/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1992, 1993, 1994, 1995 Jan-Simon Pendry.
* Copyright (c) 1992, 1993, 1994, 1995
* The Regents of the University of California.
* Copyright (c) 2005, 2006, 2012 Masanori Ozawa <ozawa@ongs.co.jp>, ONGS Inc.
* Copyright (c) 2006, 2012 Daichi Goto <daichi@freebsd.org>
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Jan-Simon Pendry.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/mutex.h>
#include <sys/namei.h>
#include <sys/sysctl.h>
#include <sys/vnode.h>
#include <sys/kdb.h>
#include <sys/fcntl.h>
#include <sys/stat.h>
#include <sys/dirent.h>
#include <sys/proc.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <fs/unionfs/union.h>
#include <machine/atomic.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <vm/vnode_pager.h>
#if 0
#define UNIONFS_INTERNAL_DEBUG(msg, args...) printf(msg, ## args)
#define UNIONFS_IDBG_RENAME
#else
#define UNIONFS_INTERNAL_DEBUG(msg, args...)
#endif
#define KASSERT_UNIONFS_VNODE(vp) \
VNASSERT(((vp)->v_op == &unionfs_vnodeops), vp, \
("%s: non-unionfs vnode", __func__))
static int
unionfs_lookup(struct vop_cachedlookup_args *ap)
{
struct unionfs_node *dunp, *unp;
struct vnode *dvp, *udvp, *ldvp, *vp, *uvp, *lvp, *dtmpvp;
struct vattr va;
struct componentname *cnp;
struct thread *td;
u_long nameiop;
u_long cnflags, cnflagsbk;
int iswhiteout;
int lockflag;
int error , uerror, lerror;
iswhiteout = 0;
lockflag = 0;
error = uerror = lerror = ENOENT;
cnp = ap->a_cnp;
nameiop = cnp->cn_nameiop;
cnflags = cnp->cn_flags;
dvp = ap->a_dvp;
dunp = VTOUNIONFS(dvp);
udvp = dunp->un_uppervp;
ldvp = dunp->un_lowervp;
vp = uvp = lvp = NULLVP;
td = curthread;
*(ap->a_vpp) = NULLVP;
UNIONFS_INTERNAL_DEBUG(
"unionfs_lookup: enter: nameiop=%ld, flags=%lx, path=%s\n",
nameiop, cnflags, cnp->cn_nameptr);
if (dvp->v_type != VDIR)
return (ENOTDIR);
/*
* If read-only and op is not LOOKUP, will return EROFS.
*/
if ((cnflags & ISLASTCN) &&
(dvp->v_mount->mnt_flag & MNT_RDONLY) &&
LOOKUP != nameiop)
return (EROFS);
/*
* lookup dotdot
*/
if (cnflags & ISDOTDOT) {
if (LOOKUP != nameiop && udvp == NULLVP)
return (EROFS);
if (udvp != NULLVP) {
dtmpvp = udvp;
if (ldvp != NULLVP)
VOP_UNLOCK(ldvp);
}
else
dtmpvp = ldvp;
error = VOP_LOOKUP(dtmpvp, &vp, cnp);
if (dtmpvp == udvp && ldvp != NULLVP) {
VOP_UNLOCK(udvp);
vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
dunp = VTOUNIONFS(dvp);
if (error == 0 && dunp == NULL)
error = ENOENT;
}
if (error == 0) {
/*
* Exchange lock and reference from vp to
* dunp->un_dvp. vp is upper/lower vnode, but it
* will need to return the unionfs vnode.
