aboutsummaryrefslogblamecommitdiff
path: root/contrib/capsicum-test/procdesc.cc
blob: 11274ce9e8663255c3a9a7701ee3155ad8cd3805 (plain) (tree)
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
































































































































































































































                                                                                                     
                                    






                                                                         
                                 






























































































































































































































































































                                                                                                           

                                    









                                                                  



                                                                     


























































































































































































































































































































































































































































                                                                                                                        
// Tests for the process descriptor API for Linux.
#include <sys/types.h>
#include <sys/resource.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <fcntl.h>
#include <poll.h>
#include <pthread.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>

#include <iomanip>
#include <map>

#include "capsicum.h"
#include "syscalls.h"
#include "capsicum-test.h"

#ifndef __WALL
// Linux requires __WALL in order for waitpid(specific_pid,...) to
// see and reap any specific pid.  Define this to nothing for platforms
// (FreeBSD) where it doesn't exist, to reduce macroing.
#define __WALL 0
#endif

// TODO(drysdale): it would be nice to use proper synchronization between
// processes, rather than synchronization-via-sleep; faster too.


//------------------------------------------------
// Utilities for the tests.

static pid_t pdwait4_(int pd, int *status, int options, struct rusage *ru) {
#ifdef HAVE_PDWAIT4
  return pdwait4(pd, status, options, ru);
#else
  // Simulate pdwait4() with wait4(pdgetpid()); this won't work in capability mode.
  pid_t pid = -1;
  int rc = pdgetpid(pd, &pid);
  if (rc < 0) {
    return rc;
  }
  options |= __WALL;
  return wait4(pid, status, options, ru);
#endif
}

static void print_rusage(FILE *f, struct rusage *ru) {
  fprintf(f, "  User CPU time=%ld.%06ld\n", (long)ru->ru_utime.tv_sec, (long)ru->ru_utime.tv_usec);
  fprintf(f, "  System CPU time=%ld.%06ld\n", (long)ru->ru_stime.tv_sec, (long)ru->ru_stime.tv_usec);
  fprintf(f, "  Max RSS=%ld\n", ru->ru_maxrss);
}

static void print_stat(FILE *f, const struct stat *stat) {
  fprintf(f,
          "{ .st_dev=%ld, st_ino=%ld, st_mode=%04o, st_nlink=%ld, st_uid=%d, st_gid=%d,\n"
          "  .st_rdev=%ld, .st_size=%ld, st_blksize=%ld, .st_block=%ld,\n  "
#ifdef HAVE_STAT_BIRTHTIME
          ".st_birthtime=%ld, "
#endif
          ".st_atime=%ld, .st_mtime=%ld, .st_ctime=%ld}\n",
          (long)stat->st_dev, (long)stat->st_ino, stat->st_mode,
          (long)stat->st_nlink, stat->st_uid, stat->st_gid,
          (long)stat->st_rdev, (long)stat->st_size, (long)stat->st_blksize,
          (long)stat->st_blocks,
#ifdef HAVE_STAT_BIRTHTIME
          (long)stat->st_birthtime,
#endif
          (long)stat->st_atime, (long)stat->st_mtime, (long)stat->st_ctime);
}

static std::map<int,bool> had_signal;
static void handle_signal(int x) {
  had_signal[x] = true;
}

// Check that the given child process terminates as expected.
void CheckChildFinished(pid_t pid, bool signaled=false) {
  // Wait for the child to finish.
  int rc;
  int status = 0;
  do {
    rc = waitpid(pid, &status, __WALL);
    if (rc < 0) {
      fprintf(stderr, "Warning: waitpid error %s (%d)\n", strerror(errno), errno);
      ADD_FAILURE() << "Failed to wait for child";
      break;
    } else if (rc == pid) {
      break;
    }
  } while (true);
  EXPECT_EQ(pid, rc);
  if (rc == pid) {
    if (signaled) {
      EXPECT_TRUE(WIFSIGNALED(status));
    } else {
      EXPECT_TRUE(WIFEXITED(status)) << std::hex << status;
      EXPECT_EQ(0, WEXITSTATUS(status));
    }
  }
}

//------------------------------------------------
// Basic tests of process descriptor functionality

TEST(Pdfork, Simple) {
  int pd = -1;
  pid_t parent = getpid_();
  int pid = pdfork(&pd, 0);
  EXPECT_OK(pid);
  if (pid == 0) {
    // Child: check pid values.
    EXPECT_EQ(-1, pd);
    EXPECT_NE(parent, getpid_());
    EXPECT_EQ(parent, getppid());
    sleep(1);
    exit(0);
  }
  usleep(100);  // ensure the child has a chance to run
  EXPECT_NE(-1, pd);
  EXPECT_PID_ALIVE(pid);
  int pid_got;
  EXPECT_OK(pdgetpid(pd, &pid_got));
  EXPECT_EQ(pid, pid_got);

