aboutsummaryrefslogtreecommitdiff
path: root/en_US.ISO8859-1/books/handbook/disks/chapter.xml
blob: b5e775a54ef9e33db0d796c149d1bc46bf71a5d1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
<?xml version="1.0" encoding="iso-8859-1"?>
<!--
     The FreeBSD Documentation Project

     $FreeBSD$
-->

<chapter xmlns="http://docbook.org/ns/docbook"
  xmlns:xlink="http://www.w3.org/1999/xlink" version="5.0"
  xml:id="disks">

  <title>Storage</title>

  <sect1 xml:id="disks-synopsis">
    <title>Synopsis</title>

    <para>This chapter covers the use of disks and storage media in
      &os;.  This includes <acronym>SCSI</acronym> and
      <acronym>IDE</acronym> disks, <acronym>CD</acronym> and
      <acronym>DVD</acronym> media, memory-backed disks, and
      <acronym>USB</acronym> storage devices.</para>

    <para>After reading this chapter, you will know:</para>

    <itemizedlist>
      <listitem>
	<para>How to add additional hard disks to a &os;
	  system.</para>
      </listitem>

      <listitem>
	<para>How to grow the size of a disk's partition on
	  &os;.</para>
      </listitem>

      <listitem>
	<para>How to configure &os; to use <acronym>USB</acronym>
	  storage devices.</para>
      </listitem>

      <listitem>
	<para>How to use <acronym>CD</acronym> and
	  <acronym>DVD</acronym> media on a &os; system.</para>
      </listitem>

      <listitem>
	<para>How to use the backup programs available under
	  &os;.</para>
      </listitem>

      <listitem>
	<para>How to set up memory disks.</para>
      </listitem>

      <listitem>
	<para>What file system snapshots are and how to use them
	  efficiently.</para>
      </listitem>

      <listitem>
	<para>How to use quotas to limit disk space usage.</para>
      </listitem>

      <listitem>
	<para>How to encrypt disks and swap to secure them against
	  attackers.</para>
      </listitem>

      <listitem>
	<para>How to configure a highly available storage
	  network.</para>
      </listitem>
    </itemizedlist>

    <para>Before reading this chapter, you should:</para>

    <itemizedlist>
      <listitem>
	<para>Know how to <link linkend="kernelconfig">configure and
	    install a new &os; kernel</link>.</para>
      </listitem>
    </itemizedlist>
  </sect1>

  <sect1 xml:id="disks-adding">
    <info>
      <title>Adding Disks</title>

      <authorgroup>
	<author>
	  <personname>
	    <firstname>David</firstname>
	    <surname>O'Brien</surname>
	  </personname>
	  <contrib>Originally contributed by </contrib>
	</author>
      </authorgroup>
    </info>

    <indexterm>
      <primary>disks</primary>
      <secondary>adding</secondary>
    </indexterm>

    <para>This section describes how to add a new
      <acronym>SATA</acronym> disk to a machine that currently only
      has a single drive.  First, turn off the computer and install
      the drive in the computer following the instructions of the
      computer, controller, and drive manufacturers.  Reboot the
      system and become
      <systemitem class="username">root</systemitem>.</para>

    <para>Inspect <filename>/var/run/dmesg.boot</filename> to ensure
      the new disk was found.  In this example, the newly added
      <acronym>SATA</acronym> drive will appear as
      <filename>ada1</filename>.</para>

    <indexterm><primary>partitions</primary></indexterm>
    <indexterm>
      <primary><command>gpart</command></primary>
    </indexterm>

    <para>For this example, a single large partition will be created
      on the new disk.  The <link
	xlink:href="http://en.wikipedia.org/wiki/GUID_Partition_Table">
	<acronym>GPT</acronym></link> partitioning scheme will be
      used in preference to the older and less versatile
      <acronym>MBR</acronym> scheme.</para>

    <note>
      <para>If the disk to be added is not blank, old partition
	information can be removed with
	<command>gpart delete</command>.  See &man.gpart.8; for
	details.</para>
    </note>

    <para>The partition scheme is created, and then a single partition
      is added:</para>

    <screen>&prompt.root; <userinput>gpart create -s GPT ada1</userinput>
&prompt.root; <userinput>gpart add -t freebsd-ufs ada1</userinput></screen>

    <para>Depending on use, several smaller partitions may be desired.
      See &man.gpart.8; for options to create partitions smaller than
      a whole disk.</para>

    <para>A file system is created on the new blank disk:</para>

    <screen>&prompt.root; <userinput>newfs -U /dev/ada1p1</userinput></screen>

    <para>An empty directory is created as a
      <emphasis>mountpoint</emphasis>, a location for mounting the new
      disk in the original disk's file system:</para>

    <screen>&prompt.root; <userinput>mkdir /newdisk</userinput></screen>

    <para>Finally, an entry is added to
      <filename>/etc/fstab</filename> so the new disk will be mounted
      automatically at startup:</para>

    <programlisting>/dev/ada1p1	/newdisk	ufs	rw	2	2</programlisting>

    <para>The new disk can be mounted manually, without restarting the
      system:</para>

    <screen>&prompt.root; <userinput>mount /newdisk</userinput></screen>
  </sect1>

  <sect1 xml:id="disks-growing">
    <info>
      <title>Resizing and Growing Disks</title>

      <authorgroup>
	<author>
	  <personname>
	    <firstname>Allan</firstname>
	    <surname>Jude</surname>
	  </personname>
	  <contrib>Originally contributed by </contrib>
	</author>
      </authorgroup>
    </info>

    <indexterm>
      <primary>disks</primary>
      <secondary>resizing</secondary>
    </indexterm>

    <para>A disk's capacity can increase without any changes to the
      data already present.  This happens commonly with virtual
      machines, when the virtual disk turns out to be too small and is
      enlarged.  Sometimes a disk image is written to a
      <acronym>USB</acronym> memory stick, but does not use the full
      capacity.  Here we describe how to resize or
      <emphasis>grow</emphasis> disk contents to take advantage of
      increased capacity.</para>

    <para>Determine the device name of the disk to be resized by
      inspecting <filename>/var/run/dmesg.boot</filename>.  In this
      example, there is only one <acronym>SATA</acronym> disk in the
      system, so the drive will appear as
      <filename>ada0</filename>.</para>

    <indexterm><primary>partitions</primary></indexterm>
    <indexterm>
      <primary><command>gpart</command></primary>
    </indexterm>

    <para>List the partitions on the disk to see the current
      configuration:</para>

    <screen>&prompt.root; <userinput>gpart show <replaceable>ada0</replaceable></userinput>
=>      34  83886013  ada0  GPT  (48G) [CORRUPT]
        34       128     1  freebsd-boot  (64k)
       162  79691648     2  freebsd-ufs  (38G)
  79691810   4194236     3  freebsd-swap  (2G)
  83886046         1        - free -  (512B)</screen>

    <note>
      <para>If the disk was formatted with the <link
	  xlink:href="http://en.wikipedia.org/wiki/GUID_Partition_Table">
	<acronym>GPT</acronym></link> partitioning scheme, it may show
	as <quote>corrupted</quote> because the <acronym>GPT</acronym>
	backup partition table is no longer at the end of the
	drive.  Fix the backup
	partition table with
	<command>gpart</command>:</para>

      <screen>&prompt.root; <userinput>gpart recover <replaceable>ada0</replaceable></userinput>
ada0 recovered</screen>
    </note>

    <para>Now the additional space on the disk is available for
      use by a new partition, or an existing partition can be
      expanded:</para>

    <screen>&prompt.root; <userinput>gpart show <replaceable>ada0</replaceable></userinput>
=>       34  102399933  ada0  GPT  (48G)
         34        128     1  freebsd-boot  (64k)
        162   79691648     2  freebsd-ufs  (38G)
   79691810    4194236     3  freebsd-swap  (2G)
   83886046   18513921        - free -  (8.8G)</screen>

    <para>Partitions can only be resized into contiguous free space.
      Here, the last partition on the disk is the swap partition, but
      the second partition is the one that needs to be resized.  Swap
      partitions only contain temporary data, so it can safely be
      unmounted, deleted, and then recreated after resizing other
      partitions.</para>

    <screen>&prompt.root; <userinput>swapoff <replaceable>/dev/ada0p3</replaceable></userinput>
&prompt.root; <userinput>gpart delete -i <replaceable>3</replaceable> <replaceable>ada0</replaceable></userinput>
ada0p3 deleted
&prompt.root; <userinput>gpart show <replaceable>ada0</replaceable></userinput>
=>       34  102399933  ada0  GPT  (48G)
         34        128     1  freebsd-boot  (64k)
        162   79691648     2  freebsd-ufs  (38G)
   79691810   22708157        - free -  (10G)</screen>

    <warning>
      <para>There is risk of data loss when modifying the partition
	table of a mounted file system.  It is best to perform the
	following steps on an unmounted file system while running from
	a live <acronym>CD-ROM</acronym> or <acronym>USB</acronym>
	device.  However, if absolutely necessary, a mounted file
	system can be  resized after disabling GEOM safety
	features:</para>

      <screen>&prompt.root; <userinput>sysctl kern.geom.debugflags=16</userinput></screen>
    </warning>

    <para>Resize the partition, leaving room to recreate a swap
      partition of the desired size.  This only modifies the size of
      the partition.  The file system in the partition will be
      expanded in a separate step.</para>

    <screen>&prompt.root; <userinput>gpart resize -i <replaceable>2</replaceable> -a 4k -s <replaceable>47G</replaceable> <replaceable>ada0</replaceable></userinput>
ada0p2 resized
&prompt.root; <userinput>gpart show <replaceable>ada0</replaceable></userinput>
=>       34  102399933  ada0  GPT  (48G)
         34        128     1  freebsd-boot  (64k)
        162   98566144     2  freebsd-ufs  (47G)
   98566306    3833661        - free -  (1.8G)</screen>

    <para>Recreate the swap partition:</para>

    <screen>&prompt.root; <userinput>gpart add -t freebsd-swap -a 4k <replaceable>ada0</replaceable></userinput>
ada0p3 added
&prompt.root; <userinput>gpart show <replaceable>ada0</replaceable></userinput>
=>       34  102399933  ada0  GPT  (48G)
         34        128     1  freebsd-boot  (64k)
        162   98566144     2  freebsd-ufs  (47G)
   98566306    3833661     3  freebsd-swap  (1.8G)
&prompt.root; <userinput>swapon <replaceable>/dev/ada0p3</replaceable></userinput></screen>

    <para>Grow the <acronym>UFS</acronym> file system to use the new
      capacity of the resized partition:</para>

    <note>
      <para>Growing a live <acronym>UFS</acronym> file system is only
	possible in &os; 10.0-RELEASE and later.  For earlier
	versions, the file system must not be mounted.</para>
    </note>

    <screen>&prompt.root; <userinput>growfs <replaceable>/dev/ada0p2</replaceable></userinput>
Device is mounted read-write; resizing will result in temporary write suspension for /.
It's strongly recommended to make a backup before growing the file system.
OK to grow file system on /dev/ada0p2, mounted on /, from 38GB to 47GB? [Yes/No] <userinput>Yes</userinput>
super-block backups (for fsck -b #) at:
 80781312, 82063552, 83345792, 84628032, 85910272, 87192512, 88474752,
 89756992, 91039232, 92321472, 93603712, 94885952, 96168192, 97450432</screen>

    <para>Both the partition and the file system on it have now been
      resized to use the newly-available disk space.</para>
  </sect1>

  <sect1 xml:id="usb-disks">
    <info>
      <title><acronym>USB</acronym> Storage Devices</title>

      <authorgroup>
	<author>
	  <personname>
	    <firstname>Marc</firstname>
	    <surname>Fonvieille</surname>
	  </personname>
	  <contrib>Contributed by </contrib>
	</author>
      </authorgroup>
    </info>

    <indexterm>
      <primary>USB</primary>
      <secondary>disks</secondary>
    </indexterm>

    <para>Many external storage solutions, such as hard drives,
      <acronym>USB</acronym> thumbdrives, and <acronym>CD</acronym>
      and <acronym>DVD</acronym> burners, use the Universal Serial Bus
      (<acronym>USB</acronym>).  &os; provides support for
      <acronym>USB</acronym> 1.x, 2.0, and 3.0 devices.</para>

    <note>
      <para><acronym>USB</acronym> 3.0 support is not compatible with
	some hardware, including Haswell (Lynx point) chipsets.  If
	&os; boots with a <errorname>failed with error 19</errorname>
	message, disable xHCI/USB3 in the system
	<acronym>BIOS</acronym>.</para>
    </note>

    <para>Support for <acronym>USB</acronym> storage devices is built
      into the <filename>GENERIC</filename> kernel.  For a custom
      kernel, be sure that the following lines are present in the
      kernel configuration file:</para>

    <programlisting>device scbus	# SCSI bus (required for ATA/SCSI)
device da	# Direct Access (disks)
device pass	# Passthrough device (direct ATA/SCSI access)
device uhci	# provides USB 1.x support
device ohci	# provides USB 1.x support
device ehci	# provides USB 2.0 support
device xhci	# provides USB 3.0 support
device usb	# USB Bus (required)
device umass	# Disks/Mass storage - Requires scbus and da
device cd	# needed for CD and DVD burners</programlisting>

    <para>&os; uses the &man.umass.4; driver which uses the
      <acronym>SCSI</acronym> subsystem to access
      <acronym>USB</acronym> storage devices.  Since any
      <acronym>USB</acronym> device will be seen as a
      <acronym>SCSI</acronym> device by the system, if the
      <acronym>USB</acronym> device is a <acronym>CD</acronym> or
      <acronym>DVD</acronym> burner, do <emphasis>not</emphasis>
      include <option>device atapicam</option> in a custom kernel
      configuration file.</para>

    <para>The rest of this section demonstrates how to verify that a
      <acronym>USB</acronym> storage device is recognized by &os; and
      how to configure the device so that it can be used.</para>

    <sect2>
      <title>Device Configuration</title>

      <para>To test the <acronym>USB</acronym> configuration, plug in
	the <acronym>USB</acronym> device.  Use
	<command>dmesg</command> to confirm that the drive appears in
	the system message buffer.  It should look something like
	this:</para>

      <screen>umass0: &lt;STECH Simple Drive, class 0/0, rev 2.00/1.04, addr 3&gt; on usbus0
umass0:  SCSI over Bulk-Only; quirks = 0x0100
umass0:4:0:-1: Attached to scbus4
da0 at umass-sim0 bus 0 scbus4 target 0 lun 0
da0: &lt;STECH Simple Drive 1.04&gt; Fixed Direct Access SCSI-4 device
da0: Serial Number WD-WXE508CAN263
da0: 40.000MB/s transfers
da0: 152627MB (312581808 512 byte sectors: 255H 63S/T 19457C)
da0: quirks=0x2&lt;NO_6_BYTE&gt;</screen>

      <para>The brand, device node (<filename>da0</filename>), speed,
	and size will differ according to the device.</para>

      <para>Since the <acronym>USB</acronym> device is seen as a
	<acronym>SCSI</acronym> one, <command>camcontrol</command> can
	be used to list the <acronym>USB</acronym> storage devices
	attached to the system:</para>

      <screen>&prompt.root; <userinput>camcontrol devlist</userinput>
&lt;STECH Simple Drive 1.04&gt;          at scbus4 target 0 lun 0 (pass3,da0)</screen>

      <para>Alternately, <command>usbconfig</command> can be used to
	list the device.  Refer to &man.usbconfig.8; for more
	information about this command.</para>

      <screen>&prompt.root; <userinput>usbconfig</userinput>
ugen0.3: &lt;Simple Drive STECH&gt; at usbus0, cfg=0 md=HOST spd=HIGH (480Mbps) pwr=ON (2mA)</screen>

      <para>If the device has not been formatted, refer to <xref
	  linkend="disks-adding"/> for instructions on how to format
	and create partitions on the <acronym>USB</acronym> drive.  If
	the drive comes with a file system, it can be mounted by
	<systemitem class="username">root</systemitem> using the
	instructions in <xref linkend="mount-unmount"/>.</para>

      <warning>
	<para>Allowing untrusted users to mount arbitrary media, by
	  enabling <varname>vfs.usermount</varname> as described
	  below, should not be considered safe from a security point
	  of view.  Most file systems were not built to safeguard
	  against malicious devices.</para>
      </warning>

      <para>To make the device mountable as a normal user, one
	solution is to make all users of the device a member of the
	<systemitem class="groupname">operator</systemitem> group
	using &man.pw.8;.  Next, ensure that <systemitem
	  class="groupname">operator</systemitem> is able to read and
	write the device by adding these lines to
	<filename>/etc/devfs.rules</filename>:</para>

      <programlisting>[localrules=5]
add path 'da*' mode 0660 group operator</programlisting>

      <note>
	<para>If internal <acronym>SCSI</acronym> disks are also
	  installed in the system, change the second line as
	  follows:</para>

