aboutsummaryrefslogtreecommitdiff
path: root/en_US.ISO8859-1/books/pmake/shortcuts/chapter.xml
blob: 417e3b65a5a433d243db9caea0c4c2f089a47772 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>
<!--
    $FreeBSD$
-->

<chapter id="shortcuts">
  <title>Short-cuts and Other Nice Things</title>

  <para>Based on what I have told you so far, you may have gotten the
    impression that <application>PMake</application> is just a way of
    storing away commands and making sure you do not forget to compile
    something.  Good.  That is just what it is.  However, the ways I
    have described have been inelegant, at best, and painful, at
    worst.  This chapter contains things that make the writing of
    makefiles easier and the makefiles themselves shorter and easier
    to modify (and, occasionally, simpler).  In this chapter, I assume
    you are somewhat more familiar with Sprite (or &unix;, if that is
    what you are using) than I did in <xref linkend="basics"/>, just so
    you are on your toes.  So without further ado&hellip;</para>

  <section id="rules">
    <title>Transformation Rules</title>

    <para>As you know, a file's name consists of two parts: a base
      name, which gives some hint as to the contents of the file, and
      a suffix, which usually indicates the format of the file.  Over
      the years, as &unix; has developed, naming conventions, with
      regard to suffixes, have also developed that have become almost
      as incontrovertible as Law.  E.g. a file ending in
      <filename>.c</filename> is assumed to contain C source code; one
      with a <filename>.o</filename> suffix is assumed to be a
      compiled, relocatable object file that may be linked into any
      program; a file with a <filename>.ms</filename> suffix is
      usually a text file to be processed by
      <application>Troff</application> with the <literal>-ms</literal>
      macro package, and so on.  One of the best aspects of both
      <application>Make</application> and
      <application>PMake</application> comes from their understanding
      of how the suffix of a file pertains to its contents and their
      ability to do things with a file based solely on its suffix.
      This ability comes from something known as a transformation
      rule.  A transformation rule specifies how to change a file with
      one suffix into a file with another suffix.</para>

    <para>A transformation rule looks much like a dependency line,
      except the target is made of two known suffixes stuck
      together.  Suffixes are made known to
      <application>PMake</application> by placing them
      as sources on a dependency line whose target is the special
      target <makevar>.SUFFIXES</makevar>.  E.g.:</para>

    <programlisting>.SUFFIXES   : .o .c
.c.o        :
	$(CC) $(CFLAGS) -c $(.IMPSRC)</programlisting>

    <para>The creation script attached to the target is used to
      trans form a file with the first suffix (in this case,
      <filename>.c</filename>) into a
      file with the second suffix (here, <filename>.o</filename>).
      In addition, the target inherits whatever attributes have
      been applied to the transformation rule.
      The simple rule given above says that to transform a C source
      file into an object file, you compile it using
      <application>cc</application> with the <option>-c</option>
      flag.  This rule is taken straight from the system makefile.
      Many transformation rules (and suffixes) are defined there,
      and I refer you to it for more examples
      (type <command>pmake -h</command> to find out where it
      is).</para>

    <para>There are several things to note about the
      transformation rule given above:</para>

    <orderedlist>
      <listitem>
	<para>The <makevar>.IMPSRC</makevar> variable.
	  This variable is set to the
	  <quote>implied source</quote> (the file from which
	  the target is  being created; the one with the first
	  suffix), which, in this case, is the
	  <filename>.c</filename> file.</para>
      </listitem>

      <listitem>
	<para>The <envar>CFLAGS</envar> variable.  Almost all of
	  the transformation rules in the system makefile are set
	  up using variables that you can alter in your makefile
	  to tailor the rule to your needs.  In this case, if you
	  want all your C files to be compiled with the
	  <option>-g</option> flag, to provide information for
	  dbx, you would set the <envar>CFLAGS</envar> variable to
	  contain <option>-g</option> (<literal>CFLAGS  =
	  -g</literal>) and <application>PMake</application>
	  would take care of the rest.</para>
      </listitem>
    </orderedlist>

    <para>To give you a quick example, the makefile in
      <xref linkend="envvars"/> could be changed to this:</para>

    <programlisting>OBJS            = a.o b.o c.o
program         : $(OBJS)
	 $(CC) -o $(.TARGET) $(.ALLSRC)
$(OBJS)         : defs.h</programlisting>

    <para>The transformation rule I gave above takes the place of the
      6 lines
      <footnote>
	<para>This is also somewhat cleaner, I think, than
	  the dynamic source solution presented in
	  <xref linkend="writeanddebug"/>.</para>
      </footnote>:</para>

    <programlisting>a.o             : a.c
	cc -c a.c
b.o             : b.c
	cc -c b.c
c.o             : c.c
	cc -c c.c</programlisting>

    <para>Now you may be wondering about the dependency between the
      <filename>.o</filename>
      and <filename>.c</filename> files &ndash; it is not mentioned
      anywhere in the new makefile.  This is because it is not needed:
      one of the effects of applying a transformation rule is the
      target comes to depend on the implied source.  That's why it is
      called the implied source.</para>

    <para>For a more detailed example.  Say you have a makefile like
      this:</para>

    <programlisting>a.out           : a.o b.o
	$(CC) $(.ALLSRC)</programlisting>

    <para>and a directory set up like this:</para>

    <screen>total 4
-rw-rw-r--  1 deboor        34 Sep  7 00:43 Makefile
-rw-rw-r--  1 deboor       119 Oct  3 19:39 a.c
-rw-rw-r--  1 deboor       201 Sep  7 00:43 a.o
-rw-rw-r--  1 deboor        69 Sep  7 00:43 b.c</screen>

