// polynomial for approximating log2(1+x)
//
// Copyright (c) 2019, Arm Limited.
// SPDX-License-Identifier: MIT
deg = 7; // poly degree
// interval ~= 1/(2*N), where N is the table entries
a= -0x1.f45p-8;
b= 0x1.f45p-8;
ln2 = evaluate(log(2),0);
invln2hi = double(1/ln2 + 0x1p21) - 0x1p21; // round away last 21 bits
invln2lo = double(1/ln2 - invln2hi);
// find log2(1+x) polynomial with minimal absolute error
f = log(1+x)/ln2;
// return p that minimizes |f(x) - poly(x) - x^d*p(x)|
approx = proc(poly,d) {
return remez(f(x) - poly(x), deg-d, [a;b], x^d, 1e-10);
};
// first coeff is fixed, iteratively find optimal double prec coeffs
poly = x*(invln2lo + invln2hi);
for i from 2 to deg do {
p = roundcoefficients(approx(poly,i), [|D ...|]);
poly = poly + x^i*coeff(p,0);
};
display = hexadecimal;
print("invln2hi:", invln2hi);
print("invln2lo:", invln2lo);
print("abs error:", accurateinfnorm(f(x)-poly(x), [a;b], 30));
//// relative error computation fails if f(0)==0
//// g = f(x)/x = log2(1+x)/x; using taylor series
//g = 0;
//for i from 0 to 60 do { g = g + (-x)^i/(i+1)/ln2; };
//print("rel error:", accurateinfnorm(1-(poly(x)/x)/g(x), [a;b], 30));
print("in [",a,b,"]");
print("coeffs:");
for i from 0 to deg do coeff(poly,i);