	<programlisting>add path 'da[<replaceable>3</replaceable>-9]*' mode 0660 group operator</programlisting>

	<para>This will exclude the first three
	  <acronym>SCSI</acronym> disks (<filename>da0</filename> to
	  <filename>da2</filename>)from belonging to the <systemitem
	    class="groupname">operator</systemitem> group.  Replace
	  <replaceable>3</replaceable> with the number of internal
	  <acronym>SCSI</acronym> disks.  Refer to &man.devfs.rules.5;
	  for more information about this file.</para>
      </note>

      <para>Next, enable the ruleset in
	<filename>/etc/rc.conf</filename>:</para>

      <programlisting>devfs_system_ruleset="localrules"</programlisting>

      <para>Then, instruct the system to allow regular users to mount
	file systems by adding the following line to
	<filename>/etc/sysctl.conf</filename>:</para>

      <programlisting>vfs.usermount=1</programlisting>

      <para>Since this only takes effect after the next reboot, use
	<command>sysctl</command> to set this variable now:</para>

      <screen>&prompt.root; <userinput>sysctl vfs.usermount=1</userinput>
vfs.usermount: 0 -&gt; 1</screen>

      <para>The final step is to create a directory where the file
	system is to be mounted.  This directory needs to be owned by
	the user that is to mount the file system.  One way to do that
	is for <systemitem class="username">root</systemitem> to
	create a subdirectory owned by that user as <filename
	  class="directory">/mnt/<replaceable>username</replaceable></filename>.
	In the following example, replace
	<replaceable>username</replaceable> with the login name of the
	user and <replaceable>usergroup</replaceable> with the user's
	primary group:</para>

      <screen>&prompt.root; <userinput>mkdir /mnt/<replaceable>username</replaceable></userinput>
&prompt.root; <userinput>chown <replaceable>username</replaceable>:<replaceable>usergroup</replaceable> /mnt/<replaceable>username</replaceable></userinput></screen>

      <para>Suppose a <acronym>USB</acronym> thumbdrive is plugged in,
	and a device <filename>/dev/da0s1</filename> appears.  If the
	device is formatted with a <acronym>FAT</acronym> file system,
	the user can mount it using:</para>

      <screen>&prompt.user; <userinput>mount -t msdosfs -o -m=644,-M=755 /dev/da0s1 /mnt/<replaceable>username</replaceable></userinput></screen>

      <para>Before the device can be unplugged, it
	<emphasis>must</emphasis> be unmounted first:</para>

      <screen>&prompt.user; <userinput>umount /mnt/<replaceable>username</replaceable></userinput></screen>

      <para>After device removal, the system message buffer will show
	messages similar to the following:</para>

      <screen>umass0: at uhub3, port 2, addr 3 (disconnected)
da0 at umass-sim0 bus 0 scbus4 target 0 lun 0
da0: &lt;STECH Simple Drive 1.04&gt; s/n WD-WXE508CAN263          detached
(da0:umass-sim0:0:0:0): Periph destroyed</screen>
    </sect2>
  </sect1>

  <sect1 xml:id="creating-cds">
    <info>
      <title>Creating and Using <acronym>CD</acronym> Media</title>

      <authorgroup>
	<author>
	  <personname>
	    <firstname>Mike</firstname>
	    <surname>Meyer</surname>
	  </personname>
	  <contrib>Contributed by </contrib>
	</author>
      </authorgroup>
    </info>

    <indexterm>
      <primary><acronym>CD-ROM</acronym>s</primary>
      <secondary>creating</secondary>
    </indexterm>

    <para>Compact Disc (<acronym>CD</acronym>) media provide a number
      of features that differentiate them from conventional disks.
      They are designed so that they can be read continuously without
      delays to move the head between tracks.  While
      <acronym>CD</acronym> media do have tracks, these refer to a
      section of data to be read continuously, and not a physical
      property of the disk.  The <acronym>ISO</acronym> 9660 file
      system was designed to deal with these differences.</para>

    <indexterm><primary><acronym>ISO</acronym>
      9660</primary></indexterm>
    <indexterm>
      <primary>file systems</primary>
      <secondary>ISO 9660</secondary>
    </indexterm>

    <indexterm>
      <primary><acronym>CD</acronym> burner</primary>
      <secondary><acronym>ATAPI</acronym></secondary>
    </indexterm>

    <para>The &os; Ports Collection provides several utilities for
      burning and duplicating audio and data <acronym>CD</acronym>s.
      This chapter demonstrates the use of several command line
      utilities.  For <acronym>CD</acronym> burning software with a
      graphical utility, consider installing the
      <package>sysutils/xcdroast</package> or
      <package>sysutils/k3b</package> packages or ports.</para>

    <sect2 xml:id="atapicam">
      <info>
	<title>Supported Devices</title>

	<authorgroup>
	  <author>
	    <personname>
	      <firstname>Marc</firstname>
	      <surname>Fonvieille</surname>
	    </personname>
	    <contrib>Contributed by </contrib>
	  </author>
	</authorgroup>
      </info>

      <indexterm>
	<primary><acronym>CD</acronym> burner</primary>
	<secondary>ATAPI/CAM driver</secondary>
      </indexterm>

      <para>The <filename>GENERIC</filename> kernel provides support
	for <acronym>SCSI</acronym>,  <acronym>USB</acronym>, and
	<acronym>ATAPI</acronym> <acronym>CD</acronym> readers and
	burners.  If a custom kernel is used, the options that need to
	be present in the kernel configuration file vary by the type
	of device.</para>

      <para>For a <acronym>SCSI</acronym> burner, make sure these
	options are present:</para>

      <programlisting>device scbus	# SCSI bus (required for ATA/SCSI)
device da	# Direct Access (disks)
device pass	# Passthrough device (direct ATA/SCSI access)
device cd	# needed for CD and DVD burners</programlisting>

      <para>For a <acronym>USB</acronym> burner, make sure these
	options are present:</para>

      <programlisting>device scbus	# SCSI bus (required for ATA/SCSI)
device da	# Direct Access (disks)
device pass	# Passthrough device (direct ATA/SCSI access)
device cd	# needed for CD and DVD burners
device uhci	# provides USB 1.x support
device ohci	# provides USB 1.x support
device ehci	# provides USB 2.0 support
device xhci	# provides USB 3.0 support
device usb	# USB Bus (required)
device umass	# Disks/Mass storage - Requires scbus and da</programlisting>

      <para>For an <acronym>ATAPI</acronym> burner, make sure these
	options are present:</para>

      <programlisting>device ata	# Legacy ATA/SATA controllers
device scbus	# SCSI bus (required for ATA/SCSI)
device pass	# Passthrough device (direct ATA/SCSI access)
device cd	# needed for CD and DVD burners</programlisting>

      <note>
	<para>On &os; versions prior to 10.x, this line is also
	  needed in the kernel configuration file if the burner is an
	  <acronym>ATAPI</acronym> device:</para>

	<programlisting>device atapicam</programlisting>

	<para>Alternately, this driver can be loaded at boot time by
	  adding the following line to
	  <filename>/boot/loader.conf</filename>:</para>

	<programlisting>atapicam_load="YES"</programlisting>

	<para>This will require a reboot of the system as this driver
	  can only be loaded at boot time.</para>
      </note>

      <para>To verify that &os; recognizes the device, run
	<command>dmesg</command> and look for an entry for the device.
	On systems prior to 10.x, the device name in the first line of
	the output will be <filename>acd0</filename> instead of
	<filename>cd0</filename>.</para>

      <screen>&prompt.user; <userinput>dmesg | grep cd</userinput>
cd0 at ahcich1 bus 0 scbus1 target 0 lun 0
cd0: &lt;HL-DT-ST DVDRAM GU70N LT20&gt; Removable CD-ROM SCSI-0 device
cd0: Serial Number M3OD3S34152
cd0: 150.000MB/s transfers (SATA 1.x, UDMA6, ATAPI 12bytes, PIO 8192bytes)
cd0: Attempt to query device size failed: NOT READY, Medium not present - tray closed</screen>
    </sect2>

    <sect2 xml:id="cdrecord">
      <title>Burning a <acronym>CD</acronym></title>

      <para>In &os;, <command>cdrecord</command> can be used to burn
	<acronym>CD</acronym>s.  This command is installed with the
	<package>sysutils/cdrtools</package> package or port.</para>

      <note>
	<para>&os; 8.x includes the built-in
	  <command>burncd</command> utility for burning
	  <acronym>CD</acronym>s using an <acronym>ATAPI</acronym>
	  <acronym>CD</acronym> burner.  Refer to the manual page for
	  <command>burncd</command> for usage examples.</para>
      </note>

      <para>While <command>cdrecord</command> has many options, basic
	usage is simple.  Specify the name of the
	<acronym>ISO</acronym> file to burn and, if the system has
	multiple burner devices, specify the name of the device to
	use:</para>

      <screen>&prompt.root; <userinput>cdrecord <replaceable>dev=device</replaceable> <replaceable>imagefile.iso</replaceable></userinput></screen>

      <para>To determine the device name of the burner, use
	<option>-scanbus</option> which might produce results like
	this:</para>

      <indexterm>
	<primary><acronym>CD-ROM</acronym>s</primary>
	<secondary>burning</secondary>
      </indexterm>
      <screen>&prompt.root; <userinput>cdrecord -scanbus</userinput>
ProDVD-ProBD-Clone 3.00 (amd64-unknown-freebsd10.0) Copyright (C) 1995-2010 J&ouml;rg Schilling
Using libscg version 'schily-0.9'
scsibus0:
        0,0,0     0) 'SEAGATE ' 'ST39236LW       ' '0004' Disk
        0,1,0     1) 'SEAGATE ' 'ST39173W        ' '5958' Disk
        0,2,0     2) *
        0,3,0     3) 'iomega  ' 'jaz 1GB         ' 'J.86' Removable Disk
        0,4,0     4) 'NEC     ' 'CD-ROM DRIVE:466' '1.26' Removable CD-ROM
        0,5,0     5) *
        0,6,0     6) *
        0,7,0     7) *
scsibus1:
        1,0,0   100) *
        1,1,0   101) *
        1,2,0   102) *
        1,3,0   103) *
        1,4,0   104) *
        1,5,0   105) 'YAMAHA  ' 'CRW4260         ' '1.0q' Removable CD-ROM
        1,6,0   106) 'ARTEC   ' 'AM12S           ' '1.06' Scanner
        1,7,0   107) *</screen>

      <para>Locate the entry for the <acronym>CD</acronym> burner and
	use the three numbers separated by commas as the value for
	<option>dev</option>.  In this case, the Yamaha burner device
	is <literal>1,5,0</literal>, so the appropriate input to
	specify that device is <option>dev=1,5,0</option>.  Refer to
	the manual page for <command>cdrecord</command> for other ways
	to specify this value and for information on writing audio
	tracks and controlling the write speed.</para>

      <para>Alternately, run the following command to get the device
	address of the burner:</para>

      <screen>&prompt.root; <userinput>camcontrol devlist</userinput>
&lt;MATSHITA CDRW/DVD UJDA740 1.00&gt;   at scbus1 target 0 lun 0 (cd0,pass0)</screen>

      <para>Use the numeric values for <literal>scbus</literal>,
	<literal>target</literal>, and <literal>lun</literal>.  For
	this example, <literal>1,0,0</literal> is the device name to
	use.</para>
    </sect2>

    <sect2 xml:id="mkisofs">
      <title>Writing Data to an <acronym>ISO</acronym> File
	System</title>

      <para>In order to produce a data <acronym>CD</acronym>, the data
	files that are going to make up the tracks on the
	<acronym>CD</acronym> must be prepared before they can be
	burned to the <acronym>CD</acronym>.  In &os;,
	<package>sysutils/cdrtools</package> installs
	<command>mkisofs</command>, which can be used to produce an
	<acronym>ISO</acronym> 9660 file system that is an image of a
	directory tree within a &unix; file system.  The simplest
	usage is to specify the name of the <acronym>ISO</acronym>
	file to create and the path to the files to place into the
	<acronym>ISO</acronym> 9660 file system:</para>

      <screen>&prompt.root; <userinput>mkisofs -o <replaceable>imagefile.iso</replaceable> <replaceable>/path/to/tree</replaceable></userinput></screen>

      <indexterm>
	<primary>file systems</primary>
	<secondary>ISO 9660</secondary>
      </indexterm>

      <para>This command maps the file names in the specified path to
	names that fit the limitations of the standard
	<acronym>ISO</acronym> 9660 file system, and will exclude
	files that do not meet the standard for <acronym>ISO</acronym>
	file systems.</para>

      <indexterm>
	<primary>file systems</primary>
	<secondary>Joliet</secondary>
      </indexterm>

      <para>A number of options are available to overcome the
	restrictions imposed by the standard.  In particular,
	<option>-R</option> enables the Rock Ridge extensions common
	to &unix; systems and <option>-J</option> enables Joliet
	extensions used by &microsoft; systems.</para>

      <para>For <acronym>CD</acronym>s that are going to be used only
	on &os; systems, <option>-U</option> can be used to disable
	all filename restrictions.  When used with
	<option>-R</option>, it produces a file system image that is
	identical to the specified &os; tree, even if it violates the
	<acronym>ISO</acronym> 9660 standard.</para>

      <indexterm>
	<primary><acronym>CD-ROM</acronym>s</primary>
	<secondary>creating bootable</secondary>
      </indexterm>

      <para>The last option of general use is <option>-b</option>.
	This is used to specify the location of a boot image for use
	in producing an <quote>El Torito</quote> bootable
	<acronym>CD</acronym>.  This option takes an argument which is
	the path to a boot image from the top of the tree being
	written to the <acronym>CD</acronym>.  By default,
	<command>mkisofs</command> creates an <acronym>ISO</acronym>
	image in <quote>floppy disk emulation</quote> mode, and thus
	expects the boot image to be exactly 1200, 1440 or
	2880&nbsp;KB in size.  Some boot loaders, like the one used by
	the &os; distribution media, do not use emulation mode.  In
	this case, <option>-no-emul-boot</option> should be used.  So,
	if <filename>/tmp/myboot</filename> holds a bootable &os;
	system with the boot image in
	<filename>/tmp/myboot/boot/cdboot</filename>, this command
	would produce
	<filename>/tmp/bootable.iso</filename>:</para>

      <screen>&prompt.root; <userinput>mkisofs -R -no-emul-boot -b boot/cdboot -o /tmp/bootable.iso /tmp/myboot</userinput></screen>

      <para>The resulting <acronym>ISO</acronym> image can be mounted
	as a memory disk with:</para>

      <screen>&prompt.root; <userinput>mdconfig -a -t vnode -f /tmp/bootable.iso -u 0</userinput>
&prompt.root; <userinput>mount -t cd9660 /dev/md0 /mnt</userinput></screen>

      <para>One can then verify that <filename>/mnt</filename> and
	<filename>/tmp/myboot</filename> are identical.</para>

      <para>There are many other options available for
	<command>mkisofs</command> to fine-tune its behavior.  Refer
	to &man.mkisofs.8; for details.</para>

      <note>
	<para>It is possible to copy a data <acronym>CD</acronym> to
	  an image file that is functionally equivalent to the image
	  file created with <command>mkisofs</command>.  To do so, use
	  <filename>dd</filename> with the device name as the input
	  file and the name of the <acronym>ISO</acronym> to create as
	  the output file:</para>

	<screen>&prompt.root; <userinput>dd if=/dev/<replaceable>cd0</replaceable> of=<replaceable>file.iso</replaceable> bs=2048</userinput></screen>

	<para>The resulting image file can be burned to
	  <acronym>CD</acronym> as described in <xref
	    linkend="cdrecord"/>.</para>
      </note>
    </sect2>

    <sect2 xml:id="mounting-cd">
      <title>Using Data <acronym>CD</acronym>s</title>

      <para>Once an <acronym>ISO</acronym> has been burned to a
	<acronym>CD</acronym>, it can be mounted by specifying the
	file system type, the name of the device containing the
	<acronym>CD</acronym>, and an existing mount point:</para>

      <screen>&prompt.root; <userinput>mount -t cd9660 <replaceable>/dev/cd0</replaceable> <replaceable>/mnt</replaceable></userinput></screen>

      <para>Since <command>mount</command> assumes that a file system
	is of type <literal>ufs</literal>, a <errorname>Incorrect
	  super block</errorname> error will occur if <literal>-t
	  cd9660</literal> is not included when mounting a data
	<acronym>CD</acronym>.</para>

      <para>While any data <acronym>CD</acronym> can be mounted this
	way, disks with certain <acronym>ISO</acronym> 9660 extensions
	might behave oddly.  For example, Joliet disks store all
	filenames in two-byte Unicode characters.  If some non-English
	characters show up as question marks, specify the local
	charset with <option>-C</option>.  For more information, refer
	to &man.mount.cd9660.8;.</para>

