	  on the Access Point.</para>

	<para>The wireless device can only be put into hostap mode
	  during the creation of the network pseudo-device, so a
	  previously created device must be destroyed first:</para>

	<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> destroy</userinput></screen>

	<para>then regenerated with the correct option before setting
	  the other parameters:</para>

	<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> create wlandev <replaceable>ath0</replaceable> wlanmode hostap</userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> inet <replaceable>192.168.0.1</replaceable> netmask <replaceable>255.255.255.0</replaceable> ssid <replaceable>freebsdap</replaceable> mode 11g channel 1</userinput></screen>

	<para>Use <command>ifconfig</command> again to see the status
	  of the <devicename>wlan0</devicename> interface:</para>

	<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable></userinput>
  wlan0: flags=8843&lt;UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST&gt; metric 0 mtu 1500
	  ether 00:11:95:c3:0d:ac
	  inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255
	  media: IEEE 802.11 Wireless Ethernet autoselect mode 11g &lt;hostap&gt;
	  status: running
	  ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
	  country US ecm authmode OPEN privacy OFF txpower 21.5 scanvalid 60
	  protmode CTS wme burst dtimperiod 1 -dfs</screen>

	<para>The <literal>hostap</literal> parameter indicates the
	  interface is running in the host-based access point
	  mode.</para>

	<para>The interface configuration can be done automatically at
	  boot time by adding the following lines to
	  <filename>/etc/rc.conf</filename>:</para>

	<programlisting>wlans_ath0="wlan0"
create_args_wlan0="wlanmode hostap"
ifconfig_wlan0="inet <replaceable>192.168.0.1</replaceable> netmask <replaceable>255.255.255.0</replaceable> ssid <replaceable>freebsdap</replaceable> mode 11g channel <replaceable>1</replaceable>"</programlisting>
      </sect3>

      <sect3>
	<title>Host-based Access Point Without Authentication or
	  Encryption</title>

	<para>Although it is not recommended to run an AP without any
	  authentication or encryption, this is a simple way to check
	  if your AP is working.  This configuration is also important
	  for debugging client issues.</para>

	<para>Once the AP configured as previously shown, it is
	  possible from another wireless machine to initiate a scan to
	  find the AP:</para>

	<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> create wlandev <replaceable>ath0</replaceable></userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> up scan</userinput>
SSID/MESH ID    BSSID              CHAN RATE   S:N     INT CAPS
freebsdap       00:11:95:c3:0d:ac    1   54M -66:-96  100 ES   WME</screen>

	<para>The client machine found the Access Point and can be
	  associated with it:</para>

	<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> inet <replaceable>192.168.0.2</replaceable> netmask <replaceable>255.255.255.0</replaceable> ssid <replaceable>freebsdap</replaceable></userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable></userinput>
  wlan0: flags=8843&lt;UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST&gt; metric 0 mtu 1500
	  ether 00:11:95:d5:43:62
	  inet 192.168.0.2 netmask 0xffffff00 broadcast 192.168.0.255
	  media: IEEE 802.11 Wireless Ethernet OFDM/54Mbps mode 11g
	  status: associated
	  ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
	  country US ecm authmode OPEN privacy OFF txpower 21.5 bmiss 7
	  scanvalid 60 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7
	  roam:rate 5 protmode CTS wme burst</screen>
      </sect3>

      <sect3>
	<title>WPA Host-based Access Point</title>

	<para>This section will focus on setting up &os; Access Point
	  using the WPA security protocol.  More details regarding WPA
	  and the configuration of WPA-based wireless clients can be
	  found in the <xref linkend="network-wireless-wpa"/>.</para>

	<para>The <application>hostapd</application> daemon is used to
	  deal with client authentication and keys management on the
	  WPA enabled Access Point.</para>

	<para>In the following, all the configuration operations will
	  be performed on the &os; machine acting as AP.  Once the
	  AP is correctly working, <application>hostapd</application>
	  should be automatically enabled at boot with the following
	  line in <filename>/etc/rc.conf</filename>:</para>

	<programlisting>hostapd_enable="YES"</programlisting>

	<para>Before trying to configure
	  <application>hostapd</application>, be sure you have done
	  the basic settings introduced in the
	  <xref linkend="network-wireless-ap-basic"/>.</para>

	<sect4>
	  <title>WPA-PSK</title>

	  <para>WPA-PSK is intended for small networks where the use
	    of an backend authentication server is not possible or
	    desired.</para>

	  <para>The configuration is done in the
	    <filename>/etc/hostapd.conf</filename> file:</para>

	  <programlisting>interface=wlan0 <co id="co-ap-wpapsk-iface"/>
debug=1 <co id="co-ap-wpapsk-dbug"/>
ctrl_interface=/var/run/hostapd <co id="co-ap-wpapsk-ciface"/>
ctrl_interface_group=wheel <co id="co-ap-wpapsk-cifacegrp"/>
ssid=freebsdap <co id="co-ap-wpapsk-ssid"/>
wpa=1 <co id="co-ap-wpapsk-wpa"/>
wpa_passphrase=freebsdmall <co id="co-ap-wpapsk-pass"/>
wpa_key_mgmt=WPA-PSK <co id="co-ap-wpapsk-kmgmt"/>
wpa_pairwise=CCMP TKIP <co id="co-ap-wpapsk-pwise"/></programlisting>

	  <calloutlist>
	    <callout arearefs="co-ap-wpapsk-iface">
	      <para>This field indicates the wireless interface used
		for the Access Point.</para>
	    </callout>

	    <callout arearefs="co-ap-wpapsk-dbug">
	      <para>This field sets the level of verbosity during the
		execution of <application>hostapd</application>.  A
		value of <literal>1</literal> represents the minimal
		level.</para>
	    </callout>

	    <callout arearefs="co-ap-wpapsk-ciface">
	      <para>The <literal>ctrl_interface</literal> field gives
		the pathname of the directory used by
		<application>hostapd</application> to stores its
		domain socket files for the communication with
		external programs such as &man.hostapd.cli.8;.  The
		default value is used here.</para>
	    </callout>

	    <callout arearefs="co-ap-wpapsk-cifacegrp">
	      <para>The <literal>ctrl_interface_group</literal> line
		sets the group (here, it is the
		<groupname>wheel</groupname> group) allowed to access
		to the control interface files.</para>
	    </callout>

	    <callout arearefs="co-ap-wpapsk-ssid">
	      <para>This field sets the network name.</para>
	    </callout>

	    <callout arearefs="co-ap-wpapsk-wpa">
	      <para>The <literal>wpa</literal> field enables WPA and
		specifies which WPA authentication protocol will be
		required.  A value of <literal>1</literal> configures
		the AP for WPA-PSK.</para>
	    </callout>

	    <callout arearefs="co-ap-wpapsk-pass">
	      <para>The <literal>wpa_passphrase</literal> field
		contains the ASCII passphrase for the WPA
		authentication.</para>

	      <warning>
		<para>Always use strong passwords that are
		  sufficiently long and made from a rich alphabet so
		  they will not be guessed and/or attacked.</para>
	      </warning>
	    </callout>

	    <callout arearefs="co-ap-wpapsk-kmgmt">
	      <para>The <literal>wpa_key_mgmt</literal> line refers to
		the key management protocol we use.  In our case it is
		WPA-PSK.</para>
	    </callout>

	    <callout arearefs="co-ap-wpapsk-pwise">
	      <para>The <literal>wpa_pairwise</literal> field
		indicates the set of accepted encryption algorithms by
		the Access Point.  Here both TKIP (WPA) and CCMP
		(WPA2) ciphers are accepted.  CCMP cipher is an
		alternative to TKIP and that is strongly preferred
		when possible; TKIP should be used solely for stations
		incapable of doing CCMP.</para>
	    </callout>
	  </calloutlist>

	  <para>The next step is to start
	    <application>hostapd</application>:</para>

	  <screen>&prompt.root; <userinput>service hostapd forcestart</userinput></screen>

	  <screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable></userinput>
  wlan0: flags=8843&lt;UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST&gt; mtu 2290
	  inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255
	  inet6 fe80::211:95ff:fec3:dac%ath0 prefixlen 64 scopeid 0x4
	  ether 00:11:95:c3:0d:ac
	  media: IEEE 802.11 Wireless Ethernet autoselect mode 11g &lt;hostap&gt;
	  status: associated
	  ssid freebsdap channel 1 bssid 00:11:95:c3:0d:ac
	  authmode WPA2/802.11i privacy MIXED deftxkey 2 TKIP 2:128-bit txpowmax 36 protmode CTS dtimperiod 1 bintval 100</screen>

	  <para>The Access Point is running, the clients can now be
	    associated with it, see
	    <xref linkend="network-wireless-wpa"/> for more details.
	    It is possible to see the stations associated with the AP
	    using the <command>ifconfig
	      <replaceable>wlan0</replaceable> list sta</command>
	    command.</para>
	</sect4>
      </sect3>

      <sect3>
	<title>WEP Host-based Access Point</title>

	<para>It is not recommended to use WEP for setting up an
	  Access Point since there is no authentication mechanism and
	  it is easily to be cracked.  Some legacy wireless cards only
	  support WEP as security protocol, these cards will only
	  allow to set up AP without authentication or encryption or
	  using the WEP protocol.</para>

	<para>The wireless device can now be put into hostap mode and
	  configured with the correct SSID and IP address:</para>

	<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> create wlandev <replaceable>ath0</replaceable> wlanmode hostap</userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> inet <replaceable>192.168.0.1</replaceable> netmask <replaceable>255.255.255.0</replaceable> \
	ssid <replaceable>freebsdap</replaceable> wepmode on weptxkey <replaceable>3</replaceable> wepkey <replaceable>3:0x3456789012</replaceable> mode 11g</userinput></screen>

	<itemizedlist>
	  <listitem>
	    <para>The <literal>weptxkey</literal> means which WEP
	      key will be used in the transmission.  Here we used the
	      third key (note that the key numbering starts with
	      <literal>1</literal>).  This parameter must be specified
	      to really encrypt the data.</para>
	  </listitem>

	  <listitem>
	    <para>The <literal>wepkey</literal> means setting the
	      selected WEP key.  It should in the format
	      <replaceable>index:key</replaceable>, if the index is
	      not given, key <literal>1</literal> is set.  That is
	      to say we need to set the index if we use keys other
	      than the first key.</para>
	  </listitem>
	</itemizedlist>

	<para>Use again <command>ifconfig</command> to see the status
	  of the <devicename>wlan0</devicename> interface:</para>

	<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable></userinput>
  wlan0: flags=8843&lt;UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST&gt; metric 0 mtu 1500
	  ether 00:11:95:c3:0d:ac
	  inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255
	  media: IEEE 802.11 Wireless Ethernet autoselect mode 11g &lt;hostap&gt;
	  status: running
	  ssid freebsdap channel 4 (2427 Mhz 11g) bssid 00:11:95:c3:0d:ac
	  country US ecm authmode OPEN privacy ON deftxkey 3 wepkey 3:40-bit
	  txpower 21.5 scanvalid 60 protmode CTS wme burst dtimperiod 1 -dfs</screen>

	<para>From another wireless machine, it is possible to
	  initiate a scan to find the AP:</para>

	<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> create wlandev <replaceable>ath0</replaceable></userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> up scan</userinput>
SSID            BSSID              CHAN RATE  S:N   INT CAPS
freebsdap       00:11:95:c3:0d:ac    1   54M 22:1   100 EPS</screen>

	<para>The client machine found the Access Point and can be
	  associated with it using the correct parameters (key, etc.),
	  see <xref linkend="network-wireless-wep"/> for more
	  details.</para>
      </sect3>
    </sect2>

    <sect2>
      <title>Using Both Wired and Wireless Connection</title>

      <para>Wired connection provides better performance and
	reliability, while wireless connection provides flexibility
	and mobility, users of laptop computers usually want to
	combine these together and roam seamlessly between the
	two.</para>

      <para>On &os;, it is possible to combine two or even more
	network interfaces together in a <quote>failover</quote>
	fashion, that is, to use the most preferred and available
	connection from a group of network interfaces, and have the
	operating system switch automatically when the link state
	changes.</para>

      <para>We will cover link aggregation and failover in
	<xref linkend="network-aggregation"/> where an example for
	using both wired and wireless connection is also provided at
	<xref linkend="networking-lagg-wired-and-wireless"/>.</para>
    </sect2>

    <sect2>
      <title>Troubleshooting</title>

      <para>If you are having trouble with wireless networking, there
	are a number of steps you can take to help troubleshoot the
	problem.</para>

      <itemizedlist>
	<listitem>
	  <para>If you do not see the access point listed when
	    scanning be sure you have not configured your wireless
	    device to a limited set of channels.</para>
	</listitem>

	<listitem>
	  <para>If you cannot associate to an access point verify the
	    configuration of your station matches the one of the
	    access point.  This includes the authentication scheme and
	    any security protocols.  Simplify your configuration as
	    much as possible.  If you are using a security protocol
	    such as WPA or WEP configure the access point for open
	    authentication and no security to see if you can get
	    traffic to pass.</para>
	</listitem>

	<listitem>
	  <para>Once you can associate to the access point diagnose
	    any security configuration using simple tools like
	    &man.ping.8;.</para>

	  <para>The <command>wpa_supplicant</command> has much
	    debugging support; try running it manually with the
	    <option>-dd</option> option and look at the system
	    logs.</para>
	</listitem>

	<listitem>
	  <para>There are also many lower-level debugging tools.  You
	    can enable debugging messages in the 802.11 protocol
	    support layer using the <command>wlandebug</command>
	    program found in
	    <filename class="directory">/usr/src/tools/tools/net80211</filename>.
	    For example:</para>

	  <screen>&prompt.root; <userinput>wlandebug -i <replaceable>ath0</replaceable> +scan+auth+debug+assoc</userinput>
  net.wlan.0.debug: 0 =&gt; 0xc80000&lt;assoc,auth,scan&gt;</screen>

	  <para>can be used to enable console messages related to
	    scanning for access points and doing the 802.11 protocol
	    handshakes required to arrange communication.</para>

	  <para>There are also many useful statistics maintained by
	    the 802.11 layer; the <command>wlanstats</command> tool
	    will dump this information.  These statistics should
	    identify all errors identified by the 802.11 layer.
	    Beware however that some errors are identified in the
	    device drivers that lie below the 802.11 layer so they may
	    not show up.  To diagnose device-specific problems you
	    need to refer to the drivers' documentation.</para>
	</listitem>
      </itemizedlist>

      <para>If the above information does not help to clarify the
	problem, please submit a problem report and include output
	from the above tools.</para>
    </sect2>
  </sect1>

  <sect1 id="network-bluetooth">
    <sect1info>
      <authorgroup>
	<author>
	  <firstname>Pav</firstname>
	  <surname>Lucistnik</surname>
	  <contrib>Written by </contrib>
	  <affiliation>
	    <address><email>pav@FreeBSD.org</email></address>
	  </affiliation>
	</author>
      </authorgroup>
    </sect1info>

    <title>Bluetooth</title>

    <indexterm><primary>Bluetooth</primary></indexterm>
    <sect2>
      <title>Introduction</title>

      <para>Bluetooth is a wireless technology for creating personal
	networks operating in the 2.4 GHz unlicensed band, with a
	range of 10 meters.  Networks are usually formed ad-hoc from
	portable devices such as cellular phones, handhelds and
	laptops.  Unlike the other popular wireless technology, Wi-Fi,
	Bluetooth offers higher level service profiles, e.g., FTP-like
	file servers, file pushing, voice transport, serial line
	emulation, and more.</para>

      <para>The Bluetooth stack in &os; is implemented using the
	Netgraph framework (see &man.netgraph.4;).  A broad variety of
	Bluetooth USB dongles is supported by the &man.ng.ubt.4;
	driver.  The Broadcom BCM2033 chip based Bluetooth devices are
	supported via the &man.ubtbcmfw.4; and &man.ng.ubt.4; drivers.
	The 3Com Bluetooth PC Card 3CRWB60-A is supported by the
	&man.ng.bt3c.4; driver.  Serial and UART based Bluetooth
	devices are supported via &man.sio.4;, &man.ng.h4.4; and
	&man.hcseriald.8;.  This section describes the use of the USB
	Bluetooth dongle.</para>
    </sect2>

    <sect2>
      <title>Plugging in the Device</title>

      <para>By default Bluetooth device drivers are available as
	kernel modules.  Before attaching a device, you will need to
	load the driver into the kernel:</para>

      <screen>&prompt.root; <userinput>kldload ng_ubt</userinput></screen>

      <para>If the Bluetooth device is present in the system during
	system startup, load the module from
	<filename>/boot/loader.conf</filename>:</para>

      <programlisting>ng_ubt_load="YES"</programlisting>

      <para>Plug in your USB dongle.  The output similar to the
	following will appear on the console (or in syslog):</para>

      <screen>ubt0: vendor 0x0a12 product 0x0001, rev 1.10/5.25, addr 2
ubt0: Interface 0 endpoints: interrupt=0x81, bulk-in=0x82, bulk-out=0x2
ubt0: Interface 1 (alt.config 5) endpoints: isoc-in=0x83, isoc-out=0x3,
      wMaxPacketSize=49, nframes=6, buffer size=294</screen>

      <para>&man.service.8;
	is used to start and stop the Bluetooth stack.  It is a good
	idea to stop the stack before unplugging the device, but it is
	not (usually) fatal.  When starting the stack, you will
	receive output similar to the following:</para>

      <screen>&prompt.root; <userinput>service bluetooth start ubt0</userinput>
BD_ADDR: 00:02:72:00:d4:1a
Features: 0xff 0xff 0xf 00 00 00 00 00
&lt;3-Slot&gt; &lt;5-Slot&gt; &lt;Encryption&gt; &lt;Slot offset&gt;
&lt;Timing accuracy&gt; &lt;Switch&gt; &lt;Hold mode&gt; &lt;Sniff mode&gt;
&lt;Park mode&gt; &lt;RSSI&gt; &lt;Channel quality&gt; &lt;SCO link&gt;
&lt;HV2 packets&gt; &lt;HV3 packets&gt; &lt;u-law log&gt; &lt;A-law log&gt; &lt;CVSD&gt;
&lt;Paging scheme&gt; &lt;Power control&gt; &lt;Transparent SCO data&gt;
Max. ACL packet size: 192 bytes
Number of ACL packets: 8
Max. SCO packet size: 64 bytes
Number of SCO packets: 8</screen>
    </sect2>

    <sect2>
      <title>Host Controller Interface (HCI)</title>

      <indexterm><primary>HCI</primary></indexterm>

      <para>Host Controller Interface (HCI) provides a command
	interface to the baseband controller and link manager, and
	access to hardware status and control registers.  This
	interface provides a uniform method of accessing the Bluetooth
	baseband capabilities.  HCI layer on the Host exchanges data
	and commands with the HCI firmware on the Bluetooth hardware.
	The Host Controller Transport Layer (i.e., physical bus)
	driver provides both HCI layers with the ability to exchange
	information with each other.</para>

      <para>A single Netgraph node of type <emphasis>hci</emphasis> is
	created for a single Bluetooth device.  The HCI node is
	normally connected to the Bluetooth device driver node
	(downstream) and the L2CAP node (upstream).  All HCI
	operations must be performed on the HCI node and not on the
	device driver node.  Default name for the HCI node is
	<quote>devicehci</quote>.  For more details refer to the
	&man.ng.hci.4; manual page.</para>

      <para>One of the most common tasks is discovery of Bluetooth
	devices in RF proximity.  This operation is called
	<emphasis>inquiry</emphasis>.  Inquiry and other HCI related
	operations are done with the &man.hccontrol.8; utility.  The
	example below shows how to find out which Bluetooth devices
	are in range.  You should receive the list of devices in a few
	seconds.  Note that a remote device will only answer the
	inquiry if it put into <emphasis>discoverable</emphasis>
	mode.</para>

      <screen>&prompt.user; <userinput>hccontrol -n ubt0hci inquiry</userinput>
Inquiry result, num_responses=1
Inquiry result #0
       BD_ADDR: 00:80:37:29:19:a4
       Page Scan Rep. Mode: 0x1
       Page Scan Period Mode: 00
       Page Scan Mode: 00
       Class: 52:02:04
       Clock offset: 0x78ef
Inquiry complete. Status: No error [00]</screen>

      <para><literal>BD_ADDR</literal> is unique address of a
	Bluetooth device, similar to MAC addresses of a network card.
	This address is needed for further communication with a
	device.  It is possible to assign human readable name to a
	BD_ADDR.  The <filename>/etc/bluetooth/hosts</filename> file
	contains information regarding the known Bluetooth hosts.  The
	following example shows how to obtain human readable name that
	was assigned to the remote device:</para>

      <screen>&prompt.user; <userinput>hccontrol -n ubt0hci remote_name_request 00:80:37:29:19:a4</userinput>
BD_ADDR: 00:80:37:29:19:a4
Name: Pav's T39</screen>

      <para>If you perform an inquiry on a remote Bluetooth device, it
	will find your computer as
	<quote>your.host.name (ubt0)</quote>. The name assigned to the
	local device can be changed at any time.</para>

