//===- InstCombineAddSub.cpp ----------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the visit functions for add, fadd, sub, and fsub.
//
//===----------------------------------------------------------------------===//
#include "InstCombineInternal.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "instcombine"
namespace {
/// Class representing coefficient of floating-point addend.
/// This class needs to be highly efficient, which is especially true for
/// the constructor. As of I write this comment, the cost of the default
/// constructor is merely 4-byte-store-zero (Assuming compiler is able to
/// perform write-merging).
///
class FAddendCoef {
public:
// The constructor has to initialize a APFloat, which is unnecessary for
// most addends which have coefficient either 1 or -1. So, the constructor
// is expensive. In order to avoid the cost of the constructor, we should
// reuse some instances whenever possible. The pre-created instances
// FAddCombine::Add[0-5] embodies this idea.
//
FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
~FAddendCoef();
void set(short C) {
assert(!insaneIntVal(C) && "Insane coefficient");
IsFp = false; IntVal = C;
}
void set(const APFloat& C);
void negate();
bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
Value *getValue(Type *) const;
// If possible, don't define operator+/operator- etc because these
// operators inevitably call FAddendCoef's constructor which is not cheap.
void operator=(const FAddendCoef &A);
void operator+=(const FAddendCoef &A);
void operator-=(const FAddendCoef &A);
void operator*=(const FAddendCoef &S);
bool isOne() const { return isInt() && IntVal == 1; }
bool isTwo() const { return isInt() && IntVal == 2; }
bool isMinusOne() const { return isInt() && IntVal == -1; }
bool isMinusTwo() const { return isInt() && IntVal == -2; }
private:
bool insaneIntVal(int V) { return V > 4 || V < -4; }
APFloat *getFpValPtr(void)
{ return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
const APFloat *getFpValPtr(void) const
{ return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); }
const APFloat &getFpVal(void) const {
assert(IsFp && BufHasFpVal && "Incorret state");
return *getFpValPtr();
}
APFloat &getFpVal(void) {
assert(IsFp && BufHasFpVal && "Incorret state");
return *getFpValPtr();
}
bool isInt() const { return !IsFp; }
// If the coefficient is represented by an integer, promote it to a
// floating point.
void convertToFpType(const fltSemantics &Sem);
// Construct an APFloat from a signed integer.
// TODO: We should get rid of this function when APFloat can be constructed
// from an *SIGNED* integer.
APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
private:
bool IsFp;
// True iff FpValBuf contains an instance of APFloat.
bool BufHasFpVal;
// The integer coefficient of an individual addend is either 1 or -1,
// and we try to simplify at most 4 addends from neighboring at most
// two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
// is overkill of this end.
short IntVal;
AlignedCharArrayUnion<APFloat> FpValBuf;
};
/// FAddend is used to represent floating-point addend. An addend is
/// represented as <C, V>, where the V is a symbolic value, and C is a
/// constant coefficient. A constant addend is represented as <C, 0>.
///
class FAddend {
public:
FAddend() { Val = nullptr; }
Value *getSymVal (void) const { return Val; }
const FAddendCoef &getCoef(void) const { return Coeff; }
bool isConstant() const { return Val == nullptr; }
bool isZero() const { return Coeff.isZero(); }
void set(short Coefficient, Value *V) { Coeff.set(Coefficient), Val = V; }
void set(const APFloat& Coefficient, Value *V)
{ Coeff.set(Coefficient); Val = V; }
void set(const ConstantFP* Coefficient, Value *V)
{ Coeff.set(Coefficient->getValueAPF()); Val = V; }
void negate() { Coeff.negate(); }
/// Drill down the U-D chain one step to find the definition of V, and
/// try to break the definition into one or two addends.
static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
/// Similar to FAddend::drillDownOneStep() except that the value being
/// splitted is the addend itself.
unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
void operator+=(const FAddend &T) {
assert((Val == T.Val) && "Symbolic-values disagree");
Coeff += T.Coeff;
}
private:
void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
// This addend has the value of "Coeff * Val".
Value *Val;
FAddendCoef Coeff;
};
/// FAddCombine is the class for optimizing an unsafe fadd/fsub along
/// with its neighboring at most two instructions.
///
class FAddCombine {
public:
FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(nullptr) {}
Value *simplify(Instruction *FAdd);
private:
typedef SmallVector<const FAddend*, 4> AddendVect;
Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
Value *performFactorization(Instruction *I);
/// Convert given addend to a Value
Value *createAddendVal(const FAddend &A, bool& NeedNeg);
/// Return the number of instructions needed to emit the N-ary addition.
unsigned calcInstrNumber(const AddendVect& Vect);
Value *createFSub(Value *Opnd0, Value *Opnd1);
Value *createFAdd(Value *Opnd0, Value *Opnd1);
Value *createFMul(Value *Opnd0, Value *Opnd1);
Value *createFDiv(Value *Opnd0, Value *Opnd1);
Value *createFNeg(Value *V);
Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
InstCombiner::BuilderTy *Builder;
Instruction *Instr;
private:
// Debugging stuff are clustered here.
#ifndef NDEBUG
unsigned CreateInstrNum;
void initCreateInstNum() { CreateInstrNum = 0; }
void incCreateInstNum() { CreateInstrNum++; }
#else
void initCreateInstNum() {}
void incCreateInstNum() {}
#endif
};
}
//===----------------------------------------------------------------------===//
//
// Implementation of
// {FAddendCoef, FAddend, FAddition, FAddCombine}.