  // Wait long enough for the child to exit().
  sleep(2);
  EXPECT_PID_ZOMBIE(pid);

  // Wait for the the child.
  int status;
  struct rusage ru;
  memset(&ru, 0, sizeof(ru));
  int waitrc = pdwait4_(pd, &status, 0, &ru);
  EXPECT_EQ(pid, waitrc);
  if (verbose) {
    fprintf(stderr, "For pd %d pid %d:\n", pd, pid);
    print_rusage(stderr, &ru);
  }
  EXPECT_PID_GONE(pid);

  // Can only pdwait4(pd) once (as initial call reaps zombie).
  memset(&ru, 0, sizeof(ru));
  EXPECT_EQ(-1, pdwait4_(pd, &status, 0, &ru));
  EXPECT_EQ(ECHILD, errno);

  EXPECT_OK(close(pd));
}

TEST(Pdfork, InvalidFlag) {
  int pd = -1;
  int pid = pdfork(&pd, PD_DAEMON<<5);
  if (pid == 0) {
    exit(1);
  }
  EXPECT_EQ(-1, pid);
  EXPECT_EQ(EINVAL, errno);
  if (pid > 0) waitpid(pid, NULL, __WALL);
}

TEST(Pdfork, TimeCheck) {
  time_t now = time(NULL);  // seconds since epoch
  EXPECT_NE(-1, now);
  if (verbose) fprintf(stderr, "Calling pdfork around %ld\n", (long)(long)now);

  int pd = -1;
  pid_t pid = pdfork(&pd, 0);
  EXPECT_OK(pid);
  if (pid == 0) {
    // Child: check we didn't get a valid process descriptor then exit.
    EXPECT_EQ(-1, pdgetpid(pd, &pid));
    EXPECT_EQ(EBADF, errno);
    exit(HasFailure());
  }

#ifdef HAVE_PROCDESC_FSTAT
  // Parent process. Ensure that [acm]times have been set correctly.
  struct stat stat;
  memset(&stat, 0, sizeof(stat));
  EXPECT_OK(fstat(pd, &stat));
  if (verbose) print_stat(stderr, &stat);

#ifdef HAVE_STAT_BIRTHTIME
  EXPECT_GE(now, stat.st_birthtime);
  EXPECT_EQ(stat.st_birthtime, stat.st_atime);
#endif
  EXPECT_LT((now - stat.st_atime), 2);
  EXPECT_EQ(stat.st_atime, stat.st_ctime);
  EXPECT_EQ(stat.st_ctime, stat.st_mtime);
#endif

  // Wait for the child to finish.
  pid_t pd_pid = -1;
  EXPECT_OK(pdgetpid(pd, &pd_pid));
  EXPECT_EQ(pid, pd_pid);
  CheckChildFinished(pid);
}

TEST(Pdfork, UseDescriptor) {
  int pd = -1;
  pid_t pid = pdfork(&pd, 0);
  EXPECT_OK(pid);
  if (pid == 0) {
    // Child: immediately exit
    exit(0);
  }
  CheckChildFinished(pid);
}

TEST(Pdfork, NonProcessDescriptor) {
  int fd = open("/etc/passwd", O_RDONLY);
  EXPECT_OK(fd);
  // pd*() operations should fail on a non-process descriptor.
  EXPECT_EQ(-1, pdkill(fd, SIGUSR1));
  int status;
  EXPECT_EQ(-1, pdwait4_(fd, &status, 0, NULL));
  pid_t pid;
  EXPECT_EQ(-1, pdgetpid(fd, &pid));
  close(fd);
}

static void *SubThreadMain(void *) {
  while (true) {
    if (verbose) fprintf(stderr, "      subthread: \"I aten't dead\"\n");
    usleep(100000);
  }
  return NULL;
}

static void *ThreadMain(void *) {
  int pd;
  pid_t child = pdfork(&pd, 0);
  if (child == 0) {
    // Child: start a subthread then loop
    pthread_t child_subthread;
    EXPECT_OK(pthread_create(&child_subthread, NULL, SubThreadMain, NULL));
    while (true) {
      if (verbose) fprintf(stderr, "    pdforked process %d: \"I aten't dead\"\n", getpid());
      usleep(100000);
    }
    exit(0);
  }
  if (verbose) fprintf(stderr, "  thread generated pd %d\n", pd);
  sleep(2);

  // Pass the process descriptor back to the main thread.
  return reinterpret_cast<void *>(pd);
}

TEST(Pdfork, FromThread) {
  // Fire off a new thread to do all of the creation work.
  pthread_t child_thread;
  EXPECT_OK(pthread_create(&child_thread, NULL, ThreadMain, NULL));
  void *data;
  EXPECT_OK(pthread_join(child_thread, &data));
  int pd = reinterpret_cast<intptr_t>(data);
  if (verbose) fprintf(stderr, "retrieved pd %d from terminated thread\n", pd);

  // Kill and reap.
  pid_t pid;
  EXPECT_OK(pdgetpid(pd, &pid));
  EXPECT_OK(pdkill(pd, SIGKILL));
  int status;
  EXPECT_EQ(pid, pdwait4_(pd, &status, 0, NULL));
  EXPECT_TRUE(WIFSIGNALED(status));
}

//------------------------------------------------
// More complicated tests.