      <note>
	<para>In order to do this character conversion with the help
	  of <option>-C</option>, the kernel requires the
	  <filename>cd9660_iconv.ko</filename> module to be loaded.
	  This can be done either by adding this line to
	  <filename>loader.conf</filename>:</para>

	<programlisting>cd9660_iconv_load="YES"</programlisting>

	<para>and then rebooting the machine, or by directly loading
	  the module with <command>kldload</command>.</para>
      </note>

      <para>Occasionally, <errorname>Device not configured</errorname>
	will be displayed when trying to mount a data
	<acronym>CD</acronym>.  This usually means that the
	<acronym>CD</acronym> drive thinks that there is no disk in
	the tray, or that the drive is not visible on the bus.  It
	can take a couple of seconds for a <acronym>CD</acronym>
	drive to realize that a media is present, so be
	patient.</para>

      <para>Sometimes, a <acronym>SCSI</acronym>
	<acronym>CD</acronym> drive may be missed because it did not
	have enough time to answer the bus reset.  To resolve this,
	a custom kernel can be created which increases the default
	<acronym>SCSI</acronym> delay.  Add the following option to
	the custom kernel configuration file and rebuild the kernel
	using the instructions in <xref
	  linkend="kernelconfig-building"/>:</para>

      <programlisting>options SCSI_DELAY=15000</programlisting>

      <para>This tells the <acronym>SCSI</acronym> bus to pause 15
	seconds during boot, to give the <acronym>CD</acronym>
	drive every possible chance to answer the bus reset.</para>

      <note>
	<para>It is possible to burn a file directly to
	  <acronym>CD</acronym>, without creating an
	  <acronym>ISO</acronym> 9660 file system.  This is known as
	  burning a raw data <acronym>CD</acronym> and some people do
	  this for backup purposes.</para>

	<para>This type of disk can not be mounted as a normal data
	  <acronym>CD</acronym>.  In order to retrieve the data burned
	  to such a <acronym>CD</acronym>, the data must be read from
	  the raw device node.  For example, this command will extract
	  a compressed tar file located on the second
	  <acronym>CD</acronym> device into the current working
	  directory:</para>

	<screen>&prompt.root; <userinput>tar xzvf /dev/<replaceable>cd1</replaceable></userinput></screen>

	<para>  In order to mount a data <acronym>CD</acronym>, the
	  data must be written using
	  <command>mkisofs</command>.</para>
      </note>
    </sect2>

    <sect2 xml:id="duplicating-audiocds">
      <title>Duplicating Audio <acronym>CD</acronym>s</title>

      <para>To duplicate an audio <acronym>CD</acronym>, extract the
	audio data from the <acronym>CD</acronym> to a series of
	files, then write these files to a blank
	<acronym>CD</acronym>.</para>

      <para><xref linkend="using-cdrecord"/> describes how to
	duplicate and burn an audio <acronym>CD</acronym>.  If the
	&os; version is less than 10.0 and the device is
	<acronym>ATAPI</acronym>, the <option>atapicam</option> module
	must be first loaded using the instructions in <xref
	  linkend="atapicam"/>.</para>

      <procedure xml:id="using-cdrecord">
	<title>Duplicating an Audio <acronym>CD</acronym></title>

	<step>
	  <para>The <package>sysutils/cdrtools</package> package or
	    port installs <command>cdda2wav</command>.  This command
	    can be used to extract all of the audio tracks, with each
	    track written to a separate <acronym>WAV</acronym> file in
	    the current working directory:</para>

	  <screen>&prompt.user; <userinput>cdda2wav -vall -B -Owav</userinput></screen>

	  <para>A device name does not need to be specified if there
	    is only one <acronym>CD</acronym> device on the system.
	    Refer to the <command>cdda2wav</command> manual page for
	    instructions on how to specify a device and to learn more
	    about the other options available for this command.</para>
	</step>

	<step>
	  <para>Use <command>cdrecord</command> to write the
	    <filename>.wav</filename> files:</para>

	  <screen>&prompt.user; <userinput>cdrecord -v dev=<replaceable>2,0</replaceable> -dao -useinfo  *.wav</userinput></screen>

	  <para>Make sure that <replaceable>2,0</replaceable> is set
	    appropriately, as described in <xref
	      linkend="cdrecord"/>.</para>
	</step>
      </procedure>
    </sect2>
  </sect1>

  <sect1 xml:id="creating-dvds">
    <info>
      <title>Creating and Using <acronym>DVD</acronym> Media</title>

      <authorgroup>
	<author>
	  <personname>
	    <firstname>Marc</firstname>
	    <surname>Fonvieille</surname>
	  </personname>
	  <contrib>Contributed by </contrib>
	</author>
      </authorgroup>
      <authorgroup>
	<author>
	  <personname>
	    <firstname>Andy</firstname>
	    <surname>Polyakov</surname>
	  </personname>
	  <contrib>With inputs from </contrib>
	</author>
      </authorgroup>
    </info>

    <indexterm>
      <primary><acronym>DVD</acronym></primary>
      <secondary>burning</secondary>
    </indexterm>

    <para>Compared to the <acronym>CD</acronym>, the
      <acronym>DVD</acronym> is the next generation of optical media
      storage technology.  The <acronym>DVD</acronym> can hold more
      data than any <acronym>CD</acronym> and is the standard for
      video publishing.</para>

    <para>Five physical recordable formats can be defined for a
      recordable <acronym>DVD</acronym>:</para>

    <itemizedlist>
      <listitem>
	<para>DVD-R: This was the first <acronym>DVD</acronym>
	  recordable format available.  The DVD-R standard is defined
	  by the <link
	    xlink:href="http://www.dvdforum.com/forum.shtml"><acronym>DVD</acronym>
	    Forum</link>.  This format is write once.</para>
      </listitem>

      <listitem>
	<para><acronym>DVD-RW</acronym>: This is the rewritable
	  version of the DVD-R standard.  A
	  <acronym>DVD-RW</acronym> can be rewritten about 1000
	  times.</para>
      </listitem>

      <listitem>
	<para><acronym>DVD-RAM</acronym>: This is a rewritable format
	  which can be seen as a removable hard drive.  However, this
	  media is not compatible with most
	  <acronym>DVD-ROM</acronym> drives and DVD-Video players as
	  only a few <acronym>DVD</acronym> writers support the
	  <acronym>DVD-RAM</acronym> format.  Refer to <xref
	    linkend="creating-dvd-ram"/> for more information on
	  <acronym>DVD-RAM</acronym> use.</para>
      </listitem>

      <listitem>
	<para><acronym>DVD+RW</acronym>: This is a rewritable format
	  defined by the <link
	    xlink:href="http://www.dvdrw.com/"><acronym>DVD+RW</acronym>
	    Alliance</link>.  A <acronym>DVD+RW</acronym> can be
	  rewritten about 1000 times.</para>
      </listitem>

      <listitem>
	<para>DVD+R: This format is the write once variation of the
	  <acronym>DVD+RW</acronym> format.</para>
      </listitem>
    </itemizedlist>

    <para>A single layer recordable <acronym>DVD</acronym> can hold up
      to 4,700,000,000&nbsp;bytes which is actually 4.38&nbsp;GB or
      4485&nbsp;MB as 1 kilobyte is 1024 bytes.</para>

    <note>
      <para>A distinction must be made between the physical media and
	the application.  For example, a DVD-Video is a specific file
	layout that can be written on any recordable
	<acronym>DVD</acronym> physical media such as DVD-R, DVD+R, or
	<acronym>DVD-RW</acronym>.  Before choosing the type of media,
	ensure that both the burner and the DVD-Video player are
	compatible with the media under consideration.</para>
    </note>

    <sect2>
      <title>Configuration</title>

      <para>To perform <acronym>DVD</acronym> recording, use
	&man.growisofs.1;.  This command is part of the
	<package>sysutils/dvd+rw-tools</package> utilities which
	support all <acronym>DVD</acronym> media types.</para>

      <para>These tools use the <acronym>SCSI</acronym> subsystem to
	access the devices, therefore <link
	  linkend="atapicam">ATAPI/CAM support</link> must be loaded
	or statically compiled into the kernel.  This support is not
	needed if the burner uses the <acronym>USB</acronym>
	interface.  Refer to <xref linkend="usb-disks"/> for more
	details on <acronym>USB</acronym> device configuration.</para>

      <para>DMA access must also be enabled for
	<acronym>ATAPI</acronym> devices, by adding the following line
	to <filename>/boot/loader.conf</filename>:</para>

      <programlisting>hw.ata.atapi_dma="1"</programlisting>

      <para>Before attempting to use
	<application>dvd+rw-tools</application>, consult the <link
	  xlink:href="http://fy.chalmers.se/~appro/linux/DVD+RW/hcn.html">Hardware
	  Compatibility Notes</link>.</para>

      <note>
	<para>For a graphical user interface, consider using
	  <package>sysutils/k3b</package> which provides a user
	  friendly interface to &man.growisofs.1; and many other
	  burning tools.</para>
      </note>
    </sect2>

    <sect2>
      <title>Burning Data <acronym>DVD</acronym>s</title>

      <para>Since &man.growisofs.1; is a front-end to <link
	  linkend="mkisofs">mkisofs</link>, it will invoke
	&man.mkisofs.8; to create the file system layout and perform
	the write on the <acronym>DVD</acronym>.  This means that an
	image of the data does not need to be created before the
	burning process.</para>

      <para>To burn to a DVD+R or a DVD-R the data in
	<filename>/path/to/data</filename>, use the following
	command:</para>

      <screen>&prompt.root; <userinput>growisofs -dvd-compat -Z <replaceable>/dev/cd0</replaceable> -J -R <replaceable>/path/to/data</replaceable></userinput></screen>

      <para>In this example, <option>-J -R</option> is passed to
	&man.mkisofs.8;  to create an ISO 9660 file system with Joliet
	and Rock Ridge extensions.  Refer to &man.mkisofs.8; for more
	details.</para>

      <para>For the initial session recording, <option>-Z</option> is
	used for both single and multiple sessions.  Replace
	<replaceable>/dev/cd0</replaceable>, with the name of the
	<acronym>DVD</acronym> device.  Using
	<option>-dvd-compat</option> indicates that the disk will be
	closed and that the recording will be unappendable.  This
	should also provide better media compatibility with
	<acronym>DVD-ROM</acronym> drives.</para>

      <para>To burn a pre-mastered image, such as
	<replaceable>imagefile.iso</replaceable>, use:</para>

      <screen>&prompt.root; <userinput>growisofs -dvd-compat -Z <replaceable>/dev/cd0</replaceable>=<replaceable>imagefile.iso</replaceable></userinput></screen>

      <para>The write speed should be detected and automatically set
	according to the media and the drive being used.  To force the
	write speed, use  <option>-speed=</option>.  Refer to
	&man.growisofs.1; for example usage.</para>

      <note>
	<para>In order to support working files larger than 4.38GB, an
	  UDF/ISO-9660 hybrid file system must be created by passing
	  <option>-udf -iso-level 3</option> to &man.mkisofs.8; and
	  all related programs, such as &man.growisofs.1;.  This is
	  required only when creating an ISO image file or when
	  writing files directly to a disk.  Since a disk created this
	  way must be mounted as an UDF file system with
	  &man.mount.udf.8;, it will be usable only on an UDF aware
	  operating system.  Otherwise it will look as if it contains
	  corrupted files.</para>

	<para>To create this type of ISO file:</para>

	<screen>&prompt.user; <userinput>mkisofs -R -J -udf -iso-level 3 -o <replaceable>imagefile.iso</replaceable> <replaceable>/path/to/data</replaceable></userinput></screen>

	<para>To burn files directly to a disk:</para>

	<screen>&prompt.root; <userinput>growisofs -dvd-compat -udf -iso-level 3 -Z <replaceable>/dev/cd0</replaceable> -J -R <replaceable>/path/to/data</replaceable></userinput></screen>

	<para>When an ISO image already contains large files, no
	  additional options are required for &man.growisofs.1; to
	  burn that image on a disk.</para>

	<para>Be sure to use an up-to-date version of
	  <package>sysutils/cdrtools</package>, which contains
	  &man.mkisofs.8;, as an older version may not contain large
	  files support.  If the latest version does not work, install
	  <package>sysutils/cdrtools-devel</package> and read its
	  &man.mkisofs.8;.</para>
      </note>
    </sect2>

    <sect2>
      <title>Burning a <acronym>DVD</acronym>-Video</title>

      <indexterm>
	<primary><acronym>DVD</acronym></primary>
	<secondary>DVD-Video</secondary>
      </indexterm>

      <para>A DVD-Video is a specific file layout based on the ISO
	9660 and micro-UDF (M-UDF) specifications.  Since DVD-Video
	presents a specific data structure hierarchy, a particular
	program such as <package>multimedia/dvdauthor</package> is
	needed to author the <acronym>DVD</acronym>.</para>

      <para>If an image of the DVD-Video file system already exists,
	it can be burned in the same way as any other image.  If
	<command>dvdauthor</command> was used to make the
	<acronym>DVD</acronym> and the result is in
	<filename>/path/to/video</filename>, the following command
	should be used to burn the DVD-Video:</para>

      <screen>&prompt.root; <userinput>growisofs -Z <replaceable>/dev/cd0</replaceable> -dvd-video <replaceable>/path/to/video</replaceable></userinput></screen>

      <para><option>-dvd-video</option> is passed to &man.mkisofs.8;
	to instruct it to create a DVD-Video file system layout.
	This option implies the <option>-dvd-compat</option>
	&man.growisofs.1; option.</para>
    </sect2>

    <sect2>
      <title>Using a <acronym>DVD+RW</acronym></title>

      <indexterm>
	<primary><acronym>DVD</acronym></primary>
	<secondary><acronym>DVD+RW</acronym></secondary>
      </indexterm>

      <para>Unlike CD-RW, a virgin <acronym>DVD+RW</acronym> needs to
	be formatted before first use.  It is
	<emphasis>recommended</emphasis> to let &man.growisofs.1; take
	care of this automatically whenever appropriate.  However, it
	is possible to use <command>dvd+rw-format</command> to format
	the <acronym>DVD+RW</acronym>:</para>

      <screen>&prompt.root; <userinput>dvd+rw-format <replaceable>/dev/cd0</replaceable></userinput></screen>

      <para>Only perform this operation once and keep in mind that
	only virgin <acronym>DVD+RW</acronym> medias need to be
	formatted.  Once formatted, the <acronym>DVD+RW</acronym> can
	be burned as usual.</para>

      <para>To burn a totally new file system and not just append some
	data onto a <acronym>DVD+RW</acronym>, the media does not need
	to be blanked first.  Instead, write over the previous
	recording like this:</para>

      <screen>&prompt.root; <userinput>growisofs -Z <replaceable>/dev/cd0</replaceable> -J -R <replaceable>/path/to/newdata</replaceable></userinput></screen>

      <para>The <acronym>DVD+RW</acronym> format supports appending
	data to a previous recording.  This operation consists of
	merging a new session to the existing one as it is not
	considered to be multi-session writing.  &man.growisofs.1;
	will <emphasis>grow</emphasis> the ISO 9660 file system
	present on the media.</para>

      <para>For example, to append data to a
	<acronym>DVD+RW</acronym>, use the following:</para>

      <screen>&prompt.root; <userinput>growisofs -M <replaceable>/dev/cd0</replaceable> -J -R <replaceable>/path/to/nextdata</replaceable></userinput></screen>

      <para>The same &man.mkisofs.8; options used to burn the
	initial session should be used during next writes.</para>

      <note>
	<para>Use <option>-dvd-compat</option> for better media
	  compatibility with <acronym>DVD-ROM</acronym> drives.  When
	  using <acronym>DVD+RW</acronym>, this option will not
	  prevent the addition of data.</para>
      </note>

      <para>To blank the media, use:</para>

      <screen>&prompt.root; <userinput>growisofs -Z <replaceable>/dev/cd0</replaceable>=<replaceable>/dev/zero</replaceable></userinput></screen>
    </sect2>

    <sect2>
      <title>Using a <acronym>DVD-RW</acronym></title>

      <indexterm>
	<primary><acronym>DVD</acronym></primary>
	<secondary><acronym>DVD-RW</acronym></secondary>
      </indexterm>

      <para>A <acronym>DVD-RW</acronym> accepts two disc formats:
	incremental sequential and restricted overwrite.  By default,
	<acronym>DVD-RW</acronym> discs are in sequential
	format.</para>

      <para>A virgin <acronym>DVD-RW</acronym> can be directly written
	without being formatted.  However, a non-virgin
	<acronym>DVD-RW</acronym> in sequential format needs to be
	blanked before writing a new initial session.</para>

      <para>To blank a <acronym>DVD-RW</acronym> in sequential
	mode:</para>

      <screen>&prompt.root; <userinput>dvd+rw-format -blank=full <replaceable>/dev/cd0</replaceable></userinput></screen>