      <para>The Bluetooth system provides a point-to-point connection
	(only two Bluetooth units involved), or a point-to-multipoint
	connection.  In the point-to-multipoint connection the
	connection is shared among several Bluetooth devices.  The
	following example shows how to obtain the list of active
	baseband connections for the local device:</para>

      <screen>&prompt.user; <userinput>hccontrol -n ubt0hci read_connection_list</userinput>
Remote BD_ADDR    Handle Type Mode Role Encrypt Pending Queue State
00:80:37:29:19:a4     41  ACL    0 MAST    NONE       0     0 OPEN</screen>

      <para>A <emphasis>connection handle</emphasis> is useful when
	termination of the baseband connection is required.  Note,
	that it is normally not required to do it by hand.  The stack
	will automatically terminate inactive baseband
	connections.</para>

      <screen>&prompt.root; <userinput>hccontrol -n ubt0hci disconnect 41</userinput>
Connection handle: 41
Reason: Connection terminated by local host [0x16]</screen>

      <para>Refer to <command>hccontrol help</command> for a complete
	listing of available HCI commands.  Most of the HCI commands
	do not require superuser privileges.</para>
    </sect2>

    <sect2>
      <title>Logical Link Control and Adaptation Protocol
	(L2CAP)</title>

      <indexterm><primary>L2CAP</primary></indexterm>

      <para>Logical Link Control and Adaptation Protocol (L2CAP)
	provides connection-oriented and connectionless data services
	to upper layer protocols with protocol multiplexing capability
	and segmentation and reassembly operation.  L2CAP permits
	higher level protocols and applications to transmit and
	receive L2CAP data packets up to 64 kilobytes in
	length.</para>

      <para>L2CAP is based around the concept of
	<emphasis>channels</emphasis>.  Channel is a logical
	connection on top of baseband connection.  Each channel is
	bound to a single protocol in a many-to-one fashion.  Multiple
	channels can be bound to the same protocol, but a channel
	cannot be bound to multiple protocols.  Each L2CAP packet
	received on a channel is directed to the appropriate higher
	level protocol.  Multiple channels can share the same baseband
	connection.</para>

      <para>A single Netgraph node of type <emphasis>l2cap</emphasis>
	is created for a single Bluetooth device.  The L2CAP node is
	normally connected to the Bluetooth HCI node (downstream) and
	Bluetooth sockets nodes (upstream).  Default name for the
	L2CAP node is <quote>devicel2cap</quote>.  For more details
	refer to the &man.ng.l2cap.4; manual page.</para>

      <para>A useful command is &man.l2ping.8;, which can be used to
	ping other devices.  Some Bluetooth implementations might not
	return all of the data sent to them, so
	<literal>0 bytes</literal> in the following example is
	normal.</para>

      <screen>&prompt.root; <userinput>l2ping -a 00:80:37:29:19:a4</userinput>
0 bytes from 0:80:37:29:19:a4 seq_no=0 time=48.633 ms result=0
0 bytes from 0:80:37:29:19:a4 seq_no=1 time=37.551 ms result=0
0 bytes from 0:80:37:29:19:a4 seq_no=2 time=28.324 ms result=0
0 bytes from 0:80:37:29:19:a4 seq_no=3 time=46.150 ms result=0</screen>

      <para>The &man.l2control.8; utility is used to perform various
	operations on L2CAP nodes.  This example shows how to obtain
	the list of logical connections (channels) and the list of
	baseband connections for the local device:</para>

      <screen>&prompt.user; <userinput>l2control -a 00:02:72:00:d4:1a read_channel_list</userinput>
L2CAP channels:
Remote BD_ADDR     SCID/ DCID   PSM  IMTU/ OMTU State
00:07:e0:00:0b:ca    66/   64     3   132/  672 OPEN
&prompt.user; <userinput>l2control -a 00:02:72:00:d4:1a read_connection_list</userinput>
L2CAP connections:
Remote BD_ADDR    Handle Flags Pending State
00:07:e0:00:0b:ca     41 O           0 OPEN</screen>

      <para>Another diagnostic tool is &man.btsockstat.1;.  It does a
	job similar to as &man.netstat.1; does, but for Bluetooth
	network-related data structures.  The example below shows the
	same logical connection as &man.l2control.8; above.</para>

      <screen>&prompt.user; <userinput>btsockstat</userinput>
Active L2CAP sockets
PCB      Recv-Q Send-Q Local address/PSM       Foreign address   CID   State
c2afe900      0      0 00:02:72:00:d4:1a/3     00:07:e0:00:0b:ca 66    OPEN
Active RFCOMM sessions
L2PCB    PCB      Flag MTU   Out-Q DLCs State
c2afe900 c2b53380 1    127   0     Yes  OPEN
Active RFCOMM sockets
PCB      Recv-Q Send-Q Local address     Foreign address   Chan DLCI State
c2e8bc80      0    250 00:02:72:00:d4:1a 00:07:e0:00:0b:ca 3    6    OPEN</screen>
    </sect2>

    <sect2>
      <title>RFCOMM Protocol</title>

      <para>The RFCOMM protocol provides emulation of serial ports
	over the L2CAP protocol.  The protocol is based on the ETSI
	standard TS 07.10.  RFCOMM is a simple transport protocol,
	with additional provisions for emulating the 9 circuits of
	RS-232 (EIATIA-232-E) serial ports.  The RFCOMM protocol
	supports up to 60 simultaneous connections (RFCOMM channels)
	between two Bluetooth devices.</para>

      <para>For the purposes of RFCOMM, a complete communication path
	involves two applications running on different devices (the
	communication endpoints) with a communication segment between
	them.  RFCOMM is intended to cover applications that make use
	of the serial ports of the devices in which they reside.  The
	communication segment is a Bluetooth link from one device to
	another (direct connect).</para>

      <para>RFCOMM is only concerned with the connection between the
	devices in the direct connect case, or between the device and
	a modem in the network case.  RFCOMM can support other
	configurations, such as modules that communicate via Bluetooth
	wireless technology on one side and provide a wired interface
	on the other side.</para>

      <para>In &os; the RFCOMM protocol is implemented at the
	Bluetooth sockets layer.</para>
    </sect2>

    <sect2>
      <title>Pairing of Devices</title>

      <para>By default, Bluetooth communication is not authenticated,
	and any device can talk to any other device.  A Bluetooth
	device (for example, cellular phone) may choose to require
	authentication to provide a particular service (for example,
	Dial-Up service).  Bluetooth authentication is normally done
	with <emphasis>PIN codes</emphasis>.  A PIN code is an ASCII
	string up to 16 characters in length.  User is required to
	enter the same PIN code on both devices.  Once user has
	entered the PIN code, both devices will generate a
	<emphasis>link key</emphasis>.  After that the link key can be
	stored either in the devices themselves or in a persistent
	storage.  Next time both devices will use previously generated
	link key.  The described above procedure is called
	<emphasis>pairing</emphasis>.  Note that if the link key is
	lost by any device then pairing must be repeated.</para>

      <para>The &man.hcsecd.8; daemon is responsible for handling of
	all Bluetooth authentication requests.  The default
	configuration file is
	<filename>/etc/bluetooth/hcsecd.conf</filename>.  An example
	section for a cellular phone with the PIN code arbitrarily set
	to <quote>1234</quote> is shown below:</para>

      <programlisting>device {
        bdaddr  00:80:37:29:19:a4;
        name    "Pav's T39";
        key     nokey;
        pin     "1234";
      }</programlisting>

      <para>There is no limitation on PIN codes (except length).  Some
	devices (for example Bluetooth headsets) may have a fixed PIN
	code built in.  The <option>-d</option> switch forces the
	&man.hcsecd.8; daemon to stay in the foreground, so it is easy
	to see what is happening.  Set the remote device to receive
	pairing and initiate the Bluetooth connection to the remote
	device.  The remote device should say that pairing was
	accepted, and request the PIN code.  Enter the same PIN code
	as you have in <filename>hcsecd.conf</filename>.  Now your PC
	and the remote device are paired.  Alternatively, you can
	initiate pairing on the remote device.</para>

      <para>The following line can be added to the
	<filename>/etc/rc.conf</filename> file to have
	<application>hcsecd</application> started automatically on
	system start:</para>

      <programlisting>hcsecd_enable="YES"</programlisting>

      <para>The following is a sample of the
	<application>hcsecd</application> daemon output:</para>

      <programlisting>hcsecd[16484]: Got Link_Key_Request event from 'ubt0hci', remote bdaddr 0:80:37:29:19:a4
hcsecd[16484]: Found matching entry, remote bdaddr 0:80:37:29:19:a4, name 'Pav's T39', link key doesn't exist
hcsecd[16484]: Sending Link_Key_Negative_Reply to 'ubt0hci' for remote bdaddr 0:80:37:29:19:a4
hcsecd[16484]: Got PIN_Code_Request event from 'ubt0hci', remote bdaddr 0:80:37:29:19:a4
hcsecd[16484]: Found matching entry, remote bdaddr 0:80:37:29:19:a4, name 'Pav's T39', PIN code exists
hcsecd[16484]: Sending PIN_Code_Reply to 'ubt0hci' for remote bdaddr 0:80:37:29:19:a4</programlisting>
    </sect2>

    <sect2>
      <title>Service Discovery Protocol (SDP)</title>

      <indexterm><primary>SDP</primary></indexterm>

      <para>The Service Discovery Protocol (SDP) provides the means
	for client applications to discover the existence of services
	provided by server applications as well as the attributes of
	those services.  The attributes of a service include the type
	or class of service offered and the mechanism or protocol
	information needed to utilize the service.</para>

      <para>SDP involves communication between a SDP server and a SDP
	client.  The server maintains a list of service records that
	describe the characteristics of services associated with the
	server.  Each service record contains information about a
	single service.  A client may retrieve information from a
	service record maintained by the SDP server by issuing a SDP
	request.  If the client, or an application associated with the
	client, decides to use a service, it must open a separate
	connection to the service provider in order to utilize the
	service.  SDP provides a mechanism for discovering services
	and their attributes, but it does not provide a mechanism for
	utilizing those services.</para>

      <para>Normally, a SDP client searches for services based on some
	desired characteristics of the services.  However, there are
	times when it is desirable to discover which types of services
	are described by an SDP server's service records without any a
	priori information about the services.  This process of
	looking for any offered services is called
	<emphasis>browsing</emphasis>.</para>

      <para>The Bluetooth SDP server &man.sdpd.8; and command line
	client &man.sdpcontrol.8; are included in the standard &os;
	installation.  The following example shows how to perform a
	SDP browse query.</para>

      <screen>&prompt.user; <userinput>sdpcontrol -a 00:01:03:fc:6e:ec browse</userinput>
Record Handle: 00000000
Service Class ID List:
        Service Discovery Server (0x1000)
Protocol Descriptor List:
        L2CAP (0x0100)
                Protocol specific parameter #1: u/int/uuid16 1
                Protocol specific parameter #2: u/int/uuid16 1

Record Handle: 0x00000001
Service Class ID List:
        Browse Group Descriptor (0x1001)

Record Handle: 0x00000002
Service Class ID List:
        LAN Access Using PPP (0x1102)
Protocol Descriptor List:
        L2CAP (0x0100)
        RFCOMM (0x0003)
                Protocol specific parameter #1: u/int8/bool 1
Bluetooth Profile Descriptor List:
        LAN Access Using PPP (0x1102) ver. 1.0</screen>

      <para>... and so on.  Note that each service has a list of
	attributes (RFCOMM channel for example).  Depending on the
	service you might need to make a note of some of the
	attributes.  Some Bluetooth implementations do not support
	service browsing and may return an empty list.  In this case
	it is possible to search for the specific service.  The
	example below shows how to search for the OBEX Object Push
	(OPUSH) service:</para>

      <screen>&prompt.user; <userinput>sdpcontrol -a 00:01:03:fc:6e:ec search OPUSH</userinput></screen>

      <para>Offering services on &os; to Bluetooth clients is done
	with the &man.sdpd.8; server.  The following line can be added
	to the <filename>/etc/rc.conf</filename> file:</para>

      <programlisting>sdpd_enable="YES"</programlisting>

      <para>Then the <application>sdpd</application> daemon can be
	started with:</para>

      <screen>&prompt.root; <userinput>service sdpd start</userinput></screen>

      <para>The local server application that wants to provide
	Bluetooth service to the remote clients will register service
	with the local SDP daemon.  The example of such application is
	&man.rfcomm.pppd.8;.  Once started it will register Bluetooth
	LAN service with the local SDP daemon.</para>

      <para>The list of services registered with the local SDP server
	can be obtained by issuing SDP browse query via local control
	channel:</para>

      <screen>&prompt.root; <userinput>sdpcontrol -l browse</userinput></screen>
    </sect2>

    <sect2>
      <title>Dial-Up Networking (DUN) and Network Access with PPP
	(LAN) Profiles</title>

      <para>The Dial-Up Networking (DUN) profile is mostly used with
	modems and cellular phones.  The scenarios covered by this
	profile are the following:</para>

      <itemizedlist>
	<listitem>
	  <para>use of a cellular phone or modem by a computer as a
	    wireless modem for connecting to a dial-up Internet access
	    server, or using other dial-up services;</para>
	</listitem>

	<listitem>
	  <para>use of a cellular phone or modem by a computer to
	    receive data calls.</para>
	</listitem>
      </itemizedlist>

      <para>Network Access with PPP (LAN) profile can be used in the
	following situations:</para>

      <itemizedlist>
	<listitem>
	  <para>LAN access for a single Bluetooth device;</para>
	</listitem>

	<listitem>
	  <para>LAN access for multiple Bluetooth devices;</para>
	</listitem>

	<listitem>
	  <para>PC to PC (using PPP networking over serial cable
	    emulation).</para>
	</listitem>
      </itemizedlist>

      <para>In &os; both profiles are implemented with &man.ppp.8; and
	&man.rfcomm.pppd.8; - a wrapper that converts RFCOMM Bluetooth
	connection into something PPP can operate with.  Before any
	profile can be used, a new PPP label in the
	<filename>/etc/ppp/ppp.conf</filename> must be created.
	Consult &man.rfcomm.pppd.8; manual page for examples.</para>

      <para>In the following example &man.rfcomm.pppd.8; will be used
	to open RFCOMM connection to remote device with BD_ADDR
	00:80:37:29:19:a4 on DUN RFCOMM channel.  The actual RFCOMM
	channel number will be obtained from the remote device via
	SDP.  It is possible to specify RFCOMM channel by hand, and in
	this case &man.rfcomm.pppd.8; will not perform SDP query.  Use
	&man.sdpcontrol.8; to find out RFCOMM channel on the remote
	device.</para>

      <screen>&prompt.root; <userinput>rfcomm_pppd -a 00:80:37:29:19:a4 -c -C dun -l rfcomm-dialup</userinput></screen>

      <para>In order to provide Network Access with PPP (LAN) service
	the &man.sdpd.8; server must be running.  A new entry for LAN
	clients must be created in the
	<filename>/etc/ppp/ppp.conf</filename> file.  Consult
	&man.rfcomm.pppd.8; manual page for examples.  Finally, start
	RFCOMM PPP server on valid RFCOMM channel number.  The RFCOMM
	PPP server will automatically register Bluetooth LAN service
	with the local SDP daemon.  The example below shows how to
	start RFCOMM PPP server.</para>

      <screen>&prompt.root; <userinput>rfcomm_pppd -s -C 7 -l rfcomm-server</userinput></screen>
    </sect2>

    <sect2>
      <title>OBEX Object Push (OPUSH) Profile</title>

      <indexterm><primary>OBEX</primary></indexterm>
      <para>OBEX is a widely used protocol for simple file transfers
	between mobile devices.  Its main use is in infrared
	communication, where it is used for generic file transfers
	between notebooks or PDAs, and for sending business cards or
	calendar entries between cellular phones and other devices
	with PIM applications.</para>

      <para>The OBEX server and client are implemented as a
	third-party package <application>obexapp</application>, which
	is available as <filename
	  role="package">comms/obexapp</filename> port.</para>

      <para>OBEX client is used to push and/or pull objects from the
	OBEX server.  An object can, for example, be a business card
	or an appointment.  The OBEX client can obtain RFCOMM channel
	number from the remote device via SDP. This can be done by
	specifying service name instead of RFCOMM channel number.
	Supported service names are: IrMC, FTRN and OPUSH.  It is
	possible to specify RFCOMM channel as a number.  Below is an
	example of an OBEX session, where device information object is
	pulled from the cellular phone, and a new object (business
	card) is pushed into the phone's directory.</para>

      <screen>&prompt.user; <userinput>obexapp -a 00:80:37:29:19:a4 -C IrMC</userinput>
obex&gt; get telecom/devinfo.txt devinfo-t39.txt
Success, response: OK, Success (0x20)
obex&gt; put new.vcf
Success, response: OK, Success (0x20)
obex&gt; di
Success, response: OK, Success (0x20)</screen>

      <para>In order to provide OBEX Object Push service, &man.sdpd.8;
	server must be running.  A root folder, where all incoming
	objects will be stored, must be created.  The default path to
	the root folder
	is <filename class="directory">/var/spool/obex</filename>.
	Finally, start OBEX server on valid RFCOMM channel number.
	The OBEX server will automatically register OBEX Object Push
	service with the local SDP daemon.  The example below shows
	how to start OBEX server.</para>

      <screen>&prompt.root; <userinput>obexapp -s -C 10</userinput></screen>
    </sect2>

    <sect2>
      <title>Serial Port Profile (SPP)</title>

      <para>The Serial Port Profile (SPP) allows Bluetooth devices to
	perform RS232 (or similar) serial cable emulation.  The
	scenario covered by this profile deals with legacy
	applications using Bluetooth as a cable replacement, through a
	virtual serial port abstraction.</para>

      <para>The &man.rfcomm.sppd.1; utility implements the Serial Port
	profile.  A pseudo tty is used as a virtual serial port
	abstraction.  The example below shows how to connect to a
	remote device Serial Port service.  Note that you do not have
	to specify a RFCOMM channel - &man.rfcomm.sppd.1; can obtain
	it from the remote device via SDP.  If you would like to
	override this, specify a RFCOMM channel on the command
	line.</para>

      <screen>&prompt.root; <userinput>rfcomm_sppd -a 00:07:E0:00:0B:CA -t /dev/ttyp6</userinput>
rfcomm_sppd[94692]: Starting on /dev/ttyp6...</screen>

      <para>Once connected, the pseudo tty can be used as serial
	port:</para>

      <screen>&prompt.root; <userinput>cu -l ttyp6</userinput></screen>
    </sect2>

    <sect2>
      <title>Troubleshooting</title>

      <sect3>
	<title>A Remote Device Cannot Connect</title>

	<para>Some older Bluetooth devices do not support role
	  switching.  By default, when &os; is accepting a new
	  connection, it tries to perform a role switch and become
	  master.  Devices, which do not support this will not be able
	  to connect.  Note that role switching is performed when a
	  new connection is being established, so it is not possible
	  to ask the remote device if it does support role switching.
	  There is a HCI option to disable role switching on the local
	  side:</para>

	<screen>&prompt.root; <userinput>hccontrol -n ubt0hci write_node_role_switch 0</userinput></screen>
      </sect3>

      <sect3>
	<title>Something is Going Wrong, Can I See What Exactly is
	  Happening?</title>

	<para>Yes, you can.  Use the third-party package
	  <application>hcidump</application>, which is available as
	  <filename role="package">comms/hcidump</filename> port.  The
	  <application>hcidump</application> utility is similar to
	  &man.tcpdump.1;.  It can be used to display the content of
	  the Bluetooth packets on the terminal and to dump the
	  Bluetooth packets to a file.</para>
      </sect3>
    </sect2>
  </sect1>

  <sect1 id="network-bridging">
    <sect1info>
      <authorgroup>
	<author>
	  <firstname>Andrew</firstname>
	  <surname>Thompson</surname>
	  <contrib>Written by </contrib>
	</author>
      </authorgroup>
    </sect1info>
    <title>Bridging</title>

    <sect2>
      <title>Introduction</title>

      <indexterm><primary>IP subnet</primary></indexterm>
      <indexterm><primary>bridge</primary></indexterm>
      <para>It is sometimes useful to divide one physical network
	(such as an Ethernet segment) into two separate network
	segments without having to create IP subnets and use a router
	to connect the segments together.  A device that connects two
	networks together in this fashion is called a
	<quote>bridge</quote>.  A FreeBSD system with two network
	interface cards can act as a bridge.</para>

      <para>The bridge works by learning the MAC layer addresses
	(Ethernet addresses) of the devices on each of its network
	interfaces.  It forwards traffic between two networks only
	when its source and destination are on different
	networks.</para>

      <para>In many respects, a bridge is like an Ethernet switch with
	very few ports.</para>
    </sect2>

    <sect2>
      <title>Situations Where Bridging Is Appropriate</title>

      <para>There are many common situations in which a bridge is used
	today.</para>

      <sect3>
	<title>Connecting Networks</title>

	<para>The basic operation of a bridge is to join two or more
	  network segments together.  There are many reasons to use a
	  host based bridge over plain networking equipment such as
	  cabling constraints, firewalling or connecting pseudo
	  networks such as a Virtual Machine interface.  A bridge can
	  also connect a wireless interface running in hostap mode to
	  a wired network and act as an access point.</para>
      </sect3>