*/
if (nameiop == DELETE || nameiop == RENAME ||
(cnp->cn_lkflags & LK_TYPE_MASK))
VOP_UNLOCK(vp);
vrele(vp);
dtmpvp = dunp->un_dvp;
vref(dtmpvp);
VOP_UNLOCK(dvp);
*(ap->a_vpp) = dtmpvp;
if (nameiop == DELETE || nameiop == RENAME)
vn_lock(dtmpvp, LK_EXCLUSIVE | LK_RETRY);
else if (cnp->cn_lkflags & LK_TYPE_MASK)
vn_lock(dtmpvp, cnp->cn_lkflags |
LK_RETRY);
vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
} else if (error == ENOENT && (cnflags & MAKEENTRY) != 0)
cache_enter(dvp, NULLVP, cnp);
goto unionfs_lookup_return;
}
/*
* lookup upper layer
*/
if (udvp != NULLVP) {
uerror = VOP_LOOKUP(udvp, &uvp, cnp);
if (uerror == 0) {
if (udvp == uvp) { /* is dot */
vrele(uvp);
*(ap->a_vpp) = dvp;
vref(dvp);
error = uerror;
goto unionfs_lookup_return;
}
if (nameiop == DELETE || nameiop == RENAME ||
(cnp->cn_lkflags & LK_TYPE_MASK))
VOP_UNLOCK(uvp);
}
/* check whiteout */
if (uerror == ENOENT || uerror == EJUSTRETURN)
if (cnp->cn_flags & ISWHITEOUT)
iswhiteout = 1; /* don't lookup lower */
if (iswhiteout == 0 && ldvp != NULLVP)
if (!VOP_GETATTR(udvp, &va, cnp->cn_cred) &&
(va.va_flags & OPAQUE))
iswhiteout = 1; /* don't lookup lower */
#if 0
UNIONFS_INTERNAL_DEBUG(
"unionfs_lookup: debug: whiteout=%d, path=%s\n",
iswhiteout, cnp->cn_nameptr);
#endif
}
/*
* lookup lower layer
*/
if (ldvp != NULLVP && !(cnflags & DOWHITEOUT) && iswhiteout == 0) {
/* always op is LOOKUP */
cnp->cn_nameiop = LOOKUP;
cnflagsbk = cnp->cn_flags;
cnp->cn_flags = cnflags;
lerror = VOP_LOOKUP(ldvp, &lvp, cnp);
cnp->cn_nameiop = nameiop;
if (udvp != NULLVP && (uerror == 0 || uerror == EJUSTRETURN))
cnp->cn_flags = cnflagsbk;
if (lerror == 0) {
if (ldvp == lvp) { /* is dot */
if (uvp != NULLVP)
vrele(uvp); /* no need? */
vrele(lvp);
*(ap->a_vpp) = dvp;
vref(dvp);
UNIONFS_INTERNAL_DEBUG(
"unionfs_lookup: leave (%d)\n", lerror);
return (lerror);
}
if (cnp->cn_lkflags & LK_TYPE_MASK)
VOP_UNLOCK(lvp);
}
}
/*
* check lookup result
*/
if (uvp == NULLVP && lvp == NULLVP) {
error = (udvp != NULLVP ? uerror : lerror);
goto unionfs_lookup_return;
}
/*
* check vnode type
*/
if (uvp != NULLVP && lvp != NULLVP && uvp->v_type != lvp->v_type) {
vrele(lvp);
lvp = NULLVP;
}
/*
* check shadow dir
*/
if (uerror != 0 && uerror != EJUSTRETURN && udvp != NULLVP &&
lerror == 0 && lvp != NULLVP && lvp->v_type == VDIR &&
!(dvp->v_mount->mnt_flag & MNT_RDONLY) &&
(1 < cnp->cn_namelen || '.' != *(cnp->cn_nameptr))) {
/* get unionfs vnode in order to create a new shadow dir. */
error = unionfs_nodeget(dvp->v_mount, NULLVP, lvp, dvp, &vp,
cnp);
if (error != 0)
goto unionfs_lookup_cleanup;
if (LK_SHARED == (cnp->cn_lkflags & LK_TYPE_MASK))
VOP_UNLOCK(vp);
if (LK_EXCLUSIVE != VOP_ISLOCKED(vp)) {
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
lockflag = 1;
}
unp = VTOUNIONFS(vp);
if (unp == NULL)
error = ENOENT;
else
error = unionfs_mkshadowdir(MOUNTTOUNIONFSMOUNT(dvp->v_mount),
udvp, unp, cnp, td);
if (lockflag != 0)
VOP_UNLOCK(vp);
if (error != 0) {
UNIONFSDEBUG(
"unionfs_lookup: Unable to create shadow dir.");
if ((cnp->cn_lkflags & LK_TYPE_MASK) == LK_EXCLUSIVE)
vput(vp);
else
vrele(vp);
goto unionfs_lookup_cleanup;
}
if ((cnp->cn_lkflags & LK_TYPE_MASK) == LK_SHARED)
vn_lock(vp, LK_SHARED | LK_RETRY);
}
/*
* get unionfs vnode.