//
//===----------------------------------------------------------------------===//
FAddendCoef::~FAddendCoef() {
if (BufHasFpVal)
getFpValPtr()->~APFloat();
}
void FAddendCoef::set(const APFloat& C) {
APFloat *P = getFpValPtr();
if (isInt()) {
// As the buffer is meanless byte stream, we cannot call
// APFloat::operator=().
new(P) APFloat(C);
} else
*P = C;
IsFp = BufHasFpVal = true;
}
void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
if (!isInt())
return;
APFloat *P = getFpValPtr();
if (IntVal > 0)
new(P) APFloat(Sem, IntVal);
else {
new(P) APFloat(Sem, 0 - IntVal);
P->changeSign();
}
IsFp = BufHasFpVal = true;
}
APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
if (Val >= 0)
return APFloat(Sem, Val);
APFloat T(Sem, 0 - Val);
T.changeSign();
return T;
}
void FAddendCoef::operator=(const FAddendCoef &That) {
if (That.isInt())
set(That.IntVal);
else
set(That.getFpVal());
}
void FAddendCoef::operator+=(const FAddendCoef &That) {
enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
if (isInt() == That.isInt()) {
if (isInt())
IntVal += That.IntVal;
else
getFpVal().add(That.getFpVal(), RndMode);
return;
}
if (isInt()) {
const APFloat &T = That.getFpVal();
convertToFpType(T.getSemantics());
getFpVal().add(T, RndMode);
return;
}
APFloat &T = getFpVal();
T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
}
void FAddendCoef::operator-=(const FAddendCoef &That) {
enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
if (isInt() == That.isInt()) {
if (isInt())
IntVal -= That.IntVal;
else
getFpVal().subtract(That.getFpVal(), RndMode);
return;
}
if (isInt()) {
const APFloat &T = That.getFpVal();
convertToFpType(T.getSemantics());
getFpVal().subtract(T, RndMode);
return;
}
APFloat &T = getFpVal();
T.subtract(createAPFloatFromInt(T.getSemantics(), IntVal), RndMode);
}
void FAddendCoef::operator*=(const FAddendCoef &That) {
if (That.isOne())
return;
if (That.isMinusOne()) {
negate();
return;
}
if (isInt() && That.isInt()) {
int Res = IntVal * (int)That.IntVal;
assert(!insaneIntVal(Res) && "Insane int value");
IntVal = Res;
return;
}
const fltSemantics &Semantic =
isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
if (isInt())
convertToFpType(Semantic);
APFloat &F0 = getFpVal();
if (That.isInt())
F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
APFloat::rmNearestTiesToEven);
else
F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
return;
}
void FAddendCoef::negate() {
if (isInt())
IntVal = 0 - IntVal;
else
getFpVal().changeSign();
}
Value *FAddendCoef::getValue(Type *Ty) const {
return isInt() ?
ConstantFP::get(Ty, float(IntVal)) :
ConstantFP::get(Ty->getContext(), getFpVal());
}
// The definition of <Val> Addends
// =========================================
// A + B <1, A>, <1,B>
// A - B <1, A>, <1,B>
// 0 - B <-1, B>
// C * A, <C, A>
// A + C <1, A> <C, NULL>
// 0 +/- 0 <0, NULL> (corner case)
//
// Legend: A and B are not constant, C is constant
//
unsigned FAddend::drillValueDownOneStep
(Value *Val, FAddend &Addend0, FAddend &Addend1) {
Instruction *I = nullptr;
if (!Val || !(I = dyn_cast<Instruction>(Val)))
return 0;
unsigned Opcode = I->getOpcode();
if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
ConstantFP *C0, *C1;
Value *Opnd0 = I->getOperand(0);
Value *Opnd1 = I->getOperand(1);
if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
Opnd0 = nullptr;
if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
Opnd1 = nullptr;
if (Opnd0) {
if (!C0)
Addend0.set(1, Opnd0);
else
Addend0.set(C0, nullptr);
}
if (Opnd1) {
FAddend &Addend = Opnd0 ? Addend1 : Addend0;
if (!C1)
Addend.set(1, Opnd1);
else
Addend.set(C1, nullptr);
if (Opcode == Instruction::FSub)
Addend.negate();
}
if (Opnd0 || Opnd1)
return Opnd0 && Opnd1 ? 2 : 1;
// Both operands are zero. Weird!
Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
return 1;
}
if (I->getOpcode() == Instruction::FMul) {
Value *V0 = I->getOperand(0);
Value *V1 = I->getOperand(1);
if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
Addend0.set(C, V1);
return 1;
}
if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
Addend0.set(C, V0);
return 1;
}
}
return 0;
}
// Try to break *this* addend into two addends. e.g. Suppose this addend is
// <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
// i.e. <2.3, X> and <2.3, Y>.
//
unsigned FAddend::drillAddendDownOneStep
(FAddend &Addend0, FAddend &Addend1) const {
if (isConstant())
return 0;
unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
if (!BreakNum || Coeff.isOne())
return BreakNum;
Addend0.Scale(Coeff);
if (BreakNum == 2)
Addend1.Scale(Coeff);
return BreakNum;
}
// Try to perform following optimization on the input instruction I. Return the
// simplified expression if was successful; otherwise, return 0.
//
// Instruction "I" is Simplified into
// -------------------------------------------------------
// (x * y) +/- (x * z) x * (y +/- z)
// (y / x) +/- (z / x) (y +/- z) / x
//
Value *FAddCombine::performFactorization(Instruction *I) {
assert((I->getOpcode() == Instruction::FAdd ||
I->getOpcode() == Instruction::FSub) && "Expect add/sub");
Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0));
Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1));
if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode())
return nullptr;
bool isMpy = false;
if (I0->getOpcode() == Instruction::FMul)
isMpy = true;
else if (I0->getOpcode() != Instruction::FDiv)
return nullptr;
Value *Opnd0_0 = I0->getOperand(0);
Value *Opnd0_1 = I0->getOperand(1);
Value *Opnd1_0 = I1->getOperand(0);
Value *Opnd1_1 = I1->getOperand(1);
// Input Instr I Factor AddSub0 AddSub1
// ----------------------------------------------
// (x*y) +/- (x*z) x y z
// (y/x) +/- (z/x) x y z
//
Value *Factor = nullptr;
Value *AddSub0 = nullptr, *AddSub1 = nullptr;
if (isMpy) {
if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1)
Factor = Opnd0_0;
else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1)
Factor = Opnd0_1;
if (Factor) {
AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0;
AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0;
}
} else if (Opnd0_1 == Opnd1_1) {
Factor = Opnd0_1;
AddSub0 = Opnd0_0;
AddSub1 = Opnd1_0;
}
if (!Factor)
return nullptr;
FastMathFlags Flags;
Flags.setUnsafeAlgebra();
if (I0) Flags &= I->getFastMathFlags();
if (I1) Flags &= I->getFastMathFlags();
// Create expression "NewAddSub = AddSub0 +/- AddsSub1"
Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ?