      <sect3>
	<title>Filtering/Traffic Shaping Firewall</title>

	<indexterm><primary>firewall</primary></indexterm>
	<indexterm><primary>NAT</primary></indexterm>

	<para>A common situation is where firewall functionality is
	  needed without routing or network address translation
	  (NAT).</para>

	<para>An example is a small company that is connected via DSL
	  or ISDN to their ISP.  They have a 13 globally-accessible IP
	  addresses from their ISP and have 10 PCs on their network.
	  In this situation, using a router-based firewall is
	  difficult because of subnetting issues.</para>

	<indexterm><primary>router</primary></indexterm>
	<indexterm><primary>DSL</primary></indexterm>
	<indexterm><primary>ISDN</primary></indexterm>
	<para>A bridge-based firewall can be configured and dropped
	  into the path just downstream of their DSL/ISDN router
	  without any IP numbering issues.</para>
      </sect3>

      <sect3>
	<title>Network Tap</title>

	<para>A bridge can join two network segments and be used to
	  inspect all Ethernet frames that pass between them.  This
	  can either be from using &man.bpf.4;/&man.tcpdump.1; on the
	  bridge interface or by sending a copy of all frames out an
	  additional interface (span port).</para>
      </sect3>

      <sect3>
	<title>Layer 2 VPN</title>

	<para>Two Ethernet networks can be joined across an IP link by
	  bridging the networks to an EtherIP tunnel or a &man.tap.4;
	  based solution such as OpenVPN.</para>
      </sect3>

      <sect3>
	<title>Layer 2 Redundancy</title>

	<para>A network can be connected together with multiple links
	  and use the Spanning Tree Protocol to block redundant paths.
	  For an Ethernet network to function properly only one active
	  path can exist between two devices, Spanning Tree will
	  detect loops and put the redundant links into a blocked
	  state.  Should one of the active links fail then the
	  protocol will calculate a different tree and reenable one of
	  the blocked paths to restore connectivity to all points in
	  the network.</para>
      </sect3>
    </sect2>

    <sect2>
      <title>Kernel Configuration</title>

      <para>This section covers &man.if.bridge.4; bridge
	implementation, a netgraph bridging driver is also available,
	for more information see &man.ng.bridge.4; manual page.</para>

      <para>The bridge driver is a kernel module and will be
	automatically loaded by &man.ifconfig.8; when creating a
	bridge interface.  It is possible to compile the bridge in to
	the kernel by adding <literal>device if_bridge</literal> to
	your kernel configuration file.</para>

      <para>Packet filtering can be used with any firewall package
	that hooks in via the &man.pfil.9; framework.  The firewall
	can be loaded as a module or compiled into the kernel.</para>

      <para>The bridge can be used as a traffic shaper with
	&man.altq.4; or &man.dummynet.4;.</para>
    </sect2>

    <sect2>
      <title>Enabling the Bridge</title>

      <para>The bridge is created using interface cloning.  To create
	a bridge use &man.ifconfig.8;, if the bridge driver is not
	present in the kernel then it will be loaded
	automatically.</para>

      <screen>&prompt.root; <userinput>ifconfig bridge create</userinput>
bridge0
&prompt.root; <userinput>ifconfig bridge0</userinput>
bridge0: flags=8802&lt;BROADCAST,SIMPLEX,MULTICAST&gt; metric 0 mtu 1500
        ether 96:3d:4b:f1:79:7a
        id 00:00:00:00:00:00 priority 32768 hellotime 2 fwddelay 15
        maxage 20 holdcnt 6 proto rstp maxaddr 100 timeout 1200
        root id 00:00:00:00:00:00 priority 0 ifcost 0 port 0</screen>

      <para>A bridge interface is created and is automatically
	assigned a randomly generated Ethernet address.  The
	<literal>maxaddr</literal> and <literal>timeout</literal>
	parameters control how many MAC addresses the bridge will keep
	in its forwarding table and how many seconds before each entry
	is removed after it is last seen.  The other parameters
	control how Spanning Tree operates.</para>

      <para>Add the member network interfaces to the bridge.  For the
	bridge to forward packets all member interfaces and the bridge
	need to be up:</para>

      <screen>&prompt.root; <userinput>ifconfig bridge0 addm fxp0 addm fxp1 up</userinput>
&prompt.root; <userinput>ifconfig fxp0 up</userinput>
&prompt.root; <userinput>ifconfig fxp1 up</userinput></screen>

      <para>The bridge is now forwarding Ethernet frames between
	<devicename>fxp0</devicename> and
	<devicename>fxp1</devicename>.  The equivalent configuration
	in <filename>/etc/rc.conf</filename> so the bridge is created
	at startup is:</para>

      <programlisting>cloned_interfaces="bridge0"
ifconfig_bridge0="addm fxp0 addm fxp1 up"
ifconfig_fxp0="up"
ifconfig_fxp1="up"</programlisting>

      <para>If the bridge host needs an IP address then the correct
	place to set this is on the bridge interface itself rather
	than one of the member interfaces.  This can be set statically
	or via DHCP:</para>

      <screen>&prompt.root; <userinput>ifconfig bridge0 inet 192.168.0.1/24</userinput></screen>

      <para>It is also possible to assign an IPv6 address to a bridge
	interface.</para>
    </sect2>

    <sect2>
      <title>Firewalling</title>

      <indexterm><primary>firewall</primary></indexterm>

      <para>When packet filtering is enabled, bridged packets will
	pass through the filter inbound on the originating interface,
	on the bridge interface and outbound on the appropriate
	interfaces.  Either stage can be disabled.  When direction of
	the packet flow is important it is best to firewall on the
	member interfaces rather than the bridge itself.</para>

      <para>The bridge has several configurable settings for passing
	non-IP and ARP packets, and layer2 firewalling with IPFW.  See
	&man.if.bridge.4; for more information.</para>
    </sect2>

    <sect2>
      <title>Spanning Tree</title>

      <para>The bridge driver implements the Rapid Spanning Tree
	Protocol (RSTP or 802.1w) with backwards compatibility with
	the legacy Spanning Tree Protocol (STP).  Spanning Tree is
	used to detect and remove loops in a network topology.  RSTP
	provides faster Spanning Tree convergence than legacy STP, the
	protocol will exchange information with neighbouring switches
	to quickly transition to forwarding without creating
	loops.
	&os; supports RSTP and STP as operating modes, with RSTP
	being the default mode.</para>

      <para>Spanning Tree can be enabled on member interfaces using
	the <literal>stp</literal> command.  For a bridge with
	<devicename>fxp0</devicename> and
	<devicename>fxp1</devicename> as the current interfaces,
	enable STP with the following:</para>

      <screen>&prompt.root; <userinput>ifconfig bridge0 stp fxp0 stp fxp1</userinput>
bridge0: flags=8843&lt;UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST&gt; metric 0 mtu 1500
        ether d6:cf:d5:a0:94:6d
        id 00:01:02:4b:d4:50 priority 32768 hellotime 2 fwddelay 15
        maxage 20 holdcnt 6 proto rstp maxaddr 100 timeout 1200
        root id 00:01:02:4b:d4:50 priority 32768 ifcost 0 port 0
        member: fxp0 flags=1c7&lt;LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP&gt;
                port 3 priority 128 path cost 200000 proto rstp
                role designated state forwarding
        member: fxp1 flags=1c7&lt;LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP&gt;
                port 4 priority 128 path cost 200000 proto rstp
                role designated state forwarding</screen>

      <para>This bridge has a spanning tree ID of
	<literal>00:01:02:4b:d4:50</literal> and a priority of
	<literal>32768</literal>.  As the <literal>root id</literal>
	is the same it indicates that this is the root bridge for the
	tree.</para>

      <para>Another bridge on the network also has spanning tree
	enabled:</para>

      <screen>bridge0: flags=8843&lt;UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST&gt; metric 0 mtu 1500
        ether 96:3d:4b:f1:79:7a
        id 00:13:d4:9a:06:7a priority 32768 hellotime 2 fwddelay 15
        maxage 20 holdcnt 6 proto rstp maxaddr 100 timeout 1200
        root id 00:01:02:4b:d4:50 priority 32768 ifcost 400000 port 4
        member: fxp0 flags=1c7&lt;LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP&gt;
                port 4 priority 128 path cost 200000 proto rstp
                role root state forwarding
        member: fxp1 flags=1c7&lt;LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP&gt;
                port 5 priority 128 path cost 200000 proto rstp
                role designated state forwarding</screen>

      <para>The line <literal>root id 00:01:02:4b:d4:50 priority 32768
	  ifcost 400000 port 4</literal> shows that the root bridge is
	<literal>00:01:02:4b:d4:50</literal> as above and has a path
	cost of <literal>400000</literal> from this bridge, the path
	to the root bridge is via <literal>port 4</literal> which is
	<devicename>fxp0</devicename>.</para>
    </sect2>

    <sect2>
      <title>Advanced Bridging</title>

      <sect3>
	<title>Reconstruct Traffic Flows</title>

	<para>The bridge supports monitor mode, where the packets are
	  discarded after &man.bpf.4; processing, and are not
	  processed or forwarded further.  This can be used to
	  multiplex the input of two or more interfaces into a single
	  &man.bpf.4; stream.  This is useful for reconstructing the
	  traffic for network taps that transmit the RX/TX signals out
	  through two separate interfaces.</para>

	<para>To read the input from four network interfaces as one
	  stream:</para>

	<screen>&prompt.root; <userinput>ifconfig bridge0 addm fxp0 addm fxp1 addm fxp2 addm fxp3 monitor up</userinput>
&prompt.root; <userinput>tcpdump -i bridge0</userinput></screen>
      </sect3>

      <sect3>
	<title>Span Ports</title>

	<para>A copy of every Ethernet frame received by the bridge
	  will be transmitted out a designated span port.  The number
	  of span ports configured on a bridge is unlimited, if an
	  interface is designated as a span port then it may not also
	  be used as a regular bridge port.  This is most useful for
	  snooping a bridged network passively on another host
	  connected to one of the span ports of the bridge.</para>

	<para>To send a copy of all frames out the interface named
	  <devicename>fxp4</devicename>:</para>

	<screen>&prompt.root; <userinput>ifconfig bridge0 span fxp4</userinput></screen>
      </sect3>

      <sect3>
	<title>Private Interfaces</title>

	<para>A private interface does not forward any traffic to any
	  other port that is also a private interface.  The traffic is
	  blocked unconditionally so no Ethernet frames will be
	  forwarded, including ARP.  If traffic needs to be
	  selectively blocked then a firewall should be used
	  instead.</para>
      </sect3>

      <sect3>
	<title>Sticky Interfaces</title>

	<para>If a bridge member interface is marked as sticky then
	  dynamically learned address entries are treated at static
	  once entered into the forwarding cache.  Sticky entries are
	  never aged out of the cache or replaced, even if the address
	  is seen on a different interface.  This gives the benefit of
	  static address entries without the need to pre-populate the
	  forwarding table, clients learnt on a particular segment of
	  the bridge can not roam to another segment.</para>

	<para>Another example of using sticky addresses would be to
	  combine the bridge with VLANs to create a router where
	  customer networks are isolated without wasting IP address
	  space.  Consider that
	  <hostid role="hostname">CustomerA</hostid> is on
	  <literal>vlan100</literal> and
	  <hostid role="hostname">CustomerB</hostid> is on
	  <literal>vlan101</literal>.  The bridge has the address
	  <hostid role="ipaddr">192.168.0.1</hostid> and is also an
	  internet router.</para>

	<screen>&prompt.root; <userinput>ifconfig bridge0 addm vlan100 sticky vlan100 addm vlan101 sticky vlan101</userinput>
&prompt.root; <userinput>ifconfig bridge0 inet 192.168.0.1/24</userinput></screen>

	<para>Both clients see
	  <hostid role="ipaddr">192.168.0.1</hostid> as their default
	  gateway and since the bridge cache is sticky they can not
	  spoof the MAC address of the other customer to intercept
	  their traffic.</para>

	<para>Any communication between the VLANs can be blocked using
	  private interfaces (or a firewall):</para>

	<screen>&prompt.root; <userinput>ifconfig bridge0 private vlan100 private vlan101</userinput></screen>

	<para>The customers are completely isolated from each other,
	  the full <hostid role="netmask">/24</hostid> address range
	  can be allocated without subnetting.</para>
      </sect3>

      <sect3>
	<title>Address Limits</title>

	<para>The number of unique source MAC addresses behind an
	  interface can be limited.  Once the limit is reached packets
	  with unknown source addresses are dropped until an
	  existing host cache entry expires or is removed.</para>

	<para>The following example sets the maximum number of
	  Ethernet devices for
	  <hostid role="hostname">CustomerA</hostid> on
	  <literal>vlan100</literal> to 10.</para>

	<screen>&prompt.root; <userinput>ifconfig bridge0 ifmaxaddr vlan100 10</userinput></screen>
      </sect3>

      <sect3>
	<title>SNMP Monitoring</title>

	<para>The bridge interface and STP parameters can be monitored
	  via the SNMP daemon which is included in the &os; base
	  system.  The exported bridge MIBs conform to the IETF
	  standards so any SNMP client or monitoring package can be
	  used to retrieve the data.</para>

	<para>On the bridge machine uncomment the
	  <literal>begemotSnmpdModulePath."bridge" =
	    "/usr/lib/snmp_bridge.so"</literal> line from
	  <filename>/etc/snmp.config</filename> and start the
	  <application>bsnmpd</application> daemon.  Other
	  configuration such as community names and access lists may
	  need to be modified.  See &man.bsnmpd.1; and
	  &man.snmp.bridge.3; for more information.</para>

	<para>The following examples use the
	  <application>Net-SNMP</application> software
	  (<filename role="package">net-mgmt/net-snmp</filename>) to
	  query a bridge, the
	  <filename role="package">net-mgmt/bsnmptools</filename> port
	  can also be used.  From the SNMP client host add to
	  <filename>$HOME/.snmp/snmp.conf</filename> the following
	  lines to import the bridge MIB definitions in to
	  <application>Net-SNMP</application>:</para>

	<programlisting>mibdirs +/usr/share/snmp/mibs
mibs +BRIDGE-MIB:RSTP-MIB:BEGEMOT-MIB:BEGEMOT-BRIDGE-MIB</programlisting>

	<para>To monitor a single bridge via the IETF BRIDGE-MIB
	  (RFC4188) do</para>

	<screen>&prompt.user; <userinput>snmpwalk -v 2c -c public bridge1.example.com mib-2.dot1dBridge</userinput>
BRIDGE-MIB::dot1dBaseBridgeAddress.0 = STRING: 66:fb:9b:6e:5c:44
BRIDGE-MIB::dot1dBaseNumPorts.0 = INTEGER: 1 ports
BRIDGE-MIB::dot1dStpTimeSinceTopologyChange.0 = Timeticks: (189959) 0:31:39.59 centi-seconds
BRIDGE-MIB::dot1dStpTopChanges.0 = Counter32: 2
BRIDGE-MIB::dot1dStpDesignatedRoot.0 = Hex-STRING: 80 00 00 01 02 4B D4 50
...
BRIDGE-MIB::dot1dStpPortState.3 = INTEGER: forwarding(5)
BRIDGE-MIB::dot1dStpPortEnable.3 = INTEGER: enabled(1)
BRIDGE-MIB::dot1dStpPortPathCost.3 = INTEGER: 200000
BRIDGE-MIB::dot1dStpPortDesignatedRoot.3 = Hex-STRING: 80 00 00 01 02 4B D4 50
BRIDGE-MIB::dot1dStpPortDesignatedCost.3 = INTEGER: 0
BRIDGE-MIB::dot1dStpPortDesignatedBridge.3 = Hex-STRING: 80 00 00 01 02 4B D4 50
BRIDGE-MIB::dot1dStpPortDesignatedPort.3 = Hex-STRING: 03 80
BRIDGE-MIB::dot1dStpPortForwardTransitions.3 = Counter32: 1
RSTP-MIB::dot1dStpVersion.0 = INTEGER: rstp(2)</screen>

	<para>The <literal>dot1dStpTopChanges.0</literal> value is two
	  which means that the STP bridge topology has changed twice,
	  a topology change means that one or more links in the
	  network have changed or failed and a new tree has been
	  calculated.  The
	  <literal>dot1dStpTimeSinceTopologyChange.0</literal> value
	  will show when this happened.</para>

	<para>To monitor multiple bridge interfaces one may use the
	  private BEGEMOT-BRIDGE-MIB:</para>

	<screen>&prompt.user; <userinput>snmpwalk -v 2c -c public bridge1.example.com</userinput>
enterprises.fokus.begemot.begemotBridge
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseName."bridge0" = STRING: bridge0
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseName."bridge2" = STRING: bridge2
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseAddress."bridge0" = STRING: e:ce:3b:5a:9e:13
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseAddress."bridge2" = STRING: 12:5e:4d:74:d:fc
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseNumPorts."bridge0" = INTEGER: 1
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseNumPorts."bridge2" = INTEGER: 1
...
BEGEMOT-BRIDGE-MIB::begemotBridgeStpTimeSinceTopologyChange."bridge0" = Timeticks: (116927) 0:19:29.27 centi-seconds
BEGEMOT-BRIDGE-MIB::begemotBridgeStpTimeSinceTopologyChange."bridge2" = Timeticks: (82773) 0:13:47.73 centi-seconds
BEGEMOT-BRIDGE-MIB::begemotBridgeStpTopChanges."bridge0" = Counter32: 1
BEGEMOT-BRIDGE-MIB::begemotBridgeStpTopChanges."bridge2" = Counter32: 1
BEGEMOT-BRIDGE-MIB::begemotBridgeStpDesignatedRoot."bridge0" = Hex-STRING: 80 00 00 40 95 30 5E 31
BEGEMOT-BRIDGE-MIB::begemotBridgeStpDesignatedRoot."bridge2" = Hex-STRING: 80 00 00 50 8B B8 C6 A9</screen>

	<para>To change the bridge interface being monitored via the
	  <literal>mib-2.dot1dBridge</literal> subtree do:</para>

	<screen>&prompt.user; <userinput>snmpset -v 2c -c private bridge1.example.com</userinput>
BEGEMOT-BRIDGE-MIB::begemotBridgeDefaultBridgeIf.0 s bridge2</screen>
      </sect3>
    </sect2>
  </sect1>

  <sect1 id="network-aggregation">
    <sect1info>
      <authorgroup>
	<author>
	  <firstname>Andrew</firstname>
	  <surname>Thompson</surname>
	  <contrib>Written by </contrib>
	</author>
      </authorgroup>
    </sect1info>
    <title>Link Aggregation and Failover</title>

    <indexterm><primary>lagg</primary></indexterm>
    <indexterm><primary>failover</primary></indexterm>
    <indexterm><primary>fec</primary></indexterm>
    <indexterm><primary>lacp</primary></indexterm>
    <indexterm><primary>loadbalance</primary></indexterm>
    <indexterm><primary>roundrobin</primary></indexterm>

    <sect2>
      <title>Introduction</title>

      <para>The &man.lagg.4; interface allows aggregation of multiple
	network interfaces as one virtual interface for the purpose of
	providing fault-tolerance and high-speed links.</para>
    </sect2>

    <sect2>
      <title>Operating Modes</title>

      <variablelist>
	<varlistentry>
	  <term>Failover</term>
	  <listitem>
	    <para>Sends and receives traffic only through the master
	      port.  If the master port becomes unavailable, the next
	      active port is used.  The first interface added is the
	      master port; any interfaces added after that are used as
	      failover devices.  If failover to a non-master port
	      occurs, the original port will become master when it
	      becomes available again.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>&cisco; Fast &etherchannel;</term>
	  <listitem>
	    <para>&cisco; Fast &etherchannel; (FEC), is a static setup
	      and does not negotiate aggregation with the peer or
	      exchange frames to monitor the link.  If the switch
	      supports LACP then that should be used instead.</para>

	    <para><acronym>FEC</acronym> balances outgoing traffic
	      across the active ports based on hashed protocol header
	      information and accepts incoming traffic from any active
	      port.  The hash includes the Ethernet source and
	      destination address, and, if available, the VLAN tag,
	      and the IPv4/IPv6 source and destination address.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>LACP</term>
	  <listitem>
	    <para>The &ieee; 802.3ad Link Aggregation Control Protocol
	      (LACP) and the Marker Protocol.  LACP will negotiate a
	      set of aggregable links with the peer in to one or more
	      Link Aggregated Groups (LAG).  Each LAG is composed of
	      ports of the same speed, set to full-duplex operation.
	      The traffic will be balanced across the ports in the LAG
	      with the greatest total speed, in most cases there will
	      only be one LAG which contains all ports.  In the event
	      of changes in physical connectivity, Link Aggregation
	      will quickly converge to a new configuration.</para>