    <para>While just typing <command>pmake</command> will do
      the right thing, it is much more informative to type
      <command>pmake -d s</command>.  This will
      show you what <application>PMake</application> is up
      to as it processes the files.  In this case,
      <application>PMake</application> prints the following:</para>

    <screen>Suff_FindDeps (a.out)
     using existing source a.o
     applying .o -&gt; .out to "a.o"
Suff_FindDeps (a.o)
     trying a.c...got it
     applying .c -&gt; .o to "a.c"
Suff_FindDeps (b.o)
     trying b.c...got it
     applying .c -&gt; .o to "b.c"
Suff_FindDeps (a.c)
     trying a.y...not there
     trying a.l...not there
     trying a.c,v...not there
     trying a.y,v...not there
     trying a.l,v...not there
Suff_FindDeps (b.c)
     trying b.y...not there
     trying b.l...not there
     trying b.c,v...not there
     trying b.y,v...not there
     trying b.l,v...not there
--- a.o ---
cc  -c a.c
--- b.o ---
cc  -c b.c
--- a.out ---
cc a.o b.o</screen>

    <para><computeroutput>Suff_FindDeps</computeroutput> is the
      name of a function in <application>PMake</application> that
      is called to check for implied sources for a target using
      transformation rules.  The transformations it tries are,
      naturally enough, limited to the ones that have been defined
      (a transformation may be defined multiple times, by the way,
      but only the most recent one will be used).  You will notice,
      however, that there is a definite order to the suffixes that
      are tried.  This order is set by the relative positions of
      the suffixes on the <makevar>.SUFFIXES</makevar> line
      &ndash; the earlier a suffix appears, the earlier it is
      checked as the source of a transformation.  Once a suffix
      has been defined, the only way to change its position in the
      pecking order is to remove all the suffixes (by having a
      <makevar>.SUFFIXES</makevar> dependency line with no sources)
      and redefine them in the order you want.
      (Previously-defined transformation rules will be
      automatically redefined as the suffixes they involve are
      re-entered.)  Another way to affect the search order is to make
      the dependency explicit.  In the above example,
      <filename>a.out</filename> depends on <filename>a.o</filename>
      and <filename>b.o</filename>.  Since a transformation exists
      from <filename>.o</filename> to <filename>.out</filename>,
      <application>PMake</application> uses that, as indicated by
      the <computeroutput>using existing source a.o</computeroutput>
      message.</para>

    <para>The search for a transformation starts from the suffix of
      the target and continues through all the defined
      transformations, in the order dictated by the suffix ranking,
      until an existing file with the same base (the target name
      minus the suffix and any leading directories) is found.  At that
      point, one or more transformation rules will have been found
      to change the one existing file into the target.</para>

    <para>For example, ignoring what's in the system makefile for
      now, say you have a makefile like this:</para>

    <screen>.SUFFIXES       : .out .o .c .y .l
.l.c            :
	lex $(.IMPSRC)
	mv lex.yy.c $(.TARGET)
.y.c            :
	yacc $(.IMPSRC)
	mv y.tab.c $(.TARGET)
.c.o            :
	cc -c $(.IMPSRC)
.o.out          :
	cc -o $(.TARGET) $(.IMPSRC)</screen>

    <para>and the single file <filename>jive.l</filename>.
      If you were to type <command>pmake -rd ms jive.out</command>,
      you would get the following output for
      <filename>jive.out</filename>:</para>

    <screen>Suff_FindDeps (jive.out)
     trying jive.o...not there
     trying jive.c...not there
     trying jive.y...not there
     trying jive.l...got it
     applying .l -&gt; .c to "jive.l"
     applying .c -&gt; .o to "jive.c"
     applying .o -&gt; .out to "jive.o"</screen>

    <para>and this is why: <application>PMake</application> starts with the
      target <filename>jive.out</filename>, figures out its suffix
      (<filename>.out</filename>) and looks for things it  can
      transform to a <filename>.out</filename> file.  In this case, it
      only finds <filename>.o</filename>, so it looks for the file
      <filename>jive.o</filename>.  It fails to find it, so it
      looks for transformations into a <filename>.o</filename>
      file.  Again it has only one choice: <filename>.c</filename>.
      So it looks for <filename>jive.c</filename> and, as you
      know, fails to find it.  At this point it has two choices: it can
      create the <filename>.c</filename> file from either a
      <filename>.y</filename> file or a <filename>.l</filename> file.
      Since <filename>.y</filename> came first on the
      <makevar>.SUFFIXES</makevar> line, it checks for
      <filename>jive.y</filename> first, but can not find it, so it looks
      for <filename>jive.l</filename> and, lo and behold, there it is.
      At this point, it has defined a transformation path as follows:</para>

    <literallayout><filename>.l</filename>  -&gt;  <filename>.c</filename>  -&gt;  <filename>.o</filename>  -&gt; <filename>.out</filename></literallayout>

    <para>and applies the transformation rules accordingly.  For completeness,
      and to give you a better idea of what <application>PMake</application>
      actually did with this three-step transformation, this is what
      <application>PMake</application> printed for the rest of the
      process:</para>