      <note>
	<para>A full blanking using <option>-blank=full</option> will
	  take about one hour on a 1x media.  A fast blanking can be
	  performed using <option>-blank</option>, if the
	  <acronym>DVD-RW</acronym> will be recorded in Disk-At-Once
	  (DAO) mode.  To burn the <acronym>DVD-RW</acronym> in DAO
	  mode, use the command:</para>

	<screen>&prompt.root; <userinput>growisofs -use-the-force-luke=dao -Z <replaceable>/dev/cd0</replaceable>=<replaceable>imagefile.iso</replaceable></userinput></screen>

	<para>Since &man.growisofs.1; automatically attempts to detect
	  fast blanked media and engage DAO write,
	  <option>-use-the-force-luke=dao</option> should not be
	  required.</para>

	<para>One should instead use restricted overwrite mode with
	  any <acronym>DVD-RW</acronym> as this format is more
	  flexible than the default of incremental sequential.</para>
      </note>

      <para>To write data on a sequential <acronym>DVD-RW</acronym>,
	use the same instructions as for the other
	<acronym>DVD</acronym> formats:</para>

      <screen>&prompt.root; <userinput>growisofs -Z <replaceable>/dev/cd0</replaceable> -J -R <replaceable>/path/to/data</replaceable></userinput></screen>

      <para>To append some data to a previous recording, use
	<option>-M</option> with &man.growisofs.1;.  However, if data
	is appended on a <acronym>DVD-RW</acronym> in incremental
	sequential mode, a new session will be created on the disc and
	the result will be a multi-session disc.</para>

      <para>A <acronym>DVD-RW</acronym> in restricted overwrite format
	does not need to be blanked before a new initial session.
	Instead, overwrite the disc with <option>-Z</option>.  It is
	also possible to grow an existing ISO 9660 file system written
	on the disc with <option>-M</option>.  The result will be a
	one-session <acronym>DVD</acronym>.</para>

      <para>To put a <acronym>DVD-RW</acronym> in restricted overwrite
	format, the following command must be used:</para>

      <screen>&prompt.root; <userinput>dvd+rw-format <replaceable>/dev/cd0</replaceable></userinput></screen>

      <para>To change back to sequential format, use:</para>

      <screen>&prompt.root; <userinput>dvd+rw-format -blank=full <replaceable>/dev/cd0</replaceable></userinput></screen>
    </sect2>

    <sect2>
      <title>Multi-Session</title>

      <para>Few <acronym>DVD-ROM</acronym> drives support
	multi-session DVDs and most of the time only read the first
	session.  DVD+R, DVD-R and <acronym>DVD-RW</acronym> in
	sequential format can accept multiple sessions.  The notion
	of multiple sessions does not exist for the
	<acronym>DVD+RW</acronym> and the <acronym>DVD-RW</acronym>
	restricted overwrite formats.</para>

      <para>Using the following command after an initial non-closed
	session on a DVD+R, DVD-R, or <acronym>DVD-RW</acronym> in
	sequential format, will add a new session to the disc:</para>

      <screen>&prompt.root; <userinput>growisofs -M <replaceable>/dev/cd0</replaceable> -J -R <replaceable>/path/to/nextdata</replaceable></userinput></screen>

      <para>Using this command with a <acronym>DVD+RW</acronym> or a
	<acronym>DVD-RW</acronym> in restricted overwrite mode will
	append data while merging the new session to the existing one.
	The result will be a single-session disc.  Use this method to
	add data after an initial write on these types of
	media.</para>

      <note>
	<para>Since some space on the media is used between each
	  session to mark the end and start of sessions, one should
	  add sessions with a large amount of data to optimize media
	  space.  The number of sessions is limited to 154 for a
	  DVD+R, about 2000 for a DVD-R, and 127 for a DVD+R Double
	  Layer.</para>
      </note>
    </sect2>

    <sect2>
      <title>For More Information</title>

      <para>To obtain more information about a <acronym>DVD</acronym>,
	use <command>dvd+rw-mediainfo
	  <replaceable>/dev/cd0</replaceable></command> while the
	disc in the specified drive.</para>

      <para>More information about
	<application>dvd+rw-tools</application> can be found in
	&man.growisofs.1;, on the <link
	  xlink:href="http://fy.chalmers.se/~appro/linux/DVD+RW/">dvd+rw-tools
	  web site</link>, and in the <link
	  xlink:href="http://lists.debian.org/cdwrite/">cdwrite
	  mailing list</link> archives.</para>

      <note>
	<para>When creating a problem report related to the use of
	  <application>dvd+rw-tools</application>, always include the
	  output of <command>dvd+rw-mediainfo</command>.</para>
      </note>
    </sect2>

    <sect2 xml:id="creating-dvd-ram">
      <title>Using a <acronym>DVD-RAM</acronym></title>

      <indexterm>
	<primary><acronym>DVD</acronym></primary>
	<secondary><acronym>DVD-RAM</acronym></secondary>
      </indexterm>

      <para><acronym>DVD-RAM</acronym> writers can use either a
	<acronym>SCSI</acronym> or <acronym>ATAPI</acronym> interface.
	For <acronym>ATAPI</acronym> devices, DMA access has to be
	enabled by adding the following line to
	<filename>/boot/loader.conf</filename>:</para>

      <programlisting>hw.ata.atapi_dma="1"</programlisting>

      <para>A <acronym>DVD-RAM</acronym> can be seen as a removable
	hard drive.  Like any other hard drive, the
	<acronym>DVD-RAM</acronym> must be formatted before it can be
	used.  In this example, the whole disk space will be formatted
	with a standard UFS2 file system:</para>

      <screen>&prompt.root; <userinput>dd if=/dev/zero of=<replaceable>/dev/acd0</replaceable> bs=2k count=1</userinput>
&prompt.root; <userinput>bsdlabel -Bw <replaceable>acd0</replaceable></userinput>
&prompt.root; <userinput>newfs <replaceable>/dev/acd0</replaceable></userinput></screen>

      <para>The <acronym>DVD</acronym> device,
	<filename>acd0</filename>, must be changed according to the
	configuration.</para>

      <para>Once the <acronym>DVD-RAM</acronym> has been formatted, it
	can be mounted as a normal hard drive:</para>

      <screen>&prompt.root; <userinput>mount <replaceable>/dev/acd0</replaceable> <replaceable>/mnt</replaceable></userinput></screen>

      <para>Once mounted, the <acronym>DVD-RAM</acronym> will be both
	readable and writeable.</para>
    </sect2>
  </sect1>

  <sect1 xml:id="floppies">
    <title>Creating and Using Floppy Disks</title>

<!--
      <authorgroup>
	<author>
	  <personname>
	    <firstname>Julio</firstname>
	    <surname>Merino</surname>
	  </personname>
	  <contrib>Original work by </contrib>
	</author>
      </authorgroup>

      <authorgroup>
	<author>
	  <personname>
	    <firstname>Martin</firstname>
	    <surname>Karlsson</surname>
	  </personname>
	  <contrib>Rewritten by </contrib>
	</author>
      </authorgroup>
      -->

    <para>This section explains how to format a 3.5 inch floppy disk
      in &os;.</para>

    <procedure>
      <title>Steps to Format a Floppy</title>

      <para>A floppy disk needs to be low-level formatted before it
	can be used.  This is usually done by the vendor, but
	formatting is a good way to check media integrity.  To
	low-level format the floppy disk on &os;, use
	&man.fdformat.1;.  When using this utility, make note of any
	error messages, as these can help determine if the disk is
	good or bad.</para>

      <step>
	<para>To format the floppy, insert a new 3.5 inch floppy disk
	  into the first floppy drive and issue:</para>

	  <screen>&prompt.root; <userinput>/usr/sbin/fdformat -f 1440 /dev/fd0</userinput></screen>
      </step>

      <step>
	<para>After low-level formatting the disk, create a disk label
	  as it is needed by the system to determine the size of the
	  disk and its geometry.  The supported geometry values are
	  listed in <filename>/etc/disktab</filename>.</para>

	<para>To write the disk label, use &man.bsdlabel.8;:</para>

	<screen>&prompt.root; <userinput>/sbin/bsdlabel -B -w /dev/fd0 fd1440</userinput></screen>
      </step>

      <step>
	<para>The floppy is now ready to be high-level formatted with
	  a file system.  The floppy's file system can be either UFS
	  or FAT, where FAT is generally a better choice for
	  floppies.</para>

	<para>To format the floppy with FAT, issue:</para>

	<screen>&prompt.root; <userinput>/sbin/newfs_msdos /dev/fd0</userinput></screen>
      </step>
    </procedure>

    <para>The disk is now ready for use.  To use the floppy, mount it
      with &man.mount.msdosfs.8;.  One can also install and use
      <package>emulators/mtools</package> from the Ports
      Collection.</para>
  </sect1>

  <sect1 xml:id="backup-basics">
    <title>Backup Basics</title>

<!--
    <authorgroup>
	<author>
	  <personname>
	    <firstname>Lowell</firstname>
	    <surname>Gilbert</surname>
	  </personname>
	  <contrib>Original work by </contrib>
	</author>
      </authorgroup>
      -->

    <para>Implementing a backup plan is essential in order to have the
      ability to recover from disk failure, accidental file deletion,
      random file corruption, or complete machine destruction,
      including destruction of on-site backups.</para>

    <para>The backup type and schedule will vary, depending upon the
      importance of the data, the granularity needed for file
      restores, and the amount of acceptable downtime.  Some possible
      backup techniques include:</para>

    <itemizedlist>
      <listitem>
	<para>Archives of the whole system, backed up onto permanent,
	  off-site media.  This provides protection against all of the
	  problems listed above, but is slow and inconvenient to
	  restore from, especially for non-privileged users.</para>
      </listitem>

      <listitem>
	<para>File system snapshots, which are useful for restoring
	  deleted files or previous versions of files.</para>
      </listitem>

      <listitem>
	<para>Copies of whole file systems or disks which are
	  sychronized with another system on the network using a
	  scheduled <package>net/rsync</package>.</para>
      </listitem>

      <listitem>
	<para>Hardware or software <acronym>RAID</acronym>, which
	  minimizes or avoids downtime when a disk fails.</para>
      </listitem>
    </itemizedlist>

    <para>Typically, a mix of backup techniques is used.  For
      example, one could create a schedule to automate a weekly, full
      system backup that is stored off-site and to supplement this
      backup with hourly ZFS snapshots.  In addition, one could make a
      manual backup of individual directories or files before making
      file edits or deletions.</para>

    <para>This section describes some of the utilities which can be
      used to create and manage backups on a &os; system.</para>

    <sect2>
      <title>File System Backups</title>

      <indexterm>
	<primary>backup software</primary>
	<secondary>dump / restore</secondary>
      </indexterm>
      <indexterm>
	<primary><command>dump</command></primary>
      </indexterm>
      <indexterm>
	<primary><command>restore</command></primary>
      </indexterm>

      <para>The traditional &unix; programs for backing up a file
	system are &man.dump.8;, which creates the backup, and
	&man.restore.8;, which restores the backup.  These utilities
	work at the disk block level, below the abstractions of the
	files, links, and directories that are created by file
	systems.  Unlike other backup software,
	<command>dump</command> backs up an entire file system and is
	unable to backup only part of a file system or a directory
	tree that spans multiple file systems.  Instead of writing
	files and directories, <command>dump</command> writes the raw
	data blocks that comprise files and directories.</para>

      <note>
	<para>If <command>dump</command> is used on the root
	  directory, it will not back up <filename>/home</filename>,
	  <filename>/usr</filename> or many other directories since
	  these are typically mount points for other file systems or
	  symbolic links into those file systems.</para>
      </note>

      <para>When used to restore data, <command>restore</command>
	stores temporary files in <filename>/tmp/</filename> by
	default.  When using a recovery disk with a small
	<filename>/tmp</filename>, set <envar>TMPDIR</envar> to a
	directory with more free space in order for the restore to
	succeed.</para>

      <para>When using <command>dump</command>, be aware that some
	quirks remain from its early days in Version 6 of
	AT&amp;T &unix;,circa 1975.  The default parameters assume a
	backup to a 9-track tape, rather than to another type of media
	or to the high-density tapes available today.  These defaults
	must be overridden on the command line.</para>

      <indexterm>
	<primary><filename>.rhosts</filename></primary>
      </indexterm>
      <para>It is possible to backup a file system across the network
	to a another system or to a tape drive attached to another
	computer.  While the &man.rdump.8; and &man.rrestore.8;
	utilities can be used for this purpose, they are not
	considered to be secure.</para>

      <para>Instead, one can use <command>dump</command> and
	<command>restore</command> in a more secure fashion over an
	<acronym>SSH</acronym> connection.  This example creates a
	full, compressed backup of the <filename>/usr</filename> file
	system and sends the backup file to the specified host over a
	<acronym>SSH</acronym> connection.</para>

      <example>
	<title>Using <command>dump</command> over
	  <application>ssh</application></title>

	<screen>&prompt.root; <userinput>/sbin/dump -0uan -f - /usr | gzip -2 | ssh -c blowfish \
          targetuser@targetmachine.example.com dd of=/mybigfiles/dump-usr-l0.gz</userinput></screen>
      </example>

      <para>This example sets <envar>RSH</envar> in order to write the
	backup to a tape drive on a remote system over a
	<acronym>SSH</acronym> connection:</para>

      <example>
	<title>Using <command>dump</command> over
	  <application>ssh</application> with <envar>RSH</envar>
	  Set</title>

	<screen>&prompt.root; <userinput>env RSH=/usr/bin/ssh /sbin/dump -0uan -f targetuser@targetmachine.example.com:/dev/sa0 /usr</userinput></screen>
      </example>
    </sect2>

    <sect2>
      <title>Directory Backups</title>

      <indexterm>
	<primary>backup software</primary>
	<secondary><command>tar</command></secondary>
      </indexterm>

      <para>Several built-in utilities are available for backing up
	and restoring specified files and directories as
	needed.</para>

      <para>A good choice for making a backup of all of the files in a
	directory is &man.tar.1;.  This utility dates back to Version
	6 of AT&amp;T &unix; and by default assumes a recursive backup
	to a local tape  device.  Switches can be used to instead
	specify the name of a backup file.</para>

      <indexterm><primary><command>tar</command></primary></indexterm>

      <para>This example creates a compressed backup of the current
	directory and saves it to
	<filename>/tmp/mybackup.tgz</filename>.  When creating a
	backup file, make sure that the backup is not saved to the
	same directory that is being backed up.</para>

      <example>
	<title>Backing Up the Current Directory With
	  <command>tar</command></title>

      <screen>&prompt.root; <userinput>tar czvf <replaceable>/tmp/mybackup.tgz</replaceable> . </userinput></screen>
      </example>

      <para>To restore the entire backup, <command>cd</command> into
	the directory to restore into and specify the name of the
	backup.  Note that this will overwrite any newer versions of
	files in the restore directory.  When in doubt, restore to a
	temporary directory or specify the name of the file within the
	backup to restore.</para>

      <example>
	<title>Restoring Up the Current Directory With
	  <command>tar</command></title>

      <screen>&prompt.root; <userinput>tar xzvf <replaceable>/tmp/mybackup.tgz</replaceable></userinput></screen>
      </example>

      <para>There are dozens of available switches which are described
	in &man.tar.1;.  This utility also supports the use of exclude
	patterns to specify which files should not be included when
	backing up the specified directory or restoring files from a
	backup.</para>

      <indexterm>
	<primary>backup software</primary>
	<secondary><command>cpio</command></secondary>
      </indexterm>

      <para>To create a backup using a specified list of files and
	directories, &man.cpio.1; is a good choice.  Unlike
	<command>tar</command>, <command>cpio</command> does not know
	how to walk the directory tree and it must be provided the
	list of files to backup.</para>

      <para>For example, a list of files can be created using
	<command>ls</command> or <command>find</command>.  This
	example creates a recursive listing of the current directory
	which is then piped to  <command>cpio</command> in order to
	create an output backup file named
	<filename>/tmp/mybackup.cpio</filename>.</para>

      <example>
	<title>Using<command>ls</command> and <command>cpio</command>
	  to Make a Recursive Backup of the Current Directory</title>

      <screen>&prompt.root; <userinput>ls -R | cpio -ovF <replaceable>/tmp/mybackup.cpio</replaceable></userinput></screen>
      </example>

      <indexterm>
	<primary>backup software</primary>
	<secondary><command>pax</command></secondary>
      </indexterm>
      <indexterm><primary><command>pax</command></primary></indexterm>
      <indexterm><primary>POSIX</primary></indexterm>
      <indexterm><primary>IEEE</primary></indexterm>

      <para>A backup utility which tries to bridge the features
	provided by <command>tar</command> and <command>cpio</command>
	is &man.pax.1;.  Over the years, the various versions of
	<command>tar</command> and <command>cpio</command> became
	slightly incompatible.  &posix; created <command>pax</command>
	which attempts to read and write many of the various
	<command>cpio</command> and <command>tar</command> formats,
	plus new formats of its own.</para>