	    <para><acronym>LACP</acronym> balances outgoing traffic
	      across the active ports based on hashed protocol header
	      information and accepts incoming traffic from any active
	      port.  The hash includes the Ethernet source and
	      destination address, and, if available, the VLAN tag,
	      and the IPv4/IPv6 source and destination address.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>Loadbalance</term>
	  <listitem>
	    <para>This is an alias of <emphasis>FEC</emphasis>
	      mode.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>Round-robin</term>
	  <listitem>
	    <para>Distributes outgoing traffic using a round-robin
	      scheduler through all active ports and accepts incoming
	      traffic from any active port.  This mode violates
	      Ethernet Frame ordering and should be used with
	      caution.</para>
	  </listitem>
	</varlistentry>
      </variablelist>
    </sect2>

    <sect2>
      <title>Examples</title>

      <example id="networking-lacp-aggregation-cisco">
	<title>LACP Aggregation with a &cisco; Switch</title>

	<para>This example connects two interfaces on a &os; machine
	  to the switch as a single load balanced and fault tolerant
	  link.  More interfaces can be added to increase throughput
	  and fault tolerance.  Since frame ordering is mandatory on
	  Ethernet links then any traffic between two stations always
	  flows over the same physical link limiting the maximum speed
	  to that of one interface.  The transmit algorithm attempts
	  to use as much information as it can to distinguish
	  different traffic flows and balance across the available
	  interfaces.</para>

	<para>On the &cisco; switch add the
	  <replaceable>FastEthernet0/1</replaceable> and
	  <replaceable>FastEthernet0/2</replaceable> interfaces to the
	  channel-group <replaceable>1</replaceable>:</para>

	<screen><userinput>interface <replaceable>FastEthernet0/1</replaceable>
 channel-group <replaceable>1</replaceable> mode active
 channel-protocol lacp</userinput>
!
<userinput>interface <replaceable>FastEthernet0/2</replaceable>
 channel-group <replaceable>1</replaceable> mode active
 channel-protocol lacp</userinput></screen>

	<para>Create the &man.lagg.4; interface using
	  <replaceable>fxp0</replaceable> and
	  <replaceable>fxp1</replaceable>, and bring the interfaces up
	  with the IP Address of
	  <replaceable>10.0.0.3/24</replaceable>:</para>

	<screen>&prompt.root; <userinput>ifconfig <replaceable>fxp0</replaceable> up</userinput>
&prompt.root; <userinput>ifconfig <replaceable>fxp1</replaceable> up</userinput>
&prompt.root; <userinput>ifconfig <literal>lagg<replaceable>0</replaceable></literal> create </userinput>
&prompt.root; <userinput>ifconfig <literal>lagg<replaceable>0</replaceable></literal> up laggproto lacp laggport <replaceable>fxp0</replaceable> laggport <replaceable>fxp1</replaceable> <replaceable>10.0.0.3/24</replaceable></userinput></screen>

	<para>View the interface status by running:</para>

	<screen>&prompt.root; <userinput>ifconfig <literal>lagg<replaceable>0</replaceable></literal></userinput></screen>

	<para>Ports marked as <emphasis>ACTIVE</emphasis> are part of
	  the active aggregation group that has been negotiated with
	  the remote switch and traffic will be transmitted and
	  received.  Use the verbose output of &man.ifconfig.8; to
	  view the LAG identifiers.</para>

	<screen>lagg0: flags=8843&lt;UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST&gt; metric 0 mtu 1500
        options=8&lt;VLAN_MTU&gt;
        ether 00:05:5d:71:8d:b8
        media: Ethernet autoselect
        status: active
        laggproto lacp
        laggport: fxp1 flags=1c&lt;ACTIVE,COLLECTING,DISTRIBUTING&gt;
        laggport: fxp0 flags=1c&lt;ACTIVE,COLLECTING,DISTRIBUTING&gt;</screen>

	<para>To see the port status on the switch, use
	  <userinput>show lacp neighbor</userinput>:</para>

	<screen>switch# show lacp neighbor
Flags:  S - Device is requesting Slow LACPDUs
        F - Device is requesting Fast LACPDUs
        A - Device is in Active mode       P - Device is in Passive mode

Channel group 1 neighbors

Partner's information:

                  LACP port                        Oper    Port     Port
Port      Flags   Priority  Dev ID         Age     Key     Number   State
Fa0/1     SA      32768     0005.5d71.8db8  29s    0x146   0x3      0x3D
Fa0/2     SA      32768     0005.5d71.8db8  29s    0x146   0x4      0x3D</screen>

	<para>For more detail use the <userinput>show lacp neighbor
	  detail</userinput> command.</para>

	<para>To retain this configuration across reboots, the
	  following entries can be added to
	  <filename>/etc/rc.conf</filename>:</para>

	<programlisting>ifconfig_<replaceable>fxp0</replaceable>="up"
ifconfig_<replaceable>fxp1</replaceable>="up"
cloned_interfaces="<literal>lagg<replaceable>0</replaceable></literal>"
ifconfig_<literal>lagg<replaceable>0</replaceable></literal>="laggproto lacp laggport <replaceable>fxp0</replaceable> laggport <replaceable>fxp1</replaceable> <replaceable>10.0.0.3/24</replaceable>"</programlisting>
      </example>

      <example id="networking-lagg-failover">
	<title>Failover Mode</title>

	<para>Failover mode can be used to switch over to a secondary
	  interface if the link is lost on the master interface.
	  Bring the underlying physical interfaces up.  Create the
	  &man.lagg.4; interface, using
	  <replaceable>fxp0</replaceable> as the master interface and
	  <replaceable>fxp1</replaceable> as the secondary interface
	  and assign an IP Address of
	  <replaceable>10.0.0.15/24</replaceable>:</para>

	<screen>&prompt.root; <userinput>ifconfig <replaceable>fxp0</replaceable> up</userinput>
&prompt.root; <userinput>ifconfig <replaceable>fxp1</replaceable> up</userinput>
&prompt.root; <userinput>ifconfig <literal>lagg<replaceable>0</replaceable></literal> create</userinput>
&prompt.root; <userinput>ifconfig <literal>lagg<replaceable>0</replaceable></literal> up laggproto failover laggport <replaceable>fxp0</replaceable> laggport <replaceable>fxp1</replaceable> <replaceable>10.0.0.15/24</replaceable></userinput></screen>

	<para>The interface will look something like this, the major
	  differences will be the <acronym>MAC</acronym> address and
	  the device names:</para>

	<screen>&prompt.root; <userinput>ifconfig <literal>lagg<replaceable>0</replaceable></literal></userinput>
lagg0: flags=8843&lt;UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST&gt; metric 0 mtu 1500
        options=8&lt;VLAN_MTU&gt;
        ether 00:05:5d:71:8d:b8
        inet 10.0.0.15 netmask 0xffffff00 broadcast 10.0.0.255
        media: Ethernet autoselect
        status: active
        laggproto failover
        laggport: fxp1 flags=0&lt;&gt;
        laggport: fxp0 flags=5&lt;MASTER,ACTIVE&gt;</screen>

	<para>Traffic will be transmitted and received on
	  <replaceable>fxp0</replaceable>.  If the link is lost on
	  <replaceable>fxp0</replaceable> then
	  <replaceable>fxp1</replaceable> will become the active link.
	  If the link is restored on the master interface then it will
	  once again become the active link.</para>

	<para>To retain this configuration across reboots, the
	  following entries can be added to
	  <filename>/etc/rc.conf</filename>:</para>

	<programlisting>ifconfig_<replaceable>fxp0</replaceable>="up"
ifconfig_<replaceable>fxp1</replaceable>="up"
cloned_interfaces="<literal>lagg<replaceable>0</replaceable></literal>"
ifconfig_<literal>lagg<replaceable>0</replaceable></literal>="laggproto failover laggport <replaceable>fxp0</replaceable> laggport <replaceable>fxp1</replaceable> <replaceable>10.0.0.15/24</replaceable>"</programlisting>
      </example>

      <example id="networking-lagg-wired-and-wireless">
	<title>Failover Mode Between Wired and Wireless
	  Interfaces</title>

	<para>For laptop users, it is usually desirable to make
	  wireless as a secondary interface, which is to be used when
	  the wired connection is not available.  With &man.lagg.4;,
	  it is possible to use one IP address, prefer the wired
	  connection for both performance and security reasons, while
	  maintaining the ability to transfer data over the wireless
	  connection.</para>

	<para>In this setup, we will need to override the underlying
	  wireless interface's <acronym>MAC</acronym> address to match
	  the &man.lagg.4;'s, which is inherited from the master
	  interface being used, the wired interface.</para>

	<para>In this setup, we will treat the wired interface,
	  <replaceable>bge0</replaceable>, as the master, and the
	  wireless interface, <replaceable>wlan0</replaceable>, as the
	  failover interface.  The <replaceable>wlan0</replaceable>
	  was created from <replaceable>iwn0</replaceable> which we
	  will set up with the wired connection's
	  <acronym>MAC</acronym> address.  The first step would be to
	  obtain the <acronym>MAC</acronym> address from the wired
	  interface:</para>

	<screen>&prompt.root; <userinput>ifconfig <replaceable>bge0</replaceable></userinput>
bge0: flags=8843&lt;UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST&gt; metric 0 mtu 1500
	options=19b&lt;RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM,TSO4&gt;
	ether 00:21:70:da:ae:37
	inet6 fe80::221:70ff:feda:ae37%bge0 prefixlen 64 scopeid 0x2
	nd6 options=29&lt;PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL&gt;
	media: Ethernet autoselect (1000baseT &lt;full-duplex&gt;)
	status: active</screen>

	<para>You can replace the <replaceable>bge0</replaceable> to
	  match your reality, and will get a different
	  <literal>ether</literal> line which is the
	  <acronym>MAC</acronym> address of your wired interface.
	  Now, we change the underlying wireless interface,
	  <replaceable>iwn0</replaceable>:</para>

	<screen>&prompt.root; <userinput>ifconfig <replaceable>iwn0</replaceable> ether <replaceable>00:21:70:da:ae:37</replaceable></userinput></screen>

	<para>Bring the wireless interface up, but do not set an IP
	  address on it:</para>

	<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> create wlandev <replaceable>iwn0</replaceable> ssid <replaceable>my_router</replaceable> up</userinput></screen>

	<para>Bring the <replaceable>bge0</replaceable> interface up.
	  Create the &man.lagg.4; interface with
	  <replaceable>bge0</replaceable> as master, and failover to
	  <replaceable>wlan0</replaceable> if necessary:</para>

	<screen>&prompt.root; <userinput>ifconfig <replaceable>bge0</replaceable> up</userinput>
&prompt.root; <userinput>ifconfig <literal>lagg<replaceable>0</replaceable></literal> create</userinput>
&prompt.root; <userinput>ifconfig <literal>lagg<replaceable>0</replaceable></literal> up laggproto failover laggport <replaceable>bge0</replaceable> laggport <replaceable>wlan0</replaceable></userinput></screen>

	<para>The interface will look something like this, the major
	  differences will be the <acronym>MAC</acronym> address and
	  the device names:</para>

	<screen>&prompt.root; <userinput>ifconfig <literal>lagg<replaceable>0</replaceable></literal></userinput>
lagg0: flags=8843&lt;UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST&gt; metric 0 mtu 1500
        options=8&lt;VLAN_MTU&gt;
        ether 00:21:70:da:ae:37
        media: Ethernet autoselect
        status: active
        laggproto failover
        laggport: wlan0 flags=0&lt;&gt;
        laggport: bge0 flags=5&lt;MASTER,ACTIVE&gt;</screen>

	<para>Then start the DHCP client to obtain an IP
	  address:</para>

	<screen>&prompt.root; <userinput>dhclient <literal>lagg<replaceable>0</replaceable></literal></userinput></screen>

	<para>To retain this configuration across reboots, the
	  following entries can be added to
	  <filename>/etc/rc.conf</filename>:</para>

	<programlisting>ifconfig_bge0="up"
ifconfig_iwn0="ether 00:21:70:da:ae:37"
wlans_iwn0="wlan0"
ifconfig_wlan0="WPA"
cloned_interfaces="<literal>lagg<replaceable>0</replaceable></literal>"
ifconfig_<literal>lagg<replaceable>0</replaceable></literal>="laggproto failover laggport bge0 laggport wlan0 DHCP"</programlisting>
      </example>
    </sect2>
  </sect1>

  <sect1 id="network-diskless">
    <sect1info>
      <authorgroup>
	<author>
	  <firstname>Jean-Fran&ccedil;ois</firstname>
	  <surname>Dock&egrave;s</surname>
	  <contrib>Updated by </contrib>
	</author>
      </authorgroup>
      <authorgroup>
	<author>
	  <firstname>Alex</firstname>
	  <surname>Dupre</surname>
	  <contrib>Reorganized and enhanced by </contrib>
	</author>
      </authorgroup>
    </sect1info>
    <title>Diskless Operation</title>

    <indexterm><primary>diskless workstation</primary></indexterm>
    <indexterm><primary>diskless operation</primary></indexterm>

    <para>A FreeBSD machine can boot over the network and operate
      without a local disk, using file systems mounted from an
      <acronym>NFS</acronym> server.  No system modification is
      necessary, beyond standard configuration files.  Such a system
      is relatively easy to set up because all the necessary elements
      are readily available:</para>

    <itemizedlist>
      <listitem>
	<para>There are at least two possible methods to load the
	  kernel over the network:</para>

	<itemizedlist>
	  <listitem>
	    <para><acronym>PXE</acronym>: The &intel; Preboot
	      eXecution Environment system is a form of smart boot ROM
	      built into some networking cards or motherboards.  See
	      &man.pxeboot.8; for more details.</para>
	  </listitem>

	  <listitem>
	    <para>The <application>Etherboot</application> port
	      (<filename role="package">net/etherboot</filename>)
	      produces ROM-able code to boot kernels over the network.
	      The code can be either burnt into a boot PROM on a
	      network card, or loaded from a local floppy (or hard)
	      disk drive, or from a running &ms-dos; system.  Many
	      network cards are supported.</para>
	  </listitem>
	</itemizedlist>
      </listitem>

      <listitem>
	<para>A sample script
	  (<filename>/usr/share/examples/diskless/clone_root</filename>)
	  eases the creation and maintenance of the workstation's root
	  file system on the server.  The script will probably require
	  a little customization but it will get you started very
	  quickly.</para>
      </listitem>

      <listitem>
	<para>Standard system startup files exist
	  in <filename class="directory">/etc</filename>
	  to detect and support a diskless system startup.</para>
      </listitem>

      <listitem>
	<para>Swapping, if needed, can be done either to an
	  <acronym>NFS</acronym> file or to a local disk.</para>
      </listitem>
    </itemizedlist>

    <para>There are many ways to set up diskless workstations.  Many
      elements are involved, and most can be customized to suit local
      taste.  The following will describe variations on the setup of a
      complete system, emphasizing simplicity and compatibility with
      the standard FreeBSD startup scripts.  The system described has
      the following characteristics:</para>

    <itemizedlist>
      <listitem>
	<para>The diskless workstations use a shared read-only
	  <filename class="directory">/</filename> file system,
	  and a shared read-only
	  <filename class="directory">/usr</filename>.</para>

	<para>The root file system is a copy of a standard FreeBSD
	  root (typically the server's), with some configuration files
	  overridden by ones specific to diskless operation or,
	  possibly, to the workstation they belong to.</para>

	<para>The parts of the root which have to be writable are
	  overlaid with &man.md.4; file systems.  Any changes will be
	  lost when the system reboots.</para>
      </listitem>

      <listitem>
	<para>The kernel is transferred and loaded either with
	  <application>Etherboot</application> or
	  <acronym>PXE</acronym> as some situations may mandate the
	  use of either method.</para>
      </listitem>
    </itemizedlist>

    <caution>
      <para>As described, this system is insecure.  It should live in
	a protected area of a network, and be untrusted by other
	hosts.</para>
    </caution>

    <para>All the information in this section has been tested using
      &os; 5.2.1-RELEASE.</para>

    <sect2>
      <title>Background Information</title>

      <para>Setting up diskless workstations is both relatively
	straightforward and prone to errors.  These are sometimes
	difficult to diagnose for a number of reasons.  For
	example:</para>

      <itemizedlist>
	<listitem>
	  <para>Compile time options may determine different behaviors
	    at runtime.</para>
	</listitem>

	<listitem>
	  <para>Error messages are often cryptic or totally
	    absent.</para>
	</listitem>
      </itemizedlist>

      <para>In this context, having some knowledge of the background
	mechanisms involved is very useful to solve the problems that
	may arise.</para>

      <para>Several operations need to be performed for a successful
	bootstrap:</para>

      <itemizedlist>
	<listitem>
	  <para>The machine needs to obtain initial parameters such as
	    its IP address, executable filename, server name, root
	    path.  This is done using the <acronym>DHCP</acronym> or
	    BOOTP protocols.  <acronym>DHCP</acronym> is a compatible
	    extension of BOOTP, and uses the same port numbers and
	    basic packet format.</para>

	  <para>It is possible to configure a system to use only
	    BOOTP.  The &man.bootpd.8; server program is included in
	    the base &os; system.</para>

	  <para>However, <acronym>DHCP</acronym> has a number of
	    advantages over BOOTP (nicer configuration files,
	    possibility of using <acronym>PXE</acronym>, plus many
	    others not directly related to diskless operation), and we
	    will describe mainly a <acronym>DHCP</acronym>
	    configuration, with equivalent examples using
	    &man.bootpd.8; when possible.  The sample configuration
	    will use the <application>ISC DHCP</application> software
	    package (release 3.0.1.r12 was installed on the test
	    server).</para>
	</listitem>

	<listitem>
	  <para>The machine needs to transfer one or several programs
	    to local memory.  Either <acronym>TFTP</acronym> or
	    <acronym>NFS</acronym> are used.  The choice between
	    <acronym>TFTP</acronym> and <acronym>NFS</acronym> is a
	    compile time option in several places.  A common source of
	    error is to specify filenames for the wrong protocol:
	    <acronym>TFTP</acronym> typically transfers all files from
	    a single directory on the server, and would expect
	    filenames relative to this directory.
	    <acronym>NFS</acronym> needs absolute file paths.</para>
	</listitem>

	<listitem>
	  <para>The possible intermediate bootstrap programs and the
	    kernel need to be initialized and executed.  There are
	    several important variations in this area:</para>

	  <itemizedlist>
	    <listitem>

	      <para><acronym>PXE</acronym> will load &man.pxeboot.8;,
		which is a modified version of the &os; third stage
		loader.  The &man.loader.8; will obtain most
		parameters necessary to system startup, and leave them
		in the kernel environment before transferring control.
		It is possible to use a <filename>GENERIC</filename>
		kernel in this case.</para>
	    </listitem>

	    <listitem>
	      <para><application>Etherboot</application>, will
		directly load the kernel, with less preparation.  You
		will need to build a kernel with specific
		options.</para>
	    </listitem>
	  </itemizedlist>

	  <para><acronym>PXE</acronym> and
	    <application>Etherboot</application> work equally well;
	    however, because kernels normally let the &man.loader.8;
	    do more work for them, <acronym>PXE</acronym> is the
	    preferred method.</para>

	  <para>If your <acronym>BIOS</acronym> and network cards
	    support <acronym>PXE</acronym>, you should probably use
	    it.</para>
	</listitem>

	<listitem>
	  <para>Finally, the machine needs to access its file systems.
	    <acronym>NFS</acronym> is used in all cases.</para>
	</listitem>
      </itemizedlist>

      <para>See also &man.diskless.8; manual page.</para>
    </sect2>

    <sect2>
      <title>Setup Instructions</title>

      <sect3>
	<title>Configuration Using <application>ISC
	    DHCP</application></title>

	<indexterm>
	  <primary>DHCP</primary>
	  <secondary>diskless operation</secondary>
	</indexterm>

	<para>The <application>ISC DHCP</application> server can
	  answer both BOOTP and <acronym>DHCP</acronym>
	  requests.</para>

	<para><application>ISC DHCP 4.2</application> is not part of
	  the base system.  You will first need to install the
	  <filename role="package">net/isc-dhcp42-server</filename>
	  port or the corresponding package.</para>

	<para>Once <application>ISC DHCP</application> is installed,
	  it needs a configuration file to run (normally named
	  <filename>/usr/local/etc/dhcpd.conf</filename>).  Here
	  follows a commented example, where host
	  <hostid>margaux</hostid> uses
	  <application>Etherboot</application> and host
	  <hostid>corbieres</hostid> uses
	  <acronym>PXE</acronym>:</para>

	<programlisting>default-lease-time 600;
max-lease-time 7200;
authoritative;

option domain-name "example.com";
option domain-name-servers 192.168.4.1;
option routers 192.168.4.1;

subnet 192.168.4.0 netmask 255.255.255.0 {
  use-host-decl-names on; <co id="co-dhcp-host-name"/>
  option subnet-mask 255.255.255.0;
  option broadcast-address 192.168.4.255;

  host margaux {
    hardware ethernet 01:23:45:67:89:ab;
    fixed-address margaux.example.com;
    next-server 192.168.4.4; <co id="co-dhcp-next-server"/>
    filename "/data/misc/kernel.diskless"; <co id="co-dhcp-filename"/>
    option root-path "192.168.4.4:/data/misc/diskless"; <co id="co-dhcp-root-path"/>
  }
  host corbieres {
    hardware ethernet 00:02:b3:27:62:df;
    fixed-address corbieres.example.com;
    next-server 192.168.4.4;
    filename "pxeboot";
    option root-path "192.168.4.4:/data/misc/diskless";
  }
}</programlisting>

