aboutsummaryrefslogblamecommitdiff
path: root/crypto/openssl/crypto/bn/bn_gcd.c
blob: ce59fe701f9db1d87003f1739357275a9a257008 (plain) (tree)
1
2
3
4
5
6
7
8






                                                                      
  





                                                                         
  





                                                                               
  













                                                                              
                                                                             

                                                                                
  










                                                                             
  




                                                                              







                                                                       
                                                                   











































                                                                           
 



                                            
 
                                                                          




































                                 

                                           






























































                                                     
 
                            
                                                   

                                                                         
 
                                  
























































































































































































































































































































                                                                                    

                                                   











































                                                                         
                          


























                                                                         
                          























































































                                                                                
/* crypto/bn/bn_gcd.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */
/* ====================================================================
 * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */

#include "cryptlib.h"
#include "bn_lcl.h"

static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);

int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
{
    BIGNUM *a, *b, *t;
    int ret = 0;

    bn_check_top(in_a);
    bn_check_top(in_b);

    BN_CTX_start(ctx);
    a = BN_CTX_get(ctx);
    b = BN_CTX_get(ctx);
    if (a == NULL || b == NULL)
        goto err;

    if (BN_copy(a, in_a) == NULL)
        goto err;
    if (BN_copy(b, in_b) == NULL)
        goto err;
    a->neg = 0;
    b->neg = 0;

    if (BN_cmp(a, b) < 0) {
        t = a;
        a = b;
        b = t;
    }
    t = euclid(a, b);
    if (t == NULL)
        goto err;

    if (BN_copy(r, t) == NULL)
        goto err;
    ret = 1;
 err:
    BN_CTX_end(ctx);
    bn_check_top(r);
    return (ret);
}

static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
{
    BIGNUM *t;
    int shifts = 0;

    bn_check_top(a);
    bn_check_top(b);

    /* 0 <= b <= a */
    while (!BN_is_zero(b)) {
        /* 0 < b <= a */

        if (BN_is_odd(a)) {
            if (BN_is_odd(b)) {
                if (!BN_sub(a, a, b))
                    goto err;
                if (!BN_rshift1(a, a))
                    goto err;
                if (BN_cmp(a, b) < 0) {
                    t = a;
                    a = b;
                    b = t;
                }
            } else {            /* a odd - b even */

                if (!BN_rshift1(b, b))
                    goto err;
                if (BN_cmp(a, b) < 0) {
                    t = a;
                    a = b;
                    b = t;
                }
            }
        } else {                /* a is even */

            if (BN_is_odd(b)) {
                if (!BN_rshift1(a, a))
                    goto err;
                if (BN_cmp(a, b) < 0) {
                    t = a;
                    a = b;
                    b = t;
                }
            } else {            /* a even - b even */

                if (!BN_rshift1(a, a))
                    goto err;
                if (!BN_rshift1(b, b))
                    goto err;
                shifts++;
            }
        }
        /* 0 <= b <= a */
    }

    if (shifts) {
        if (!BN_lshift(a, a, shifts))
            goto err;
    }
    bn_check_top(a);
    return (a);
 err:
    return (NULL);
}

/* solves ax == 1 (mod n) */
static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
                                        const BIGNUM *a, const BIGNUM *n,
                                        BN_CTX *ctx);

BIGNUM *BN_mod_inverse(BIGNUM *in,
                       const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
{
    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
    BIGNUM *ret = NULL;
    int sign;

    if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)
        || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {
        return BN_mod_inverse_no_branch(in, a, n, ctx);
    }

    bn_check_top(a);
    bn_check_top(n);

    BN_CTX_start(ctx);
    A = BN_CTX_get(ctx);
    B = BN_CTX_get(ctx);
    X = BN_CTX_get(ctx);
    D = BN_CTX_get(ctx);
    M = BN_CTX_get(ctx);
    Y = BN_CTX_get(ctx);
    T = BN_CTX_get(ctx);
    if (T == NULL)
        goto err;

    if (in == NULL)
        R = BN_new();
    else
        R = in;
    if (R == NULL)
        goto err;