// Test fixture that pdfork()s off a child process, which terminates
// when it receives anything on a pipe.
class PipePdforkBase : public ::testing::Test {
 public:
  PipePdforkBase(int pdfork_flags) : pd_(-1), pid_(-1) {
    had_signal.clear();
    int pipes[2];
    EXPECT_OK(pipe(pipes));
    pipe_ = pipes[1];
    int parent = getpid_();
    if (verbose) fprintf(stderr, "[%d] about to pdfork()\n", getpid_());
    int rc = pdfork(&pd_, pdfork_flags);
    EXPECT_OK(rc);
    if (rc == 0) {
      // Child process: blocking-read an int from the pipe then exit with that value.
      EXPECT_NE(parent, getpid_());
      EXPECT_EQ(parent, getppid());
      if (verbose) fprintf(stderr, "  [%d] child of %d waiting for value on pipe\n", getpid_(), getppid());
      read(pipes[0], &rc, sizeof(rc));
      if (verbose) fprintf(stderr, "  [%d] got value %d on pipe, exiting\n", getpid_(), rc);
      exit(rc);
    }
    pid_ = rc;
    usleep(100);  // ensure the child has a chance to run
  }
  ~PipePdforkBase() {
    // Terminate by any means necessary.
    if (pd_ > 0) {
      pdkill(pd_, SIGKILL);
      close(pd_);
    }
    if (pid_ > 0) {
      kill(pid_, SIGKILL);
      waitpid(pid_, NULL, __WALL|WNOHANG);
    }
    // Check signal expectations.
    EXPECT_FALSE(had_signal[SIGCHLD]);
  }
  int TerminateChild() {
    // Tell the child to exit.
    int zero = 0;
    if (verbose) fprintf(stderr, "[%d] write 0 to pipe\n", getpid_());
    return write(pipe_, &zero, sizeof(zero));
  }
 protected:
  int pd_;
  int pipe_;
  pid_t pid_;
};

class PipePdfork : public PipePdforkBase {
 public:
  PipePdfork() : PipePdforkBase(0) {}
};

class PipePdforkDaemon : public PipePdforkBase {
 public:
  PipePdforkDaemon() : PipePdforkBase(PD_DAEMON) {}
};

// Can we poll a process descriptor?
TEST_F(PipePdfork, Poll) {
  // Poll the process descriptor, nothing happening.
  struct pollfd fdp;
  fdp.fd = pd_;
  fdp.events = POLLIN | POLLERR | POLLHUP;
  fdp.revents = 0;
  EXPECT_EQ(0, poll(&fdp, 1, 0));

  TerminateChild();

  // Poll again, should have activity on the process descriptor.
  EXPECT_EQ(1, poll(&fdp, 1, 2000));
  EXPECT_TRUE(fdp.revents & POLLHUP);

  // Poll a third time, still have POLLHUP.
  fdp.revents = 0;
  EXPECT_EQ(1, poll(&fdp, 1, 0));
  EXPECT_TRUE(fdp.revents & POLLHUP);
}

// Can multiple processes poll on the same descriptor?
TEST_F(PipePdfork, PollMultiple) {
  int child = fork();
  EXPECT_OK(child);
  if (child == 0) {
    // Child: wait to give time for setup, then write to the pipe (which will
    // induce exit of the pdfork()ed process) and exit.
    sleep(1);
    TerminateChild();
    exit(0);
  }
  usleep(100);  // ensure the child has a chance to run

  // Fork again
  int doppel = fork();
  EXPECT_OK(doppel);
  // We now have:
  //   pid A: main process, here
  //   |--pid B: pdfork()ed process, blocked on read()
  //   |--pid C: fork()ed process, in sleep(1) above
  //   +--pid D: doppel process, here

  // Both A and D execute the following code.
  // First, check no activity on the process descriptor yet.
  struct pollfd fdp;
  fdp.fd = pd_;
  fdp.events = POLLIN | POLLERR | POLLHUP;
  fdp.revents = 0;
  EXPECT_EQ(0, poll(&fdp, 1, 0));