	<calloutlist>
	  <callout arearefs="co-dhcp-host-name">
	    <para>This option tells <application>dhcpd</application>
	      to send the value in the <literal>host</literal>
	      declarations as the hostname for the diskless host.
	      An alternate way would be to add an <literal>option
	      host-name
		<replaceable>margaux</replaceable></literal> inside
	      the <literal>host</literal> declarations.</para>
	  </callout>

	  <callout arearefs="co-dhcp-next-server">
	    <para>The <literal>next-server</literal> directive
	      designates the <acronym>TFTP</acronym> or
	      <acronym>NFS</acronym> server to use for loading
	      loader or kernel file (the default is to use the same
	      host as the <acronym>DHCP</acronym> server).</para>
	  </callout>

	  <callout arearefs="co-dhcp-filename">
	    <para>The <literal>filename</literal> directive
	      defines the file that
	      <application>Etherboot</application> or
	      <acronym>PXE</acronym> will load for the next execution
	      step.  It must be specified according to the transfer
	      method used.  <application>Etherboot</application> can
	      be compiled to use <acronym>NFS</acronym> or
	      <acronym>TFTP</acronym>.  The &os; port configures
	      <acronym>NFS</acronym> by default.
	      <acronym>PXE</acronym> uses <acronym>TFTP</acronym>,
	      which is why a relative filename is used here (this may
	      depend on the <acronym>TFTP</acronym> server
	      configuration, but would be fairly typical).  Also,
	      <acronym>PXE</acronym> loads
	      <filename>pxeboot</filename>, not the kernel.  There are
	      other interesting possibilities, like loading
	      <filename>pxeboot</filename> from a &os; CD-ROM
	      <filename class="directory">/boot</filename> directory
	      (as &man.pxeboot.8; can load a
	      <filename>GENERIC</filename> kernel, this makes it
	      possible to use <acronym>PXE</acronym> to boot from a
	      remote CD-ROM).</para>
	  </callout>

	  <callout arearefs="co-dhcp-root-path">
	    <para>The <literal>root-path</literal> option defines
	      the path to the root file system, in usual
	      <acronym>NFS</acronym> notation.  When using
	      <acronym>PXE</acronym>, it is possible to leave off the
	      host's IP as long as you do not enable the kernel option
	      BOOTP.  The <acronym>NFS</acronym> server will then be
	      the same as the <acronym>TFTP</acronym> one.</para>
	  </callout>
	</calloutlist>
      </sect3>

      <sect3>
	<title>Configuration Using BOOTP</title>

	<indexterm>
	  <primary>BOOTP</primary>
	  <secondary>diskless operation</secondary>
	</indexterm>

	<para>Here follows an equivalent
	  <application>bootpd</application> configuration (reduced to
	  one client).  This would be found in
	  <filename>/etc/bootptab</filename>.</para>

	<para>Please note that <application>Etherboot</application>
	  must be compiled with the non-default option
	  <literal>NO_DHCP_SUPPORT</literal> in order to use BOOTP,
	  and that <acronym>PXE</acronym> <emphasis>needs</emphasis>
	  <acronym>DHCP</acronym>.  The only obvious advantage of
	  <application>bootpd</application> is that it exists in the
	  base system.</para>

	<programlisting>.def100:\
  :hn:ht=1:sa=192.168.4.4:vm=rfc1048:\
  :sm=255.255.255.0:\
  :ds=192.168.4.1:\
  :gw=192.168.4.1:\
  :hd="/tftpboot":\
  :bf="/kernel.diskless":\
  :rp="192.168.4.4:/data/misc/diskless":

margaux:ha=0123456789ab:tc=.def100</programlisting>
      </sect3>

      <sect3>
	<title>Preparing a Boot Program with
	  <application>Etherboot</application></title>

	<indexterm>
	  <primary>Etherboot</primary>
	</indexterm>

	<para><ulink
	    url="http://etherboot.sourceforge.net">Etherboot's Web
	    site</ulink> contains <ulink
	    url="http://etherboot.sourceforge.net/doc/html/userman/t1.html">
	    extensive documentation</ulink> mainly intended for Linux
	  systems, but nonetheless containing useful information.  The
	  following will just outline how you would use
	  <application>Etherboot</application> on a FreeBSD
	  system.</para>

	<para>You must first install the
	  <filename role="package">net/etherboot</filename> package or
	  port.</para>

	<para>You can change the <application>Etherboot</application>
	  configuration (i.e., to use <acronym>TFTP</acronym> instead
	  of <acronym>NFS</acronym>) by editing the
	  <filename>Config</filename> file in the
	  <application>Etherboot</application> source
	  directory.</para>

	<para>For our setup, we shall use a boot floppy.  For other
	  methods (PROM, or &ms-dos; program), please refer to the
	  <application>Etherboot</application> documentation.</para>

	<para>To make a boot floppy, insert a floppy in the drive on
	  the machine where you installed
	  <application>Etherboot</application>, then change your
	  current directory to
	  the <filename class="directory">src</filename>
	  directory in the <application>Etherboot</application> tree and
	  type:</para>

	<screen>&prompt.root; <userinput>gmake bin32/<replaceable>devicetype</replaceable>.fd0</userinput></screen>

	<para><replaceable>devicetype</replaceable> depends on the
	  type of the Ethernet card in the diskless workstation.
	  Refer to the <filename>NIC</filename> file in the same
	  directory to determine the right
	  <replaceable>devicetype</replaceable>.</para>
      </sect3>

      <sect3>
	<title>Booting with <acronym>PXE</acronym></title>

	<para>By default, the &man.pxeboot.8; loader loads the kernel
	  via <acronym>NFS</acronym>.  It can be compiled to use
	  <acronym>TFTP</acronym> instead by specifying the
	  <literal>LOADER_TFTP_SUPPORT</literal> option in
	  <filename>/etc/make.conf</filename>.  See the comments in
	  <filename>/usr/share/examples/etc/make.conf</filename> for
	  instructions.</para>

	<para>There are two other <filename>make.conf</filename>
	  options which may be useful for setting up a serial console
	  diskless machine:
	  <literal>BOOT_PXELDR_PROBE_KEYBOARD</literal>, and
	  <literal>BOOT_PXELDR_ALWAYS_SERIAL</literal>.</para>

	<para>To use <acronym>PXE</acronym> when the machine starts,
	  you will usually need to select the <literal>Boot from
	    network</literal> option in your <acronym>BIOS</acronym>
	  setup, or type a function key during the PC
	  initialization.</para>
      </sect3>

      <sect3>
	<title>Configuring the <acronym>TFTP</acronym> and
	  <acronym>NFS</acronym> Servers</title>

	<indexterm>
	  <primary>TFTP</primary>
	  <secondary>diskless operation</secondary>
	</indexterm>
	<indexterm>
	  <primary>NFS</primary>
	  <secondary>diskless operation</secondary>
	</indexterm>

	<para>If you are using <acronym>PXE</acronym> or
	  <application>Etherboot</application> configured to use
	  <acronym>TFTP</acronym>, you need to enable
	  <application>tftpd</application> on the file server:</para>

	<procedure>
	  <step>
	    <para>Create a directory from which
	      <application>tftpd</application> will serve the files,
	      e.g., <filename class="directory">/tftpboot</filename>.</para>
	  </step>

	  <step>
	    <para>Add this line to your
	      <filename>/etc/inetd.conf</filename>:</para>

	    <programlisting>tftp	dgram	udp	wait	root	/usr/libexec/tftpd	tftpd -l -s /tftpboot</programlisting>

	    <note>
	      <para>It appears that at least some
		<acronym>PXE</acronym> versions want the
		<acronym>TCP</acronym> version of
		<acronym>TFTP</acronym>.  In this case, add a second
		line, replacing <literal>dgram udp</literal> with
		<literal>stream tcp</literal>.</para>
	    </note>
	  </step>

	  <step>
	    <para>Tell <application>inetd</application> to reread its
	      configuration file.  The
	      <option>inetd_enable="YES"</option> must be in the
	      <filename>/etc/rc.conf</filename> file for this command
	      to execute correctly:</para>

	    <screen>&prompt.root; <userinput>service inetd restart</userinput></screen>
	  </step>
	</procedure>

	<para>You can place
	  the <filename class="directory">tftpboot</filename>
	  directory anywhere on the server.  Make sure that the
	  location is set in both <filename>inetd.conf</filename> and
	  <filename>dhcpd.conf</filename>.</para>

	<para>In all cases, you also need to enable
	  <acronym>NFS</acronym> and export the appropriate file
	  system on the <acronym>NFS</acronym> server.</para>

	<procedure>
	  <step>
	    <para>Add this to
	      <filename>/etc/rc.conf</filename>:</para>

	    <programlisting>nfs_server_enable="YES"</programlisting>
	  </step>

	  <step>
	    <para>Export the file system where the diskless root
	      directory is located by adding the following to
	      <filename>/etc/exports</filename> (adjust the volume
	      mount point and replace <replaceable>margaux
		corbieres</replaceable> with the names of the diskless
	      workstations):</para>

	    <programlisting><replaceable>/data/misc</replaceable> -alldirs -ro <replaceable>margaux corbieres</replaceable></programlisting>
	  </step>

	  <step>
	    <para>Tell <application>mountd</application> to reread its
	      configuration file.  If you actually needed to enable
	      <acronym>NFS</acronym> in
	      <filename>/etc/rc.conf</filename> at the first step, you
	      probably want to reboot instead.</para>

	    <screen>&prompt.root; <userinput>service mountd restart</userinput></screen>
	  </step>
	</procedure>
      </sect3>

      <sect3>
	<title>Building a Diskless Kernel</title>

	<indexterm>
	  <primary>diskless operation</primary>
	  <secondary>kernel configuration</secondary>
	</indexterm>

	<para>If using <application>Etherboot</application>, you need
	  to create a kernel configuration file for the diskless
	  client with the following options (in addition to the usual
	  ones):</para>

	<programlisting>options     BOOTP          # Use BOOTP to obtain IP address/hostname
options     BOOTP_NFSROOT  # NFS mount root file system using BOOTP info</programlisting>

	<para>You may also want to use <literal>BOOTP_NFSV3</literal>,
	  <literal>BOOT_COMPAT</literal> and
	  <literal>BOOTP_WIRED_TO</literal> (refer to
	  <filename>NOTES</filename>).</para>

	<para>These option names are historical and slightly
	  misleading as they actually enable indifferent use of
	  <acronym>DHCP</acronym> and BOOTP inside the kernel (it is
	  also possible to force strict BOOTP or
	  <acronym>DHCP</acronym> use).</para>

	<para>Build the kernel (see <xref linkend="kernelconfig"/>),
	  and copy it to the place specified in
	  <filename>dhcpd.conf</filename>.</para>

	<note>
	  <para>When using <acronym>PXE</acronym>, building a kernel
	    with the above options is not strictly necessary (though
	    suggested).  Enabling them will cause more
	    <acronym>DHCP</acronym> requests to be issued during
	    kernel startup, with a small risk of inconsistency between
	    the new values and those retrieved by &man.pxeboot.8; in
	    some special cases.  The advantage of using them is that
	    the host name will be set as a side effect.  Otherwise you
	    will need to set the host name by another method, for
	    example in a client-specific <filename>rc.conf</filename>
	    file.</para>
	</note>

	<note>
	  <para>In order to be loadable with
	    <application>Etherboot</application>, a kernel needs to
	    have the device hints compiled in.  You would typically
	    set the following option in the configuration file (see
	    the <filename>NOTES</filename> configuration comments
	    file):</para>

	  <programlisting>hints		"GENERIC.hints"</programlisting>
	</note>
      </sect3>

      <sect3>
	<title>Preparing the Root Filesystem</title>

	<indexterm>
	  <primary>root file system</primary>
	  <secondary>diskless operation</secondary>
	</indexterm>

	<para>You need to create a root file system for the diskless
	  workstations, in the location listed as
	  <literal>root-path</literal> in
	  <filename>dhcpd.conf</filename>.</para>

	<sect4>
	  <title>Using <command>make world</command> to Populate
	    Root</title>

	  <para>This method is quick and will install a complete
	    virgin system (not only the root file system) into
	    <envar>DESTDIR</envar>.  All you have to do is simply
	    execute the following script:</para>

	  <programlisting>#!/bin/sh
export DESTDIR=/data/misc/diskless
mkdir -p ${DESTDIR}
cd /usr/src; make buildworld &amp;&amp; make buildkernel
make installworld &amp;&amp; make installkernel
cd /usr/src/etc; make distribution</programlisting>

	  <para>Once done, you may need to customize your
	    <filename>/etc/rc.conf</filename> and
	    <filename>/etc/fstab</filename> placed into
	    <envar>DESTDIR</envar> according to your needs.</para>
	</sect4>
      </sect3>

      <sect3>
	<title>Configuring Swap</title>

	<para>If needed, a swap file located on the server can be
	  accessed via <acronym>NFS</acronym>.</para>

	<sect4>
	  <title><acronym>NFS</acronym> Swap</title>

	  <para>The kernel does not support enabling
	    <acronym>NFS</acronym> swap at boot time.  Swap must be
	    enabled by the startup scripts, by mounting a writable
	    file system and creating and enabling a swap file.  To
	    create a swap file of appropriate size, you can do like
	    this:</para>

	  <screen>&prompt.root; <userinput>dd if=/dev/zero of=<replaceable>/path/to/swapfile</replaceable> bs=1k count=1 oseek=<replaceable>100000</replaceable></userinput></screen>

	  <para>To enable it you have to add the following line to
	    your <filename>rc.conf</filename>:</para>

	  <programlisting>swapfile=<replaceable>/path/to/swapfile</replaceable></programlisting>
	</sect4>
      </sect3>

      <sect3>
	<title>Miscellaneous Issues</title>

	<sect4>
	  <title>Running with a Read-only
	    <filename class="directory">/usr</filename></title>

	  <indexterm>
	    <primary>diskless operation</primary>
	    <secondary>/usr read-only</secondary>
	  </indexterm>

	  <para>If the diskless workstation is configured to run X,
	    you will have to adjust the
	    <application>XDM</application> configuration file, which
	    puts the error log
	    on <filename class="directory">/usr</filename> by
	    default.</para>
	</sect4>

	<sect4>
	  <title>Using a Non-FreeBSD Server</title>

	  <para>When the server for the root file system is not
	    running FreeBSD, you will have to create the root file
	    system on a FreeBSD machine, then copy it to its
	    destination, using <command>tar</command> or
	    <command>cpio</command>.</para>

	  <para>In this situation, there are sometimes problems with
	    the special files
	    in <filename class="directory">/dev</filename>, due to
	    differing major/minor integer sizes.  A solution to this
	    problem is to export a directory from the non-FreeBSD
	    server, mount this directory onto a FreeBSD machine, and
	    use &man.devfs.5; to allocate device nodes transparently
	    for the user.</para>
	</sect4>
      </sect3>
    </sect2>
  </sect1>

  <sect1 id="network-pxe-nfs">
    <sect1info>
      <authorgroup>
	<author>
	  <firstname>Craig</firstname>
	  <surname>Rodrigues</surname>
	  <affiliation>
	    <address>rodrigc@FreeBSD.org</address>
	  </affiliation>
	  <contrib>Written by </contrib>
	</author>
      </authorgroup>
    </sect1info>
    <title>PXE Booting with an NFS Root File System</title>

    <para>The &intel; Preboot eXecution Environment
      (<acronym>PXE</acronym>) allows booting the operating system
      over the network.  <acronym>PXE</acronym> support is usually
      provided in the <acronym>BIOS</acronym> of modern motherboards,
      where it can be enabled in the <acronym>BIOS</acronym> settings
      which enable booting from the network.  A fully functioning
      <acronym>PXE</acronym> setup also requires properly configured
      <acronym>DHCP</acronym> and <acronym>TFTP</acronym>
      servers.</para>

    <para>When the host computer boots, it receives information over
      <acronym>DHCP</acronym> about where to obtain the initial boot
      loader via TFTP.  After the host computer receives this
      information, it downloads the boot loader via
      <acronym>TFTP</acronym>, and then executes the boot loader.
      This is documented in section 2.2.1 of the <ulink
	url="http://download.intel.com/design/archives/wfm/downloads/pxespec.pdf">Preboot
	Execution Environment (PXE) Specification</ulink>.  In &os;,
      the boot loader retrieved during the <acronym>PXE</acronym>
      process is <filename>/boot/pxeboot</filename>.  After
      <filename>/boot/pxeboot</filename> executes, the &os; kernel is
      loaded, and the rest of the &os; bootup sequence proceeds.
      Refer to <xref linkend="boot"/> for more information about the
      &os; booting process.</para>

    <sect2>
      <title>Setting Up the <command>chroot</command> Environment for
	the NFS Root File System</title>

      <procedure>
	<step>
	  <para>Choose a directory which will have a &os;
	    installation which will be NFS mountable.  For example, a
	    directory such as
	    <filename class="directory">/b/tftpboot/FreeBSD/install</filename> can be
	    used.</para>

	  <screen>&prompt.root; <userinput>export NFSROOTDIR=/b/tftpboot/FreeBSD/install</userinput>
&prompt.root; <userinput>mkdir -p ${NFSROOTDIR}</userinput></screen>
	</step>

	<step>
	  <para>Enable the NFS server by following the instructions
	    in <xref linkend="network-configuring-nfs"/>.</para>
	</step>

	<step>
	  <para>Export the directory via NFS by adding the following
	    to <filename>/etc/exports</filename>:</para>

	  <programlisting>/b -ro -alldirs</programlisting>
	</step>

	<step>
	  <para>Restart the NFS server:</para>

	  <screen>&prompt.root; <userinput>service nfsd restart</userinput></screen>
	</step>

	<step>
	  <para>Enable &man.inetd.8; by following the steps outlined
	    in <xref linkend="network-inetd-settings"/>.</para>
	</step>

	<step>
	  <para>Add the following line to
	    <filename>/etc/inetd.conf</filename>:</para>

	  <programlisting>tftp dgram udp wait root /usr/libexec/tftpd tftpd -l -s /b/tftpboot</programlisting>
	</step>

	<step>
	  <para>Restart inetd:</para>

	  <screen>&prompt.root; <userinput>service inetd restart</userinput></screen>
	</step>

	<step>
	  <para><link linkend="makeworld">Rebuild the &os; kernel and
	      userland</link>:</para>

	  <screen>&prompt.root; <userinput>cd /usr/src</userinput>
&prompt.root; <userinput>make buildworld</userinput>
&prompt.root; <userinput>make buildkernel</userinput></screen>
	</step>

	<step>
	  <para>Install &os; into the directory mounted over
	    <acronym>NFS</acronym>:</para>

	  <screen>&prompt.root; <userinput>make installworld DESTDIR=${NFSROOTDIR}</userinput>
&prompt.root; <userinput>make installkernel DESTDIR=${NFSROOTDIR}</userinput>
&prompt.root; <userinput>make distribution DESTDIR=${NFSROOTDIR}</userinput></screen>
	</step>

	<step>
	  <para>Test that the <acronym>TFTP</acronym> server works and
	    can download the boot loader which will be obtained
	    via PXE:</para>

	  <screen>&prompt.root; <userinput>tftp localhost</userinput>
tftp> <userinput>get FreeBSD/install/boot/pxeboot</userinput>
Received 264951 bytes in 0.1 seconds</screen>
	</step>

	<step>
	  <para>Edit <filename>${NFSROOTDIR}/etc/fstab</filename> and
	    create an entry to mount the root file system over
	    NFS:</para>

	  <programlisting># Device                                         Mountpoint    FSType   Options  Dump Pass
myhost.example.com:/b/tftpboot/FreeBSD/install       /         nfs      ro        0    0</programlisting>

	  <para>Replace
	    <replaceable>myhost.example.com</replaceable> with the
	    hostname or IP address of your <acronym>NFS</acronym>
	    server.  In this example, the root file system is mounted
	    "read-only" in order to prevent <acronym>NFS</acronym>
	    clients from potentially deleting the contents of the root
	    file system.</para>
	</step>

	<step>
	  <para>Set the root password in the &man.chroot.8;
	    environment.</para>

	  <screen>&prompt.root; <userinput>chroot ${NFSROOTDIR}</userinput>
&prompt.root; <userinput>passwd</userinput></screen>

	  <para>This will set the root password for client
	    machines which are <acronym>PXE</acronym>
	    booting.</para>
	</step>

	<step>
	  <para>Enable ssh root logins for client machines which are
	    <acronym>PXE</acronym> booting by editing
	    <filename>${NFSROOTDIR}/etc/ssh/sshd_config</filename> and
	    enabling the <literal>PermitRootLogin</literal> option.
	    This is documented in &man.sshd.config.5;.</para>
	</step>