    BN_one(X);
    BN_zero(Y);
    if (BN_copy(B, a) == NULL)
        goto err;
    if (BN_copy(A, n) == NULL)
        goto err;
    A->neg = 0;
    if (B->neg || (BN_ucmp(B, A) >= 0)) {
        if (!BN_nnmod(B, B, A, ctx))
            goto err;
    }
    sign = -1;
    /*-
     * From  B = a mod |n|,  A = |n|  it follows that
     *
     *      0 <= B < A,
     *     -sign*X*a  ==  B   (mod |n|),
     *      sign*Y*a  ==  A   (mod |n|).
     */

    if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048))) {
        /*
         * Binary inversion algorithm; requires odd modulus. This is faster
         * than the general algorithm if the modulus is sufficiently small
         * (about 400 .. 500 bits on 32-bit sytems, but much more on 64-bit
         * systems)
         */
        int shift;

        while (!BN_is_zero(B)) {
            /*-
             *      0 < B < |n|,
             *      0 < A <= |n|,
             * (1) -sign*X*a  ==  B   (mod |n|),
             * (2)  sign*Y*a  ==  A   (mod |n|)
             */

            /*
             * Now divide B by the maximum possible power of two in the
             * integers, and divide X by the same value mod |n|. When we're
             * done, (1) still holds.
             */
            shift = 0;
            while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */
                shift++;

                if (BN_is_odd(X)) {
                    if (!BN_uadd(X, X, n))
                        goto err;
                }
                /*
                 * now X is even, so we can easily divide it by two
                 */
                if (!BN_rshift1(X, X))
                    goto err;
            }
            if (shift > 0) {
                if (!BN_rshift(B, B, shift))
                    goto err;
            }

            /*
             * Same for A and Y.  Afterwards, (2) still holds.
             */
            shift = 0;
            while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */
                shift++;

                if (BN_is_odd(Y)) {
                    if (!BN_uadd(Y, Y, n))
                        goto err;
                }
                /* now Y is even */
                if (!BN_rshift1(Y, Y))
                    goto err;
            }
            if (shift > 0) {
                if (!BN_rshift(A, A, shift))
                    goto err;
            }

            /*-
             * We still have (1) and (2).
             * Both  A  and  B  are odd.
             * The following computations ensure that
             *
             *     0 <= B < |n|,
             *      0 < A < |n|,
             * (1) -sign*X*a  ==  B   (mod |n|),
             * (2)  sign*Y*a  ==  A   (mod |n|),
             *
             * and that either  A  or  B  is even in the next iteration.
             */
            if (BN_ucmp(B, A) >= 0) {
                /* -sign*(X + Y)*a == B - A  (mod |n|) */
                if (!BN_uadd(X, X, Y))
                    goto err;
                /*
                 * NB: we could use BN_mod_add_quick(X, X, Y, n), but that
                 * actually makes the algorithm slower
                 */
                if (!BN_usub(B, B, A))
                    goto err;
            } else {
                /*  sign*(X + Y)*a == A - B  (mod |n|) */
                if (!BN_uadd(Y, Y, X))
                    goto err;
                /*
                 * as above, BN_mod_add_quick(Y, Y, X, n) would slow things
                 * down
                 */
                if (!BN_usub(A, A, B))
                    goto err;
            }
        }
    } else {
        /* general inversion algorithm */

        while (!BN_is_zero(B)) {
            BIGNUM *tmp;

            /*-
             *      0 < B < A,
             * (*) -sign*X*a  ==  B   (mod |n|),
             *      sign*Y*a  ==  A   (mod |n|)
             */