  // Now, wait (indefinitely) for activity on the process descriptor.
  // We expect:
  //  - pid C will finish its sleep, write to the pipe and exit
  //  - pid B will unblock from read(), and exit
  //  - this will generate an event on the process descriptor...
  //  - ...in both process A and process D.
  EXPECT_EQ(1, poll(&fdp, 1, 2000));
  EXPECT_TRUE(fdp.revents & POLLHUP);

  if (doppel == 0) {
    // Child: process D exits.
    exit(0);
  } else {
    // Parent: wait on process D.
    int rc = 0;
    waitpid(doppel, &rc, __WALL);
    EXPECT_TRUE(WIFEXITED(rc));
    EXPECT_EQ(0, WEXITSTATUS(rc));
    // Also wait on process B.
    CheckChildFinished(child);
  }
}

// Check that exit status/rusage for a dead pdfork()ed child can be retrieved
// via any process descriptor, multiple times.
TEST_F(PipePdfork, MultipleRetrieveExitStatus) {
  EXPECT_PID_ALIVE(pid_);
  int pd_copy = dup(pd_);
  EXPECT_LT(0, TerminateChild());

  int status;
  struct rusage ru;
  memset(&ru, 0, sizeof(ru));
  int waitrc = pdwait4_(pd_copy, &status, 0, &ru);
  EXPECT_EQ(pid_, waitrc);
  if (verbose) {
    fprintf(stderr, "For pd %d -> pid %d:\n", pd_, pid_);
    print_rusage(stderr, &ru);
  }
  EXPECT_PID_GONE(pid_);

#ifdef NOTYET
  // Child has been reaped, so original process descriptor dangles but
  // still has access to rusage information.
  memset(&ru, 0, sizeof(ru));
  EXPECT_EQ(0, pdwait4_(pd_, &status, 0, &ru));
#endif
  close(pd_copy);
}

TEST_F(PipePdfork, ChildExit) {
  EXPECT_PID_ALIVE(pid_);
  EXPECT_LT(0, TerminateChild());
  EXPECT_PID_DEAD(pid_);

  int status;
  int rc = pdwait4_(pd_, &status, 0, NULL);
  EXPECT_OK(rc);
  EXPECT_EQ(pid_, rc);
  pid_ = 0;
}

#ifdef HAVE_PROC_FDINFO
TEST_F(PipePdfork, FdInfo) {
  char buffer[1024];
  sprintf(buffer, "/proc/%d/fdinfo/%d", getpid_(), pd_);
  int procfd = open(buffer, O_RDONLY);
  EXPECT_OK(procfd);

  EXPECT_OK(read(procfd, buffer, sizeof(buffer)));
  // The fdinfo should include the file pos of the underlying file
  EXPECT_NE((char*)NULL, strstr(buffer, "pos:\t0")) << buffer;
  // ...and the underlying pid
  char pidline[256];
  sprintf(pidline, "pid:\t%d", pid_);
  EXPECT_NE((char*)NULL, strstr(buffer, pidline)) << buffer;
  close(procfd);
}
#endif

// Closing a normal process descriptor terminates the underlying process.
TEST_F(PipePdfork, Close) {
  sighandler_t original = signal(SIGCHLD, handle_signal);
  EXPECT_PID_ALIVE(pid_);
  int status;
  EXPECT_EQ(0, waitpid(pid_, &status, __WALL|WNOHANG));

  EXPECT_OK(close(pd_));
  pd_ = -1;
  EXPECT_FALSE(had_signal[SIGCHLD]);
  EXPECT_PID_DEAD(pid_);

#ifdef __FreeBSD__
  EXPECT_EQ(-1, waitpid(pid_, NULL, __WALL));
  EXPECT_EQ(errno, ECHILD);
#else
  // Having closed the process descriptor means that pdwait4(pd) now doesn't work.
  int rc = pdwait4_(pd_, &status, 0, NULL);
  EXPECT_EQ(-1, rc);
  EXPECT_EQ(EBADF, errno);

  // Closing all process descriptors means the the child can only be reaped via pid.
  EXPECT_EQ(pid_, waitpid(pid_, &status, __WALL|WNOHANG));
#endif
  signal(SIGCHLD, original);
}

TEST_F(PipePdfork, CloseLast) {
  sighandler_t original = signal(SIGCHLD, handle_signal);
  // Child should only die when last process descriptor is closed.
  EXPECT_PID_ALIVE(pid_);
  int pd_other = dup(pd_);

  EXPECT_OK(close(pd_));
  pd_ = -1;

  EXPECT_PID_ALIVE(pid_);
  int status;
  EXPECT_EQ(0, waitpid(pid_, &status, __WALL|WNOHANG));