    <screen>Suff_FindDeps (jive.o)
     using existing source jive.c
     applying .c -&gt; .o to "jive.c"
Suff_FindDeps (jive.c)
     using existing source jive.l
     applying .l -&gt; .c to "jive.l"
Suff_FindDeps (jive.l)
Examining jive.l...modified 17:16:01 Oct 4, 1987...up-to-date
Examining jive.c...non-existent...out-of-date
--- jive.c ---
lex jive.l
... meaningless lex output deleted ...
mv lex.yy.c jive.c
Examining jive.o...non-existent...out-of-date
--- jive.o ---
cc -c jive.c
Examining jive.out...non-existent...out-of-date
--- jive.out ---
cc -o jive.out jive.o</screen>

    <para>One final question remains: what does
      <application>PMake</application> do with targets that have no
      known suffix?  <application>PMake</application> simply pretends
      it actually has a known suffix and searches for
      transformations accordingly.  The suffix it chooses is the
      source for the <maketarget>.NULL</maketarget> target mentioned
      later.  In the system makefile, <filename>.out</filename> is
      chosen as the <quote>null suffix</quote> because most people
      use <application>PMake</application> to create programs.  You
      are, however, free and welcome to change it to a suffix
      of your own choosing.  The null suffix is ignored, however,
      when <application>PMake</application> is in compatibility
      mode (see <xref linkend="gods"/>).</para>
  </section>

  <section id="including">
    <title>Including Other Makefiles</title>

    <para>Just as for programs, it is often useful to extract certain
      parts of a makefile into another file and just include it in
      other makefiles somehow.  Many compilers allow you say something
      like:</para>

    <programlisting>#include "defs.h"</programlisting>

    <para>to include the contents of <filename>defs.h</filename>
      in the source file.  <application>PMake</application>
      allows you to do the same thing for makefiles, with the
      added ability to use variables in the filenames.  An include
      directive in a makefile looks either like this:</para>

    <programlisting>#include &lt;file&gt;</programlisting>

    <para>or this:</para>

    <programlisting>#include "file"</programlisting>

    <para>The difference between the two is where
      <application>PMake</application> searches for the file: the first way,
      <application>PMake</application> will look for the file only in the
      system makefile directory (or directories) (to find out what that
      directory is, give <application>PMake</application> the
      <filename>-h</filename> flag).
      The system makefile directory search path can be overridden via the
      <option>-m</option> option.  For files in double-quotes, the search
      is more complex:</para>

    <orderedlist>
      <listitem>
	<para>The directory of the makefile that's including the
	  file.</para>
      </listitem>

      <listitem>
	<para>The current directory (the one in which you
	  invoked <application>PMake</application>).</para>
      </listitem>

      <listitem>
	<para>The directories given by you using
	  <option>-I</option> flags, in the order in which you
	  gave them.</para>
      </listitem>

      <listitem>
	<para>Directories given by
	  <makevar>.PATH</makevar> dependency lines (see
	  <xref linkend="gods"/>).</para>
      </listitem>

      <listitem>
	<para>The system makefile directory.</para>
      </listitem>
    </orderedlist>

    <para>in that order.</para>

    <para>You are free to use <application>PMake</application> variables
      in the filename &ndash; <application>PMake</application>
      will expand them before searching for the file.  You  must
      specify the searching method with either angle brackets or
      double-quotes outside of a variable expansion.  I.e. the following:</para>

    <programlisting>SYSTEM    = &lt;command.mk&gt;

#include $(SYSTEM)</programlisting>

    <para>will not work.</para>
  </section>

  <section id="savingcmds">
    <title>Saving Commands</title>

    <para>There may come a time when you will want to save certain
      commands to be executed when everything else is done.  For
      instance:  you are making several different libraries at one
      time and you want to create the members in parallel.  Problem is,
      <application>ranlib</application> is another one of those
      programs that can not be run more than once in the same directory
      at the same time (each one creates a file called
      <filename>__.SYMDEF</filename> into which it stuffs information
      for the linker to use.  Two of them running at once will
      overwrite each other's file and the result will be garbage for
      both parties).  You might want a way to save the ranlib
      commands til the end so they can be run one after the other,
      thus keeping them from trashing each other's file.
      <application>PMake</application> allows you to do this by
      inserting an ellipsis (<quote>...</quote>) as a command between
      commands to be run at once and those to be run later.</para>

    <para>So for the <application>ranlib</application> case above,
      you might do this:</para>

    <programlisting>lib1.a          : $(LIB1OBJS)
	rm -f $(.TARGET)
	ar cr $(.TARGET) $(.ALLSRC)
	...
	ranlib $(.TARGET)

lib2.a          : $(LIB2OBJS)
	rm -f $(.TARGET)
	ar cr $(.TARGET) $(.ALLSRC)
	...
	ranlib $(.TARGET)</programlisting>

    <para>This would save both</para>

    <programlisting>ranlib $(.TARGET)</programlisting>

    <para>commands until the end, when they would run one after the
      other (using the correct value for the
      <makevar>.TARGET</makevar> variable, of course).</para>

    <para>Commands saved in this manner are only executed if
      <application>PMake</application> manages to re-create
      everything without an error.</para>
  </section>

  <section id="targetattr">
    <title>Target Attributes</title>

    <para><application>PMake</application> allows you to give
      attributes to targets by means of special sources.  Like
      everything else <application>PMake</application> uses, these
      sources begin with a period and are made up of all upper-case
      letters.  There are various reasons for using them, and I will
      try to give examples for most of them.  Others you will have to
      find uses for yourself.  Think of it as <quote>an exercise for
      the reader</quote>.  By placing one (or more) of these as a
      source on a dependency line, you are <quote>marking the
      target(s) with that attribute</quote>.  That is just the way I
      phrase it, so you know.</para>