createFAdd(AddSub0, AddSub1) :
createFSub(AddSub0, AddSub1);
if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) {
const APFloat &F = CFP->getValueAPF();
if (!F.isNormal())
return nullptr;
} else if (Instruction *II = dyn_cast<Instruction>(NewAddSub))
II->setFastMathFlags(Flags);
if (isMpy) {
Value *RI = createFMul(Factor, NewAddSub);
if (Instruction *II = dyn_cast<Instruction>(RI))
II->setFastMathFlags(Flags);
return RI;
}
Value *RI = createFDiv(NewAddSub, Factor);
if (Instruction *II = dyn_cast<Instruction>(RI))
II->setFastMathFlags(Flags);
return RI;
}
Value *FAddCombine::simplify(Instruction *I) {
assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode");
// Currently we are not able to handle vector type.
if (I->getType()->isVectorTy())
return nullptr;
assert((I->getOpcode() == Instruction::FAdd ||
I->getOpcode() == Instruction::FSub) && "Expect add/sub");
// Save the instruction before calling other member-functions.
Instr = I;
FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
// Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
unsigned Opnd0_ExpNum = 0;
unsigned Opnd1_ExpNum = 0;
if (!Opnd0.isConstant())
Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
// Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
if (OpndNum == 2 && !Opnd1.isConstant())
Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
// Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
if (Opnd0_ExpNum && Opnd1_ExpNum) {
AddendVect AllOpnds;
AllOpnds.push_back(&Opnd0_0);
AllOpnds.push_back(&Opnd1_0);
if (Opnd0_ExpNum == 2)
AllOpnds.push_back(&Opnd0_1);
if (Opnd1_ExpNum == 2)
AllOpnds.push_back(&Opnd1_1);
// Compute instruction quota. We should save at least one instruction.
unsigned InstQuota = 0;
Value *V0 = I->getOperand(0);
Value *V1 = I->getOperand(1);
InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
(!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
return R;
}
if (OpndNum != 2) {
// The input instruction is : "I=0.0 +/- V". If the "V" were able to be
// splitted into two addends, say "V = X - Y", the instruction would have
// been optimized into "I = Y - X" in the previous steps.
//
const FAddendCoef &CE = Opnd0.getCoef();
return CE.isOne() ? Opnd0.getSymVal() : nullptr;
}
// step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
if (Opnd1_ExpNum) {
AddendVect AllOpnds;
AllOpnds.push_back(&Opnd0);
AllOpnds.push_back(&Opnd1_0);
if (Opnd1_ExpNum == 2)
AllOpnds.push_back(&Opnd1_1);
if (Value *R = simplifyFAdd(AllOpnds, 1))
return R;
}
// step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
if (Opnd0_ExpNum) {
AddendVect AllOpnds;
AllOpnds.push_back(&Opnd1);
AllOpnds.push_back(&Opnd0_0);
if (Opnd0_ExpNum == 2)
AllOpnds.push_back(&Opnd0_1);
if (Value *R = simplifyFAdd(AllOpnds, 1))
return R;
}
// step 6: Try factorization as the last resort,
return performFactorization(I);
}
Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
unsigned AddendNum = Addends.size();
assert(AddendNum <= 4 && "Too many addends");
// For saving intermediate results;
unsigned NextTmpIdx = 0;
FAddend TmpResult[3];
// Points to the constant addend of the resulting simplified expression.
// If the resulting expr has constant-addend, this constant-addend is
// desirable to reside at the top of the resulting expression tree. Placing
// constant close to supper-expr(s) will potentially reveal some optimization
// opportunities in super-expr(s).
//
const FAddend *ConstAdd = nullptr;
// Simplified addends are placed <SimpVect>.
AddendVect SimpVect;
// The outer loop works on one symbolic-value at a time. Suppose the input
// addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
// The symbolic-values will be processed in this order: x, y, z.
//
for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
const FAddend *ThisAddend = Addends[SymIdx];
if (!ThisAddend) {
// This addend was processed before.
continue;
}
Value *Val = ThisAddend->getSymVal();
unsigned StartIdx = SimpVect.size();
SimpVect.push_back(ThisAddend);
// The inner loop collects addends sharing same symbolic-value, and these
// addends will be later on folded into a single addend. Following above
// example, if the symbolic value "y" is being processed, the inner loop
// will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
// be later on folded into "<b1+b2, y>".
//
for (unsigned SameSymIdx = SymIdx + 1;
SameSymIdx < AddendNum; SameSymIdx++) {
const FAddend *T = Addends[SameSymIdx];
if (T && T->getSymVal() == Val) {
// Set null such that next iteration of the outer loop will not process
// this addend again.
Addends[SameSymIdx] = nullptr;
SimpVect.push_back(T);
}
}
// If multiple addends share same symbolic value, fold them together.
if (StartIdx + 1 != SimpVect.size()) {
FAddend &R = TmpResult[NextTmpIdx ++];
R = *SimpVect[StartIdx];
for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
R += *SimpVect[Idx];
// Pop all addends being folded and push the resulting folded addend.
SimpVect.resize(StartIdx);
if (Val) {
if (!R.isZero()) {
SimpVect.push_back(&R);
}
} else {
// Don't push constant addend at this time. It will be the last element
// of <SimpVect>.
ConstAdd = &R;
}
}
}
assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
"out-of-bound access");
if (ConstAdd)
SimpVect.push_back(ConstAdd);
Value *Result;
if (!SimpVect.empty())
Result = createNaryFAdd(SimpVect, InstrQuota);
else {
// The addition is folded to 0.0.
Result = ConstantFP::get(Instr->getType(), 0.0);
}
return Result;
}
Value *FAddCombine::createNaryFAdd
(const AddendVect &Opnds, unsigned InstrQuota) {
assert(!Opnds.empty() && "Expect at least one addend");
// Step 1: Check if the # of instructions needed exceeds the quota.
//
unsigned InstrNeeded = calcInstrNumber(Opnds);
if (InstrNeeded > InstrQuota)
return nullptr;
initCreateInstNum();
// step 2: Emit the N-ary addition.