      <para>The <command>pax</command> equivalent to the previous
	examples would be:</para>

      <example>
	<title>Backing Up the Current Directory With
	  <command>pax</command></title>

      <screen>&prompt.root; <userinput>pax -wf <replaceable>/tmp/mybackup.pax</replaceable> .</userinput></screen>
      </example>
    </sect2>

    <sect2 xml:id="backups-tapebackups">
      <title>Using Data Tapes for Backups</title>

      <indexterm><primary>tape media</primary></indexterm>

      <para>While tape technology has continued to evolve, modern
	backup systems tend to combine off-site backups with local
	removable media.  &os; supports any tape drive that uses
	<acronym>SCSI</acronym>, such as <acronym>LTO</acronym> or
	<acronym>DAT</acronym>.  There is limited support for
	<acronym>SATA</acronym> and <acronym>USB</acronym> tape
	drives.</para>

      <para>For <acronym>SCSI</acronym> tape devices, &os; uses the
	&man.sa.4; driver and the <filename>/dev/sa0</filename>,
	<filename>/dev/nsa0</filename>, and
	<filename>/dev/esa0</filename> devices.  The physical device
	name is <filename>/dev/sa0</filename>.  When
	<filename>/dev/nsa0</filename> is used, the backup application
	will not rewind the tape after writing a file, which allows
	writing more than one file to a tape.  Using
	<filename>/dev/esa0</filename> ejects the tape after the
	device is closed.</para>

      <para>In &os;, <command>mt</command> is used to control
	operations of the tape drive, such as seeking through files on
	a tape or writing tape control marks to the tape.  For
	example, the first three files on a tape can be preserved by
	skipping past them before writing a new file:</para>

      <screen>&prompt.root; <userinput>mt -f /dev/nsa0 fsf 3</userinput></screen>

      <para>This utility supports many operations.  Refer to
	&man.mt.1; for details.</para>

      <para>To write a single file to tape using
	<command>tar</command>, specify the name of the tape device
	and the file to backup:</para>

      <screen>&prompt.root; <userinput>tar cvf /dev/sa0 <replaceable>file</replaceable></userinput></screen>

      <para>To recover files from a <command>tar</command> archive
	on tape into the current directory:</para>

      <screen>&prompt.root; <userinput>tar xvf /dev/sa0</userinput></screen>

      <para>To backup a <acronym>UFS</acronym> file system, use
	<command>dump</command>.  This examples backs up
	<filename>/usr</filename> without rewinding the tape when
	finished:</para>

      <screen>&prompt.root; <userinput>dump -0aL -b64 -f /dev/nsa0 /usr</userinput></screen>

      <para>To interactively restore files from a
	<command>dump</command> file on tape into the current
	directory:</para>

      <screen>&prompt.root; <userinput>restore -i -f /dev/nsa0</userinput></screen>
    </sect2>

    <sect2 xml:id="backups-programs-amanda">
      <title>Third-Party Backup Utilities</title>

      <indexterm>
	<primary>backup software</primary>
      </indexterm>

      <para>The &os; Ports Collection provides many third-party
	utilities which can be used to schedule the creation of
	backups, simplify tape backup, and make backups easier and
	more convenient.  Many of these applications are client/server
	based and can be used to automate the backups of a single
	system or all of the computers in a network.</para>

      <para>Popular utilities include
	<application>Amanda</application>,
	<application>Bacula</application>,
	<application>rsync</application>, and
	<application>duplicity</application>.</para>
    </sect2>

    <sect2>
      <title>Emergency Recovery</title>

      <para>In addition to regular backups, it is recommended to
	perform the following steps as part of an emergency
	preparedness plan.</para>

      <indexterm>
	<primary><command>bsdlabel</command></primary></indexterm>

      <para>Create a print copy of the output of the following
	commands:</para>

      <itemizedlist>
	<listitem>
	  <para><command>gpart show</command></para>
	</listitem>

	<listitem>
	  <para><command>more /etc/fstab</command></para>
	</listitem>

	<listitem>
	  <para><command>dmesg</command></para>
	</listitem>
      </itemizedlist>

      <indexterm><primary>livefs
	  <acronym>CD</acronym></primary></indexterm>

      <para>Store this printout and a copy of the installation media
	in a secure location.  Should an emergency restore be
	needed, boot into the installation media and select
	<literal>Live CD</literal> to access a rescue shell.  This
	rescue mode can be used to view the current state of the
	system, and if needed, to  reformat disks and restore data
	from backups.</para>

      <note>
	<para>The installation media for
	  &os;/&arch.i386;&nbsp;&rel2.current;-RELEASE does not
	  include a rescue shell.  For this version, instead
	  download and burn a Livefs <acronym>CD</acronym> image from
	  <uri
	    xlink:href="ftp://ftp.FreeBSD.org/pub/FreeBSD/releases/&arch.i386;/ISO-IMAGES/&rel2.current;/&os;-&rel2.current;-RELEASE-&arch.i386;-livefs.iso">ftp://ftp.FreeBSD.org/pub/FreeBSD/releases/&arch.i386;/ISO-IMAGES/&rel2.current;/&os;-&rel2.current;-RELEASE-&arch.i386;-livefs.iso</uri>.</para>
      </note>

      <para>Next, test the rescue shell and the backups.  Make notes
	of the procedure.  Store these notes with the media, the
	printouts, and the backups.  These notes may prevent the
	inadvertent destruction of the backups while under the stress
	of performing an emergency recovery.</para>

      <para>For an added measure of security, store the latest backup
	at a remote location which is physically separated from the
	computers and disk drives by a significant distance.</para>
    </sect2>
  </sect1>

  <sect1 xml:id="disks-virtual">
    <info>
      <title>Memory Disks</title>

      <authorgroup>
	<author>
	  <personname>
	    <firstname>Marc</firstname>
	    <surname>Fonvieille</surname>
	  </personname>
	  <contrib>Reorganized and enhanced by </contrib>
	</author>
      </authorgroup>
    </info>

    <para>In addition to physical disks, &os; also supports the
      creation and use of memory disks.  One possible use for a
      memory disk is to access the contents of an
      <acronym>ISO</acronym> file system without the overhead of first
      burning it to a <acronym>CD</acronym> or <acronym>DVD</acronym>,
      then mounting the <acronym>CD/DVD</acronym> media.</para>

    <para>In &os;, the  &man.md.4; driver is used to provide support
      for memory disks.  The <filename>GENERIC</filename> kernel
      includes this driver.  When using a custom kernel configuration
      file, ensure it includes this line:</para>

    <programlisting>device md</programlisting>

    <sect2 xml:id="disks-mdconfig">
      <title>Attaching and Detaching Existing Images</title>

      <indexterm>
	<primary>disks</primary>
	<secondary>memory</secondary>
      </indexterm>

      <para>To mount an existing file system image, use
	<command>mdconfig</command> to specify the name of the
	<acronym>ISO</acronym> file and a free unit number.  Then,
	refer to that unit number to mount it on an existing mount
	point.  Once mounted, the files in the <acronym>ISO</acronym>
	will appear in the mount point.  This example attaches
	<replaceable>diskimage.iso</replaceable> to the memory device
	<filename>/dev/md0</filename> then mounts that memory device
	on <filename>/mnt</filename>:</para>

      <screen>&prompt.root; <userinput>mdconfig -f <replaceable>diskimage.iso</replaceable> -u <replaceable>0</replaceable></userinput>
&prompt.root; <userinput>mount /dev/md<replaceable>0</replaceable> <replaceable>/mnt</replaceable></userinput></screen>

      <para>If a unit number is not specified with
	<option>-u</option>, <command>mdconfig</command> will
	automatically allocate an unused memory device and output
	the name of the allocated unit, such as
	<filename>md4</filename>.  Refer to &man.mdconfig.8; for more
	details about this command and its options.</para>

      <indexterm>
	<primary>disks</primary>
	<secondary>detaching a memory disk</secondary>
      </indexterm>

      <para>When a memory disk is no longer in use, its resources
	should be released back to the system.  First, unmount the
	file system, then use <command>mdconfig</command> to detach
	the disk from the system and release its resources.  To
	continue this example:</para>

      <screen>&prompt.root; <userinput>umount /mnt</userinput>
&prompt.root; <userinput>mdconfig -d -u <replaceable>0</replaceable></userinput></screen>

      <para>To determine if any memory disks are still attached to the
	system, type <command>mdconfig -l</command>.</para>
    </sect2>

    <sect2 xml:id="disks-md-freebsd5">
      <title>Creating a File- or Memory-Backed Memory Disk</title>

      <indexterm>
	<primary>disks</primary>
	<secondary>memory file system</secondary>
      </indexterm>
      <para>&os; also supports memory disks where the storage to use
	is allocated from either a hard disk or an area of memory.
	The first method is commonly referred to as a file-backed file
	system and the second method as a memory-backed file system.
	Both types can be created using
	<command>mdconfig</command>.</para>

      <para>To create a new memory-backed file system, specify a type
	of <literal>swap</literal> and the size of the memory disk to
	create.  Then, format the memory disk with a file system and
	mount as usual.  This example creates a 5M memory disk on unit
	<literal>1</literal>.  That memory disk is then formatted with
	the <acronym>UFS</acronym> file system before it is
	mounted:</para>

      <screen>&prompt.root; <userinput>mdconfig -a -t swap -s <replaceable>5</replaceable>m -u <replaceable>1</replaceable></userinput>
&prompt.root; <userinput>newfs -U md<replaceable>1</replaceable></userinput>
/dev/md1: 5.0MB (10240 sectors) block size 16384, fragment size 2048
        using 4 cylinder groups of 1.27MB, 81 blks, 192 inodes.
        with soft updates
super-block backups (for fsck -b #) at:
 160, 2752, 5344, 7936
&prompt.root; <userinput>mount /dev/md<replaceable>1</replaceable> <replaceable>/mnt</replaceable></userinput>
&prompt.root; <userinput>df <replaceable>/mnt</replaceable></userinput>
Filesystem 1K-blocks Used Avail Capacity  Mounted on
/dev/md1        4718    4  4338     0%    /mnt</screen>

      <para>To create a new file-backed memory disk, first allocate an
	area of disk to use.  This example creates an empty 5K file
	named <filename>newimage</filename>:</para>

      <screen>&prompt.root; <userinput>dd if=/dev/zero of=<replaceable>newimage</replaceable> bs=1k count=<replaceable>5</replaceable>k</userinput>
5120+0 records in
5120+0 records out</screen>

      <para>Next, attach that file to a memory disk, label the memory
	disk and format it with the <acronym>UFS</acronym> file
	system, mount the memory disk, and verify the size of the
	file-backed disk:</para>

      <screen>&prompt.root; <userinput>mdconfig -f <replaceable>newimage</replaceable> -u <replaceable>0</replaceable></userinput>
&prompt.root; <userinput>bsdlabel -w md<replaceable>0</replaceable> auto</userinput>
&prompt.root; <userinput>newfs md<replaceable>0</replaceable>a</userinput>
/dev/md0a: 5.0MB (10224 sectors) block size 16384, fragment size 2048
        using 4 cylinder groups of 1.25MB, 80 blks, 192 inodes.
super-block backups (for fsck -b #) at:
 160, 2720, 5280, 7840
&prompt.root; <userinput>mount /dev/md<replaceable>0</replaceable>a <replaceable>/mnt</replaceable></userinput>
&prompt.root; <userinput>df <replaceable>/mnt</replaceable></userinput>
Filesystem 1K-blocks Used Avail Capacity  Mounted on
/dev/md0a       4710    4  4330     0%    /mnt</screen>

      <para>It takes several commands to create a file- or
	memory-backed file system using <command>mdconfig</command>.
	&os; also comes with <command>mdmfs</command> which
	automatically configures a memory disk, formats it with the
	<acronym>UFS</acronym> file system, and mounts it.  For
	example, after creating <replaceable>newimage</replaceable>
	with <command>dd</command>, this one command is equivalent to
	running the <command>bsdlabel</command>,
	<command>newfs</command>, and <command>mount</command>
	commands shown above:</para>

      <screen>&prompt.root; <userinput>mdmfs -F <replaceable>newimage</replaceable> -s <replaceable>5</replaceable>m md<replaceable>0</replaceable> <replaceable>/mnt</replaceable></userinput></screen>

      <para>To instead create a new memory-based memory disk with
	<command>mdmfs</command>, use this one command:</para>

      <screen>&prompt.root; <userinput>mdmfs -s <replaceable>5</replaceable>m md<replaceable>1</replaceable> <replaceable>/mnt</replaceable></userinput></screen>

      <para>If the unit number is not specified,
	<command>mdmfs</command> will automatically select an unused
	memory device.  For more details about
	<command>mdmfs</command>, refer to &man.mdmfs.8;.</para>
    </sect2>
  </sect1>

  <sect1 xml:id="snapshots">
    <info>
      <title>File System Snapshots</title>

      <authorgroup>
	<author>
	  <personname>
	    <firstname>Tom</firstname>
	    <surname>Rhodes</surname>
	  </personname>
	  <contrib>Contributed by </contrib>
	</author>
      </authorgroup>
    </info>

    <indexterm>
      <primary>file systems</primary>
      <secondary>snapshots</secondary>
    </indexterm>

    <para>&os; offers a feature in conjunction with
      <link linkend="soft-updates">Soft Updates</link>: file system
      snapshots.</para>

    <para>UFS snapshots allow a user to create images of specified
      file systems, and treat them as a file.  Snapshot files must be
      created in the file system that the action is performed on, and
      a user may create no more than 20 snapshots per file system.
      Active snapshots are recorded in the superblock so they are
      persistent across unmount and remount operations along with
      system reboots.  When a snapshot is no longer required, it can
      be removed using &man.rm.1;.  While snapshots may be removed in
      any order, all the used space may not be acquired because
      another snapshot will possibly claim some of the released
      blocks.</para>

    <para>The un-alterable <option>snapshot</option> file flag is set
      by &man.mksnap.ffs.8; after initial creation of a snapshot file.
      &man.unlink.1; makes an exception for snapshot files since it
      allows them to be removed.</para>

    <para>Snapshots are created using &man.mount.8;.  To place a
      snapshot of <filename>/var</filename> in the
      file <filename>/var/snapshot/snap</filename>, use the following
      command:</para>

    <screen>&prompt.root; <userinput>mount -u -o snapshot /var/snapshot/snap /var</userinput></screen>

    <para>Alternatively, use &man.mksnap.ffs.8; to create the
      snapshot:</para>

    <screen>&prompt.root; <userinput>mksnap_ffs /var /var/snapshot/snap</userinput></screen>

    <para>One can find snapshot files on a file system, such as
      <filename>/var</filename>, using
      &man.find.1;:</para>

    <screen>&prompt.root; <userinput>find /var -flags snapshot</userinput></screen>

    <para>Once a snapshot has been created, it has several
      uses:</para>

    <itemizedlist>
      <listitem>
	<para>Some administrators will use a snapshot file for backup
	  purposes, because the snapshot can be transferred to
	  <acronym>CD</acronym>s or tape.</para>
      </listitem>

      <listitem>
	<para>The file system integrity checker, &man.fsck.8;, may be
	  run on the snapshot.  Assuming that the file system was
	  clean when it was mounted, this should always provide a
	  clean and unchanging result.</para>
      </listitem>

      <listitem>
	<para>Running &man.dump.8; on the snapshot will produce a dump
	  file that is consistent with the file system and the
	  timestamp of the snapshot.  &man.dump.8; can also take a
	  snapshot, create a dump image, and then remove the snapshot
	  in one command by using <option>-L</option>.</para>
      </listitem>

      <listitem>
	<para>The snapshot can be mounted as a frozen image of the
	  file system.  To &man.mount.8; the snapshot
	  <filename>/var/snapshot/snap</filename> run:</para>

	<screen>&prompt.root; <userinput>mdconfig -a -t vnode -o readonly -f /var/snapshot/snap -u 4</userinput>
&prompt.root; <userinput>mount -r /dev/md4 /mnt</userinput></screen>
      </listitem>
    </itemizedlist>

    <para>The frozen <filename>/var</filename> is now available
      through <filename>/mnt</filename>.  Everything will initially be
      in the same state it was during the snapshot creation time.  The
      only exception is that any earlier snapshots will appear as zero
      length files.  To unmount the snapshot, use:</para>

    <screen>&prompt.root; <userinput>umount /mnt</userinput>
&prompt.root; <userinput>mdconfig -d -u 4</userinput></screen>

    <para>For more information about <option>softupdates</option> and
      file system snapshots, including technical papers, visit
      Marshall Kirk McKusick's website at <uri
	xlink:href="http://www.mckusick.com/">http://www.mckusick.com/</uri>.</para>
  </sect1>