  // Can no longer pdwait4() the closed process descriptor...
  EXPECT_EQ(-1, pdwait4_(pd_, &status, WNOHANG, NULL));
  EXPECT_EQ(EBADF, errno);
  // ...but can pdwait4() the still-open process descriptor.
  errno = 0;
  EXPECT_EQ(0, pdwait4_(pd_other, &status, WNOHANG, NULL));
  EXPECT_EQ(0, errno);

  EXPECT_OK(close(pd_other));
  EXPECT_PID_DEAD(pid_);

  EXPECT_FALSE(had_signal[SIGCHLD]);
  signal(SIGCHLD, original);
}

FORK_TEST(Pdfork, OtherUserIfRoot) {
  GTEST_SKIP_IF_NOT_ROOT();
  int pd;
  pid_t pid = pdfork(&pd, 0);
  EXPECT_OK(pid);
  if (pid == 0) {
    // Child process: loop forever.
    while (true) usleep(100000);
  }
  usleep(100);

  // Now that the second process has been pdfork()ed, change euid.
  ASSERT_NE(0u, other_uid) << "other_uid not initialized correctly, "
                              "please pass the -u <uid> flag.";
  EXPECT_EQ(0, setuid(other_uid));
  EXPECT_EQ(other_uid, getuid());
  if (verbose) fprintf(stderr, "uid=%d euid=%d\n", getuid(), geteuid());

  // Fail to kill child with normal PID operation.
  EXPECT_EQ(-1, kill(pid, SIGKILL));
  EXPECT_EQ(EPERM, errno);
  EXPECT_PID_ALIVE(pid);

  // Succeed with pdkill though.
  EXPECT_OK(pdkill(pd, SIGKILL));
  EXPECT_PID_ZOMBIE(pid);

  int status;
  int rc = pdwait4_(pd, &status, WNOHANG, NULL);
  EXPECT_OK(rc);
  EXPECT_EQ(pid, rc);
  EXPECT_TRUE(WIFSIGNALED(status));
}

TEST_F(PipePdfork, WaitPidThenPd) {
  TerminateChild();
  int status;
  // If we waitpid(pid) first...
  int rc = waitpid(pid_, &status, __WALL);
  EXPECT_OK(rc);
  EXPECT_EQ(pid_, rc);

#ifdef NOTYET
  // ...the zombie is reaped but we can still subsequently pdwait4(pd).
  EXPECT_EQ(0, pdwait4_(pd_, &status, 0, NULL));
#endif
}

TEST_F(PipePdfork, WaitPdThenPid) {
  TerminateChild();
  int status;
  // If we pdwait4(pd) first...
  int rc = pdwait4_(pd_, &status, 0, NULL);
  EXPECT_OK(rc);
  EXPECT_EQ(pid_, rc);

  // ...the zombie is reaped and cannot subsequently waitpid(pid).
  EXPECT_EQ(-1, waitpid(pid_, &status, __WALL));
  EXPECT_EQ(ECHILD, errno);
}

// Setting PD_DAEMON prevents close() from killing the child.
TEST_F(PipePdforkDaemon, Close) {
  EXPECT_OK(close(pd_));
  pd_ = -1;
  EXPECT_PID_ALIVE(pid_);

  // Can still explicitly kill it via the pid.
  if (pid_ > 0) {
    EXPECT_OK(kill(pid_, SIGKILL));
    EXPECT_PID_DEAD(pid_);
  }
}

static void TestPdkill(pid_t pid, int pd) {
  EXPECT_PID_ALIVE(pid);
  // SIGCONT is ignored by default.
  EXPECT_OK(pdkill(pd, SIGCONT));
  EXPECT_PID_ALIVE(pid);

  // SIGINT isn't
  EXPECT_OK(pdkill(pd, SIGINT));
  EXPECT_PID_DEAD(pid);

  // pdkill() on zombie is no-op.
  errno = 0;
  EXPECT_EQ(0, pdkill(pd, SIGINT));
  EXPECT_EQ(0, errno);

  // pdkill() on reaped process gives -ESRCH.
  CheckChildFinished(pid, true);
  EXPECT_EQ(-1, pdkill(pd, SIGINT));
  EXPECT_EQ(ESRCH, errno);
}

TEST_F(PipePdfork, Pdkill) {
  TestPdkill(pid_, pd_);
}

TEST_F(PipePdforkDaemon, Pdkill) {
  TestPdkill(pid_, pd_);
}

TEST(Pdfork, PdkillOtherSignal) {
  int pd = -1;
  int pid = pdfork(&pd, 0);
  EXPECT_OK(pid);
  if (pid == 0) {
    // Child: watch for SIGUSR1 forever.
    had_signal.clear();
    signal(SIGUSR1, handle_signal);
    while (!had_signal[SIGUSR1]) {
      usleep(100000);
    }
    exit(123);
  }
  sleep(1);