	<step>
	  <para>Perform other customizations of the &man.chroot.8;
	    environment in ${NFSROOTDIR}.  These customizations could
	    include things like adding packages with &man.pkg.add.1;,
	    editing the password file with &man.vipw.8;, or editing
	    &man.amd.conf.5; maps for automounting.  For
	    example:</para>

	  <screen>&prompt.root; <userinput>chroot ${NFSROOTDIR}</userinput>
&prompt.root; <userinput>pkg_add -r bash</userinput></screen>
	</step>
      </procedure>
    </sect2>

    <sect2>
      <title>Configuring Memory File Systems Used by
	<filename>/etc/rc.initdiskless</filename></title>

      <para>If you boot from an NFS root volume,
	<filename>/etc/rc</filename> detects that you booted over NFS
	and runs the <filename>/etc/rc.initdiskless</filename> script.
	Read the comments in this script to understand what is going
	on.  We need to
	make <filename class="directory">/etc</filename>
	and <filename class="directory">/var</filename>
	memory backed file systems because
	these directories need to be writable, but the NFS root
	directory is read-only.</para>

      <screen>&prompt.root; <userinput>chroot ${NFSROOTDIR}</userinput>
&prompt.root; <userinput>mkdir -p conf/base</userinput>
&prompt.root; <userinput>tar -c -v -f conf/base/etc.cpio.gz --format cpio --gzip etc</userinput>
&prompt.root; <userinput>tar -c -v -f conf/base/var.cpio.gz --format cpio --gzip var</userinput></screen>

      <para>When the system boots, memory file systems
        for <filename class="directory">/etc</filename>
	and <filename class="directory">/var</filename> will
	be created and mounted, and the contents of the
	<filename>cpio.gz</filename> files will be copied into
	them.</para>
    </sect2>

    <sect2 id="network-pxe-setting-up-dhcp">
      <title>Setting up the DHCP Server</title>

      <para>PXE requires a <acronym>TFTP</acronym> server and a
	<acronym>DHCP</acronym> server to be set up.  The
	<acronym>DHCP</acronym> server does not necessarily need to be
	the same machine as the <acronym>TFTP</acronym> server, but it
	needs to be accessible in your network.</para>

      <procedure>
	<step>
	  <para>Install the <acronym>DHCP</acronym> server by
	    following the instructions documented at
	    <xref linkend="network-dhcp-server"/>.  Make sure that
	    <filename>/etc/rc.conf</filename> and
	    <filename>/usr/local/etc/dhcpd.conf</filename> are
	    correctly configured.</para>
	</step>

	<step>
	  <para>In <filename>/usr/local/etc/dhcpd.conf</filename>,
	    configure the <literal>next-server</literal>,
	    <literal>filename</literal>, and
	    <literal>option root-path</literal> settings, to specify
	    your <acronym>TFTP</acronym> server IP address, the path
	    to <filename>/boot/pxeboot</filename> in
	    <acronym>TFTP</acronym>, and the path to the
	    <acronym>NFS</acronym> root file system.  Here is a sample
	    <filename>dhcpd.conf</filename> setup:</para>

	  <programlisting>subnet 192.168.0.0 netmask 255.255.255.0 {
   range 192.168.0.2 192.168.0.3 ;
   option subnet-mask 255.255.255.0 ;
   option routers 192.168.0.1 ;
   option broadcast-address 192.168.0.255 ;
   option domain-name-server 192.168.35.35, 192.168.35.36 ;
   option domain-name "example.com";

   # IP address of TFTP server
   next-server 192.168.0.1 ;

   # path of boot loader obtained
   # via tftp
   filename "FreeBSD/install/boot/pxeboot" ;

   # pxeboot boot loader will try to NFS mount this directory for root FS
   option root-path "192.168.0.1:/b/tftpboot/FreeBSD/install/" ;

}</programlisting>
	</step>
      </procedure>
    </sect2>

    <sect2>
      <title>Configuring the PXE Client and Debugging Connection
	Problems</title>

      <procedure>
	<step>
	  <para>When the client machine boots up, enter the
	    <acronym>BIOS</acronym> configuration menu.  Configure the
	    <acronym>BIOS</acronym> to boot from the network.  If all
	    your previous configuration steps are correct, then
	    everything should &quot;just work&quot;.</para>
	</step>

	<step>

	  <para>Use the
	    <filename role="package">net/wireshark</filename> port to
	    debug the network traffic involved during the
	    <acronym>PXE</acronym> booting process, which is
	    illustrated in the diagram below.  In
	    <xref linkend="network-pxe-setting-up-dhcp"/>, an example
	    configuration is shown where the <acronym>DHCP</acronym>,
	    <acronym>TFTP</acronym>, and <acronym>NFS</acronym>
	    servers are actually on the same machine.  However, these
	    severs can be on separate machines.</para>

	  <figure>
	    <title>PXE Booting Process with NFS Root Mount</title>

	    <mediaobjectco>
	      <imageobjectco>
		<areaspec units="calspair">
		  <area id="co-pxenfs1" coords="2873,8133 3313,7266"/>
		  <area id="co-pxenfs2" coords="3519,6333 3885,5500"/>
		  <area id="co-pxenfs3" coords="4780,5866 5102,5200"/>
		  <area id="co-pxenfs4" coords="4794,4333 5102,3600"/>
		  <area id="co-pxenfs5" coords="3108,2666 3519,1800"/>
		</areaspec>
		<imageobject>
		  <imagedata fileref="advanced-networking/pxe-nfs"/>
		</imageobject>
		<calloutlist>
		  <callout arearefs="co-pxenfs1">
		    <para>Client broadcasts DHCPDISCOVER.</para>
		  </callout>
		  <callout arearefs="co-pxenfs2">
		    <para>DHCP server responds with IP address,
		      <literal>next-server</literal>,
		      <literal>filename</literal>, and
		      <literal>root-path</literal>.</para>
		  </callout>
		  <callout arearefs="co-pxenfs3">
		    <para>Client sends <acronym>TFTP</acronym>
		      request to <literal>next-server</literal>
		      asking to retrieve
		      <literal>filename</literal>.</para>
		  </callout>
		  <callout arearefs="co-pxenfs4">
		    <para>TFTP server responds and sends
		      <literal>filename</literal> to client.</para>
		  </callout>
		  <callout arearefs="co-pxenfs5">
		    <para>Client executes
		      <literal>filename</literal> which is
		      &man.pxeboot.8;.  &man.pxeboot.8; loads the
		      kernel.  When the kernel executes, the root
		      filesystem specified by
		      <literal>root-path</literal> is mounted over
		      <acronym>NFS</acronym>.</para>
		  </callout>
		</calloutlist>
	      </imageobjectco>
	    </mediaobjectco>
	  </figure>
	</step>

	<step>
	  <para>Make sure that the <filename>pxeboot</filename> file
	    can be retrieved by <acronym>TFTP</acronym>.  On your
	    <acronym>TFTP</acronym> server, look in
	    <filename>/var/log/xferlog</filename> to ensure that the
	    <filename>pxeboot</filename> file is being retrieved from
	    the correct location.  To test the configuration from
	    <filename>dhcpd.conf</filename> above:</para>

	  <screen>&prompt.root; <userinput>tftp 192.168.0.1</userinput>
tftp> <userinput>get FreeBSD/install/boot/pxeboot</userinput>
Received 264951 bytes in 0.1 seconds</screen>

	  <para>Read &man.tftpd.8; and &man.tftp.1;.  The
	    <literal>BUGS</literal> sections in these pages document
	    some limitations with <acronym>TFTP</acronym>.</para>
	</step>

	<step>
	  <para>Make sure that the root file system can be mounted
	    via <acronym>NFS</acronym>.  To test configuration from
	    <filename>dhcpd.conf</filename> above:</para>

	  <screen>&prompt.root; <userinput>mount -t nfs 192.168.0.1:/b/tftpboot/FreeBSD/install /mnt</userinput></screen>
	</step>

	<step>
	  <para>Read the code in
	    <filename>src/sys/boot/i386/libi386/pxe.c</filename> to
	    understand how the <filename>pxeboot</filename> loader
	    sets variables like <literal>boot.nfsroot.server</literal>
	    and <literal>boot.nfsroot.path</literal>.  These variables
	    are then used in the NFS diskless root mount code in
	    <filename>src/sys/nfsclient/nfs_diskless.c</filename>.</para>
	</step>

	<step>
	  <para>Read &man.pxeboot.8; and &man.loader.8;.</para>
	</step>
      </procedure>
    </sect2>
  </sect1>

  <sect1 id="network-isdn">
    <title>ISDN</title>

    <indexterm>
      <primary>ISDN</primary>
    </indexterm>

    <para>A good resource for information on ISDN technology and
      hardware is
      <ulink url="http://www.alumni.caltech.edu/~dank/isdn/">Dan
	Kegel's ISDN Page</ulink>.</para>

    <para>A quick simple road map to ISDN follows:</para>

    <itemizedlist>
      <listitem>
	<para>If you live in Europe you might want to investigate the
	  ISDN card section.</para>
      </listitem>

      <listitem>
	<para>If you are planning to use ISDN primarily to connect to
	  the Internet with an Internet Provider on a dial-up
	  non-dedicated basis, you might look into Terminal Adapters.
	  This will give you the most flexibility, with the fewest
	  problems, if you change providers.</para>
      </listitem>

      <listitem>
	<para>If you are connecting two LANs together, or connecting
	  to the Internet with a dedicated ISDN connection, you might
	  consider the stand alone router/bridge option.</para>
      </listitem>
    </itemizedlist>

    <para>Cost is a significant factor in determining what solution
      you will choose.  The following options are listed from least
      expensive to most expensive.</para>

    <sect2 id="network-isdn-cards">
      <sect2info>
	<authorgroup>
	  <author>
	    <firstname>Hellmuth</firstname>
	    <surname>Michaelis</surname>
	    <contrib>Contributed by </contrib>
	  </author>
	</authorgroup>
      </sect2info>
      <title>ISDN Cards</title>

      <indexterm>
	<primary>ISDN</primary>
	<secondary>cards</secondary>
      </indexterm>

      <para>FreeBSD's ISDN implementation supports only the DSS1/Q.931
	(or Euro-ISDN) standard using passive cards.  Some active
	cards are supported where the firmware also supports other
	signaling protocols; this also includes the first supported
	Primary Rate (PRI) ISDN card.</para>

      <para>The <application>isdn4bsd</application> software allows
	you to connect to other ISDN routers using either IP over raw
	HDLC or by using synchronous PPP: either by using kernel PPP
	with <literal>isppp</literal>, a modified &man.sppp.4; driver,
	or by using userland &man.ppp.8;.  By using userland
	&man.ppp.8;, channel bonding of two or more ISDN B-channels is
	possible.  A telephone answering machine application is also
	available as well as many utilities such as a software 300
	Baud modem.</para>

      <para>Some growing number of PC ISDN cards are supported under
	FreeBSD and the reports show that it is successfully used all
	over Europe and in many other parts of the world.</para>

      <para>The passive ISDN cards supported are mostly the ones with
	the Infineon (formerly Siemens) ISAC/HSCX/IPAC ISDN chipsets,
	but also ISDN cards with chips from Cologne Chip (ISA bus
	only), PCI cards with Winbond W6692 chips, some cards with the
	Tiger300/320/ISAC chipset combinations and some vendor
	specific chipset based cards such as the AVM Fritz!Card PCI
	V.1.0 and the AVM Fritz!Card PnP.</para>

      <para>Currently the active supported ISDN cards are the AVM B1
	(ISA and PCI) BRI cards and the AVM T1 PCI PRI cards.</para>

      <para>For documentation on <application>isdn4bsd</application>,
	have a look at the
	<ulink url="http://www.freebsd-support.de/i4b/">homepage of
	  isdn4bsd</ulink> which also has pointers to hints, erratas
	and much more documentation such as the <ulink
	  url="http://people.FreeBSD.org/~hm/">isdn4bsd
	  handbook</ulink>.</para>

      <para>In case you are interested in adding support for a
	different ISDN protocol, a currently unsupported ISDN PC card
	or otherwise enhancing <application>isdn4bsd</application>,
	please get in touch with &a.hm;.</para>

      <para>For questions regarding the installation, configuration
	and troubleshooting <application>isdn4bsd</application>, a
	&a.isdn.name; mailing list is available.</para>
    </sect2>

    <sect2>
      <title>ISDN Terminal Adapters</title>

      <para>Terminal adapters (TA), are to ISDN what modems are to
	regular phone lines.</para>

      <indexterm><primary>modem</primary></indexterm>
      <para>Most TA's use the standard Hayes modem AT command set, and
	can be used as a drop in replacement for a modem.</para>

      <para>A TA will operate basically the same as a modem except
	connection and throughput speeds will be much faster than your
	old modem.  You will need to configure
	<link linkend="ppp">PPP</link> exactly the same as for a modem
	setup.  Make sure you set your serial speed as high as
	possible.</para>

      <indexterm><primary>PPP</primary></indexterm>
      <para>The main advantage of using a TA to connect to an Internet
	Provider is that you can do Dynamic PPP.  As IP address space
	becomes more and more scarce, most providers are not willing
	to provide you with a static IP any more.  Most stand-alone
	routers are not able to accommodate dynamic IP
	allocation.</para>

      <para>TA's completely rely on the PPP daemon that you are
	running for their features and stability of connection.  This
	allows you to upgrade easily from using a modem to ISDN on a
	FreeBSD machine, if you already have PPP set up.  However, at
	the same time any problems you experienced with the PPP
	program and are going to persist.</para>

      <para>If you want maximum stability, use the kernel
	<link linkend="ppp">PPP</link> option, not the
	<link linkend="userppp">userland PPP</link>.</para>

      <para>The following TA's are known to work with FreeBSD:</para>

      <itemizedlist>
	<listitem>
	  <para>Motorola BitSurfer and Bitsurfer Pro</para>
	</listitem>

	<listitem>
	  <para>Adtran</para>
	</listitem>
      </itemizedlist>

      <para>Most other TA's will probably work as well, TA vendors try
	to make sure their product can accept most of the standard
	modem AT command set.</para>

      <para>The real problem with external TA's is that, like modems,
	you need a good serial card in your computer.</para>

      <para>You should read the <ulink
	  url="&url.articles.serial-uart;/index.html">FreeBSD Serial
	Hardware</ulink> tutorial for a detailed understanding of
	serial devices, and the differences between asynchronous and
	synchronous serial ports.</para>

      <para>A TA running off a standard PC serial port (asynchronous)
	limits you to 115.2&nbsp;Kbs, even though you have a
	128&nbsp;Kbs connection.  To fully utilize the 128&nbsp;Kbs
	that ISDN is capable of, you must move the TA to a synchronous
	serial card.</para>

      <para>Do not be fooled into buying an internal TA and thinking
	you have avoided the synchronous/asynchronous issue.  Internal
	TA's simply have a standard PC serial port chip built into
	them.  All this will do is save you having to buy another
	serial cable and find another empty electrical socket.</para>

      <para>A synchronous card with a TA is at least as fast as a
	stand-alone router, and with a simple 386 FreeBSD box driving
	it, probably more flexible.</para>

      <para>The choice of synchronous card/TA versus stand-alone
	router is largely a religious issue.  There has been some
	discussion of this in the mailing lists.  We suggest you
	search the
	<ulink url="&url.base;/search/index.html">archives</ulink> for
	the complete discussion.</para>
    </sect2>

    <sect2>
      <title>Stand-alone ISDN Bridges/Routers</title>

      <indexterm>
	<primary>ISDN</primary>
	<secondary>stand-alone bridges/routers</secondary>
      </indexterm>
      <para>ISDN bridges or routers are not at all specific to FreeBSD
	or any other operating system.  For a more complete
	description of routing and bridging technology, please refer
	to a networking reference book.</para>

      <para>In the context of this section, the terms router and
	bridge will be used interchangeably.</para>

      <para>As the cost of low end ISDN routers/bridges comes down, it
	will likely become a more and more popular choice.  An ISDN
	router is a small box that plugs directly into your local
	Ethernet network, and manages its own connection to the other
	bridge/router.  It has built in software to communicate via
	PPP and other popular protocols.</para>

      <para>A router will allow you much faster throughput than a
	standard TA, since it will be using a full synchronous ISDN
	connection.</para>

      <para>The main problem with ISDN routers and bridges is that
	interoperability between manufacturers can still be a problem.
	If you are planning to connect to an Internet provider, you
	should discuss your needs with them.</para>

      <para>If you are planning to connect two LAN segments together,
	such as your home LAN to the office LAN, this is the simplest
	lowest
	maintenance solution.  Since you are buying the equipment for
	both sides of the connection you can be assured that the link
	will work.</para>

      <para>For example to connect a home computer or branch office
	network to a head office network the following setup could be
	used:</para>

      <example>
	<title>Branch Office or Home Network</title>

	<indexterm><primary>10 base 2</primary></indexterm>
	<para>Network uses a bus based topology with 10 base 2
	  Ethernet (<quote>thinnet</quote>).  Connect router to
	  network cable with AUI/10BT transceiver, if
	  necessary.</para>

	<mediaobject>
	  <imageobject>
	    <imagedata fileref="advanced-networking/isdn-bus"/>
	  </imageobject>

	  <textobject>
	    <literallayout class="monospaced">---Sun workstation
|
---FreeBSD box
|
---Windows 95
|
Stand-alone router
   |
ISDN BRI line</literallayout>
	  </textobject>

	  <textobject>
	    <phrase>10 Base 2 Ethernet</phrase>
	  </textobject>
	</mediaobject>

	<para>If your home/branch office is only one computer you can
	  use a twisted pair crossover cable to connect to the
	  stand-alone router directly.</para>
      </example>

      <example>
	<title>Head Office or Other LAN</title>

	<indexterm><primary>10 base T</primary></indexterm>
	<para>Network uses a star topology with 10 base T Ethernet
	  (<quote>Twisted Pair</quote>).</para>

	<mediaobject>
	  <imageobject>
	    <imagedata
	      fileref="advanced-networking/isdn-twisted-pair"/>
	  </imageobject>

	  <textobject>
	    <literallayout class="monospaced">    -------Novell Server
    | H |
    |   ---Sun
    |   |
    | U ---FreeBSD
    |   |
    |   ---Windows 95
    | B |
    |___---Stand-alone router
                |
        ISDN BRI line</literallayout>
	  </textobject>

	  <textobject>
	    <phrase>ISDN Network Diagram</phrase>
	  </textobject>
	</mediaobject>
      </example>

      <para>One large advantage of most routers/bridges is that they
	allow you to have 2 <emphasis>separate independent</emphasis>
	PPP connections to 2 separate sites at the
	<emphasis>same</emphasis> time.  This is not supported on most
	TA's, except for specific (usually expensive) models that have
	two serial ports.  Do not confuse this with channel bonding,
	MPP, etc.</para>

      <para>This can be a very useful feature if, for example, you
	have an dedicated ISDN connection at your office and would
	like to tap into it, but do not want to get another ISDN line
	at work.  A router at the office location can manage a
	dedicated B channel connection (64&nbsp;Kbps) to the Internet
	and use the other B channel for a separate data connection.
	The second B channel can be used for dial-in, dial-out or
	dynamically bonding (MPP, etc.) with the first B channel for
	more bandwidth.</para>

      <indexterm><primary>IPX/SPX</primary></indexterm>
      <para>An Ethernet bridge will also allow you to transmit more
	than just IP traffic.  You can also send IPX/SPX or whatever
	other protocols you use.</para>
    </sect2>
  </sect1>

  <sect1 id="network-natd">
    <sect1info>
      <authorgroup>
	<author>
	  <firstname>Chern</firstname>
	  <surname>Lee</surname>
	  <contrib>Contributed by </contrib>
	</author>
      </authorgroup>
    </sect1info>
    <title>Network Address Translation</title>

    <sect2 id="network-natoverview">
      <title>Overview</title>

      <indexterm>
	<primary><application>natd</application></primary>
      </indexterm>
      <para>FreeBSD's Network Address Translation daemon, commonly
	known as &man.natd.8; is a daemon that accepts incoming raw IP
	packets, changes the source to the local machine and
	re-injects these packets back into the outgoing IP packet
	stream.  &man.natd.8; does this by changing the source IP
	address and port such that when data is received back, it is
	able to determine the original location of the data and
	forward it back to its original requester.</para>

      <indexterm>
	<primary>Internet connection sharing</primary>
      </indexterm>
      <indexterm>
	<primary>NAT</primary>
      </indexterm>
      <para>The most common use of NAT is to perform what is commonly
	known as Internet Connection Sharing.</para>
    </sect2>

    <sect2 id="network-natsetup">
      <title>Setup</title>

      <para>Due to the diminishing IP space in IPv4, and the increased
	number of users on high-speed consumer lines such as cable or
	DSL, people are increasingly in need of an Internet Connection
	Sharing solution.  The ability to connect several computers
	online through one connection and IP address makes
	&man.natd.8; a reasonable choice.</para>

      <para>Most commonly, a user has a machine connected to a cable
	or DSL line with one IP address and wishes to use this one
	connected computer to provide Internet access to several more
	over a LAN.</para>