            /* (D, M) := (A/B, A%B) ... */
            if (BN_num_bits(A) == BN_num_bits(B)) {
                if (!BN_one(D))
                    goto err;
                if (!BN_sub(M, A, B))
                    goto err;
            } else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
                /* A/B is 1, 2, or 3 */
                if (!BN_lshift1(T, B))
                    goto err;
                if (BN_ucmp(A, T) < 0) {
                    /* A < 2*B, so D=1 */
                    if (!BN_one(D))
                        goto err;
                    if (!BN_sub(M, A, B))
                        goto err;
                } else {
                    /* A >= 2*B, so D=2 or D=3 */
                    if (!BN_sub(M, A, T))
                        goto err;
                    if (!BN_add(D, T, B))
                        goto err; /* use D (:= 3*B) as temp */
                    if (BN_ucmp(A, D) < 0) {
                        /* A < 3*B, so D=2 */
                        if (!BN_set_word(D, 2))
                            goto err;
                        /*
                         * M (= A - 2*B) already has the correct value
                         */
                    } else {
                        /* only D=3 remains */
                        if (!BN_set_word(D, 3))
                            goto err;
                        /*
                         * currently M = A - 2*B, but we need M = A - 3*B
                         */
                        if (!BN_sub(M, M, B))
                            goto err;
                    }
                }
            } else {
                if (!BN_div(D, M, A, B, ctx))
                    goto err;
            }

            /*-
             * Now
             *      A = D*B + M;
             * thus we have
             * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
             */

            tmp = A;            /* keep the BIGNUM object, the value does not
                                 * matter */

            /* (A, B) := (B, A mod B) ... */
            A = B;
            B = M;
            /* ... so we have  0 <= B < A  again */

            /*-
             * Since the former  M  is now  B  and the former  B  is now  A,
             * (**) translates into
             *       sign*Y*a  ==  D*A + B    (mod |n|),
             * i.e.
             *       sign*Y*a - D*A  ==  B    (mod |n|).
             * Similarly, (*) translates into
             *      -sign*X*a  ==  A          (mod |n|).
             *
             * Thus,
             *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
             * i.e.
             *        sign*(Y + D*X)*a  ==  B  (mod |n|).
             *
             * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
             *      -sign*X*a  ==  B   (mod |n|),
             *       sign*Y*a  ==  A   (mod |n|).
             * Note that  X  and  Y  stay non-negative all the time.
             */

            /*
             * most of the time D is very small, so we can optimize tmp :=
             * D*X+Y
             */
            if (BN_is_one(D)) {
                if (!BN_add(tmp, X, Y))
                    goto err;
            } else {
                if (BN_is_word(D, 2)) {
                    if (!BN_lshift1(tmp, X))
                        goto err;
                } else if (BN_is_word(D, 4)) {
                    if (!BN_lshift(tmp, X, 2))
                        goto err;
                } else if (D->top == 1) {
                    if (!BN_copy(tmp, X))
                        goto err;
                    if (!BN_mul_word(tmp, D->d[0]))
                        goto err;
                } else {
                    if (!BN_mul(tmp, D, X, ctx))
                        goto err;
                }
                if (!BN_add(tmp, tmp, Y))
                    goto err;
            }

            M = Y;              /* keep the BIGNUM object, the value does not
                                 * matter */
            Y = X;
            X = tmp;
            sign = -sign;
        }
    }

    /*-
     * The while loop (Euclid's algorithm) ends when
     *      A == gcd(a,n);
     * we have
     *       sign*Y*a  ==  A  (mod |n|),
     * where  Y  is non-negative.
     */

    if (sign < 0) {
        if (!BN_sub(Y, n, Y))
            goto err;
    }
    /* Now  Y*a  ==  A  (mod |n|).  */

    if (BN_is_one(A)) {
        /* Y*a == 1  (mod |n|) */
        if (!Y->neg && BN_ucmp(Y, n) < 0) {
            if (!BN_copy(R, Y))
                goto err;
        } else {
            if (!BN_nnmod(R, Y, n, ctx))
                goto err;
        }
    } else {
        BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE);
        goto err;
    }
    ret = R;
 err:
    if ((ret == NULL) && (in == NULL))
        BN_free(R);
    BN_CTX_end(ctx);
    bn_check_top(ret);
    return (ret);
}

/*
 * BN_mod_inverse_no_branch is a special version of BN_mod_inverse. It does
 * not contain branches that may leak sensitive information.
 */
static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
                                        const BIGNUM *a, const BIGNUM *n,
                                        BN_CTX *ctx)
{
    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
    BIGNUM local_A, local_B;
    BIGNUM *pA, *pB;
    BIGNUM *ret = NULL;
    int sign;

    bn_check_top(a);
    bn_check_top(n);