// Note that at most three instructions are involved in Fadd-InstCombine: the
// addition in question, and at most two neighboring instructions.
// The resulting optimized addition should have at least one less instruction
// than the original addition expression tree. This implies that the resulting
// N-ary addition has at most two instructions, and we don't need to worry
// about tree-height when constructing the N-ary addition.
Value *LastVal = nullptr;
bool LastValNeedNeg = false;
// Iterate the addends, creating fadd/fsub using adjacent two addends.
for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
I != E; I++) {
bool NeedNeg;
Value *V = createAddendVal(**I, NeedNeg);
if (!LastVal) {
LastVal = V;
LastValNeedNeg = NeedNeg;
continue;
}
if (LastValNeedNeg == NeedNeg) {
LastVal = createFAdd(LastVal, V);
continue;
}
if (LastValNeedNeg)
LastVal = createFSub(V, LastVal);
else
LastVal = createFSub(LastVal, V);
LastValNeedNeg = false;
}
if (LastValNeedNeg) {
LastVal = createFNeg(LastVal);
}
#ifndef NDEBUG
assert(CreateInstrNum == InstrNeeded &&
"Inconsistent in instruction numbers");
#endif
return LastVal;
}
Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
Value *V = Builder->CreateFSub(Opnd0, Opnd1);
if (Instruction *I = dyn_cast<Instruction>(V))
createInstPostProc(I);
return V;
}
Value *FAddCombine::createFNeg(Value *V) {
Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
Value *NewV = createFSub(Zero, V);
if (Instruction *I = dyn_cast<Instruction>(NewV))
createInstPostProc(I, true); // fneg's don't receive instruction numbers.
return NewV;
}
Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
if (Instruction *I = dyn_cast<Instruction>(V))
createInstPostProc(I);
return V;
}
Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
Value *V = Builder->CreateFMul(Opnd0, Opnd1);
if (Instruction *I = dyn_cast<Instruction>(V))
createInstPostProc(I);
return V;
}
Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
Value *V = Builder->CreateFDiv(Opnd0, Opnd1);
if (Instruction *I = dyn_cast<Instruction>(V))
createInstPostProc(I);
return V;
}
void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
NewInstr->setDebugLoc(Instr->getDebugLoc());
// Keep track of the number of instruction created.
if (!NoNumber)
incCreateInstNum();
// Propagate fast-math flags
NewInstr->setFastMathFlags(Instr->getFastMathFlags());
}
// Return the number of instruction needed to emit the N-ary addition.
// NOTE: Keep this function in sync with createAddendVal().
unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
unsigned OpndNum = Opnds.size();
unsigned InstrNeeded = OpndNum - 1;
// The number of addends in the form of "(-1)*x".
unsigned NegOpndNum = 0;
// Adjust the number of instructions needed to emit the N-ary add.
for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
I != E; I++) {
const FAddend *Opnd = *I;
if (Opnd->isConstant())
continue;
const FAddendCoef &CE = Opnd->getCoef();
if (CE.isMinusOne() || CE.isMinusTwo())
NegOpndNum++;
// Let the addend be "c * x". If "c == +/-1", the value of the addend
// is immediately available; otherwise, it needs exactly one instruction
// to evaluate the value.
if (!CE.isMinusOne() && !CE.isOne())
InstrNeeded++;
}
if (NegOpndNum == OpndNum)
InstrNeeded++;
return InstrNeeded;
}
// Input Addend Value NeedNeg(output)
// ================================================================
// Constant C C false
// <+/-1, V> V coefficient is -1
// <2/-2, V> "fadd V, V" coefficient is -2
// <C, V> "fmul V, C" false
//
// NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
const FAddendCoef &Coeff = Opnd.getCoef();
if (Opnd.isConstant()) {
NeedNeg = false;
return Coeff.getValue(Instr->getType());
}
Value *OpndVal = Opnd.getSymVal();
if (Coeff.isMinusOne() || Coeff.isOne()) {
NeedNeg = Coeff.isMinusOne();
return OpndVal;
}
if (Coeff.isTwo() || Coeff.isMinusTwo()) {
NeedNeg = Coeff.isMinusTwo();
return createFAdd(OpndVal, OpndVal);
}
NeedNeg = false;
return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
}
// If one of the operands only has one non-zero bit, and if the other
// operand has a known-zero bit in a more significant place than it (not
// including the sign bit) the ripple may go up to and fill the zero, but
// won't change the sign. For example, (X & ~4) + 1.
static bool checkRippleForAdd(const APInt &Op0KnownZero,
const APInt &Op1KnownZero) {
APInt Op1MaybeOne = ~Op1KnownZero;
// Make sure that one of the operand has at most one bit set to 1.
if (Op1MaybeOne.countPopulation() != 1)
return false;
// Find the most significant known 0 other than the sign bit.
int BitWidth = Op0KnownZero.getBitWidth();
APInt Op0KnownZeroTemp(Op0KnownZero);
Op0KnownZeroTemp.clearBit(BitWidth - 1);
int Op0ZeroPosition = BitWidth - Op0KnownZeroTemp.countLeadingZeros() - 1;
int Op1OnePosition = BitWidth - Op1MaybeOne.countLeadingZeros() - 1;
assert(Op1OnePosition >= 0);
// This also covers the case of no known zero, since in that case
// Op0ZeroPosition is -1.
return Op0ZeroPosition >= Op1OnePosition;
}
/// WillNotOverflowSignedAdd - Return true if we can prove that:
/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
/// This basically requires proving that the add in the original type would not
/// overflow to change the sign bit or have a carry out.
bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS,
Instruction &CxtI) {
// There are different heuristics we can use for this. Here are some simple
// ones.
// If LHS and RHS each have at least two sign bits, the addition will look
// like
//
// XX..... +
// YY.....
//
// If the carry into the most significant position is 0, X and Y can't both
// be 1 and therefore the carry out of the addition is also 0.
//
// If the carry into the most significant position is 1, X and Y can't both
// be 0 and therefore the carry out of the addition is also 1.