  // Send an invalid signal.
  EXPECT_EQ(-1, pdkill(pd, 0xFFFF));
  EXPECT_EQ(EINVAL, errno);

  // Send an expected SIGUSR1 to the pdfork()ed child.
  EXPECT_PID_ALIVE(pid);
  pdkill(pd, SIGUSR1);
  EXPECT_PID_DEAD(pid);

  // Child's exit status confirms whether it received the signal.
  int status;
  int rc = waitpid(pid, &status, __WALL);
  EXPECT_OK(rc);
  EXPECT_EQ(pid, rc);
  EXPECT_TRUE(WIFEXITED(status)) << "0x" << std::hex << rc;
  EXPECT_EQ(123, WEXITSTATUS(status));
}

pid_t PdforkParentDeath(int pdfork_flags) {
  // Set up:
  //   pid A: main process, here
  //   +--pid B: fork()ed process, sleep(4)s then exits
  //      +--pid C: pdfork()ed process, looping forever
  int sock_fds[2];
  EXPECT_OK(socketpair(AF_UNIX, SOCK_STREAM, 0, sock_fds));
  if (verbose) fprintf(stderr, "[%d] parent about to fork()...\n", getpid_());
  pid_t child = fork();
  EXPECT_OK(child);
  if (child == 0) {
    int pd;
    if (verbose) fprintf(stderr, "  [%d] child about to pdfork()...\n", getpid_());
    pid_t grandchild = pdfork(&pd, pdfork_flags);
    if (grandchild == 0) {
      while (true) {
        if (verbose) fprintf(stderr, "    [%d] grandchild: \"I aten't dead\"\n", getpid_());
        sleep(1);
      }
    }
    if (verbose) fprintf(stderr, "  [%d] pdfork()ed grandchild %d, sending ID to parent\n", getpid_(), grandchild);
    // send grandchild pid to parent
    write(sock_fds[1], &grandchild, sizeof(grandchild));
    sleep(4);
    if (verbose) fprintf(stderr, "  [%d] child terminating\n", getpid_());
    exit(0);
  }
  if (verbose) fprintf(stderr, "[%d] fork()ed child is %d\n", getpid_(), child);
  pid_t grandchild;
  read(sock_fds[0], &grandchild, sizeof(grandchild));
  if (verbose) fprintf(stderr, "[%d] receive grandchild id %d\n", getpid_(), grandchild);
  EXPECT_PID_ALIVE(child);
  EXPECT_PID_ALIVE(grandchild);
  sleep(6);
  // Child dies, closing its process descriptor for the grandchild.
  EXPECT_PID_DEAD(child);
  CheckChildFinished(child);
  return grandchild;
}

TEST(Pdfork, Bagpuss) {
  // "And of course when Bagpuss goes to sleep, all his friends go to sleep too"
  pid_t grandchild = PdforkParentDeath(0);
  // By default: child death => closed process descriptor => grandchild death.
  EXPECT_PID_DEAD(grandchild);
}

TEST(Pdfork, BagpussDaemon) {
  pid_t grandchild = PdforkParentDeath(PD_DAEMON);
  // With PD_DAEMON: child death => closed process descriptor => no effect on grandchild.
  EXPECT_PID_ALIVE(grandchild);
  if (grandchild > 0) {
    EXPECT_OK(kill(grandchild, SIGKILL));
  }
}

// The exit of a pdfork()ed process should not generate SIGCHLD.
TEST_F(PipePdfork, NoSigchld) {
  had_signal.clear();
  sighandler_t original = signal(SIGCHLD, handle_signal);
  TerminateChild();
  int rc = 0;
  // Can waitpid() for the specific pid of the pdfork()ed child.
  EXPECT_EQ(pid_, waitpid(pid_, &rc, __WALL));
  EXPECT_TRUE(WIFEXITED(rc)) << "0x" << std::hex << rc;
  EXPECT_FALSE(had_signal[SIGCHLD]);
  signal(SIGCHLD, original);
}

// The exit of a pdfork()ed process whose process descriptors have
// all been closed should generate SIGCHLD.  The child process needs
// PD_DAEMON to survive the closure of the process descriptors.
TEST_F(PipePdforkDaemon, NoPDSigchld) {
  had_signal.clear();
  sighandler_t original = signal(SIGCHLD, handle_signal);

  EXPECT_OK(close(pd_));
  TerminateChild();
#ifdef __FreeBSD__
  EXPECT_EQ(-1, waitpid(pid_, NULL, __WALL));
  EXPECT_EQ(errno, ECHILD);
#else
  int rc = 0;
  // Can waitpid() for the specific pid of the pdfork()ed child.
  EXPECT_EQ(pid_, waitpid(pid_, &rc, __WALL));
  EXPECT_TRUE(WIFEXITED(rc)) << "0x" << std::hex << rc;
#endif
  EXPECT_FALSE(had_signal[SIGCHLD]);
  signal(SIGCHLD, original);
}