  <sect1 xml:id="quotas">
    <title>Disk Quotas</title>

    <indexterm>
      <primary>accounting</primary>
      <secondary>disk space</secondary>
    </indexterm>
    <indexterm><primary>disk quotas</primary></indexterm>

    <para>Disk quotas can be used to limit the amount of disk space or
      the number of files a user or members of a group may allocate on
      a per-file system basis.  This prevents one user or group of
      users from consuming all of the available disk space.</para>

    <para>This section describes how to configure disk quotas for the
      <acronym>UFS</acronym> file system.  To configure quotas on the
      <acronym>ZFS</acronym> file system, refer to <xref
	linkend="zfs-quotas"/></para>

    <sect2>
      <title>Enabling Disk Quotas</title>

      <para>To determine if the &os; kernel provides support for disk
	quotas:</para>

      <screen>&prompt.user; <userinput>sysctl kern.features.ufs_quota</userinput>
kern.features.ufs_quota: 1</screen>

      <para>In this example, the <literal>1</literal> indicates quota
	support.  If the value is instead <literal>0</literal>, add
	the following line to a custom kernel configuration file and
	rebuild the kernel using the instructions in <xref
	  linkend="kernelconfig"/>:</para>

      <programlisting>options QUOTA</programlisting>

      <para>Next, enable disk quotas in
	<filename>/etc/rc.conf</filename>:</para>

      <programlisting>quota_enable="YES"</programlisting>

      <indexterm>
	<primary>disk quotas</primary>
	<secondary>checking</secondary>
      </indexterm>
      <para>Normally on bootup, the quota integrity of each file
	system is checked by &man.quotacheck.8;.  This program insures
	that the data in the quota database properly reflects the data
	on the file system.  This is a time consuming process that
	will significantly affect the time the system takes to boot.
	To skip this step, add this variable to
	<filename>/etc/rc.conf</filename>:</para>

      <programlisting>check_quotas="NO"</programlisting>

      <para>Finally, edit <filename>/etc/fstab</filename> to enable
	disk quotas on a per-file system basis.  To enable per-user
	quotas on a file system, add <option>userquota</option> to the
	options field in the <filename>/etc/fstab</filename> entry for
	the file system to enable quotas on.  For example:</para>

      <programlisting>/dev/da1s2g   /home    ufs rw,userquota 1 2</programlisting>

      <para>To enable group quotas, use <option>groupquota</option>
	instead.  To enable both user and group quotas, separate the
	options with a comma:</para>

      <programlisting>/dev/da1s2g    /home    ufs rw,userquota,groupquota 1 2</programlisting>

      <para>By default, quota files are stored in the root directory
	of the file system as <filename>quota.user</filename> and
	<filename>quota.group</filename>.  Refer to &man.fstab.5; for
	more information.  Specifying an alternate location for the
	quota files is not recommended.</para>

      <para>Once the configuration is complete, reboot the system and
	<filename>/etc/rc</filename> will automatically run the
	appropriate commands to create the initial quota files for all
	of the quotas enabled in
	<filename>/etc/fstab</filename>.</para>

      <para>In the normal course of operations, there should be no
	need to manually run &man.quotacheck.8;, &man.quotaon.8;, or
	&man.quotaoff.8;.  However, one should read these manual pages
	to be familiar with their operation.</para>
    </sect2>

    <sect2>
      <title>Setting Quota Limits</title>

      <indexterm>
	<primary>disk quotas</primary>
	<secondary>limits</secondary>
      </indexterm>

      <para>To
	verify that quotas are enabled, run:</para>

      <screen>&prompt.root; <userinput>quota -v</userinput></screen>

      <para>There should be a one line summary of disk usage and
	current quota limits for each file system that quotas are
	enabled on.</para>

      <para>The system is now ready to be assigned quota limits with
	<command>edquota</command>.</para>

      <para>Several options are available to enforce limits on the
	amount of disk space a user or group may allocate, and how
	many files they may create.  Allocations can be limited based
	on disk space (block quotas), number of files (inode quotas),
	or a combination of both.  Each limit is further broken down
	into two categories: hard and soft limits.</para>

      <indexterm><primary>hard limit</primary></indexterm>
      <para>A hard limit may not be exceeded.  Once a user reaches a
	hard limit, no further allocations can be made on that file
	system by that user.  For example, if the user has a hard
	limit of 500 kbytes on a file system and is currently using
	490 kbytes, the user can only allocate an additional 10
	kbytes.  Attempting to allocate an additional 11 kbytes will
	fail.</para>

      <indexterm><primary>soft limit</primary></indexterm>
      <para>Soft limits can be exceeded for a limited amount of time,
	known as the grace period, which is one week by default.  If a
	user stays over their limit longer than the grace period, the
	soft limit turns into a hard limit and no further allocations
	are allowed.  When the user drops back below the soft limit,
	the grace period is reset.</para>

      <para>In the following example, the quota for the <systemitem
	  class="username">test</systemitem> account is being edited.
	When <command>edquota</command> is invoked, the editor
	specified by <envar>EDITOR</envar> is opened in order to edit
	the quota limits.  The default editor is set to
	<application>vi</application>.</para>

      <screen>&prompt.root; <userinput>edquota -u test</userinput>
Quotas for user test:
/usr: kbytes in use: 65, limits (soft = 50, hard = 75)
        inodes in use: 7, limits (soft = 50, hard = 60)
/usr/var: kbytes in use: 0, limits (soft = 50, hard = 75)
        inodes in use: 0, limits (soft = 50, hard = 60)</screen>

      <para>There are normally two lines for each file system that has
	quotas enabled.  One line represents the block limits and the
	other represents the inode limits.  Change the value to modify
	the quota limit.  For example, to raise the block limit on
	<filename>/usr</filename> to a soft limit of
	<literal>500</literal> and a hard limit of
	<literal>600</literal>, change the values in that line as
	follows:</para>

      <programlisting>/usr: kbytes in use: 65, limits (soft = 500, hard = 600)</programlisting>

      <para>The new quota limits take affect upon exiting the
	editor.</para>

      <para>Sometimes it is desirable to set quota limits on a range
	of users.  This can be done by first assigning the desired
	quota limit to a user.  Then, use <option>-p</option> to
	duplicate that quota to a specified range of user IDs
	(<acronym>UID</acronym>s).  The following command will
	duplicate those quota limits for <acronym>UID</acronym>s
	<literal>10,000</literal> through
	<literal>19,999</literal>:</para>

      <screen>&prompt.root; <userinput>edquota -p test 10000-19999</userinput></screen>

      <para>For more information, refer to &man.edquota.8;.</para>
    </sect2>

    <sect2>
      <title>Checking Quota Limits and Disk Usage</title>

      <indexterm>
	<primary>disk quotas</primary>
	<secondary>checking</secondary>
      </indexterm>

      <para>To check individual user or group quotas and disk usage,
	use &man.quota.1;.  A user may only examine their own quota
	and the quota of a group they are a member of.  Only the
	superuser may view all user and group quotas.  To get a
	summary of all quotas and disk usage for file systems with
	quotas enabled, use &man.repquota.8;.</para>

      <para>Normally, file systems that the user is not using any disk
	space on will not show in the output of
	<command>quota</command>, even if the user has a quota limit
	assigned for that file system.  Use <option>-v</option> to
	display those file systems.  The following is sample output
	from <command>quota -v</command> for a user that has quota
	limits on two file systems.</para>

      <programlisting>Disk quotas for user test (uid 1002):
     Filesystem  usage    quota   limit   grace   files   quota   limit   grace
           /usr      65*     50      75   5days       7      50      60
       /usr/var       0      50      75               0      50      60</programlisting>

      <indexterm><primary>grace period</primary></indexterm>

      <para>In this example, the user is currently 15 kbytes over the
	soft limit of 50 kbytes on <filename>/usr</filename> and has 5
	days of grace period left.  The asterisk <literal>*</literal>
	indicates that the user is currently over the quota
	limit.</para>
    </sect2>

    <sect2>
      <title>Quotas over NFS</title>

      <indexterm><primary>NFS</primary></indexterm>

      <para>Quotas are enforced by the quota subsystem on the
	<acronym>NFS</acronym> server.  The &man.rpc.rquotad.8; daemon
	makes quota information available to <command>quota</command>
	on <acronym>NFS</acronym> clients, allowing users on those
	machines to see their quota statistics.</para>

      <para>On the <acronym>NFS</acronym> server, enable
	<command>rpc.rquotad</command> by removing the
	<literal>#</literal> from this line in
	<filename>/etc/inetd.conf</filename>:</para>

      <programlisting>rquotad/1      dgram rpc/udp wait root /usr/libexec/rpc.rquotad rpc.rquotad</programlisting>

      <para>Then, restart <command>inetd</command>:</para>

      <screen>&prompt.root; <userinput>service inetd restart</userinput></screen>
    </sect2>
  </sect1>

  <sect1 xml:id="disks-encrypting">
    <info>
      <title>Encrypting Disk Partitions</title>

      <authorgroup>
	<author>
	  <personname>
	    <firstname>Lucky</firstname>
	    <surname>Green</surname>
	  </personname>
	  <contrib>Contributed by </contrib>
	  <affiliation>
	    <address>
	      <email>shamrock@cypherpunks.to</email>
	    </address>
	  </affiliation>
	</author>
      </authorgroup>
    </info>

    <indexterm>
      <primary>disks</primary>
      <secondary>encrypting</secondary>
    </indexterm>

    <para>&os; offers excellent online protections against
      unauthorized data access.  File permissions and <link
	linkend="mac">Mandatory Access Control</link> (MAC) help
      prevent unauthorized users from accessing data while the
      operating system is active and the computer is powered up.
      However, the permissions enforced by the operating system are
      irrelevant if an attacker has physical access to a computer and
      can move the computer's hard drive to another system to copy and
      analyze the data.</para>

    <para>Regardless of how an attacker may have come into possession
      of a hard drive or powered-down computer, the
      <acronym>GEOM</acronym>-based cryptographic subsystems built
      into &os; are able to protect the data on the computer's file
      systems against even highly-motivated attackers with significant
      resources.  Unlike encryption methods that encrypt individual
      files, the built-in <command>gbde</command> and
      <command>geli</command> utilities can be used to transparently
      encrypt entire file systems.  No cleartext ever touches the hard
      drive's platter.</para>

    <para>This chapter demonstrates how to create an encrypted file
      system on &os;.  It first demonstrates the process using
      <command>gbde</command> and then demonstrates the same example
      using <command>geli</command>.</para>

    <sect2>
      <title>Disk Encryption with
	<application>gbde</application></title>

      <para>The objective of the &man.gbde.4; facility is to provide a
	formidable challenge for an attacker to gain access to the
	contents of a <emphasis>cold</emphasis> storage device.
	However, if the computer is compromised while up and running
	and the storage device is actively attached, or the attacker
	has access to a valid passphrase, it offers no protection to
	the contents of the storage device.  Thus, it is important to
	provide physical security while the system is running and to
	protect the passphrase used by the encryption
	mechanism.</para>

      <para>This facility provides several barriers to protect the
	data stored in each disk sector.  It encrypts the contents of
	a disk sector using 128-bit <acronym>AES</acronym> in
	<acronym>CBC</acronym> mode.  Each sector on the disk is
	encrypted with a different <acronym>AES</acronym> key.  For
	more information on the cryptographic design, including how
	the sector keys are derived from the user-supplied passphrase,
	refer to &man.gbde.4;.</para>

      <para>&os; provides a kernel module for
	<application>gbde</application> which can be loaded with this
	command:</para>

      <screen>&prompt.root; <userinput>kldload geom_bde</userinput></screen>

      <para>If using a custom kernel configuration file, ensure it
	contains this line:</para>

      <para><literal>options GEOM_BDE</literal></para>

      <para>The following example demonstrates adding a new hard drive
	to a system that will hold a single encrypted partition that
	will be mounted as <filename>/private</filename>.</para>

      <procedure>
	<title>Encrypting a Partition with
	  <application>gbde</application></title>

	<step>
	  <title>Add the New Hard Drive</title>

	  <para>Install the new drive to the system as explained in
	    <xref linkend="disks-adding"/>.  For the purposes of this
	    example, a new hard drive partition has been added as
	    <filename>/dev/ad4s1c</filename> and
	    <filename>/dev/ad0s1<replaceable>*</replaceable></filename>
	    represents the existing standard &os; partitions.</para>

	  <screen>&prompt.root; <userinput>ls /dev/ad*</userinput>
/dev/ad0        /dev/ad0s1b     /dev/ad0s1e     /dev/ad4s1
/dev/ad0s1      /dev/ad0s1c     /dev/ad0s1f     /dev/ad4s1c
/dev/ad0s1a     /dev/ad0s1d     /dev/ad4</screen>
	</step>

	<step>
	  <title>Create a Directory to Hold <command>gbde</command>
	    Lock Files</title>

	  <screen>&prompt.root; <userinput>mkdir /etc/gbde</userinput></screen>

	  <para>The <application>gbde</application> lock file
	    contains information that <application>gbde</application>
	    requires to access encrypted partitions.  Without access
	    to the lock file, <application>gbde</application> will not
	    be able to decrypt the data contained in the encrypted
	    partition without significant manual intervention which is
	    not supported by the software.  Each encrypted partition
	    uses a separate lock file.</para>
	</step>

	<step>
	  <title>Initialize the <command>gbde</command>
	    Partition</title>

	  <para>A <application>gbde</application> partition must be
	    initialized before it can be used.  This initialization
	    needs to be performed only once.  This command will open
	    the default editor, in order to set various configuration
	    options in a template.  For use with the
	    <acronym>UFS</acronym> file system, set the sector_size to
	    2048:</para>

	  <screen>&prompt.root; <userinput>gbde init /dev/ad4s1c -i -L /etc/gbde/ad4s1c.lock</userinput># &dollar;FreeBSD: src/sbin/gbde/template.txt,v 1.1.36.1 2009/08/03 08:13:06 kensmith Exp $
#
# Sector size is the smallest unit of data which can be read or written.
# Making it too small decreases performance and decreases available space.
# Making it too large may prevent filesystems from working.  512 is the
# minimum and always safe.  For UFS, use the fragment size
#
sector_size	=	2048
[...]</screen>

	  <para>Once the edit is saved, the user will be asked twice
	    to type the passphrase used to secure the data.  The
	    passphrase must be the same both times.  The ability of
	    <application>gbde</application> to protect data depends
	    entirely on the quality of the passphrase.  For tips on
	    how to select a secure passphrase that is easy to
	    remember, see <link
	      xlink:href="http://world.std.com/~reinhold/diceware.html">http://world.std.com/~reinhold/diceware.htm</link>.</para>

	  <para>This initialization creates a lock file for the
	    <application>gbde</application> partition.  In this
	    example, it is stored as
	    <filename>/etc/gbde/ad4s1c.lock</filename>.  Lock files
	    must end in <quote>.lock</quote> in order to be correctly
	    detected by the <filename>/etc/rc.d/gbde</filename> start
	    up script.</para>

	  <caution>
	    <para>Lock files <emphasis>must</emphasis> be backed up
	      together with the contents of any encrypted partitions.
	      Without the lock file, the legitimate owner will be
	      unable to access the data on the encrypted
	      partition.</para>
	  </caution>
	</step>

	<step>
	  <title>Attach the Encrypted Partition to the
	    Kernel</title>

	  <screen>&prompt.root; <userinput>gbde attach /dev/ad4s1c -l /etc/gbde/ad4s1c.lock</userinput></screen>

	  <para>This command will prompt to input the passphrase that
	    was selected during the initialization of the encrypted
	    partition.  The new encrypted device will appear in
	    <filename>/dev</filename> as
	    <filename>/dev/device_name.bde</filename>:</para>

	  <screen>&prompt.root; <userinput>ls /dev/ad*</userinput>
/dev/ad0        /dev/ad0s1b     /dev/ad0s1e     /dev/ad4s1
/dev/ad0s1      /dev/ad0s1c     /dev/ad0s1f     /dev/ad4s1c
/dev/ad0s1a     /dev/ad0s1d     /dev/ad4        /dev/ad4s1c.bde</screen>
	</step>

	<step>
	  <title>Create a File System on the Encrypted
	    Device</title>

	  <para>Once the encrypted device has been attached to the
	    kernel, a file system can be created on the device.  This
	    example creates a <acronym>UFS</acronym> file system with
	    soft updates enabled.  Be sure to specify the partition
	    which has a
	    <filename><replaceable>*</replaceable>.bde</filename>
	    extension:</para>

	  <screen>&prompt.root; <userinput>newfs -U /dev/ad4s1c.bde</userinput></screen>
	</step>

	<step>
	  <title>Mount the Encrypted Partition</title>

	  <para>Create a mount point and mount the encrypted file
	    system:</para>

	  <screen>&prompt.root; <userinput>mkdir /private</userinput>
&prompt.root; <userinput>mount /dev/ad4s1c.bde /private</userinput></screen>
	</step>