    <para>Any attributes given as sources for a transformation
      rule are applied to the target of the transformation rule
      when the rule is applied.</para>

    <informaltable frame="none">
      <tgroup cols="2">
	<colspec colwidth="1*"/>
	<colspec colwidth="10*"/>

	<tbody>
	  <row valign="top">
	    <entry><literal>.DONTCARE</literal></entry>

	    <entry>If a target is marked with this attribute and
	      <application>PMake</application> can not figure out
	      how to create it, it will ignore this fact and assume
	      the file is not really needed or actually exists and
	      <application>PMake</application> just can not find
	      it.  This may prove wrong, but the error will be
	      noted later on, not when  <application>PMake</application>
	      tries to create the target so marked.  This attribute also
	      prevents <application>PMake</application> from attempting
	      to touch the target if it is given the
	      <option>-t</option> flag.</entry>
	  </row>

	  <row valign="top">
	    <entry><literal>.EXEC</literal></entry>

	    <entry><para>This attribute causes its shell script to be
		executed while having no effect on targets that depend
		on it.  This makes the target into a sort of subroutine.
		An example.  Say you have some LISP files that need to
		be compiled and loaded into a LISP process.  To do this,
		you echo LISP commands into a file and execute a LISP
		with this file as its input when  everything is
		done. Say also that you have to load
		other files from another system before you can compile
		your files and further, that you do not want to go
		through the loading and dumping unless one of your
		files has changed.  Your makefile might look a little
		bit like this (remember, this is an  educational example,
		and do not worry about the <maketarget>COMPILE</maketarget>
		rule, all will soon become clear, grasshopper):

		<programlisting>system          : init a.fasl b.fasl c.fasl
	for i in $(.ALLSRC);
	do
		echo -n '(load "' &gt;&gt; input
		echo -n ${i} &gt;&gt; input
		echo '")' &gt;&gt; input
	done
	echo '(dump "$(.TARGET)")' &gt;&gt; input
	lisp &lt; input

a.fasl          : a.l init COMPILE
b.fasl          : b.l init COMPILE
c.fasl          : c.l init COMPILE
COMPILE         : .USE
	echo '(compile "$(.ALLSRC)")' &gt;&gt; input
init            : .EXEC
	echo '(load-system)' &gt; input</programlisting>

		<literal>.EXEC</literal> sources, do not appear in the
		local variables of targets that depend on them (nor are
		they touched if <application>PMake</application> is
		given the <option>-t</option>
		flag).  Note that all the rules, not just that for
		system, include init as a source.  This is because
		none of the other targets can be made until init
		has been made, thus they depend on it.</para></entry>
	  </row>

	  <row valign="top">
	    <entry><literal>.EXPORT</literal></entry>

	    <entry>This is used to mark those targets whose
	      creation should be sent to another machine if at
	      all possible.  This may be used by some exportation
	      schemes if the exportation is expensive.  You
	      should ask your system administrator if it is
	      necessary.</entry>
	  </row>

	  <row valign="top">
	    <entry><literal>.EXPORTSAME</literal></entry>

	    <entry>Tells the export system that the job
	      should be exported to a machine of the same
	      architecture as the current  one.  Certain
	      operations (e.g. running text through nroff) can be
	      performed the same on any architecture (CPU and
	      operating system type), while others (e.g. compiling
	      a program with cc) must be performed on a
	      machine with the same architecture.  Not all export
	      systems will support this attribute.</entry>
	  </row>

	  <row valign="top">
	    <entry><literal>.IGNORE</literal></entry>

	    <entry>Giving a target the
	      <literal>.IGNORE</literal> attribute causes
	      <application>PMake</application> to ignore errors
	      from any of the target's commands, as if they all
	      had <literal>-</literal> before them.</entry>
	  </row>

	  <row valign="top">
	    <entry><literal>.INVISIBLE</literal></entry>

	    <entry><para>This allows you to specify one target as a
		source for another without the one affecting the
		other's local variables.  Useful if, say, you
		have a makefile that creates two  programs, one
		of which is used to create the other, so it must
		exist before the other is created. You could say

		<programlisting>prog1           : $(PROG1OBJS) prog2 MAKEINSTALL
prog2           : $(PROG2OBJS) .INVISIBLE MAKEINSTALL</programlisting>

		where <literal>MAKEINSTALL</literal>
		is some complex <literal>.USE</literal> rule (see
		below) that depends on the <makevar>.ALLSRC</makevar>
		variable containing the right things.  Without the
		<literal>.INVISIBLE</literal>
		attribute for <maketarget>prog2</maketarget>,
		the <literal>MAKEINSTALL</literal> rule
		could not be applied.  This is not as useful as it
		should be, and the semantics may change (or the
		whole thing go away) in the not-too-distant
		future.</para></entry>
	  </row>

	  <row valign="top">
	    <entry><literal>.JOIN</literal></entry>

	    <entry><para>This is another way to avoid performing some
		operations in parallel while permitting
		everything else to be done so.  Specifically it forces
		the target's shell script to be executed only if
		one or more of the sources was out-of-date.  In
		addition, the target's name, in both its
		<makevar>.TARGET</makevar>
		variable and all the local variables of any
		target that depends on it, is replaced by the value
		of its <makevar>.ALLSRC</makevar> variable.  As an
		example, suppose you have a program that has
		four libraries that
		compile in the same directory along with, and at
		the same time as, the program.  You again have
		the problem with ranlib that I mentioned
		earlier, only this time it is more severe: you can not
		just put the ranlib off to the end since the
		program will need those libraries before it can
		be re-created.  You can do something like this:

		<programlisting>program         : $(OBJS) libraries
	cc -o $(.TARGET) $(.ALLSRC)

libraries       : lib1.a lib2.a lib3.a lib4.a .JOIN
	ranlib $(.OODATE)</programlisting>

		In this case, <application>PMake</application> will re-create
		the <literal>$(OBJS)</literal>
		as necessary, along with <filename>lib1.a</filename>,
		<filename>lib2.a</filename>, <filename>lib3.a</filename>
		and <filename>lib4.a</filename>.  It will then
		execute ranlib on any library that was changed and set
		program's <makevar>.ALLSRC</makevar> variable to contain
		what's in <literal>$(OBJS)</literal>
		followed by <quote><filename>lib1.a</filename>
		  <filename>lib2.a</filename>
		  <filename>lib3.a</filename>
		  <filename>lib4.a</filename>.</quote>  In
		case you are wondering, it is called
		<literal>.JOIN</literal> because
		it joins together different threads of the
		<quote>input graph</quote> at the target marked
		with the attribute.  Another aspect of the
		<literal>.JOIN</literal>
		attribute is it keeps the target from being
		created if the <option>-t</option> flag was
		given.</para></entry>
	  </row>

	  <row valign="top">
	    <entry><literal>.MAKE</literal></entry>

	    <entry><para>The <literal>.MAKE</literal>
	      attribute marks its target as being a
	      recursive invocation of PMake.  This forces
	      <application>PMake</application> to execute the
	      script associated with the
	      target (if it is out-of-date) even if you gave
	      the <option>-n</option> or
	      <option>-t</option> flag.  By doing this, you can start
	      at the top of a system and type

	      <literallayout><command>pmake -n</command></literallayout>

	      and have it descend the directory tree (if your
	      makefiles are set up correctly), printing what
	      it would have executed if you had not included
	      the <option>-n</option> flag.</para></entry>
	  </row>

	  <row valign="top">
	    <entry><literal>.NOEXPORT</literal></entry>

	    <entry>If possible,
	      <application>PMake</application> will attempt to
	      export the creation of all targets to another machine
	      (this depends on how <application>PMake</application>
	      was configured).  Sometimes, the creation is so
	      simple, it is pointless to send it to another machine.
	      If you give the target the
	      <literal>.NOEXPORT</literal> attribute, it will be run
	      loally, even if you have given
	      <application>PMake</application> the <option>-L
	      0</option> flag.</entry>
	  </row>

	  <row valign="top">
	    <entry><literal>.NOTMAIN</literal></entry>

	    <entry>Normally, if you do not specify a target to
	      make in any other way,
	      <application>PMake</application> will take the first
	      target on the first dependency line of a makefile as
	      the target to create.  That target is known as the
	      <quote>Main Target</quote> and is labeled as such if
	      you print the dependencies out using the
	      <option>-p</option> flag.  Giving a target this
	      attribute tells <application>PMake</application> that
	      the target is definitely not the Main Target.  This
	      allows you to place targets in an included makefile
	      and have <application>PMake</application> create
	      something else by default.</entry>
	  </row>

	  <row valign="top">
	    <entry><literal>.PRECIOUS</literal></entry>

	    <entry>When <application>PMake</application> is
	      interrupted (you type control-C at the keyboard), it will
	      attempt to clean up after itself by removing any
	      half-made targets.  If a target has the
	      <literal>.PRECIOUS</literal> attribute, however,
	      <application>PMake</application> will leave it alone.
	      An additional side effect of the <literal>::</literal>
	      operator is to mark the targets as
	      <literal>.PRECIOUS</literal>.</entry>
	  </row>

	  <row valign="top">
	    <entry><literal>.SILENT</literal></entry>

	    <entry>Marking a target with this attribute keeps its
	      commands from being printed when they are
	      executed, just as if they had an <literal>@</literal>
	      in front of them.</entry>
	  </row>

	  <row valign="top">
	    <entry><literal>.USE</literal></entry>

	    <entry><para>By giving a target this attribute, you turn it
		into <application></application>PMake's equivalent of
		a macro.  When the target is
		used as a source for another target, the other target
		acquires the commands, sources and attributes (except
		<literal>.USE</literal>) of the source.  If the target
		already has commands, the <literal>.USE</literal> target's
		commands are added to the end.  If more than one
		<literal>.USE</literal>-marked source is given to a
		target, the rules are applied sequentially.  The typical
		<literal>.USE</literal> rule (as I call them) will use
		the sources of the target to which it is applied (as
		stored in the <makevar>.ALLSRC</makevar> variable for
		the target) as its <quote>arguments,</quote> if you
		will.  For example, you probably noticed that the
		commands for creating <filename>lib1.a</filename> and
		<filename>lib2.a</filename> in the example in section
		<xref linkend="savingcmds"/> were exactly the same.
		You can use the <literal>.USE</literal> attribute to
		eliminate the repetition, like so:

		<programlisting>lib1.a          : $(LIB1OBJS) MAKELIB
lib2.a          : $(LIB2OBJS) MAKELIB

MAKELIB         : .USE
	rm -f $(.TARGET)
	ar cr $(.TARGET) $(.ALLSRC)
	...
	ranlib $(.TARGET)</programlisting>