#ifdef HAVE_PROCDESC_FSTAT
TEST_F(PipePdfork, ModeBits) {
  // Owner rwx bits indicate liveness of child
  struct stat stat;
  memset(&stat, 0, sizeof(stat));
  EXPECT_OK(fstat(pd_, &stat));
  if (verbose) print_stat(stderr, &stat);
  EXPECT_EQ(S_IRWXU, (long)(stat.st_mode & S_IRWXU));

  TerminateChild();
  usleep(100000);

  memset(&stat, 0, sizeof(stat));
  EXPECT_OK(fstat(pd_, &stat));
  if (verbose) print_stat(stderr, &stat);
  EXPECT_EQ(0, (int)(stat.st_mode & S_IRWXU));
}
#endif

TEST_F(PipePdfork, WildcardWait) {
  // TODO(FreeBSD): make wildcard wait ignore pdfork()ed children
  // https://bugs.freebsd.org/201054
  TerminateChild();
  sleep(1);  // Ensure child is truly dead.

  // Wildcard waitpid(-1) should not see the pdfork()ed child because
  // there is still a process descriptor for it.
  int rc;
  EXPECT_EQ(-1, waitpid(-1, &rc, WNOHANG));
  EXPECT_EQ(ECHILD, errno);

  EXPECT_OK(close(pd_));
  pd_ = -1;
}

FORK_TEST(Pdfork, Pdkill) {
  had_signal.clear();
  int pd;
  pid_t pid = pdfork(&pd, 0);
  EXPECT_OK(pid);

  if (pid == 0) {
    // Child: set a SIGINT handler and sleep.
    had_signal.clear();
    signal(SIGINT, handle_signal);
    if (verbose) fprintf(stderr, "[%d] child about to sleep(10)\n", getpid_());
    int left = sleep(10);
    if (verbose) fprintf(stderr, "[%d] child slept, %d sec left, had[SIGINT]=%d\n",
                         getpid_(), left, had_signal[SIGINT]);
    // Expect this sleep to be interrupted by the signal (and so left > 0).
    exit(left == 0);
  }

  // Parent: get child's PID.
  pid_t pd_pid;
  EXPECT_OK(pdgetpid(pd, &pd_pid));
  EXPECT_EQ(pid, pd_pid);

  // Interrupt the child after a second.
  sleep(1);
  EXPECT_OK(pdkill(pd, SIGINT));

  // Make sure the child finished properly (caught signal then exited).
  CheckChildFinished(pid);
}

FORK_TEST(Pdfork, PdkillSignal) {
  int pd;
  pid_t pid = pdfork(&pd, 0);
  EXPECT_OK(pid);

  if (pid == 0) {
    // Child: sleep.  No SIGINT handler.
    if (verbose) fprintf(stderr, "[%d] child about to sleep(10)\n", getpid_());
    int left = sleep(10);
    if (verbose) fprintf(stderr, "[%d] child slept, %d sec left\n", getpid_(), left);
    exit(99);
  }

  // Kill the child (as it doesn't handle SIGINT).
  sleep(1);
  EXPECT_OK(pdkill(pd, SIGINT));

  // Make sure the child finished properly (terminated by signal).
  CheckChildFinished(pid, true);
}

//------------------------------------------------
// Test interactions with other parts of Capsicum:
//  - capability mode
//  - capabilities

FORK_TEST(Pdfork, DaemonUnrestricted) {
  EXPECT_OK(cap_enter());
  int fd;

  // Capability mode leaves pdfork() available, with and without flag.
  int rc;
  rc = pdfork(&fd, PD_DAEMON);
  EXPECT_OK(rc);
  if (rc == 0) {
    // Child: immediately terminate.
    exit(0);
  }

  rc = pdfork(&fd, 0);
  EXPECT_OK(rc);
  if (rc == 0) {
    // Child: immediately terminate.
    exit(0);
  }
}