*/
else {
if (uvp != NULLVP)
error = uerror;
else
error = lerror;
if (error != 0)
goto unionfs_lookup_cleanup;
error = unionfs_nodeget(dvp->v_mount, uvp, lvp,
dvp, &vp, cnp);
if (error != 0) {
UNIONFSDEBUG(
"unionfs_lookup: Unable to create unionfs vnode.");
goto unionfs_lookup_cleanup;
}
if ((nameiop == DELETE || nameiop == RENAME) &&
(cnp->cn_lkflags & LK_TYPE_MASK) == 0)
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
}
*(ap->a_vpp) = vp;
if (cnflags & MAKEENTRY)
cache_enter(dvp, vp, cnp);
unionfs_lookup_cleanup:
if (uvp != NULLVP)
vrele(uvp);
if (lvp != NULLVP)
vrele(lvp);
if (error == ENOENT && (cnflags & MAKEENTRY) != 0)
cache_enter(dvp, NULLVP, cnp);
unionfs_lookup_return:
UNIONFS_INTERNAL_DEBUG("unionfs_lookup: leave (%d)\n", error);
return (error);
}
static int
unionfs_create(struct vop_create_args *ap)
{
struct unionfs_node *dunp;
struct componentname *cnp;
struct vnode *udvp;
struct vnode *vp;
int error;
UNIONFS_INTERNAL_DEBUG("unionfs_create: enter\n");
KASSERT_UNIONFS_VNODE(ap->a_dvp);
dunp = VTOUNIONFS(ap->a_dvp);
cnp = ap->a_cnp;
udvp = dunp->un_uppervp;
error = EROFS;
if (udvp != NULLVP) {
int lkflags;
bool vp_created = false;
unionfs_forward_vop_start(udvp, &lkflags);
error = VOP_CREATE(udvp, &vp, cnp, ap->a_vap);
if (error == 0)
vp_created = true;
if (__predict_false(unionfs_forward_vop_finish(ap->a_dvp, udvp,
lkflags)) && error == 0) {
error = ENOENT;
}
if (error == 0) {
VOP_UNLOCK(vp);
error = unionfs_nodeget(ap->a_dvp->v_mount, vp, NULLVP,
ap->a_dvp, ap->a_vpp, cnp);
vrele(vp);
} else if (vp_created)
vput(vp);
}
UNIONFS_INTERNAL_DEBUG("unionfs_create: leave (%d)\n", error);
return (error);
}
static int
unionfs_whiteout(struct vop_whiteout_args *ap)
{
struct unionfs_node *dunp;
struct componentname *cnp;
struct vnode *udvp;
int error;
UNIONFS_INTERNAL_DEBUG("unionfs_whiteout: enter\n");
KASSERT_UNIONFS_VNODE(ap->a_dvp);
dunp = VTOUNIONFS(ap->a_dvp);
cnp = ap->a_cnp;
udvp = dunp->un_uppervp;
error = EOPNOTSUPP;
if (udvp != NULLVP) {
int lkflags;
switch (ap->a_flags) {
case CREATE:
case DELETE:
case LOOKUP:
unionfs_forward_vop_start(udvp, &lkflags);
error = VOP_WHITEOUT(udvp, cnp, ap->a_flags);
unionfs_forward_vop_finish(ap->a_dvp, udvp, lkflags);
break;
default:
error = EINVAL;
break;
}
}
UNIONFS_INTERNAL_DEBUG("unionfs_whiteout: leave (%d)\n", error);
return (error);
}
static int
unionfs_mknod(struct vop_mknod_args *ap)
{
struct unionfs_node *dunp;
struct componentname *cnp;
struct vnode *udvp;
struct vnode *vp;
int error;
UNIONFS_INTERNAL_DEBUG("unionfs_mknod: enter\n");
KASSERT_UNIONFS_VNODE(ap->a_dvp);
dunp = VTOUNIONFS(ap->a_dvp);
cnp = ap->a_cnp;
udvp = dunp->un_uppervp;
error = EROFS;
if (udvp != NULLVP) {
int lkflags;
bool vp_created = false;
unionfs_forward_vop_start(udvp, &lkflags);
error = VOP_MKNOD(udvp, &vp, cnp, ap->a_vap);
if (error == 0)
vp_created = true;
if (__predict_false(unionfs_forward_vop_finish(ap->a_dvp, udvp,
lkflags)) && error == 0) {
error = ENOENT;
}
if (error == 0) {
VOP_UNLOCK(vp);
error = unionfs_nodeget(ap->a_dvp->v_mount, vp, NULLVP,
ap->a_dvp, ap->a_vpp, cnp);
vrele(vp);
} else if (vp_created)
vput(vp);
}
UNIONFS_INTERNAL_DEBUG("unionfs_mknod: leave (%d)\n", error);
return (error);
}
enum unionfs_lkupgrade {
UNIONFS_LKUPGRADE_SUCCESS, /* lock successfully upgraded */
UNIONFS_LKUPGRADE_ALREADY, /* lock already held exclusive */
UNIONFS_LKUPGRADE_DOOMED /* lock was upgraded, but vnode reclaimed */
};
static inline enum unionfs_lkupgrade
unionfs_upgrade_lock(struct vnode *vp)
{
ASSERT_VOP_LOCKED(vp, __func__);
if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
return (UNIONFS_LKUPGRADE_ALREADY);
if (vn_lock(vp, LK_UPGRADE) != 0) {
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
if (VN_IS_DOOMED(vp))
return (UNIONFS_LKUPGRADE_DOOMED);
}
return (UNIONFS_LKUPGRADE_SUCCESS);
}
static inline void
unionfs_downgrade_lock(struct vnode *vp, enum unionfs_lkupgrade status)
{
if (status != UNIONFS_LKUPGRADE_ALREADY)
vn_lock(vp, LK_DOWNGRADE | LK_RETRY);
}
static int
unionfs_open(struct vop_open_args *ap)
{
struct unionfs_node *unp;
struct unionfs_node_status *unsp;
struct vnode *vp;
struct vnode *uvp;
struct vnode *lvp;
struct vnode *targetvp;
struct ucred *cred;
struct thread *td;
int error;
enum unionfs_lkupgrade lkstatus;
UNIONFS_INTERNAL_DEBUG("unionfs_open: enter\n");
KASSERT_UNIONFS_VNODE(ap->a_vp);
error = 0;
vp = ap->a_vp;
targetvp = NULLVP;
cred = ap->a_cred;
td = ap->a_td;
/*
* The executable loader path may call this function with vp locked
* shared. If the vnode is reclaimed while upgrading, we can't safely
* use unp or do anything else unionfs- specific.