		Several system makefiles (not to be confused
		with The System Makefile) make use of these
		<literal>.USE</literal> rules to make your life
		easier (they are in the default, system makefile
		directory...take a look).  Note that the
		<literal>.USE</literal> rule source itself
		(<maketarget>MAKELIB</maketarget>) does not appear in
		any of the targets's local variables.  There is no limit
		to the number of times I could use the
		<maketarget>MAKELIB</maketarget> rule.  If there were
		more libraries, I could continue with
		<literal>lib3.a : $(LIB3OBJS) MAKELIB</literal>
		and so on and so forth.</para></entry>
	  </row>
	</tbody>
      </tgroup>
    </informaltable>
  </section>

  <section id="specialtargets">
    <title>Special Targets</title>

    <para>As there were in <application>Make</application>, so there
      are certain targets that have special meaning to
      <application>PMake</application>.  When you use one on a
      dependency line,
      it is the only target that may appear on the left-hand-side of the
      operator.  As for the attributes  and variables, all the special
      targets begin with a period and consist of upper-case letters
      only.  I will not describe them all in detail because some of them
      are rather complex and I will describe them in more detail than you
      will want in <xref linkend="gods"/>.  The targets are as follows:</para>

    <informaltable frame="none">
      <tgroup cols="2">
	<colspec colwidth="1*"/>
	<colspec colwidth="10*"/>

	<tbody>
	  <row valign="top">
	    <entry><maketarget>.BEGIN</maketarget></entry>

	    <entry>Any commands attached to this target are
	      executed before anything else is done.  You can use
	      it for any initialization that needs
	      doing.</entry>
	  </row>

	  <row valign="top">
	    <entry><maketarget>.DEFAULT</maketarget></entry>

	    <entry>This is sort of a <literal>.USE</literal>
	      rule for any target (that was used only as a source)
	      that <application>PMake</application> can not figure
	      out any other way to create.  It is only <quote>sort
	      of</quote> a <literal>.USE</literal> rule because
	      only the shell script attached to  the
	      <maketarget>.DEFAULT</maketarget> target is used.
	      The <makevar>.IMPSRC</makevar> variable of a target
	      that inherits <maketarget>.DEFAULT</maketarget>'s
	      commands is set to the target's own
	      name.</entry>
	  </row>

	  <row valign="top">
	    <entry><maketarget>.END</maketarget></entry>

	    <entry>This serves a function similar to
	      <maketarget>.BEGIN</maketarget>, in that commands
	      attached to it are executed once everything
	      has been re-created (so long as no errors
	      occurred).  It also serves the extra function of
	      being a place on which <application>PMake</application>
	      can hang commands you put off to the end.  Thus the script
	      for this target will be executed before any of the
	      commands you save with the
	      <quote>...</quote>.</entry>
	  </row>

	  <row valign="top">
	    <entry><maketarget>.EXPORT</maketarget></entry>

	    <entry>The sources for this target are passed
	      to the exportation system compiled into
	      <application>PMake</application>.  Some systems will use
	      these sources to configure themselves.  You should ask
	      your system administrator about this.</entry>
	  </row>

	  <row valign="top">
	    <entry><maketarget>.IGNORE</maketarget></entry>

	    <entry>This target marks each of its sources
	      with the <literal>.IGNORE</literal> attribute.
	      If you do not give it any sources, then it is
	      like giving the <option>-i</option> flag when
	      you invoke <application>PMake</application> &ndash;
	      errors are ignored for all commands.</entry>
	  </row>

	  <row valign="top">
	    <entry><maketarget>.INCLUDES</maketarget></entry>

	    <entry><para>The sources for this target are taken to be
		suffixes that indicate a file that can be included in
		a program source file.  The suffix must  have
		already been declared with <literal>.SUFFIXES</literal>
		(see below).
		Any suffix so marked will have the directories on
		its search path (see <maketarget>.PATH</maketarget>,
		below) placed in the <makevar>.INCLUDES</makevar>
		variable, each preceded by a <option>-I</option> flag.
		This variable can then be used as an argument for
		the compiler in the normal fashion.  The
		<filename>.h</filename> suffix is already marked in
		this way in the system makefile.  E.g. if you have

		  <programlisting>.SUFFIXES       : .bitmap
.PATH.bitmap    : /usr/local/X/lib/bitmaps
.INCLUDES       : .bitmap</programlisting>

		<application>PMake</application> will place
		<literal>-I/usr/local/X/lib/bitmaps</literal>
		in the <makevar>.INCLUDES</makevar> variable and you can
		then say

		<programlisting>cc $(.INCLUDES) -c xprogram.c</programlisting>

		(Note: the <makevar>.INCLUDES</makevar> variable is
		not actually filled in until the entire makefile has
		been read.)</para></entry>
	  </row>

	  <row valign="top">
	    <entry><maketarget>.INTERRUPT</maketarget></entry>

	    <entry>When <application>PMake</application> is
	      interrupted, it will execute the commands in the
	      script for this target, if it exists.</entry>
	  </row>

	  <row valign="top">
	    <entry><maketarget>.LIBS</maketarget></entry>

	    <entry>This does for libraries what
	      <maketarget>.INCLUDES</maketarget> does for include
	      files, except the flag used is
	      <option>-L</option>, as required by those linkers
	      that allow you to tell them where to find libraries.
	      The variable used is <makevar>.LIBS</makevar>.
	      Be forewarned that <application>PMake</application>
	      may not have been compiled to do this if the linker
	      on your system does not accept the <option>-L</option>
	      flag, though the <makevar>.LIBS</makevar> variable
	      will always be defined once the makefile has been
	      read.</entry>
	  </row>