	<step>
	  <title>Verify That the Encrypted File System is
	    Available</title>

	  <para>The encrypted file system should now be visible and
	    available for use:</para>

	  <screen>&prompt.user; <userinput>df -H</userinput>
Filesystem        Size   Used  Avail Capacity  Mounted on
/dev/ad0s1a      1037M    72M   883M     8%    /
/devfs            1.0K   1.0K     0B   100%    /dev
/dev/ad0s1f       8.1G    55K   7.5G     0%    /home
/dev/ad0s1e      1037M   1.1M   953M     0%    /tmp
/dev/ad0s1d       6.1G   1.9G   3.7G    35%    /usr
/dev/ad4s1c.bde   150G   4.1K   138G     0%    /private</screen>
	</step>
      </procedure>

      <para>After each boot, any encrypted file systems must be
	manually re-attached to the kernel, checked for errors, and
	mounted, before the file systems can be used.  To configure
	these steps, add the following lines to
	<filename>/etc/rc.conf</filename>:</para>

      <programlisting>gbde_autoattach_all="YES"
gbde_devices="<replaceable>ad4s1c</replaceable>"
gbde_lockdir="/etc/gbde"</programlisting>

      <para>This requires that the passphrase be entered at the
	console at boot time.  After typing the correct passphrase,
	the encrypted partition will be mounted automatically.
	Additional <application>gbde</application> boot options are
	available and listed in &man.rc.conf.5;.</para>

<!--
What about bsdinstall?
-->
      <note>
	<para><application>sysinstall</application> is incompatible
	  with <application>gbde</application>-encrypted devices.  All
	  <filename>*.bde</filename> devices must be detached from the
	  kernel before starting <application>sysinstall</application>
	  or it will crash during its initial probing for devices.  To
	  detach the encrypted device used in the example, use the
	  following command:</para>

	<screen>&prompt.root; <userinput>gbde detach /dev/<replaceable>ad4s1c</replaceable></userinput></screen>
      </note>
    </sect2>

    <sect2 xml:id="disks-encrypting-geli">
      <info>
	<title>Disk Encryption with <command>geli</command></title>

	<authorgroup>
	  <author>
	    <personname>
	      <firstname>Daniel</firstname>
	      <surname>Gerzo</surname>
	    </personname>
	    <contrib>Contributed by </contrib>
	  </author>
	</authorgroup>
      </info>

      <para>An alternative cryptographic <acronym>GEOM</acronym> class
	is available using <command>geli</command>.  This control
	utility adds some features and uses a different scheme for
	doing cryptographic work.  It provides the following
	features:</para>

      <itemizedlist>
	<listitem>
	  <para>Utilizes the &man.crypto.9; framework and
	    automatically uses cryptographic hardware when it is
	    available.</para>
	</listitem>

	<listitem>
	  <para>Supports multiple cryptographic algorithms such as
	    <acronym>AES</acronym>, Blowfish, and
	    <acronym>3DES</acronym>.</para>
	</listitem>

	<listitem>
	  <para>Allows the root partition to be encrypted.  The
	    passphrase used to access the encrypted root partition
	    will be requested during system boot.</para>
	</listitem>

	<listitem>
	  <para>Allows the use of two independent keys.</para>
	</listitem>

	<listitem>
	  <para>It is fast as it performs simple sector-to-sector
	    encryption.</para>
	</listitem>

	<listitem>
	  <para>Allows backup and restore of master keys.  If a user
	    destroys their keys, it is still possible to get access to
	    the data by restoring keys from the backup.</para>
	</listitem>

	<listitem>
	  <para>Allows a disk to attach with a random, one-time key
	    which is useful for swap partitions and temporary file
	    systems.</para>
	</listitem>
      </itemizedlist>

      <para>More features and usage examples can be found in
	&man.geli.8;.</para>

      <para>The following example describes how to generate a key file
	which will be used as part of the master key for the encrypted
	provider mounted under <filename>/private</filename>.  The key
	file will provide some random data used to encrypt the master
	key.  The master key will also be protected by a passphrase.
	The provider's sector size will be 4kB.  The example describes
	how to attach to the <command>geli</command> provider, create
	a file system on it, mount it, work with it, and finally, how
	to detach it.</para>

      <procedure>
	<title>Encrypting a Partition with
	  <command>geli</command></title>

	<step>
	  <title>Load <command>geli</command> Support</title>

	  <para>Support for <command>geli</command> is available as a loadable
	    kernel module.  To configure the system to automatically load the
	    module at boot time, add the following line to
	    <filename>/boot/loader.conf</filename>:</para>

	  <programlisting>geom_eli_load="YES"</programlisting>

	  <para>To load the kernel module now:</para>

	  <screen>&prompt.root; <userinput>kldload geom_eli</userinput></screen>

	  <para>For a custom kernel, ensure the kernel configuration
	    file contains these lines:</para>

	  <programlisting>options GEOM_ELI
device crypto</programlisting>
	</step>

	<step>
	  <title>Generate the Master Key</title>

	  <para>The following commands generate a master key
	    (<filename>/root/da2.key</filename>) that is protected
	    with a passphrase.  The data source for the key file is
	    <filename>/dev/random</filename> and the sector size of
	    the provider (<filename>/dev/da2.eli</filename>) is 4kB as
	    a bigger sector size provides better performance:</para>

	  <screen>&prompt.root; <userinput>dd if=/dev/random of=/root/da2.key bs=64 count=1</userinput>
&prompt.root; <userinput>geli init -s 4096 -K /root/da2.key /dev/da2</userinput>
Enter new passphrase:
Reenter new passphrase:</screen>

	  <para>It is not mandatory to use both a passphrase and a key
	    file as either method of securing the master key can be
	    used in isolation.</para>

	  <para>If the key file is given as <quote>-</quote>, standard
	    input will be used.  For example, this command generates
	    three key files:</para>

	  <screen>&prompt.root; <userinput>cat keyfile1 keyfile2 keyfile3 | geli init -K - /dev/da2</userinput></screen>
	</step>

	<step>
	  <title>Attach the Provider with the Generated Key</title>

	  <para>To attach the provider, specify the key file, the name
	    of the disk, and the passphrase:</para>

	  <screen>&prompt.root; <userinput>geli attach -k /root/da2.key /dev/da2</userinput>
Enter passphrase:</screen>

	  <para>This creates a new device with an
	    <filename>.eli</filename> extension:</para>

	  <screen>&prompt.root; <userinput>ls /dev/da2*</userinput>
/dev/da2  /dev/da2.eli</screen>
	</step>

	<step>
	  <title>Create the New File System</title>

	  <para>Next, format the device with the
	    <acronym>UFS</acronym> file system and mount it on an
	    existing mount point:</para>

	  <screen>&prompt.root; <userinput>dd if=/dev/random of=/dev/da2.eli bs=1m</userinput>
&prompt.root; <userinput>newfs /dev/da2.eli</userinput>
&prompt.root; <userinput>mount /dev/da2.eli <replaceable>/private</replaceable></userinput></screen>

	  <para>The encrypted file system should now be available for
	    use:</para>

	  <screen>&prompt.root; <userinput>df -H</userinput>
Filesystem     Size   Used  Avail Capacity  Mounted on
/dev/ad0s1a    248M    89M   139M    38%    /
/devfs         1.0K   1.0K     0B   100%    /dev
/dev/ad0s1f    7.7G   2.3G   4.9G    32%    /usr
/dev/ad0s1d    989M   1.5M   909M     0%    /tmp
/dev/ad0s1e    3.9G   1.3G   2.3G    35%    /var
/dev/da2.eli   150G   4.1K   138G     0%    /private</screen>
	</step>
      </procedure>

      <para>Once the work on the encrypted partition is done, and the
	<filename>/private</filename> partition is no longer needed,
	it is prudent to put the device into cold storage by
	unmounting and detaching the <command>geli</command> encrypted
	partition from the kernel:</para>

      <screen>&prompt.root; <userinput>umount /private</userinput>
&prompt.root; <userinput>geli detach da2.eli</userinput></screen>

      <para>A <filename>rc.d</filename> script is provided to
	simplify the mounting of <command>geli</command>-encrypted
	devices at boot time.  For this example, add these lines to
	<filename>/etc/rc.conf</filename>:</para>

      <programlisting>geli_devices="<replaceable>da2</replaceable>"
geli_da2_flags="-p -k /root/<replaceable>da2.key</replaceable>"</programlisting>

      <para>This configures <filename>/dev/da2</filename> as a
	<command>geli</command> provider with a master key of
	<filename>/root/da2.key</filename>.  The system will
	automatically detach the provider from the kernel before the
	system shuts down.  During the startup process, the script
	will prompt for the passphrase before attaching the provider.
	Other kernel messages might be shown before and after the
	password prompt.  If the boot process seems to stall, look
	carefully for the password prompt among the other messages.
	Once the correct passphrase is entered, the provider is
	attached.  The file system is then mounted, typically by an
	entry in <filename>/etc/fstab</filename>.  Refer to <xref
	  linkend="mount-unmount"/> for instructions on how to
	configure a file system to mount at boot time.</para>
    </sect2>
  </sect1>

  <sect1 xml:id="swap-encrypting">
    <info>
      <title>Encrypting Swap</title>

      <authorgroup>
	<author>
	  <personname>
	    <firstname>Christian</firstname>
	    <surname>Br&uuml;ffer</surname>
	  </personname>
	  <contrib>Written by </contrib>
	</author>
      </authorgroup>
    </info>

    <indexterm>
      <primary>swap</primary>
      <secondary>encrypting</secondary>
    </indexterm>

    <para>Like the encryption of disk partitions, encryption of swap
      space is used to protect sensitive information.  Consider an
      application that deals with passwords.  As long as these
      passwords stay in physical memory, they are not written to disk
      and will be cleared after a reboot.  However, if &os; starts
      swapping out memory pages to free space, the passwords may be
      written to the disk unencrypted.  Encrypting swap space can be a
      solution for this scenario.</para>

    <para>This section demonstrates how to configure an encrypted
      swap partition using &man.gbde.8; or &man.geli.8; encryption.
      It assumes a <acronym>UFS</acronym> file system where
      <filename>/dev/ad0s1b</filename> is the swap partition.</para>

    <sect2>
      <title>Configuring Encrypted Swap</title>

      <para>Swap partitions are not encrypted by default and should be
	cleared of any sensitive data before continuing.  To overwrite
	the current swap partition with random garbage, execute the
	following command:</para>

      <screen>&prompt.root; <userinput>dd if=/dev/random of=/dev/<replaceable>ad0s1b</replaceable> bs=1m</userinput></screen>

      <para>To encrypt the swap partition using &man.gbde.8;, add the
	<literal>.bde</literal> suffix to the swap line in
	<filename>/etc/fstab</filename>:</para>

      <programlisting># Device		Mountpoint	FStype	Options		Dump	Pass#
/dev/ad0s1b.bde		none		swap	sw		0	0</programlisting>

      <para>To instead encrypt the swap partition using &man.geli.8;,
	use the
	<literal>.eli</literal> suffix:</para>

      <programlisting># Device		Mountpoint	FStype	Options		Dump	Pass#
/dev/ad0s1b.eli		none		swap	sw		0	0</programlisting>

      <para>By default, &man.geli.8; uses the <acronym>AES</acronym>
	algorithm with a key length of 128 bit.  These defaults can be
	altered by using <literal>geli_swap_flags</literal> in
	<filename>/etc/rc.conf</filename>.  The following flags
	configure encryption using the Blowfish algorithm with a key
	length of 128 bits and a sectorsize of 4 kilobytes, and sets
	<quote>detach on last close</quote>:</para>

      <programlisting>geli_swap_flags="-e blowfish -l 128 -s 4096 -d"</programlisting>

      <para>Refer to the description of <literal>onetime</literal> in
	&man.geli.8; for a list of possible options.</para>
    </sect2>

    <sect2>
      <title>Encrypted Swap Verification</title>

      <para>Once the system has rebooted, proper operation of the
	encrypted swap can be verified using
	<command>swapinfo</command>.</para>

      <para>If &man.gbde.8; is being used:</para>

      <screen>&prompt.user; <userinput>swapinfo</userinput>
Device          1K-blocks     Used    Avail Capacity
/dev/ad0s1b.bde    542720        0   542720     0%</screen>

      <para>If &man.geli.8; is being used:</para>

      <screen>&prompt.user; <userinput>swapinfo</userinput>
Device          1K-blocks     Used    Avail Capacity
/dev/ad0s1b.eli    542720        0   542720     0%</screen>
    </sect2>
  </sect1>

  <sect1 xml:id="disks-hast">
    <info>
      <title>Highly Available Storage
	(<acronym>HAST</acronym>)</title>

      <authorgroup>
	<author>
	  <personname>
	    <firstname>Daniel</firstname>
	    <surname>Gerzo</surname>
	  </personname>
	  <contrib>Contributed by </contrib>
	</author>
      </authorgroup>

      <authorgroup>
	<author>
	  <personname>
	    <firstname>Freddie</firstname>
	    <surname>Cash</surname>
	  </personname>
	  <contrib>With inputs from </contrib>
	</author>

	<author>
	  <personname>
	    <firstname>Pawel Jakub</firstname>
	    <surname>Dawidek</surname>
	  </personname>
	</author>

	<author>
	  <personname>
	    <firstname>Michael W.</firstname>
	    <surname>Lucas</surname>
	  </personname>
	</author>

	<author>
	  <personname>
	    <firstname>Viktor</firstname>
	    <surname>Petersson</surname>
	  </personname>
	</author>
      </authorgroup>
    </info>

    <indexterm>
      <primary>HAST</primary>
      <secondary>high availability</secondary>
    </indexterm>

    <para>High availability is one of the main requirements in
      serious business applications and highly-available storage is a
      key component in such environments.  In &os;, the Highly
      Available STorage (<acronym>HAST</acronym>) framework allows
      transparent storage of the same data across several physically
      separated machines connected by a <acronym>TCP/IP</acronym>
      network.  <acronym>HAST</acronym> can be understood as a
      network-based RAID1 (mirror), and is similar to the DRBD&reg;
      storage system used in the GNU/&linux; platform.  In combination
      with other high-availability features of &os; like
      <acronym>CARP</acronym>, <acronym>HAST</acronym> makes it
      possible to build a highly-available storage cluster that is
      resistant to hardware failures.</para>

    <para>The following are the main features of
      <acronym>HAST</acronym>:</para>

    <itemizedlist>
      <listitem>
	<para>Can be used to mask <acronym>I/O</acronym> errors on
	  local hard drives.</para>
      </listitem>

      <listitem>
	<para>File system agnostic as it works with any file system
	  supported by &os;.</para>
      </listitem>

      <listitem>
	<para>Efficient and quick resynchronization as only the blocks
	  that were modified during the downtime of a node are
	  synchronized.</para>
      </listitem>

      <!--
      <listitem>
	<para>Has several synchronization modes to allow for fast
	  failover.</para>
      </listitem>
      -->

      <listitem>
	<para>Can be used in an already deployed environment to add
	  additional redundancy.</para>
      </listitem>

      <listitem>
	<para>Together with <acronym>CARP</acronym>,
	  <application>Heartbeat</application>, or other tools, it can
	  be used to build a robust and durable storage system.</para>
      </listitem>
    </itemizedlist>

    <para>After reading this section, you will know:</para>

    <itemizedlist>
      <listitem>
	<para>What <acronym>HAST</acronym> is, how it works, and
	  which features it provides.</para>
      </listitem>

      <listitem>
	<para>How to set up and use <acronym>HAST</acronym> on
	  &os;.</para>
      </listitem>

      <listitem>
	<para>How to integrate <acronym>CARP</acronym> and
	  &man.devd.8; to build a robust storage system.</para>
      </listitem>
    </itemizedlist>

    <para>Before reading this section, you should:</para>

    <itemizedlist>
      <listitem>
	<para>Understand &unix; and &os; basics (<xref
	    linkend="basics"/>).</para>
      </listitem>

      <listitem>
	<para>Know how to configure network
	  interfaces and other core &os; subsystems (<xref
	    linkend="config-tuning"/>).</para>
      </listitem>

      <listitem>
	<para>Have a good understanding of &os;
	  networking (<xref
	    linkend="network-communication"/>).</para>
      </listitem>
    </itemizedlist>

    <para>The <acronym>HAST</acronym> project was sponsored by The
      &os; Foundation with support from <link
	xlink:href="http://www.omc.net/">http://www.omc.net/</link>
      and <link
	xlink:href="http://www.transip.nl/">http://www.transip.nl/</link>.</para>

    <sect2>
      <title>HAST Operation</title>

      <para><acronym>HAST</acronym> provides synchronous block-level
	replication between two physical machines: the
	<emphasis>primary</emphasis>, also known as the
	<emphasis>master</emphasis> node, and the
	<emphasis>secondary</emphasis>, or <emphasis>slave</emphasis>
	node.  These two machines together are referred to as a
	cluster.</para>