TEST(Pdfork, MissingRights) {
  pid_t parent = getpid_();
  int pd = -1;
  pid_t pid = pdfork(&pd, 0);
  EXPECT_OK(pid);
  if (pid == 0) {
    // Child: loop forever.
    EXPECT_NE(parent, getpid_());
    while (true) sleep(1);
  }
  // Create two capabilities from the process descriptor.
  cap_rights_t r_ro;
  cap_rights_init(&r_ro, CAP_READ, CAP_LOOKUP);
  int cap_incapable = dup(pd);
  EXPECT_OK(cap_incapable);
  EXPECT_OK(cap_rights_limit(cap_incapable, &r_ro));
  cap_rights_t r_pdall;
  cap_rights_init(&r_pdall, CAP_PDGETPID, CAP_PDWAIT, CAP_PDKILL);
  int cap_capable = dup(pd);
  EXPECT_OK(cap_capable);
  EXPECT_OK(cap_rights_limit(cap_capable, &r_pdall));

  pid_t other_pid;
  EXPECT_NOTCAPABLE(pdgetpid(cap_incapable, &other_pid));
  EXPECT_NOTCAPABLE(pdkill(cap_incapable, SIGINT));
  int status;
  EXPECT_NOTCAPABLE(pdwait4_(cap_incapable, &status, 0, NULL));

  EXPECT_OK(pdgetpid(cap_capable, &other_pid));
  EXPECT_EQ(pid, other_pid);
  EXPECT_OK(pdkill(cap_capable, SIGINT));
  int rc = pdwait4_(pd, &status, 0, NULL);
  EXPECT_OK(rc);
  EXPECT_EQ(pid, rc);
}


//------------------------------------------------
// Passing process descriptors between processes.

TEST_F(PipePdfork, PassProcessDescriptor) {
  int sock_fds[2];
  EXPECT_OK(socketpair(AF_UNIX, SOCK_STREAM, 0, sock_fds));

  struct msghdr mh;
  mh.msg_name = NULL;  // No address needed
  mh.msg_namelen = 0;
  char buffer1[1024];
  struct iovec iov[1];
  iov[0].iov_base = buffer1;
  iov[0].iov_len = sizeof(buffer1);
  mh.msg_iov = iov;
  mh.msg_iovlen = 1;
  char buffer2[1024];
  mh.msg_control = buffer2;
  mh.msg_controllen = sizeof(buffer2);
  struct cmsghdr *cmptr;

  if (verbose) fprintf(stderr, "[%d] about to fork()\n", getpid_());
  pid_t child2 = fork();
  if (child2 == 0) {
    // Child: close our copy of the original process descriptor.
    close(pd_);

    // Child: wait to receive process descriptor over socket
    if (verbose) fprintf(stderr, "  [%d] child of %d waiting for process descriptor on socket\n", getpid_(), getppid());
    int rc = recvmsg(sock_fds[0], &mh, 0);
    EXPECT_OK(rc);
    EXPECT_LE(CMSG_LEN(sizeof(int)), mh.msg_controllen);
    cmptr = CMSG_FIRSTHDR(&mh);
    int pd = *(int*)CMSG_DATA(cmptr);
    EXPECT_EQ(CMSG_LEN(sizeof(int)), cmptr->cmsg_len);
    cmptr = CMSG_NXTHDR(&mh, cmptr);
    EXPECT_TRUE(cmptr == NULL);
    if (verbose) fprintf(stderr, "  [%d] got process descriptor %d on socket\n", getpid_(), pd);

    // Child: confirm we can do pd*() operations on the process descriptor
    pid_t other;
    EXPECT_OK(pdgetpid(pd, &other));
    if (verbose) fprintf(stderr, "  [%d] process descriptor %d is pid %d\n", getpid_(), pd, other);

    sleep(2);
    if (verbose) fprintf(stderr, "  [%d] close process descriptor %d\n", getpid_(), pd);
    close(pd);

    // Last process descriptor closed, expect death
    EXPECT_PID_DEAD(other);

    exit(HasFailure());
  }
  usleep(1000);  // Ensure subprocess runs

  // Send the process descriptor over the pipe to the sub-process
  mh.msg_controllen = CMSG_LEN(sizeof(int));
  cmptr = CMSG_FIRSTHDR(&mh);
  cmptr->cmsg_level = SOL_SOCKET;
  cmptr->cmsg_type = SCM_RIGHTS;
  cmptr->cmsg_len = CMSG_LEN(sizeof(int));
  *(int *)CMSG_DATA(cmptr) = pd_;
  buffer1[0] = 0;
  iov[0].iov_len = 1;
  sleep(1);
  if (verbose) fprintf(stderr, "[%d] send process descriptor %d on socket\n", getpid_(), pd_);
  int rc = sendmsg(sock_fds[1], &mh, 0);
  EXPECT_OK(rc);

  if (verbose) fprintf(stderr, "[%d] close process descriptor %d\n", getpid_(), pd_);
  close(pd_);  // Not last open process descriptor

  // wait for child2
  int status;
  EXPECT_EQ(child2, waitpid(child2, &status, __WALL));
  rc = WIFEXITED(status) ? WEXITSTATUS(status) : -1;
  EXPECT_EQ(0, rc);

  // confirm death all round
  EXPECT_PID_DEAD(child2);
  EXPECT_PID_DEAD(pid_);
}