	  <row valign="top">
	    <entry><maketarget>.MAIN</maketarget></entry>

	    <entry>If you did not give a target (or targets) to
	      create when you invoked
	      <application>PMake</application>, it will take the
	      sources of this target as the targets to
	      create.</entry>
	  </row>

	  <row valign="top">
	    <entry><maketarget>.MAKEFLAGS</maketarget></entry>

	    <entry>This target provides a way for you to
	      always specify flags for <application>PMake</application>
	      when the makefile is used.  The flags are just as they
	      would be typed to the shell (except you can not use shell
	      variables unless they are in the environment), though
	      the <option>-f</option> and <option>-r</option>
	      flags have no effect.</entry>
	  </row>

	  <row valign="top">
	    <entry><maketarget>.NULL</maketarget></entry>

	    <entry>This allows you to specify what
	      suffix <application>PMake</application> should pretend
	      a file has if, in fact, it has no known suffix.  Only
	      one suffix may be so designated.  The last source on the
	      dependency line is the suffix that is used (you
	      should, however, only give one suffix...).</entry>
	  </row>

	  <row valign="top">
	    <entry><maketarget>.PATH</maketarget></entry>

	    <entry>If you give sources for this target,
	      <application>PMake</application> will take them as
	      directories in which to search for files it cannot
	      find in the current directory.  If you give no
	      sources, it will clear out any directories added to
	      the search path before.  Since the effects of this
	      all get very complex, we will leave it till <xref
	      linkend="gods"/> to give you a complete
	      explanation.</entry>
	  </row>

	  <row valign="top">
	    <entry><maketarget>.PATH<replaceable>suffix</replaceable></maketarget></entry>

	    <entry>This does a similar thing to
	      <maketarget>.PATH</maketarget>, but it does it only
	      for files with the given suffix.  The suffix must
	      have been defined already.  Look at Search Paths
	      (<xref linkend="searchpaths"/>) for more
	      information.</entry>
	  </row>

	  <row valign="top">
	    <entry><maketarget>.PRECIOUS</maketarget></entry>

	    <entry>Similar to <maketarget>.IGNORE</maketarget>,
	      this gives the <literal>.PRECIOUS</literal> attribute to
	      each source on the dependency line, unless there are
	      no sources, in which case the <literal>.PRECIOUS</literal>
	      attribute is given to every target in the file.</entry>
	  </row>

	  <row valign="top">
	    <entry><maketarget>.RECURSIVE</maketarget></entry>

	    <entry>This target applies the <literal>.MAKE</literal>
	      attribute to all its sources.  It does nothing if you
	      do not give it any sources.</entry>
	  </row>

	  <row valign="top">
	    <entry><maketarget>.SHELL</maketarget></entry>

	    <entry><application>PMake</application> is not
	      constrained to only using the Bourne shell to
	      execute the commands you put in the makefile.  You
	      can tell it some other shell to use with this
	      target.  Check out <quote><xref linkend="ashell"
	      endterm="ashelltitle"/></quote> (<xref
	      linkend="ashell"/>) for more
	      information.</entry>
	  </row>

	  <row valign="top">
	    <entry><maketarget>.SILENT</maketarget></entry>

	    <entry>When you use
	      <maketarget>.SILENT</maketarget> as a target, it
	      applies the <literal>.SILENT</literal> attribute to
	      each of its sources.  If there are no sources on the
	      dependency line, then it is as if you gave
	      <application>PMake</application> the
	      <option>-s</option> flag and no commands will be
	      echoed.</entry>
	  </row>

	  <row valign="top">
	    <entry><maketarget>.SUFFIXES</maketarget></entry>

	    <entry>This is used to give new file suffixes
	      for <application>PMake</application> to handle.
	      Each source is a suffix
	      <application>PMake</application> should
	      recognize.  If you give a
	      <maketarget>.SUFFIXES</maketarget> dependency line
	      with no sources, <application>PMake</application>
	      will forget about all the suffixes it knew
	      (this also nukes the null suffix).  For those
	      targets that need to have suffixes defined, this
	      is how you do it.</entry>
	  </row>
	</tbody>
      </tgroup>
    </informaltable>

    <para>In addition to these targets, a line of the form:</para>

    <programlisting>attribute : sources</programlisting>

    <para>applies the attribute to all the targets listed as sources.</para>
  </section>

  <section id="modyvarex">
    <title>Modifying Variable Expansion</title>

    <para>Variables need not always be expanded verbatim.
      <application>PMake</application> defines several modifiers
      that may be applied to a variable's value before it is expanded.
      You apply a modifier by placing it after the variable name with
      a colon between the two, like so:</para>

    <programlisting>${VARIABLE:modifier}</programlisting>

    <para>Each modifier is a single character followed by something
      specific to the modifier itself.  You may apply as many
      modifiers as you want &ndash; each one is applied to the
      result of the previous and is separated from the
      previous by another colon.</para>

    <para>There are seven ways to modify a variable's expansion,
      most of which come from the C shell variable modification
      characters:</para>