      <para>Since <acronym>HAST</acronym> works in a primary-secondary
	configuration, it allows only one of the cluster nodes to be
	active at any given time.  The primary node, also called
	<emphasis>active</emphasis>, is the one which will handle all
	the <acronym>I/O</acronym> requests to
	<acronym>HAST</acronym>-managed devices.  The secondary node
	is automatically synchronized from the primary node.</para>

      <para>The physical components of the <acronym>HAST</acronym>
	system are the local disk on primary node, and the disk on the
	remote, secondary node.</para>

      <para><acronym>HAST</acronym> operates synchronously on a block
	level, making it transparent to file systems and applications.
	<acronym>HAST</acronym> provides regular GEOM providers in
	<filename>/dev/hast/</filename> for use by other tools or
	applications.  There is no difference between using
	<acronym>HAST</acronym>-provided devices and raw disks or
	partitions.</para>

      <para>Each write, delete, or flush operation is sent to both the
	local disk and to the remote disk over
	<acronym>TCP/IP</acronym>.  Each read operation is served from
	the local disk, unless the local disk is not up-to-date or an
	<acronym>I/O</acronym> error occurs.  In such cases, the read
	operation is sent to the secondary node.</para>

      <para><acronym>HAST</acronym> tries to provide fast failure
	recovery.  For this reason, it is important to reduce
	synchronization time after a node's outage.  To provide fast
	synchronization, <acronym>HAST</acronym> manages an on-disk
	bitmap of dirty extents and only synchronizes those during a
	regular synchronization, with an exception of the initial
	sync.</para>

      <para>There are many ways to handle synchronization.
	<acronym>HAST</acronym> implements several replication modes
	to handle different synchronization methods:</para>

      <itemizedlist>
	<listitem>
	  <para><emphasis>memsync</emphasis>: This mode reports a
	    write operation as completed when the local write
	    operation is finished and when the remote node
	    acknowledges data arrival, but before actually storing the
	    data.  The data on the remote node will be stored directly
	    after sending the acknowledgement.  This mode is intended
	    to reduce latency, but still provides good
	    reliability.</para>
	</listitem>

	<listitem>
	  <para><emphasis>fullsync</emphasis>: This mode reports a
	    write operation as completed when both the local write and
	    the remote write complete.  This is the safest and the
	    slowest replication mode.  This mode is the
	    default.</para>
	</listitem>

	<listitem>
	  <para><emphasis>async</emphasis>: This mode reports a write
	    operation as completed when the local write completes.
	    This is the fastest and the most dangerous replication
	    mode.  It should only be used when replicating to a
	    distant node where latency is too high for other
	    modes.</para>
	</listitem>
      </itemizedlist>
    </sect2>

    <sect2>
      <title>HAST Configuration</title>

      <para>The <acronym>HAST</acronym> framework consists of several
	components:</para>

      <itemizedlist>
	<listitem>
	  <para>The &man.hastd.8; daemon which provides data
	    synchronization.  When this daemon is started, it will
	    automatically load <varname>geom_gate.ko</varname>.</para>
	</listitem>

	<listitem>
	  <para>The userland management utility,
	    &man.hastctl.8;.</para>
	</listitem>

	<listitem>
	  <para>The &man.hast.conf.5; configuration file.  This file
	    must exist before starting
	    <application>hastd</application>.</para>
	</listitem>
      </itemizedlist>

      <para>Users who prefer to statically build
	<literal>GEOM_GATE</literal> support into the kernel should
	add this line to the custom kernel configuration file, then
	rebuild the kernel using the instructions in <xref
	  linkend="kernelconfig"/>:</para>

      <programlisting>options	GEOM_GATE</programlisting>

      <para>The following example describes how to configure two nodes
	in master-slave/primary-secondary operation using
	<acronym>HAST</acronym> to replicate the data between the two.
	The nodes will be called <literal>hasta</literal>, with an
	<acronym>IP</acronym> address of
	<literal>172.16.0.1</literal>, and <literal>hastb</literal>,
	with an <acronym>IP</acronym> address of
	<literal>172.16.0.2</literal>.  Both nodes will have a
	dedicated hard drive <filename>/dev/ad6</filename> of the same
	size for <acronym>HAST</acronym> operation.  The
	<acronym>HAST</acronym> pool, sometimes referred to as a
	resource or the <acronym>GEOM</acronym> provider in <filename
	  class="directory">/dev/hast/</filename>, will be called
	<literal>test</literal>.</para>

      <para>Configuration of <acronym>HAST</acronym> is done using
	<filename>/etc/hast.conf</filename>.  This file should be
	identical on both nodes.  The simplest configuration
	is:</para>

      <programlisting>resource <replaceable>test</replaceable> {
	on <replaceable>hasta</replaceable> {
		local <replaceable>/dev/ad6</replaceable>
		remote <replaceable>172.16.0.2</replaceable>
	}
	on <replaceable>hastb</replaceable> {
		local <replaceable>/dev/ad6</replaceable>
		remote <replaceable>172.16.0.1</replaceable>
	}
}</programlisting>

      <para>For more advanced configuration, refer to
	&man.hast.conf.5;.</para>

      <tip>
	<para>It is also possible to use host names in the
	  <literal>remote</literal> statements if the hosts are
	  resolvable and defined either in
	  <filename>/etc/hosts</filename> or in the local
	  <acronym>DNS</acronym>.</para>
      </tip>

      <para>Once the configuration exists on both nodes, the
	<acronym>HAST</acronym> pool can be created.  Run these
	commands on both nodes to place the initial metadata onto the
	local disk and to start &man.hastd.8;:</para>

      <screen>&prompt.root; <userinput>hastctl create <replaceable>test</replaceable></userinput>
&prompt.root; <userinput>service hastd onestart</userinput></screen>

      <note>
	<para>It is <emphasis>not</emphasis> possible to use
	  <acronym>GEOM</acronym>
	  providers with an existing file system or to convert an
	  existing storage to a <acronym>HAST</acronym>-managed pool.
	  This procedure needs to store some metadata on the provider
	  and there will not be enough required space available on an
	  existing provider.</para>
      </note>

      <para>A HAST node's <literal>primary</literal> or
	<literal>secondary</literal> role is selected by an
	administrator, or software like
	<application>Heartbeat</application>, using &man.hastctl.8;.
	On the primary node, <literal>hasta</literal>, issue this
	command:</para>

      <screen>&prompt.root; <userinput>hastctl role primary <replaceable>test</replaceable></userinput></screen>

      <para>Run this command on the secondary node,
	<literal>hastb</literal>:</para>

      <screen>&prompt.root; <userinput>hastctl role secondary <replaceable>test</replaceable></userinput></screen>

      <para>Verify the result by running <command>hastctl</command> on
	each node:</para>

      <screen>&prompt.root; <userinput>hastctl status <replaceable>test</replaceable></userinput></screen>

      <para>Check the <literal>status</literal> line in the output.
	If it says <literal>degraded</literal>, something is wrong
	with the configuration file.  It should say
	<literal>complete</literal> on each node, meaning that the
	synchronization between the nodes has started.  The
	synchronization completes when <command>hastctl
	  status</command> reports 0 bytes of <literal>dirty</literal>
	extents.</para>

      <para>The next step is to create a file system on the
	<acronym>GEOM</acronym> provider and mount it.  This must be
	done on the <literal>primary</literal> node.  Creating the
	file system can take a few minutes, depending on the size of
	the hard drive.  This example creates a <acronym>UFS</acronym>
	file system on <filename>/dev/hast/test</filename>:</para>

      <screen>&prompt.root; <userinput>newfs -U /dev/hast/<replaceable>test</replaceable></userinput>
&prompt.root; <userinput>mkdir /hast/<replaceable>test</replaceable></userinput>
&prompt.root; <userinput>mount /dev/hast/<replaceable>test</replaceable> <replaceable>/hast/test</replaceable></userinput></screen>

      <para>Once the <acronym>HAST</acronym> framework is configured
	properly, the final step is to make sure that
	<acronym>HAST</acronym> is started automatically during
	system boot.  Add this line to
	<filename>/etc/rc.conf</filename>:</para>

      <programlisting>hastd_enable="YES"</programlisting>

      <sect3>
	<title>Failover Configuration</title>

	<para>The goal of this example is to build a robust storage
	  system which is resistant to the failure of any given node.
	  If the primary node fails, the secondary node is there to
	  take over seamlessly, check and mount the file system, and
	  continue to work without missing a single bit of
	  data.</para>

	<para>To accomplish this task, the Common Address Redundancy
	  Protocol (<acronym>CARP</acronym>) is used to provide for
	  automatic failover at the <acronym>IP</acronym> layer.
	  <acronym>CARP</acronym> allows multiple hosts on the same
	  network segment to share an <acronym>IP</acronym> address.
	  Set up <acronym>CARP</acronym> on both nodes of the cluster
	  according to the documentation available in <xref
	    linkend="carp"/>.  In this example, each node will have
	  its own management <acronym>IP</acronym> address and a
	  shared <acronym>IP</acronym> address of
	  <replaceable>172.16.0.254</replaceable>.  The primary
	  <acronym>HAST</acronym> node of the cluster must be the
	  master <acronym>CARP</acronym> node.</para>

	<para>The <acronym>HAST</acronym> pool created in the previous
	  section is now ready to be exported to the other hosts on
	  the network.  This can be accomplished by exporting it
	  through <acronym>NFS</acronym> or
	  <application>Samba</application>, using the shared
	  <acronym>IP</acronym> address
	  <replaceable>172.16.0.254</replaceable>.  The only problem
	  which remains unresolved is an automatic failover should the
	  primary node fail.</para>

	<para>In the event of <acronym>CARP</acronym> interfaces going
	  up or down, the &os; operating system generates a
	  &man.devd.8; event, making it possible to watch for state
	  changes on the <acronym>CARP</acronym> interfaces.  A state
	  change on the <acronym>CARP</acronym> interface is an
	  indication that one of the nodes failed or came back online.
	  These state change events make it possible to run a script
	  which will automatically handle the HAST failover.</para>

	<para>To catch state changes on the
	  <acronym>CARP</acronym> interfaces, add this configuration
	  to <filename>/etc/devd.conf</filename> on each node:</para>

	<programlisting>notify 30 {
	match "system" "IFNET";
	match "subsystem" "carp0";
	match "type" "LINK_UP";
	action "/usr/local/sbin/carp-hast-switch master";
};

notify 30 {
	match "system" "IFNET";
	match "subsystem" "carp0";
	match "type" "LINK_DOWN";
	action "/usr/local/sbin/carp-hast-switch slave";
};</programlisting>

	<note>
	  <para>If the systems are running &os;&nbsp;10 or higher,
	    replace <filename>carp0</filename> with the name of the
	    <acronym>CARP</acronym>-configured interface.</para>
	</note>

	<para>Restart &man.devd.8; on both nodes to put the new
	  configuration into effect:</para>

	<screen>&prompt.root; <userinput>service devd restart</userinput></screen>

	<para>When the specified interface state changes by going up
	  or down , the system generates a notification, allowing the
	  &man.devd.8; subsystem to run the specified automatic
	  failover script,
	  <filename>/usr/local/sbin/carp-hast-switch</filename>.
	  For further clarification about this configuration, refer to
	  &man.devd.conf.5;.</para>

	<para>Here is an example of an automated failover
	  script:</para>

	<programlisting>#!/bin/sh

# Original script by Freddie Cash &lt;fjwcash@gmail.com&gt;
# Modified by Michael W. Lucas &lt;mwlucas@BlackHelicopters.org&gt;
# and Viktor Petersson &lt;vpetersson@wireload.net&gt;

# The names of the HAST resources, as listed in /etc/hast.conf
resources="<replaceable>test</replaceable>"

# delay in mounting HAST resource after becoming master
# make your best guess
delay=3

# logging
log="local0.debug"
name="carp-hast"

# end of user configurable stuff

case "$1" in
	master)
		logger -p $log -t $name "Switching to primary provider for ${resources}."
		sleep ${delay}

		# Wait for any "hastd secondary" processes to stop
		for disk in ${resources}; do
			while $( pgrep -lf "hastd: ${disk} \(secondary\)" &gt; /dev/null 2&gt;&amp;1 ); do
				sleep 1
			done

			# Switch role for each disk
			hastctl role primary ${disk}
			if [ $? -ne 0 ]; then
				logger -p $log -t $name "Unable to change role to primary for resource ${disk}."
				exit 1
			fi
		done

		# Wait for the /dev/hast/* devices to appear
		for disk in ${resources}; do
			for I in $( jot 60 ); do
				[ -c "/dev/hast/${disk}" ] &amp;&amp; break
				sleep 0.5
			done

			if [ ! -c "/dev/hast/${disk}" ]; then
				logger -p $log -t $name "GEOM provider /dev/hast/${disk} did not appear."
				exit 1
			fi
		done

		logger -p $log -t $name "Role for HAST resources ${resources} switched to primary."


		logger -p $log -t $name "Mounting disks."
		for disk in ${resources}; do
			mkdir -p /hast/${disk}
			fsck -p -y -t ufs /dev/hast/${disk}
			mount /dev/hast/${disk} /hast/${disk}
		done

	;;

	slave)
		logger -p $log -t $name "Switching to secondary provider for ${resources}."

		# Switch roles for the HAST resources
		for disk in ${resources}; do
			if ! mount | grep -q "^/dev/hast/${disk} on "
			then
			else
				umount -f /hast/${disk}
			fi
			sleep $delay
			hastctl role secondary ${disk} 2&gt;&amp;1
			if [ $? -ne 0 ]; then
				logger -p $log -t $name "Unable to switch role to secondary for resource ${disk}."
				exit 1
			fi
			logger -p $log -t $name "Role switched to secondary for resource ${disk}."
		done
	;;
esac</programlisting>

	<para>In a nutshell, the script takes these actions when a
	  node becomes master:</para>

	<itemizedlist>
	  <listitem>
	    <para>Promotes the <acronym>HAST</acronym> pool to
	      primary on the other node.</para>
	  </listitem>

	  <listitem>
	    <para>Checks the file system under the
	      <acronym>HAST</acronym> pool.</para>
	  </listitem>

	  <listitem>
	    <para>Mounts the pool.</para>
	  </listitem>
	</itemizedlist>

	<para>When a node becomes secondary:</para>

	<itemizedlist>
	  <listitem>
	    <para>Unmounts the <acronym>HAST</acronym> pool.</para>
	  </listitem>

	  <listitem>
	    <para>Degrades the <acronym>HAST</acronym> pool to
	      secondary.</para>
	  </listitem>
	</itemizedlist>

	<caution>
	  <para>This is just an example script which serves as a proof
	    of concept.  It does not handle all the possible scenarios
	    and can be extended or altered in any way, for example, to
	    start or stop required services.</para>
	</caution>

	<tip>
	  <para>For this example, a standard <acronym>UFS</acronym>
	    file system was used.  To reduce the time needed for
	    recovery, a journal-enabled <acronym>UFS</acronym> or
	    <acronym>ZFS</acronym> file system can be used
	    instead.</para>
	</tip>

	<para>More detailed information with additional examples can
	  be found at <link
	    xlink:href="http://wiki.FreeBSD.org/HAST">http://wiki.FreeBSD.org/HAST</link>.</para>
      </sect3>
    </sect2>

    <sect2>
      <title>Troubleshooting</title>

      <para><acronym>HAST</acronym> should generally work without
	issues.  However, as with any other software product, there
	may be times when it does not work as supposed.  The sources
	of the problems may be different, but the rule of thumb is to
	ensure that the time is synchronized between the nodes of the
	cluster.</para>

      <para>When troubleshooting <acronym>HAST</acronym>, the
	debugging level of &man.hastd.8; should be increased by
	starting <command>hastd</command> with <literal>-d</literal>.
	This argument may be specified multiple times to further
	increase the debugging level.  Consider also using
	<literal>-F</literal>, which starts <command>hastd</command>
	in the foreground.</para>

      <sect3 xml:id="disks-hast-sb">
	<title>Recovering from the Split-brain Condition</title>

	<para><firstterm>Split-brain</firstterm> occurs when the nodes
	  of the cluster are unable to communicate with each other,
	  and both are configured as primary.  This is a dangerous
	  condition because it allows both nodes to make incompatible
	  changes to the data.  This problem must be corrected
	  manually by the system administrator.</para>

	<para>The administrator must decide which node has more
	  important changes or merge them manually.  Then, let
	  <acronym>HAST</acronym> perform full synchronization of the
	  node which has the broken data.  To do this, issue these
	  commands on the node which needs to be
	  resynchronized:</para>

	<screen>&prompt.root; <userinput>hastctl role init <replaceable>test</replaceable></userinput>
&prompt.root; <userinput>hastctl create <replaceable>test</replaceable></userinput>
&prompt.root; <userinput>hastctl role secondary <replaceable>test</replaceable></userinput></screen>
      </sect3>
    </sect2>
  </sect1>
</chapter>