//
// Since the carry into the most significant position is always equal to
// the carry out of the addition, there is no signed overflow.
if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
ComputeNumSignBits(RHS, 0, &CxtI) > 1)
return true;
unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
APInt LHSKnownZero(BitWidth, 0);
APInt LHSKnownOne(BitWidth, 0);
computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
APInt RHSKnownZero(BitWidth, 0);
APInt RHSKnownOne(BitWidth, 0);
computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
// Addition of two 2's compliment numbers having opposite signs will never
// overflow.
if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) ||
(LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1]))
return true;
// Check if carry bit of addition will not cause overflow.
if (checkRippleForAdd(LHSKnownZero, RHSKnownZero))
return true;
if (checkRippleForAdd(RHSKnownZero, LHSKnownZero))
return true;
return false;
}
/// \brief Return true if we can prove that:
/// (sub LHS, RHS) === (sub nsw LHS, RHS)
/// This basically requires proving that the add in the original type would not
/// overflow to change the sign bit or have a carry out.
/// TODO: Handle this for Vectors.
bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS,
Instruction &CxtI) {
// If LHS and RHS each have at least two sign bits, the subtraction
// cannot overflow.
if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
ComputeNumSignBits(RHS, 0, &CxtI) > 1)
return true;
unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
APInt LHSKnownZero(BitWidth, 0);
APInt LHSKnownOne(BitWidth, 0);
computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
APInt RHSKnownZero(BitWidth, 0);
APInt RHSKnownOne(BitWidth, 0);
computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
// Subtraction of two 2's compliment numbers having identical signs will
// never overflow.
if ((LHSKnownOne[BitWidth - 1] && RHSKnownOne[BitWidth - 1]) ||
(LHSKnownZero[BitWidth - 1] && RHSKnownZero[BitWidth - 1]))
return true;
// TODO: implement logic similar to checkRippleForAdd
return false;
}
/// \brief Return true if we can prove that:
/// (sub LHS, RHS) === (sub nuw LHS, RHS)
bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS,
Instruction &CxtI) {
// If the LHS is negative and the RHS is non-negative, no unsigned wrap.
bool LHSKnownNonNegative, LHSKnownNegative;
bool RHSKnownNonNegative, RHSKnownNegative;
ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0,
&CxtI);
ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0,
&CxtI);
if (LHSKnownNegative && RHSKnownNonNegative)
return true;
return false;
}
// Checks if any operand is negative and we can convert add to sub.
// This function checks for following negative patterns
// ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
// ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
// XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
static Value *checkForNegativeOperand(BinaryOperator &I,
InstCombiner::BuilderTy *Builder) {
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
// This function creates 2 instructions to replace ADD, we need at least one
// of LHS or RHS to have one use to ensure benefit in transform.
if (!LHS->hasOneUse() && !RHS->hasOneUse())
return nullptr;
Value *X = nullptr, *Y = nullptr, *Z = nullptr;
const APInt *C1 = nullptr, *C2 = nullptr;
// if ONE is on other side, swap
if (match(RHS, m_Add(m_Value(X), m_One())))
std::swap(LHS, RHS);
if (match(LHS, m_Add(m_Value(X), m_One()))) {
// if XOR on other side, swap
if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
std::swap(X, RHS);
if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
// X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
// ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
Value *NewAnd = Builder->CreateAnd(Z, *C1);
return Builder->CreateSub(RHS, NewAnd, "sub");
} else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
// X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
// ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
Value *NewOr = Builder->CreateOr(Z, ~(*C1));
return Builder->CreateSub(RHS, NewOr, "sub");
}
}
}
// Restore LHS and RHS
LHS = I.getOperand(0);
RHS = I.getOperand(1);
// if XOR is on other side, swap
if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
std::swap(LHS, RHS);
// C2 is ODD
// LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
// ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
if (C1->countTrailingZeros() == 0)
if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
Value *NewOr = Builder->CreateOr(Z, ~(*C2));
return Builder->CreateSub(RHS, NewOr, "sub");
}
return nullptr;
}
Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
bool Changed = SimplifyAssociativeOrCommutative(I);
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
if (Value *V = SimplifyVectorOp(I))
return ReplaceInstUsesWith(I, V);
if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
// (A*B)+(A*C) -> A*(B+C) etc
if (Value *V = SimplifyUsingDistributiveLaws(I))
return ReplaceInstUsesWith(I, V);
if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
// X + (signbit) --> X ^ signbit
const APInt &Val = CI->getValue();
if (Val.isSignBit())
return BinaryOperator::CreateXor(LHS, RHS);
// See if SimplifyDemandedBits can simplify this. This handles stuff like
// (X & 254)+1 -> (X&254)|1
if (SimplifyDemandedInstructionBits(I))
return &I;
// zext(bool) + C -> bool ? C + 1 : C
if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
if (ZI->getSrcTy()->isIntegerTy(1))
return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
const APInt &RHSVal = CI->getValue();
unsigned ExtendAmt = 0;
// If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
// If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
if (XorRHS->getValue() == -RHSVal) {
if (RHSVal.isPowerOf2())
ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
else if (XorRHS->getValue().isPowerOf2())
ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
}
if (ExtendAmt) {
APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
ExtendAmt = 0;
}
if (ExtendAmt) {
Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
return BinaryOperator::CreateAShr(NewShl, ShAmt);
}
// If this is a xor that was canonicalized from a sub, turn it back into
// a sub and fuse this add with it.