    BN_CTX_start(ctx);
    A = BN_CTX_get(ctx);
    B = BN_CTX_get(ctx);
    X = BN_CTX_get(ctx);
    D = BN_CTX_get(ctx);
    M = BN_CTX_get(ctx);
    Y = BN_CTX_get(ctx);
    T = BN_CTX_get(ctx);
    if (T == NULL)
        goto err;

    if (in == NULL)
        R = BN_new();
    else
        R = in;
    if (R == NULL)
        goto err;

    BN_one(X);
    BN_zero(Y);
    if (BN_copy(B, a) == NULL)
        goto err;
    if (BN_copy(A, n) == NULL)
        goto err;
    A->neg = 0;

    if (B->neg || (BN_ucmp(B, A) >= 0)) {
        /*
         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
         * BN_div_no_branch will be called eventually.
         */
        pB = &local_B;
        local_B.flags = 0;
        BN_with_flags(pB, B, BN_FLG_CONSTTIME);
        if (!BN_nnmod(B, pB, A, ctx))
            goto err;
    }
    sign = -1;
    /*-
     * From  B = a mod |n|,  A = |n|  it follows that
     *
     *      0 <= B < A,
     *     -sign*X*a  ==  B   (mod |n|),
     *      sign*Y*a  ==  A   (mod |n|).
     */

    while (!BN_is_zero(B)) {
        BIGNUM *tmp;

        /*-
         *      0 < B < A,
         * (*) -sign*X*a  ==  B   (mod |n|),
         *      sign*Y*a  ==  A   (mod |n|)
         */

        /*
         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
         * BN_div_no_branch will be called eventually.
         */
        pA = &local_A;
        local_A.flags = 0;
        BN_with_flags(pA, A, BN_FLG_CONSTTIME);

        /* (D, M) := (A/B, A%B) ... */
        if (!BN_div(D, M, pA, B, ctx))
            goto err;

        /*-
         * Now
         *      A = D*B + M;
         * thus we have
         * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
         */

        tmp = A;                /* keep the BIGNUM object, the value does not
                                 * matter */

        /* (A, B) := (B, A mod B) ... */
        A = B;
        B = M;
        /* ... so we have  0 <= B < A  again */

        /*-
         * Since the former  M  is now  B  and the former  B  is now  A,
         * (**) translates into
         *       sign*Y*a  ==  D*A + B    (mod |n|),
         * i.e.
         *       sign*Y*a - D*A  ==  B    (mod |n|).
         * Similarly, (*) translates into
         *      -sign*X*a  ==  A          (mod |n|).
         *
         * Thus,
         *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
         * i.e.
         *        sign*(Y + D*X)*a  ==  B  (mod |n|).
         *
         * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
         *      -sign*X*a  ==  B   (mod |n|),
         *       sign*Y*a  ==  A   (mod |n|).
         * Note that  X  and  Y  stay non-negative all the time.
         */

        if (!BN_mul(tmp, D, X, ctx))
            goto err;
        if (!BN_add(tmp, tmp, Y))
            goto err;

        M = Y;                  /* keep the BIGNUM object, the value does not
                                 * matter */
        Y = X;
        X = tmp;
        sign = -sign;
    }

    /*-
     * The while loop (Euclid's algorithm) ends when
     *      A == gcd(a,n);
     * we have
     *       sign*Y*a  ==  A  (mod |n|),
     * where  Y  is non-negative.
     */

    if (sign < 0) {
        if (!BN_sub(Y, n, Y))
            goto err;
    }
    /* Now  Y*a  ==  A  (mod |n|).  */

    if (BN_is_one(A)) {
        /* Y*a == 1  (mod |n|) */
        if (!Y->neg && BN_ucmp(Y, n) < 0) {
            if (!BN_copy(R, Y))
                goto err;
        } else {
            if (!BN_nnmod(R, Y, n, ctx))
                goto err;
        }
    } else {
        BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH, BN_R_NO_INVERSE);
        goto err;
    }
    ret = R;
 err:
    if ((ret == NULL) && (in == NULL))
        BN_free(R);
    BN_CTX_end(ctx);
    bn_check_top(ret);
    return (ret);
}