    <variablelist>
      <varlistentry>
	<term><literal>Mpattern</literal></term>

	<listitem>
	  <para>This is used to select only those words (a word is a
	    series of characters that are neither spaces nor tabs)
	    that match the given pattern.  The pattern is a
	    wildcard pattern like that used by the shell, where
	    <literal>*</literal> means <literal>0</literal> or more
	    characters of any sort; <literal>?</literal> is any
	    single character; <literal>[abcd]</literal> matches any
	    single character that is either <literal>a</literal>,
	    <literal>b</literal>, <literal>c</literal> or
	    <literal>d</literal> (there may be any number of
	    characters between the brackets);
	    <literal>[0-9]</literal> matches any single character
	    that is between <literal>0</literal> and
	    <literal>9</literal> (i.e. any digit.  This form may be
	    freely mixed with the other bracket form), and
	    <literal>\</literal> is used to escape any of the
	    characters <literal>*</literal>, <literal>?</literal>,
	    <literal>[</literal> or <literal>:</literal>, leaving
	    them as regular characters to match themselves in a
	    word.  For example, the system makefile
	    <filename>&lt;makedepend.mk&gt;</filename> uses
	    <literal>$(CFLAGS:M-[ID]*)</literal> to extract all the
	    <option>-I</option> and <option>-D</option> flags that
	    would be passed to the C compiler.  This allows it to
	    properly locate include files and generate the correct
	    dependencies.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><literal>Npattern</literal></term>

	<listitem>
	  <para>This is identical to <literal>:M</literal> except
	    it substitutes  all words that do not match the given
	    pattern.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><literal>S/search-string/replacement-string/[g]</literal></term>

	<listitem>
	  <para>Causes the first occurrence of search-string in
	    the variable to be replaced by replacement-string,
	    unless the <option>g</option> flag is given at the end,
	    in which case all occurrences of the string are
	    replaced.  The substitution is performed on each word in
	    the variable in turn.  If search-string begins with a
	    <literal>^</literal>, the string must match starting at
	    the beginning of the word.  If search-string ends with a
	    <literal>$</literal>, the string must match to the end
	    of the word (these two may be combined to force an exact
	    match).  If a backslash precedes these two characters,
	    however, they lose their special meaning.  Variable
	    expansion also occurs in the normal fashion inside both
	    the search-string and the replacement-string, except
	    that a backslash is used to prevent the expansion of a
	    <literal>$</literal>, not another dollar sign, as is
	    usual.  Note that search-string is just a string, not a
	    pattern, so none of the usual regularexpression/wildcard
	    characters have any special meaning save
	    <literal>^</literal> and <literal>$</literal>.  In the
	    replacement string, the <literal>&amp;</literal> character
	    is replaced by the search-string unless it is preceded
	    by a backslash.  You are allowed to use any character
	    except colon or exclamation point to separate the two
	    strings.  This so-called delimiter character may be
	    placed in either string by preceding it with a
	    backslash.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><literal>T</literal></term>

	<listitem>
	  <para>Replaces each word in the variable expansion by
	    its last component (its <quote>tail</quote>).
	    For example, given:</para>

	  <programlisting>OBJS = ../lib/a.o b /usr/lib/libm.a
TAILS = $(OBJS:T)</programlisting>

	  <para>the variable <makevar>TAILS</makevar> would expand
	    to <literal>a.o b libm.a.</literal></para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><literal>H</literal></term>

	<listitem>
	  <para>This is similar to <literal>:T</literal>, except
	    that every word is replaced by everything but the tail
	    (the <quote>head</quote>).  Using the same definition of
	    <makevar>OBJS</makevar>, the string
	    <literal>$(OBJS:H)</literal> would expand to
	    <literal>../lib /usr/lib.</literal>  Note that the final
	    slash on the heads is removed and anything without
	    a head is replaced by the empty string.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><literal>E</literal></term>

	<listitem>
	  <para><literal>:E</literal> replaces each word by its
	    suffix (<quote>extension</quote>).  So
	    <literal>$(OBJS:E)</literal> would give you
	    <literal>.o .a.</literal></para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><literal>R</literal></term>

	<listitem>
	  <para>This replaces each word by everything but the
	    suffix (the <quote>root</quote> of the word).
	    <literal>$(OBJS:R)</literal> expands to
	    <literal>../lib/a b /usr/lib/libm</literal>.</para>
	</listitem>
      </varlistentry>
    </variablelist>

    <para>In addition, the System V style of substitution is also
      supported.  This looks like:</para>

    <programlisting>$(VARIABLE:search-string=replacement)</programlisting>

    <para>It must be the last modifier in the chain.  The search is
      anchored at the end of each word, so only suffixes or whole
      words may be replaced.</para>
  </section>

  <section id="moreexercises">
    <title>More Exercises</title>

    <bridgehead>Exercise 3.1</bridgehead>

    <para>You have got a set programs, each of which is created from
      its own assembly-language  source file (suffix
      <filename>.asm</filename>).  Each program can be assembled into
      two versions, one with error-checking code assembled in and one
      without.  You could assemble them into files with different
      suffixes (<filename>.eobj</filename> and
      <filename>.obj</filename>, for instance), but your linker only
      understands files that end in <filename>.obj</filename>. To top
      it all off, the final executables must have the suffix
      <filename>.exe</filename>.  How can you still use
      transformation rules to make your life easier (Hint: assume the
      errorchecking versions have ec tacked onto their prefix)?</para>

    <bridgehead>Exercise 3.2</bridgehead>

    <para>Assume, for a moment or two, you want to perform
      a sort of <quote>indirection</quote> by placing the name of
      a variable into another one, then you want to get the value
      of the first by expanding the second somehow.  Unfortunately,
      <application>PMake</application> does not allow constructs like:</para>

    <programlisting>$($(FOO))</programlisting>

    <para>What do you do?  Hint: no further variable expansion is
      performed after modifiers are applied, thus if you
      cause a <literal>$</literal> to occur in the expansion,
      that is what will be in the result.</para>
  </section>
</chapter>