      <para>To do this, the FreeBSD machine on the Internet must act
	as a gateway.  This gateway machine must have two
	NICs&mdash;one for connecting to the Internet router, the
	other connecting to a LAN.  All the machines on the LAN are
	connected through a hub or switch.</para>

      <note>
	<para>There are many ways to get a LAN connected to the
	  Internet through a &os; gateway.  This example will only
	  cover a gateway with at least two NICs.</para>
      </note>

      <mediaobject>
	<imageobject>
	  <imagedata fileref="advanced-networking/natd"/>
	</imageobject>

	<textobject>
	  <literallayout class="monospaced">  _______       __________       ________
 |       |     |          |     |        |
 |  Hub  |-----| Client B |-----| Router |----- Internet
 |_______|     |__________|     |________|
     |
 ____|_____
|          |
| Client A |
|__________|</literallayout>
	</textobject>

	<textobject>
	  <phrase>Network Layout</phrase>
	</textobject>
      </mediaobject>

      <para>A setup like this is commonly used to share an Internet
	connection.  One of the <acronym>LAN</acronym> machines is
	connected to the Internet.  The rest of the machines access
	the Internet through that <quote>gateway</quote>
	machine.</para>
    </sect2>

    <sect2 id="network-natdloaderconfiguration">
      <title>Boot Loader Configuration</title>

      <indexterm>
	<primary>boot loader</primary>
	<secondary>configuration</secondary>
      </indexterm>

      <para>The kernel features for network address translation with
	&man.natd.8; are not enabled in the
	<filename>GENERIC</filename> kernel, but they can be preloaded
	at boot time, by adding a couple of options to
	<filename>/boot/loader.conf</filename>:</para>

      <programlisting>ipfw_load="YES"
ipdivert_load="YES"</programlisting>

      <para>Additionally, the
	<literal>net.inet.ip.fw.default_to_accept</literal> tunable
	option may be set to <literal>1</literal>:</para>

      <programlisting>net.inet.ip.fw.default_to_accept="1"</programlisting>

      <note>
	<para>It is a very good idea to set this option during the
	  first attempts to setup a firewall and NAT gateway.  This
	  way the default policy of &man.ipfw.8; will be
	  <literal>allow ip from any to any</literal> instead of the
	  less permissive <literal>deny ip from any to any</literal>,
	  and it will be slightly more difficult to get locked out of
	  the system right after a reboot.</para>
      </note>
    </sect2>

    <sect2 id="network-natdkernconfiguration">
      <title>Kernel Configuration</title>

      <indexterm>
	<primary>kernel</primary>
	<secondary>configuration</secondary>
      </indexterm>
      <para>When modules are not an option or if it is preferrable to
	build all the required features into the running kernel, the
	following options must be in the kernel configuration
	file:</para>

      <programlisting>options IPFIREWALL
options IPDIVERT</programlisting>

      <para>Additionally, at choice, the following may also be
	suitable:</para>

      <programlisting>options IPFIREWALL_DEFAULT_TO_ACCEPT
options IPFIREWALL_VERBOSE</programlisting>
    </sect2>

    <sect2 id="network-natdsystemconfiguration">
      <title>System Startup Configuration</title>

      <para>To enable firewall and NAT support at boot time, the
	following must be in <filename>/etc/rc.conf</filename>:</para>

      <programlisting>gateway_enable="YES" <co id="co-natd-gateway-enable"/>
firewall_enable="YES" <co id="co-natd-firewall-enable"/>
firewall_type="OPEN" <co id="co-natd-firewall-type"/>
natd_enable="YES"
natd_interface="<replaceable>fxp0</replaceable>" <co id="co-natd-natd-interface"/>
natd_flags="" <co id="co-natd-natd-flags"/></programlisting>

      <calloutlist>
	<callout arearefs="co-natd-gateway-enable">
	  <para>Sets up the machine to act as a gateway.  Running
	    <command>sysctl net.inet.ip.forwarding=1</command> would
	    have the same effect.</para>
	</callout>

	<callout arearefs="co-natd-firewall-enable">
	  <para>Enables the firewall rules in
	    <filename>/etc/rc.firewall</filename> at boot.</para>
	</callout>

	<callout arearefs="co-natd-firewall-type">
	  <para>This specifies a predefined firewall ruleset that
	    allows anything in.  See
	    <filename>/etc/rc.firewall</filename> for additional
	    types.</para>
	</callout>

	<callout arearefs="co-natd-natd-interface">
	  <para>Indicates which interface to forward packets through
	    (the interface connected to the Internet).</para>
	</callout>

	<callout arearefs="co-natd-natd-flags">
	  <para>Any additional configuration options passed to
	    &man.natd.8; on boot.</para>
	</callout>
      </calloutlist>

      <para>Having the previous options defined in
	<filename>/etc/rc.conf</filename> would run
	<command>natd -interface fxp0</command> at boot.  This can
	also be run manually.</para>

      <note>
	<para>It is also possible to use a configuration file for
	  &man.natd.8; when there are too many options to pass.  In
	  this case, the configuration file must be defined by adding
	  the following line to
	  <filename>/etc/rc.conf</filename>:</para>

	<programlisting>natd_flags="-f /etc/natd.conf"</programlisting>

	<para>The <filename>/etc/natd.conf</filename> file will
	  contain a list of configuration options, one per line.  For
	  example the next section case would use the following
	  file:</para>

	<programlisting>redirect_port tcp 192.168.0.2:6667 6667
redirect_port tcp 192.168.0.3:80 80</programlisting>

	<para>For more information about the configuration file,
	  consult the &man.natd.8; manual page about the
	  <option>-f</option> option.</para>
      </note>

      <para>Each machine and interface behind the LAN should be
	assigned IP address numbers in the private network space as
	defined by
	<ulink url="ftp://ftp.isi.edu/in-notes/rfc1918.txt">RFC
	  1918</ulink> and have a default gateway of the
	<application>natd</application> machine's internal IP
	address.</para>

      <para>For example, client <hostid>A</hostid> and
	<hostid>B</hostid> behind the LAN have IP addresses of
	<hostid role="ipaddr">192.168.0.2</hostid> and
	<hostid role="ipaddr">192.168.0.3</hostid>, while the natd
	machine's LAN interface has an IP address of
	<hostid role="ipaddr">192.168.0.1</hostid>.  Client
	<hostid>A</hostid> and <hostid>B</hostid>'s default gateway
	must be set to that of the <application>natd</application>
	machine, <hostid role="ipaddr">192.168.0.1</hostid>.  The
	<application>natd</application> machine's external, or
	Internet interface does not require any special modification
	for &man.natd.8; to work.</para>
    </sect2>

    <sect2 id="network-natdport-redirection">
      <title>Port Redirection</title>

      <para>The drawback with &man.natd.8; is that the LAN clients are
	not accessible from the Internet.  Clients on the LAN can make
	outgoing connections to the world but cannot receive incoming
	ones.  This presents a problem if trying to run Internet
	services on one of the LAN client machines.  A simple way
	around this is to redirect selected Internet ports on the
	<application>natd</application> machine to a LAN
	client.</para>

      <para>For example, an IRC server runs on client
	<hostid>A</hostid>, and a web server runs on client
	<hostid>B</hostid>.  For this to work properly, connections
	received on ports 6667 (IRC) and 80 (web) must be redirected
	to the respective machines.</para>

      <para>The <option>-redirect_port</option> must be passed to
	&man.natd.8; with the proper options.  The syntax is as
	follows:</para>

      <programlisting>     -redirect_port proto targetIP:targetPORT[-targetPORT]
                 [aliasIP:]aliasPORT[-aliasPORT]
                 [remoteIP[:remotePORT[-remotePORT]]]</programlisting>

      <para>In the above example, the argument should be:</para>

      <programlisting>    -redirect_port tcp 192.168.0.2:6667 6667
    -redirect_port tcp 192.168.0.3:80 80</programlisting>

      <para>This will redirect the proper <emphasis>tcp</emphasis>
	ports to the LAN client machines.</para>

      <para>The <option>-redirect_port</option> argument can be used
	to indicate port ranges over individual ports.  For example,
	<replaceable>tcp 192.168.0.2:2000-3000 2000-3000</replaceable>
	would redirect all connections received on ports 2000 to 3000
	to ports 2000 to 3000 on client <hostid>A</hostid>.</para>

      <para>These options can be used when directly running
	&man.natd.8;, placed within the
	<literal>natd_flags=""</literal> option in
	<filename>/etc/rc.conf</filename>, or passed via a
	configuration file.</para>

      <para>For further configuration options, consult
	&man.natd.8;</para>
    </sect2>

    <sect2 id="network-natdaddress-redirection">
      <title>Address Redirection</title>

      <indexterm><primary>address redirection</primary></indexterm>
      <para>Address redirection is useful if several IP addresses are
	available, yet they must be on one machine.  With this,
	&man.natd.8; can assign each LAN client its own external IP
	address.  &man.natd.8; then rewrites outgoing packets from the
	LAN clients with the proper external IP address and redirects
	all traffic incoming on that particular IP address back to the
	specific LAN client.  This is also known as static NAT.  For
	example, the IP addresses
	<hostid role="ipaddr">128.1.1.1</hostid>,
	<hostid role="ipaddr">128.1.1.2</hostid>, and
	<hostid role="ipaddr">128.1.1.3</hostid> belong to the
	<application>natd</application> gateway machine.
	<hostid role="ipaddr">128.1.1.1</hostid> can be used as the
	<application>natd</application> gateway machine's external IP
	address, while <hostid role="ipaddr">128.1.1.2</hostid> and
	<hostid role="ipaddr">128.1.1.3</hostid> are forwarded back to
	LAN clients <hostid>A</hostid> and <hostid>B</hostid>.</para>

      <para>The <option>-redirect_address</option> syntax is as
	follows:</para>

      <programlisting>-redirect_address localIP publicIP</programlisting>


      <informaltable frame="none" pgwide="1">
	<tgroup cols="2">
	  <tbody>
	    <row>
	      <entry>localIP</entry>
	      <entry>The internal IP address of the LAN
		client.</entry>
	    </row>

	    <row>
	      <entry>publicIP</entry>
	      <entry>The external IP address corresponding to the LAN
		client.</entry>
	    </row>
	  </tbody>
	</tgroup>
      </informaltable>

      <para>In the example, this argument would read:</para>

      <programlisting>-redirect_address 192.168.0.2 128.1.1.2
-redirect_address 192.168.0.3 128.1.1.3</programlisting>

      <para>Like <option>-redirect_port</option>, these arguments are
	also placed within the <literal>natd_flags=""</literal> option
	of <filename>/etc/rc.conf</filename>, or passed via a
	configuration file.  With address redirection, there is no
	need for port redirection since all data received on a
	particular IP address is redirected.</para>

      <para>The external IP addresses on the
	<application>natd</application> machine must be active and
	aliased to the external interface.  Look at &man.rc.conf.5; to
	do so.</para>
    </sect2>
  </sect1>

  <sect1 id="network-ipv6">
    <sect1info>
      <authorgroup>
	<author>
	  <firstname>Aaron</firstname>
	  <surname>Kaplan</surname>
	  <contrib>Originally Written by </contrib>
	</author>
      </authorgroup>
      <authorgroup>
	<author>
	  <firstname>Tom</firstname>
	  <surname>Rhodes</surname>
	  <contrib>Restructured and Added by </contrib>
	</author>
      </authorgroup>
      <authorgroup>
	<author>
	  <firstname>Brad</firstname>
	  <surname>Davis</surname>
	  <contrib>Extended by </contrib>
	</author>
      </authorgroup>
    </sect1info>

    <title>IPv6</title>

    <para>IPv6 (also known as IPng <quote>IP next generation</quote>)
      is the new version of the well known IP protocol (also known as
      <acronym>IPv4</acronym>).  Like the other current *BSD systems,
      FreeBSD includes the KAME IPv6 reference implementation.  So
      your FreeBSD system comes with all you will need to experiment
      with IPv6.  This section focuses on getting IPv6 configured and
      running.</para>

    <para>In the early 1990s, people became aware of the rapidly
      diminishing address space of IPv4.  Given the expansion rate of
      the Internet there were two major concerns:</para>

    <itemizedlist>
      <listitem>
	<para>Running out of addresses.  Today this is not so much of
	  a concern any more, since RFC1918 private address space
	  (<hostid role="ipaddr">10.0.0.0/8</hostid>,
	  <hostid role="ipaddr">172.16.0.0/12</hostid>, and
	  <hostid role="ipaddr">192.168.0.0/16</hostid>) and Network
	  Address Translation (<acronym>NAT</acronym>) are being
	  employed.</para>
      </listitem>

      <listitem>
	<para>Router table entries were getting too large.  This is
	  still a concern today.</para>
      </listitem>
    </itemizedlist>

    <para>IPv6 deals with these and many other issues:</para>

    <itemizedlist>
      <listitem>
	<para>128 bit address space.  In other words theoretically
	  there are
	  340,282,366,920,938,463,463,374,607,431,768,211,456
	  addresses available.  This means there are approximately
	  6.67 * 10^27 IPv6 addresses per square meter on our
	  planet.</para>
      </listitem>

      <listitem>
	<para>Routers will only store network aggregation addresses in
	  their routing tables thus reducing the average space of a
	  routing table to 8192 entries.</para>
      </listitem>
    </itemizedlist>

    <para>There are also lots of other useful features of IPv6 such
      as:</para>

    <itemizedlist>
      <listitem>
	<para>Address autoconfiguration (<ulink
	    url="http://www.ietf.org/rfc/rfc2462.txt">RFC2462</ulink>)</para>
      </listitem>

      <listitem>
	<para>Anycast addresses (<quote>one-out-of
	    many</quote>)</para>
      </listitem>

      <listitem>
	<para>Mandatory multicast addresses</para>
      </listitem>

      <listitem>
	<para>IPsec (IP security)</para>
      </listitem>

      <listitem>
	<para>Simplified header structure</para>
      </listitem>

      <listitem>
	<para>Mobile <acronym>IP</acronym></para>
      </listitem>

      <listitem>
	<para>IPv6-to-IPv4 transition mechanisms</para>
      </listitem>
    </itemizedlist>


    <para>For more information see:</para>

    <itemizedlist>
      <listitem>
	<para><ulink url="http://www.kame.net">KAME.net</ulink></para>
      </listitem>
    </itemizedlist>

    <sect2>
      <title>Background on IPv6 Addresses</title>

      <para>There are different types of IPv6 addresses: Unicast,
	Anycast and Multicast.</para>

      <para>Unicast addresses are the well known addresses.  A packet
	sent to a unicast address arrives exactly at the interface
	belonging to the address.</para>

      <para>Anycast addresses are syntactically indistinguishable from
	unicast addresses but they address a group of interfaces.  The
	packet destined for an anycast address will arrive at the
	nearest (in router metric) interface.  Anycast addresses may
	only be used by routers.</para>

      <para>Multicast addresses identify a group of interfaces.  A
	packet destined for a multicast address will arrive at all
	interfaces belonging to the multicast group.</para>

      <note>
	<para>The IPv4 broadcast address (usually
	  <hostid role="ipaddr">xxx.xxx.xxx.255</hostid>) is expressed
	  by multicast addresses in IPv6.</para>
      </note>

      <table frame="none">
	<title>Reserved IPv6 Addresses</title>

	<tgroup cols="4">
	  <thead>
	    <row>
	      <entry>IPv6 address</entry>
	      <entry>Prefixlength (Bits)</entry>
	      <entry>Description</entry>
	      <entry>Notes</entry>
	    </row>
	  </thead>

	  <tbody>
	    <row>
	      <entry><hostid role="ip6addr">::</hostid></entry>
	      <entry>128 bits</entry>
	      <entry>unspecified</entry>
	      <entry>cf. <hostid role="ipaddr">0.0.0.0</hostid> in
		IPv4</entry>
	    </row>

	    <row>
	      <entry><hostid role="ip6addr">::1</hostid></entry>
	      <entry>128 bits</entry>
	      <entry>loopback address</entry>
	      <entry>cf. <hostid role="ipaddr">127.0.0.1</hostid> in
		IPv4</entry>
	    </row>

	    <row>
	      <entry><hostid
		  role="ip6addr">::00:xx:xx:xx:xx</hostid></entry>
	      <entry>96 bits</entry>
	      <entry>embedded IPv4</entry>
	      <entry>The lower 32 bits are the IPv4 address.  Also
		called <quote>IPv4 compatible IPv6
		  address</quote></entry>
	    </row>

	    <row>
	      <entry><hostid
		  role="ip6addr">::ff:xx:xx:xx:xx</hostid></entry>
	      <entry>96 bits</entry>
	      <entry>IPv4 mapped IPv6 address</entry>
	      <entry>The lower 32 bits are the IPv4 address.
		For hosts which do not support IPv6.</entry>
	    </row>

	    <row>
	      <entry><hostid role="ip6addr">fe80::</hostid> - <hostid
		  role="ip6addr">feb::</hostid></entry>
	      <entry>10 bits</entry>
	      <entry>link-local</entry>
	      <entry>cf. loopback address in IPv4</entry>
	    </row>

	    <row>
	      <entry><hostid role="ip6addr">fec0::</hostid> - <hostid
		  role="ip6addr">fef::</hostid></entry>
	      <entry>10 bits</entry>
	      <entry>site-local</entry>
	      <entry>&nbsp;</entry>
	    </row>

	    <row>
	      <entry><hostid role="ip6addr">ff::</hostid></entry>
	      <entry>8 bits</entry>
	      <entry>multicast</entry>
	      <entry>&nbsp;</entry>
	    </row>

	    <row>
	      <entry><hostid role="ip6addr">001</hostid> (base
		2)</entry>
	      <entry>3 bits</entry>
	      <entry>global unicast</entry>
	      <entry>All global unicast addresses are assigned from
		this pool.  The first 3 bits are
		<quote>001</quote>.</entry>
	    </row>
	  </tbody>
	</tgroup>
      </table>
    </sect2>

    <sect2>
      <title>Reading IPv6 Addresses</title>

      <para>The canonical form is represented as:
	<hostid role="ip6addr">x:x:x:x:x:x:x:x</hostid>, each
	<quote>x</quote> being a 16 Bit hex value.  For example
	<hostid
	  role="ip6addr">FEBC:A574:382B:23C1:AA49:4592:4EFE:9982</hostid></para>

      <para>Often an address will have long substrings of all zeros
	therefore one such substring per address can be abbreviated by
	<quote>::</quote>. Also up to three leading <quote>0</quote>s
	per hexquad can be omitted.  For example
	<hostid role="ip6addr">fe80::1</hostid> corresponds to the
	canonical form <hostid
	  role="ip6addr">fe80:0000:0000:0000:0000:0000:0000:0001</hostid>.</para>

      <para>A third form is to write the last 32 Bit part in the
	well known (decimal) IPv4 style with dots <quote>.</quote>
	as separators.  For example
	<hostid role="ip6addr">2002::10.0.0.1</hostid>
	corresponds to the (hexadecimal) canonical representation
	<hostid
	  role="ip6addr">2002:0000:0000:0000:0000:0000:0a00:0001</hostid>
	which in turn is equivalent to writing
	<hostid role="ip6addr">2002::a00:1</hostid>.</para>

      <para>By now the reader should be able to understand the
	following:</para>

      <screen>&prompt.root; <userinput>ifconfig</userinput></screen>

      <programlisting>rl0: flags=8943&lt;UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST&gt; mtu 1500
         inet 10.0.0.10 netmask 0xffffff00 broadcast 10.0.0.255
         inet6 fe80::200:21ff:fe03:8e1%rl0 prefixlen 64 scopeid 0x1
         ether 00:00:21:03:08:e1
         media: Ethernet autoselect (100baseTX )
         status: active</programlisting>

      <para><hostid
	  role="ip6addr">fe80::200:21ff:fe03:8e1%rl0</hostid>
	is an auto configured link-local address.  It is generated
	from the MAC address as part of the auto configuration.</para>

      <para>For further information on the structure of IPv6 addresses
	see <ulink
	  url="http://www.ietf.org/rfc/rfc3513.txt">RFC3513</ulink>.</para>
    </sect2>

    <sect2>
      <title>Getting Connected</title>

      <para>Currently there are four ways to connect to other IPv6
	hosts and networks:</para>

      <itemizedlist>
	<listitem>
	  <para>Contact your Internet Service Provider to see if they
	    offer IPv6 yet.</para>
	</listitem>

	<listitem>
	  <para><ulink url="http://www.sixxs.net">SixXS</ulink> offers
	    tunnels with end-points all around the globe.</para>
	</listitem>

	<listitem>
	  <para>Tunnel via 6-to-4 (<ulink
	      url="http://www.ietf.org/rfc/rfc3068.txt">RFC3068</ulink>)</para>
	</listitem>

	<listitem>
	  <para>Use the
	    <filename role="package">net/freenet6</filename> port if
	    you are on a dial-up connection.</para>
	</listitem>
      </itemizedlist>
    </sect2>

    <sect2>
      <title>DNS in the IPv6 World</title>

      <para>There used to be two types of DNS records for IPv6.  The
	IETF has declared A6 records obsolete.  AAAA records are the
	standard now.</para>