if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
IntegerType *IT = cast<IntegerType>(I.getType());
APInt LHSKnownOne(IT->getBitWidth(), 0);
APInt LHSKnownZero(IT->getBitWidth(), 0);
computeKnownBits(XorLHS, LHSKnownZero, LHSKnownOne, 0, &I);
if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
XorLHS);
}
// (X + signbit) + C could have gotten canonicalized to (X ^ signbit) + C,
// transform them into (X + (signbit ^ C))
if (XorRHS->getValue().isSignBit())
return BinaryOperator::CreateAdd(XorLHS,
ConstantExpr::getXor(XorRHS, CI));
}
}
if (isa<Constant>(RHS) && isa<PHINode>(LHS))
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
if (I.getType()->getScalarType()->isIntegerTy(1))
return BinaryOperator::CreateXor(LHS, RHS);
// X + X --> X << 1
if (LHS == RHS) {
BinaryOperator *New =
BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
New->setHasNoSignedWrap(I.hasNoSignedWrap());
New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
return New;
}
// -A + B --> B - A
// -A + -B --> -(A + B)
if (Value *LHSV = dyn_castNegVal(LHS)) {
if (!isa<Constant>(RHS))
if (Value *RHSV = dyn_castNegVal(RHS)) {
Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
return BinaryOperator::CreateNeg(NewAdd);
}
return BinaryOperator::CreateSub(RHS, LHSV);
}
// A + -B --> A - B
if (!isa<Constant>(RHS))
if (Value *V = dyn_castNegVal(RHS))
return BinaryOperator::CreateSub(LHS, V);
if (Value *V = checkForNegativeOperand(I, Builder))
return ReplaceInstUsesWith(I, V);
// A+B --> A|B iff A and B have no bits set in common.
if (haveNoCommonBitsSet(LHS, RHS, DL, AC, &I, DT))
return BinaryOperator::CreateOr(LHS, RHS);
if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
Value *X;
if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
return BinaryOperator::CreateSub(SubOne(CRHS), X);
}
if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
// (X & FF00) + xx00 -> (X+xx00) & FF00
Value *X;
ConstantInt *C2;
if (LHS->hasOneUse() &&
match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
// See if all bits from the first bit set in the Add RHS up are included
// in the mask. First, get the rightmost bit.
const APInt &AddRHSV = CRHS->getValue();
// Form a mask of all bits from the lowest bit added through the top.
APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
// See if the and mask includes all of these bits.
APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
if (AddRHSHighBits == AddRHSHighBitsAnd) {
// Okay, the xform is safe. Insert the new add pronto.
Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
return BinaryOperator::CreateAnd(NewAdd, C2);
}
}
// Try to fold constant add into select arguments.
if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
}
// add (select X 0 (sub n A)) A --> select X A n
{
SelectInst *SI = dyn_cast<SelectInst>(LHS);
Value *A = RHS;
if (!SI) {
SI = dyn_cast<SelectInst>(RHS);
A = LHS;
}
if (SI && SI->hasOneUse()) {
Value *TV = SI->getTrueValue();
Value *FV = SI->getFalseValue();
Value *N;
// Can we fold the add into the argument of the select?
// We check both true and false select arguments for a matching subtract.
if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
// Fold the add into the true select value.
return SelectInst::Create(SI->getCondition(), N, A);
if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
// Fold the add into the false select value.
return SelectInst::Create(SI->getCondition(), A, N);
}
}
// Check for (add (sext x), y), see if we can merge this into an
// integer add followed by a sext.
if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
// (add (sext x), cst) --> (sext (add x, cst'))
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
Constant *CI =
ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
if (LHSConv->hasOneUse() &&
ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
// Insert the new, smaller add.
Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
CI, "addconv");
return new SExtInst(NewAdd, I.getType());
}
}
// (add (sext x), (sext y)) --> (sext (add int x, y))
if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
// Only do this if x/y have the same type, if at last one of them has a
// single use (so we don't increase the number of sexts), and if the
// integer add will not overflow.
if (LHSConv->getOperand(0)->getType() ==
RHSConv->getOperand(0)->getType() &&
(LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
WillNotOverflowSignedAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0), I)) {
// Insert the new integer add.
Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0), "addconv");
return new SExtInst(NewAdd, I.getType());
}
}
}
// (add (xor A, B) (and A, B)) --> (or A, B)
{
Value *A = nullptr, *B = nullptr;
if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
(match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
match(LHS, m_And(m_Specific(B), m_Specific(A)))))
return BinaryOperator::CreateOr(A, B);
if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
(match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
match(RHS, m_And(m_Specific(B), m_Specific(A)))))
return BinaryOperator::CreateOr(A, B);
}
// (add (or A, B) (and A, B)) --> (add A, B)
{
Value *A = nullptr, *B = nullptr;
if (match(RHS, m_Or(m_Value(A), m_Value(B))) &&
(match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
match(LHS, m_And(m_Specific(B), m_Specific(A))))) {
auto *New = BinaryOperator::CreateAdd(A, B);
New->setHasNoSignedWrap(I.hasNoSignedWrap());
New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
return New;
}
if (match(LHS, m_Or(m_Value(A), m_Value(B))) &&
(match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
match(RHS, m_And(m_Specific(B), m_Specific(A))))) {
auto *New = BinaryOperator::CreateAdd(A, B);
New->setHasNoSignedWrap(I.hasNoSignedWrap());
New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
return New;
}
}
// TODO(jingyue): Consider WillNotOverflowSignedAdd and
// WillNotOverflowUnsignedAdd to reduce the number of invocations of
// computeKnownBits.
if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS, I)) {
Changed = true;
I.setHasNoSignedWrap(true);
}
if (!I.hasNoUnsignedWrap() &&
computeOverflowForUnsignedAdd(LHS, RHS, &I) ==
OverflowResult::NeverOverflows) {
Changed = true;
I.setHasNoUnsignedWrap(true);
}
return Changed ? &I : nullptr;
}
Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
bool Changed = SimplifyAssociativeOrCommutative(I);
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
if (Value *V = SimplifyVectorOp(I))
return ReplaceInstUsesWith(I, V);
if (Value *V =
SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
if (isa<Constant>(RHS)) {
if (isa<PHINode>(LHS))
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
if (Instruction *NV = FoldOpIntoSelect(I, SI))
return NV;
}
// -A + B --> B - A
// -A + -B --> -(A + B)
if (Value *LHSV = dyn_castFNegVal(LHS)) {
Instruction *RI = BinaryOperator::CreateFSub(RHS, LHSV);
RI->copyFastMathFlags(&I);
return RI;
}
// A + -B --> A - B
if (!isa<Constant>(RHS))
if (Value *V = dyn_castFNegVal(RHS)) {
Instruction *RI = BinaryOperator::CreateFSub(LHS, V);
RI->copyFastMathFlags(&I);
return RI;
}
// Check for (fadd double (sitofp x), y), see if we can merge this into an
// integer add followed by a promotion.
if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
// (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
// ... if the constant fits in the integer value. This is useful for things
// like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
// requires a constant pool load, and generally allows the add to be better
// instcombined.
if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
Constant *CI =
ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
if (LHSConv->hasOneUse() &&
ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
// Insert the new integer add.
Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
CI, "addconv");
return new SIToFPInst(NewAdd, I.getType());
}
}
// (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
// Only do this if x/y have the same type, if at last one of them has a
// single use (so we don't increase the number of int->fp conversions),
// and if the integer add will not overflow.
if (LHSConv->getOperand(0)->getType() ==
RHSConv->getOperand(0)->getType() &&
(LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
WillNotOverflowSignedAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0), I)) {
// Insert the new integer add.
Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0),"addconv");
return new SIToFPInst(NewAdd, I.getType());
}
}
}
// select C, 0, B + select C, A, 0 -> select C, A, B
{
Value *A1, *B1, *C1, *A2, *B2, *C2;
if (match(LHS, m_Select(m_Value(C1), m_Value(A1), m_Value(B1))) &&
match(RHS, m_Select(m_Value(C2), m_Value(A2), m_Value(B2)))) {
if (C1 == C2) {
Constant *Z1=nullptr, *Z2=nullptr;
Value *A, *B, *C=C1;
if (match(A1, m_AnyZero()) && match(B2, m_AnyZero())) {
Z1 = dyn_cast<Constant>(A1); A = A2;
Z2 = dyn_cast<Constant>(B2); B = B1;
} else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) {
Z1 = dyn_cast<Constant>(B1); B = B2;
Z2 = dyn_cast<Constant>(A2); A = A1;
}
if (Z1 && Z2 &&
(I.hasNoSignedZeros() ||
(Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) {
return SelectInst::Create(C, A, B);
}
}
}
}
if (I.hasUnsafeAlgebra()) {
if (Value *V = FAddCombine(Builder).simplify(&I))
return ReplaceInstUsesWith(I, V);
}
return Changed ? &I : nullptr;
}
/// Optimize pointer differences into the same array into a size. Consider:
/// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
///
Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
Type *Ty) {
// If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
// this.
bool Swapped = false;
GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
// For now we require one side to be the base pointer "A" or a constant
// GEP derived from it.
if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
// (gep X, ...) - X
if (LHSGEP->getOperand(0) == RHS) {
GEP1 = LHSGEP;
Swapped = false;
} else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
// (gep X, ...) - (gep X, ...)
if (LHSGEP->getOperand(0)->stripPointerCasts() ==
RHSGEP->getOperand(0)->stripPointerCasts()) {
GEP2 = RHSGEP;
GEP1 = LHSGEP;
Swapped = false;
}
}
}
if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
// X - (gep X, ...)
if (RHSGEP->getOperand(0) == LHS) {
GEP1 = RHSGEP;
Swapped = true;
} else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
// (gep X, ...) - (gep X, ...)
if (RHSGEP->getOperand(0)->stripPointerCasts() ==
LHSGEP->getOperand(0)->stripPointerCasts()) {
GEP2 = LHSGEP;
GEP1 = RHSGEP;
Swapped = true;
}
}
}
// Avoid duplicating the arithmetic if GEP2 has non-constant indices and
// multiple users.
if (!GEP1 ||
(GEP2 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
return nullptr;
// Emit the offset of the GEP and an intptr_t.
Value *Result = EmitGEPOffset(GEP1);
// If we had a constant expression GEP on the other side offsetting the
// pointer, subtract it from the offset we have.
if (GEP2) {
Value *Offset = EmitGEPOffset(GEP2);
Result = Builder->CreateSub(Result, Offset);
}
// If we have p - gep(p, ...) then we have to negate the result.
if (Swapped)
Result = Builder->CreateNeg(Result, "diff.neg");
return Builder->CreateIntCast(Result, Ty, true);
}
Instruction *InstCombiner::visitSub(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Value *V = SimplifyVectorOp(I))
return ReplaceInstUsesWith(I, V);
if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
// (A*B)-(A*C) -> A*(B-C) etc
if (Value *V = SimplifyUsingDistributiveLaws(I))
return ReplaceInstUsesWith(I, V);
// If this is a 'B = x-(-A)', change to B = x+A.
if (Value *V = dyn_castNegVal(Op1)) {
BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
assert(BO->getOpcode() == Instruction::Sub &&
"Expected a subtraction operator!");
if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
Res->setHasNoSignedWrap(true);
} else {
if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
Res->setHasNoSignedWrap(true);
}
return Res;
}
if (I.getType()->isIntegerTy(1))
return BinaryOperator::CreateXor(Op0, Op1);
// Replace (-1 - A) with (~A).
if (match(Op0, m_AllOnes()))
return BinaryOperator::CreateNot(Op1);
if (Constant *C = dyn_cast<Constant>(Op0)) {
// C - ~X == X + (1+C)
Value *X = nullptr;
if (match(Op1, m_Not(m_Value(X))))
return BinaryOperator::CreateAdd(X, AddOne(C));
// Try to fold constant sub into select arguments.
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
// C-(X+C2) --> (C-C2)-X
Constant *C2;
if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
if (SimplifyDemandedInstructionBits(I))
return &I;
// Fold (sub 0, (zext bool to B)) --> (sext bool to B)
if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X))))
if (X->getType()->getScalarType()->isIntegerTy(1))
return CastInst::CreateSExtOrBitCast(X, Op1->getType());
// Fold (sub 0, (sext bool to B)) --> (zext bool to B)
if (C->isNullValue() && match(Op1, m_SExt(m_Value(X))))
if (X->getType()->getScalarType()->isIntegerTy(1))
return CastInst::CreateZExtOrBitCast(X, Op1->getType());
}
if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
// -(X >>u 31) -> (X >>s 31)
// -(X >>s 31) -> (X >>u 31)
if (C->isZero()) {
Value *X;
ConstantInt *CI;
if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
// Verify we are shifting out everything but the sign bit.
CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1)
return BinaryOperator::CreateAShr(X, CI);
if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
// Verify we are shifting out everything but the sign bit.
CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1)
return BinaryOperator::CreateLShr(X, CI);
}
// Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
// zero.
APInt IntVal = C->getValue();
if ((IntVal + 1).isPowerOf2()) {
unsigned BitWidth = I.getType()->getScalarSizeInBits();
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
computeKnownBits(&I, KnownZero, KnownOne, 0, &I);
if ((IntVal | KnownZero).isAllOnesValue()) {
return BinaryOperator::CreateXor(Op1, C);
}
}
}
{
Value *Y;
// X-(X+Y) == -Y X-(Y+X) == -Y
if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
return BinaryOperator::CreateNeg(Y);
// (X-Y)-X == -Y
if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
return BinaryOperator::CreateNeg(Y);
}
// (sub (or A, B) (xor A, B)) --> (and A, B)
{
Value *A = nullptr, *B = nullptr;
if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
(match(Op0, m_Or(m_Specific(A), m_Specific(B))) ||
match(Op0, m_Or(m_Specific(B), m_Specific(A)))))
return BinaryOperator::CreateAnd(A, B);
}
// (sub (select (a, c, b)), (select (a, d, b))) -> (select (a, (sub c, d), 0))
// (sub (select (a, b, c)), (select (a, b, d))) -> (select (a, 0, (sub c, d)))
if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
if (SI0->getCondition() == SI1->getCondition()) {
if (Value *V = SimplifySubInst(
SI0->getFalseValue(), SI1->getFalseValue(), I.hasNoSignedWrap(),
I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
return SelectInst::Create(
SI0->getCondition(),
Builder->CreateSub(SI0->getTrueValue(), SI1->getTrueValue(), "",
/*HasNUW=*/I.hasNoUnsignedWrap(),
/*HasNSW=*/I.hasNoSignedWrap()),
V);
if (Value *V = SimplifySubInst(SI0->getTrueValue(), SI1->getTrueValue(),
I.hasNoSignedWrap(),
I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
return SelectInst::Create(
SI0->getCondition(), V,
Builder->CreateSub(SI0->getFalseValue(), SI1->getFalseValue(), "",
/*HasNUW=*/I.hasNoUnsignedWrap(),
/*HasNSW=*/I.hasNoSignedWrap()));
}
}
}
if (Op0->hasOneUse()) {
Value *Y = nullptr;
// ((X | Y) - X) --> (~X & Y)
if (match(Op0, m_Or(m_Value(Y), m_Specific(Op1))) ||
match(Op0, m_Or(m_Specific(Op1), m_Value(Y))))
return BinaryOperator::CreateAnd(
Y, Builder->CreateNot(Op1, Op1->getName() + ".not"));
}
if (Op1->hasOneUse()) {
Value *X = nullptr, *Y = nullptr, *Z = nullptr;
Constant *C = nullptr;
Constant *CI = nullptr;
// (X - (Y - Z)) --> (X + (Z - Y)).
if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
return BinaryOperator::CreateAdd(Op0,
Builder->CreateSub(Z, Y, Op1->getName()));
// (X - (X & Y)) --> (X & ~Y)
//
if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
return BinaryOperator::CreateAnd(Op0,
Builder->CreateNot(Y, Y->getName() + ".not"));
// 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow.
if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) &&
C->isNotMinSignedValue() && !C->isOneValue())
return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
// 0 - (X << Y) -> (-X << Y) when X is freely negatable.
if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
if (Value *XNeg = dyn_castNegVal(X))
return BinaryOperator::CreateShl(XNeg, Y);
// X - A*-B -> X + A*B
// X - -A*B -> X + A*B
Value *A, *B;
if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
// X - A*CI -> X + A*-CI
// X - CI*A -> X + A*-CI
if (match(Op1, m_Mul(m_Value(A), m_Constant(CI))) ||
match(Op1, m_Mul(m_Constant(CI), m_Value(A)))) {
Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
return BinaryOperator::CreateAdd(Op0, NewMul);
}
}
// Optimize pointer differences into the same array into a size. Consider:
// &A[10] - &A[0]: we should compile this to "10".
Value *LHSOp, *RHSOp;
if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
match(Op1, m_PtrToInt(m_Value(RHSOp))))
if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
return ReplaceInstUsesWith(I, Res);
// trunc(p)-trunc(q) -> trunc(p-q)
if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
return ReplaceInstUsesWith(I, Res);
bool Changed = false;
if (!I.hasNoSignedWrap() && WillNotOverflowSignedSub(Op0, Op1, I)) {
Changed = true;
I.setHasNoSignedWrap(true);
}
if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedSub(Op0, Op1, I)) {
Changed = true;
I.setHasNoUnsignedWrap(true);
}
return Changed ? &I : nullptr;
}
Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Value *V = SimplifyVectorOp(I))
return ReplaceInstUsesWith(I, V);
if (Value *V =
SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), DL, TLI, DT, AC))
return ReplaceInstUsesWith(I, V);
// fsub nsz 0, X ==> fsub nsz -0.0, X
if (I.getFastMathFlags().noSignedZeros() && match(Op0, m_Zero())) {
// Subtraction from -0.0 is the canonical form of fneg.
Instruction *NewI = BinaryOperator::CreateFNeg(Op1);
NewI->copyFastMathFlags(&I);
return NewI;
}
if (isa<Constant>(Op0))
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
if (Instruction *NV = FoldOpIntoSelect(I, SI))
return NV;
// If this is a 'B = x-(-A)', change to B = x+A, potentially looking
// through FP extensions/truncations along the way.
if (Value *V = dyn_castFNegVal(Op1)) {
Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V);
NewI->copyFastMathFlags(&I);
return NewI;
}
if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) {
if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) {
Value *NewTrunc = Builder->CreateFPTrunc(V, I.getType());
Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc);
NewI->copyFastMathFlags(&I);
return NewI;
}
} else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) {
if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) {
Value *NewExt = Builder->CreateFPExt(V, I.getType());
Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt);
NewI->copyFastMathFlags(&I);
return NewI;
}
}
if (I.hasUnsafeAlgebra()) {
if (Value *V = FAddCombine(Builder).simplify(&I))
return ReplaceInstUsesWith(I, V);
}
return nullptr;
}