      <para>Using AAAA records is straightforward.  Assign your
	hostname to the new IPv6 address you just received by
	adding:</para>

      <programlisting>MYHOSTNAME           AAAA    MYIPv6ADDR</programlisting>

      <para>To your primary zone DNS file.  In case you do not serve
	your own <acronym>DNS</acronym> zones ask your
	<acronym>DNS</acronym> provider.  Current versions of
	<application>bind</application> (version 8.3 and 9) and
	<filename role="package">dns/djbdns</filename> (with the IPv6
	patch) support AAAA records.</para>
    </sect2>

    <sect2>
      <title>Applying the Needed Changes to
	<filename>/etc/rc.conf</filename></title>

      <sect3>
	<title>IPv6 Client Settings</title>

	<para>These settings will help you configure a machine that
	  will be on your LAN and act as a client, not a router.  To
	  have &man.rtsol.8; autoconfigure your interface on boot on
	  &os;&nbsp;9.<replaceable>x</replaceable> and later,
	  add:</para>

	<programlisting>ipv6_prefer="YES"</programlisting>

	<para>to <filename>rc.conf</filename>.</para>

	<para>For &os;&nbsp;8.<replaceable>x</replaceable> and
	  earlier, add:</para>

	<programlisting>ipv6_enable="YES"</programlisting>

	<para>To statically assign an IP address such as <hostid
	    role="ip6addr">2001:471:1f11:251:290:27ff:fee0:2093</hostid>,
	  to your <devicename>fxp0</devicename> interface, add the
	  following for
	  &os;&nbsp;9.<replaceable>x</replaceable>:</para>

	<programlisting>ifconfig_fxp0_ipv6="inet6 2001:471:1f11:251:290:27ff:fee0:2093 prefixlen <replaceable>64</replaceable>"</programlisting>

	<note>
	  <para>Be sure to change <replaceable>prefixlen
	      64</replaceable> to the appropriate value for the subnet
	    within which the computer is networked.</para>
	</note>

	<para>For &os;&nbsp;8<replaceable>x</replaceable> and earlier,
	  add:</para>

	<programlisting>ipv6_ifconfig_fxp0="2001:471:1f11:251:290:27ff:fee0:2093"</programlisting>

	<para>To assign a default router of
	  <hostid role="ip6addr">2001:471:1f11:251::1</hostid> add the
	  following to <filename>/etc/rc.conf</filename>:</para>

	<programlisting>ipv6_defaultrouter="2001:471:1f11:251::1"</programlisting>
      </sect3>

      <sect3>
	<title>IPv6 Router/Gateway Settings</title>

	<para>This will help you take the directions that your tunnel
	  provider has given you and convert it into settings that
	  will persist through reboots.  To restore your tunnel on
	  startup use something like the following in
	  <filename>/etc/rc.conf</filename>:</para>

	<para>List the Generic Tunneling interfaces that will be
	  configured, for example
	  <devicename>gif0</devicename>:</para>

	<programlisting>gif_interfaces="gif0"</programlisting>

	<para>To configure the interface with a local endpoint of
	  <replaceable>MY_IPv4_ADDR</replaceable> to a remote endpoint
	  of <replaceable>REMOTE_IPv4_ADDR</replaceable>:</para>

	<programlisting>gifconfig_gif0="<replaceable>MY_IPv4_ADDR REMOTE_IPv4_ADDR</replaceable>"</programlisting>

	<para>To apply the IPv6 address you have been assigned for use
	  as your IPv6 tunnel endpoint, add the following for
	  &os;&nbsp;9.<replaceable>x</replaceable> and later:</para>

	<programlisting>ifconfig_gif0_ipv6="inet6 <replaceable>MY_ASSIGNED_IPv6_TUNNEL_ENDPOINT_ADDR</replaceable>"</programlisting>

	<para>For &os;&nbsp;8.<replaceable>x</replaceable> and
	  earlier, add:</para>

	<programlisting>ipv6_ifconfig_gif0="<replaceable>MY_ASSIGNED_IPv6_TUNNEL_ENDPOINT_ADDR</replaceable>"</programlisting>

	<para>Then all you have to do is set the default route for
	  IPv6.  This is the other side of the IPv6 tunnel:</para>

	<programlisting>ipv6_defaultrouter="<replaceable>MY_IPv6_REMOTE_TUNNEL_ENDPOINT_ADDR</replaceable>"</programlisting>
      </sect3>

      <sect3>
	<title>IPv6 Tunnel Settings</title>

	<para>If the server is to route IPv6 between the rest of your
	  network and the world, the following
	  <filename>/etc/rc.conf</filename> setting will also be
	  needed:</para>

	<programlisting>ipv6_gateway_enable="YES"</programlisting>
      </sect3>
    </sect2>

    <sect2>
      <title>Router Advertisement and Host Auto Configuration</title>

      <para>This section will help you setup &man.rtadvd.8; to
	advertise the IPv6 default route.</para>

      <para>To enable &man.rtadvd.8; you will need the following in
	your <filename>/etc/rc.conf</filename>:</para>

      <programlisting>rtadvd_enable="YES"</programlisting>

      <para>It is important that you specify the interface on which to
	do IPv6 router solicitation.  For example to tell
	&man.rtadvd.8; to use <devicename>fxp0</devicename>:</para>

      <programlisting>rtadvd_interfaces="fxp0"</programlisting>

      <para>Now we must create the configuration file,
	<filename>/etc/rtadvd.conf</filename>.  Here is an
	example:</para>

      <programlisting>fxp0:\
	:addrs#1:addr="2001:471:1f11:246::":prefixlen#64:tc=ether:</programlisting>

      <para>Replace <devicename>fxp0</devicename> with the interface
	you are going to be using.</para>

      <para>Next, replace
	<hostid role="ip6addr">2001:471:1f11:246::</hostid> with the
	prefix of your allocation.</para>

      <para>If you are dedicated a <hostid role="netmask">/64</hostid>
	subnet you will not need to change anything else.  Otherwise,
	you will need to change the <literal>prefixlen#</literal> to
	the correct value.</para>
    </sect2>
  </sect1>

  <sect1 id="network-atm">
    <sect1info>
      <authorgroup>
	<author>
	  <firstname>Harti</firstname>
	  <surname>Brandt</surname>
	  <contrib>Contributed by </contrib>
	</author>
      </authorgroup>
    </sect1info>

    <title>Asynchronous Transfer Mode (ATM)</title>

    <sect2>
      <title>Configuring Classical IP over ATM (PVCs)</title>

      <para>Classical IP over ATM (<acronym>CLIP</acronym>) is the
	simplest method to use Asynchronous Transfer Mode (ATM)
	with IP.  It can be used with
	switched connections (SVCs) and with permanent connections
	(PVCs).  This section describes how to set up a network based
	on PVCs.</para>

      <sect3>
	<title>Fully Meshed Configurations</title>

	<para>The first method to set up a <acronym>CLIP</acronym>
	  with PVCs is to connect each machine to each other machine
	  in the network via a dedicated PVC.  While this is simple to
	  configure it tends to become impractical for a larger number
	  of machines.  The example supposes that we have four
	  machines in the network, each connected to the
	  <acronym role="Asynchronous Transfer Mode">ATM</acronym>
	  network with an
	  <acronym role="Asynchronous Transfer Mode">ATM</acronym>
	  adapter card.  The first step is the planning of the IP
	  addresses and the
	  <acronym role="Asynchronous Transfer Mode">ATM</acronym>
	  connections between the machines.  We use the
	  following:</para>

	<informaltable frame="none" pgwide="1">
	  <tgroup cols="2">
	    <colspec colwidth="1*"/>
	    <colspec colwidth="1*"/>
	    <thead>
	      <row>
		<entry>Host</entry>
		<entry>IP Address</entry>
	      </row>
	    </thead>

	    <tbody>
	      <row>
		<entry><hostid>hostA</hostid></entry>
		<entry><hostid
		    role="ipaddr">192.168.173.1</hostid></entry>
	      </row>

	      <row>
		<entry><hostid>hostB</hostid></entry>
		<entry><hostid
		    role="ipaddr">192.168.173.2</hostid></entry>
	      </row>

	      <row>
		<entry><hostid>hostC</hostid></entry>
		<entry><hostid
		    role="ipaddr">192.168.173.3</hostid></entry>
	      </row>

	      <row>
		<entry><hostid>hostD</hostid></entry>
		<entry><hostid
		    role="ipaddr">192.168.173.4</hostid></entry>
	      </row>
	    </tbody>
	  </tgroup>
	</informaltable>

	<para>To build a fully meshed net we need one ATM connection
	  between each pair of machines:</para>

	<informaltable frame="none" pgwide="1">
	  <tgroup cols="2">
	    <colspec colwidth="1*"/>
	    <colspec colwidth="1*"/>
	    <thead>
	      <row>
		<entry>Machines</entry>
		<entry>VPI.VCI couple</entry>
	      </row>
	    </thead>

	    <tbody>
	      <row>
		<entry><hostid>hostA</hostid> -
		  <hostid>hostB</hostid></entry>
		<entry>0.100</entry>
	      </row>

	      <row>
		<entry><hostid>hostA</hostid> -
		  <hostid>hostC</hostid></entry>
		<entry>0.101</entry>
	      </row>

	      <row>
		<entry><hostid>hostA</hostid> -
		  <hostid>hostD</hostid></entry>
		<entry>0.102</entry>
	      </row>

	      <row>
		<entry><hostid>hostB</hostid> -
		  <hostid>hostC</hostid></entry>
		<entry>0.103</entry>
	      </row>

	      <row>
		<entry><hostid>hostB</hostid> -
		  <hostid>hostD</hostid></entry>
		<entry>0.104</entry>
	      </row>

	      <row>
		<entry><hostid>hostC</hostid> -
		  <hostid>hostD</hostid></entry>
		<entry>0.105</entry>
	      </row>
	    </tbody>
	  </tgroup>
	</informaltable>

	<para>The VPI and VCI values at each end of the connection may
	  of course differ, but for simplicity we assume that they are
	  the same.  Next we need to configure the ATM interfaces on
	  each host:</para>

	<screen>hostA&prompt.root; <userinput>ifconfig hatm0 192.168.173.1 up</userinput>
hostB&prompt.root; <userinput>ifconfig hatm0 192.168.173.2 up</userinput>
hostC&prompt.root; <userinput>ifconfig hatm0 192.168.173.3 up</userinput>
hostD&prompt.root; <userinput>ifconfig hatm0 192.168.173.4 up</userinput></screen>

	<para>assuming that the ATM interface is
	  <devicename>hatm0</devicename> on all hosts.  Now the PVCs
	  need to be configured on <hostid>hostA</hostid> (we assume
	  that they are already configured on the ATM switches, you
	  need to consult the manual for the switch on how to do
	  this).</para>

	<screen>hostA&prompt.root; <userinput>atmconfig natm add 192.168.173.2 hatm0 0 100 llc/snap ubr</userinput>
hostA&prompt.root; <userinput>atmconfig natm add 192.168.173.3 hatm0 0 101 llc/snap ubr</userinput>
hostA&prompt.root; <userinput>atmconfig natm add 192.168.173.4 hatm0 0 102 llc/snap ubr</userinput>

hostB&prompt.root; <userinput>atmconfig natm add 192.168.173.1 hatm0 0 100 llc/snap ubr</userinput>
hostB&prompt.root; <userinput>atmconfig natm add 192.168.173.3 hatm0 0 103 llc/snap ubr</userinput>
hostB&prompt.root; <userinput>atmconfig natm add 192.168.173.4 hatm0 0 104 llc/snap ubr</userinput>

hostC&prompt.root; <userinput>atmconfig natm add 192.168.173.1 hatm0 0 101 llc/snap ubr</userinput>
hostC&prompt.root; <userinput>atmconfig natm add 192.168.173.2 hatm0 0 103 llc/snap ubr</userinput>
hostC&prompt.root; <userinput>atmconfig natm add 192.168.173.4 hatm0 0 105 llc/snap ubr</userinput>

hostD&prompt.root; <userinput>atmconfig natm add 192.168.173.1 hatm0 0 102 llc/snap ubr</userinput>
hostD&prompt.root; <userinput>atmconfig natm add 192.168.173.2 hatm0 0 104 llc/snap ubr</userinput>
hostD&prompt.root; <userinput>atmconfig natm add 192.168.173.3 hatm0 0 105 llc/snap ubr</userinput></screen>

	<para>Of course other traffic contracts than UBR can be used
	  given the ATM adapter supports those.  In this case the name
	  of the traffic contract is followed by the parameters of the
	  traffic.  Help for the &man.atmconfig.8; tool can be
	  obtained with:</para>

	<screen>&prompt.root; <userinput>atmconfig help natm add</userinput></screen>

	<para>or in the &man.atmconfig.8; manual page.</para>

	<para>The same configuration can also be done via
	  <filename>/etc/rc.conf</filename>.  For
	  <hostid>hostA</hostid> this would look like:</para>

	<programlisting>network_interfaces="lo0 hatm0"
ifconfig_hatm0="inet 192.168.173.1 up"
natm_static_routes="hostB hostC hostD"
route_hostB="192.168.173.2 hatm0 0 100 llc/snap ubr"
route_hostC="192.168.173.3 hatm0 0 101 llc/snap ubr"
route_hostD="192.168.173.4 hatm0 0 102 llc/snap ubr"</programlisting>

	<para>The current state of all <acronym>CLIP</acronym> routes
	  can be obtained with:</para>

	<screen>hostA&prompt.root; <userinput>atmconfig natm show</userinput></screen>
      </sect3>
    </sect2>
  </sect1>

  <sect1 id="carp">
    <sect1info>
      <authorgroup>
	<author>
	  <firstname>Tom</firstname>
	  <surname>Rhodes</surname>
	  <contrib>Contributed by </contrib>
	</author>
      </authorgroup>
    </sect1info>

    <title>Common Address Redundancy Protocol (CARP)</title>

    <indexterm>
      <primary>CARP</primary>
    </indexterm>
    <indexterm>
      <primary>Common Address Redundancy Protocol</primary>
    </indexterm>

    <para>The Common Address Redundancy Protocol, or
      <acronym>CARP</acronym> allows multiple hosts to share the same
      <acronym>IP</acronym> address.  In some configurations, this may
      be used for availability or load balancing.  Hosts may use
      separate <acronym>IP</acronym> addresses as well, as in the
      example provided here.</para>

    <para>To enable support for <acronym>CARP</acronym>, the &os;
      kernel must be rebuilt as described in
      <xref linkend="kernelconfig"/> with the following option:</para>

    <programlisting>device	carp</programlisting>

    <para>Alternatively, the <filename>if_carp.ko</filename> module
      can be loaded at boot time.  Add the following line to the
      <filename>/boot/loader.conf</filename>:</para>

    <programlisting>if_carp_load="YES"</programlisting>

    <para><acronym>CARP</acronym> functionality should now be
      available and may be tuned via several <command>sysctl</command>
      <acronym>OID</acronym>s:</para>

    <informaltable frame="none" pgwide="1">
      <tgroup cols="2">
	<thead>
	  <row>
	    <entry>OID</entry>
	    <entry>Description</entry>
	  </row>
	</thead>

	<tbody>
	  <row>
	    <entry><varname>net.inet.carp.allow</varname></entry>
	    <entry>Accept incoming <acronym>CARP</acronym> packets.
	      Enabled by default.</entry>
	  </row>

	  <row>
	    <entry><varname>net.inet.carp.preempt</varname></entry>
	    <entry>This option downs all of the
	      <acronym>CARP</acronym> interfaces on the host when one
	      of them goes down.  Disabled by default</entry>
	  </row>

	  <row>
	    <entry><varname>net.inet.carp.log</varname></entry>
	    <entry>A value of <literal>0</literal> disables any
	      logging.  A Value of <literal>1</literal> enables
	      logging of bad <acronym>CARP</acronym> packets.  Values
	      greater than <literal>1</literal> enables logging of
	      state changes for the <acronym>CARP</acronym>
	      interfaces.  The default value is
	      <literal>1</literal>.</entry>
	  </row>

	  <row>
	    <entry><varname>net.inet.carp.arpbalance</varname></entry>
	    <entry>Balance local network traffic using
	      <acronym>ARP</acronym>.  Disabled by default.</entry>
	  </row>

	  <row>
	    <entry><varname>net.inet.carp.suppress_preempt</varname></entry>
	    <entry>A read only <acronym>OID</acronym> showing the
	      status of preemption suppression.  Preemption can be
	      suppressed if link on an interface is down.  A value of
	      <literal>0</literal>, means that preemption is not
	      suppressed.  Every problem increments this
	      <acronym>OID</acronym>.</entry>
	  </row>
	</tbody>
      </tgroup>
    </informaltable>

    <para>The <acronym>CARP</acronym> devices themselves may be
      created via the <command>ifconfig</command> command:</para>

    <screen>&prompt.root; <userinput>ifconfig carp0 create</userinput></screen>

    <para>In a real environment, these interfaces will need unique
      identification numbers known as a <acronym>VHID</acronym>.  This
      <acronym>VHID</acronym> or Virtual Host Identification will be
      used to distinguish the host on the network.</para>

    <sect2>
      <title>Using CARP for Server Availability (CARP)</title>

      <para>One use of <acronym>CARP</acronym>, as noted above, is for
	server availability.  This example will provide failover
	support for three hosts, all with unique <acronym>IP</acronym>
	addresses and providing the same web content.  These machines
	will act in conjunction with a Round Robin
	<acronym>DNS</acronym> configuration.  The failover machine
	will have two additional <acronym>CARP</acronym> interfaces,
	one for each of the content server's <acronym>IP</acronym>s.
	When a failure occurs, the failover server should pick up the
	failed machine's <acronym>IP</acronym> address.  This means
	the failure should go completely unnoticed to the user.  The
	failover server requires identical content and services as the
	other content servers it is expected to pick up load
	for.</para>

      <para>The two machines should be configured identically other
	than their issued hostnames and <acronym>VHID</acronym>s.
	This example calls these machines
	<hostid>hosta.example.org</hostid> and
	<hostid>hostb.example.org</hostid> respectively.  First, the
	required lines for a <acronym>CARP</acronym> configuration
	have to be added to <filename>rc.conf</filename>.  For
	<hostid>hosta.example.org</hostid>, the
	<filename>rc.conf</filename> file should contain the following
	lines:</para>

      <programlisting>hostname="hosta.example.org"
ifconfig_fxp0="inet 192.168.1.3 netmask 255.255.255.0"
cloned_interfaces="carp0"
ifconfig_carp0="vhid 1 pass testpass 192.168.1.50/24"</programlisting>

      <para>On <hostid>hostb.example.org</hostid> the following lines
	should be in <filename>rc.conf</filename>:</para>

      <programlisting>hostname="hostb.example.org"
ifconfig_fxp0="inet 192.168.1.4 netmask 255.255.255.0"
cloned_interfaces="carp0"
ifconfig_carp0="vhid 2 pass testpass 192.168.1.51/24"</programlisting>

      <note>
	<para>It is very important that the passwords, specified by
	  the <option>pass</option> option to
	  <command>ifconfig</command>, are identical.  The
	  <devicename>carp</devicename> devices will only listen to
	  and accept advertisements from machines with the correct
	  password.  The <acronym>VHID</acronym> must also be
	  different for each machine.</para>
      </note>

      <para>The third machine, <hostid>provider.example.org</hostid>,
	should be prepared so that it may handle failover from either
	host.  This machine will require two
	<devicename>carp</devicename> devices, one to handle each
	host.  The appropriate <filename>rc.conf</filename>
	configuration lines will be similar to the following:</para>

      <programlisting>hostname="provider.example.org"
ifconfig_fxp0="inet 192.168.1.5 netmask 255.255.255.0"
cloned_interfaces="carp0 carp1"
ifconfig_carp0="vhid 1 advskew 100 pass testpass 192.168.1.50/24"
ifconfig_carp1="vhid 2 advskew 100 pass testpass 192.168.1.51/24"</programlisting>

      <para>Having the two <devicename>carp</devicename> devices will
	allow <hostid>provider.example.org</hostid> to notice and pick
	up the <acronym>IP</acronym> address of either machine should
	it stop responding.</para>

      <note>
	<para>The default &os; kernel <emphasis>may</emphasis> have
	  preemption enabled.  If so,
	  <hostid>provider.example.org</hostid> may not relinquish the
	  <acronym>IP</acronym> address back to the original content
	  server.  In this case, an administrator may have to manually
	  force the IP back to the master.  The following command
	  should be issued on
	  <hostid>provider.example.org</hostid>:</para>

	<screen>&prompt.root; <userinput>ifconfig carp0 down &amp;&amp; ifconfig carp0 up</userinput></screen>

	<para>This should be done on the <devicename>carp</devicename>
	  interface which corresponds to the correct host.</para>
      </note>

      <para>At this point, <acronym>CARP</acronym> should be
	completely enabled and available for testing.  For testing,
	either networking has to be restarted or the machines need to
	be rebooted.</para>

      <para>More information is always available in the &man.carp.4;
	manual page.</para>
    </sect2>
  </sect1>
</chapter>