*/
lkstatus = unionfs_upgrade_lock(vp);
if (lkstatus == UNIONFS_LKUPGRADE_DOOMED) {
error = ENOENT;
goto unionfs_open_cleanup;
}
unp = VTOUNIONFS(vp);
uvp = unp->un_uppervp;
lvp = unp->un_lowervp;
unionfs_get_node_status(unp, td, &unsp);
if (unsp->uns_lower_opencnt > 0 || unsp->uns_upper_opencnt > 0) {
/* vnode is already opend. */
if (unsp->uns_upper_opencnt > 0)
targetvp = uvp;
else
targetvp = lvp;
if (targetvp == lvp &&
(ap->a_mode & FWRITE) && lvp->v_type == VREG)
targetvp = NULLVP;
}
if (targetvp == NULLVP) {
if (uvp == NULLVP) {
if ((ap->a_mode & FWRITE) && lvp->v_type == VREG) {
error = unionfs_copyfile(unp,
!(ap->a_mode & O_TRUNC), cred, td);
if (error != 0)
goto unionfs_open_abort;
targetvp = uvp = unp->un_uppervp;
} else
targetvp = lvp;
} else
targetvp = uvp;
}
error = VOP_OPEN(targetvp, ap->a_mode, cred, td, ap->a_fp);
if (error == 0) {
if (targetvp == uvp) {
if (uvp->v_type == VDIR && lvp != NULLVP &&
unsp->uns_lower_opencnt <= 0) {
/* open lower for readdir */
error = VOP_OPEN(lvp, FREAD, cred, td, NULL);
if (error != 0) {
VOP_CLOSE(uvp, ap->a_mode, cred, td);
goto unionfs_open_abort;
}
unsp->uns_node_flag |= UNS_OPENL_4_READDIR;
unsp->uns_lower_opencnt++;
}
unsp->uns_upper_opencnt++;
} else {
unsp->uns_lower_opencnt++;
unsp->uns_lower_openmode = ap->a_mode;
}
vp->v_object = targetvp->v_object;
}
unionfs_open_abort:
if (error != 0)
unionfs_tryrem_node_status(unp, unsp);
unionfs_open_cleanup:
unionfs_downgrade_lock(vp, lkstatus);
UNIONFS_INTERNAL_DEBUG("unionfs_open: leave (%d)\n", error);
return (error);
}
static int
unionfs_close(struct vop_close_args *ap)
{
struct unionfs_node *unp;
struct unionfs_node_status *unsp;
struct ucred *cred;
struct thread *td;
struct vnode *vp;
struct vnode *ovp;
int error;
enum unionfs_lkupgrade lkstatus;
UNIONFS_INTERNAL_DEBUG("unionfs_close: enter\n");
KASSERT_UNIONFS_VNODE(ap->a_vp);
vp = ap->a_vp;
cred = ap->a_cred;
td = ap->a_td;
error = 0;
/*
* If the vnode is reclaimed while upgrading, we can't safely use unp
* or do anything else unionfs- specific.
*/
lkstatus = unionfs_upgrade_lock(vp);
if (lkstatus == UNIONFS_LKUPGRADE_DOOMED)
goto unionfs_close_cleanup;
unp = VTOUNIONFS(vp);
unionfs_get_node_status(unp, td, &unsp);
if (unsp->uns_lower_opencnt <= 0 && unsp->uns_upper_opencnt <= 0) {
#ifdef DIAGNOSTIC
printf("unionfs_close: warning: open count is 0\n");
#endif
if (unp->un_uppervp != NULLVP)
ovp = unp->un_uppervp;
else
ovp = unp->un_lowervp;
} else if (unsp->uns_upper_opencnt > 0)
ovp = unp->un_uppervp;
else
ovp = unp->un_lowervp;
error = VOP_CLOSE(ovp, ap->a_fflag, cred, td);
if (error != 0)
goto unionfs_close_abort;
vp->v_object = ovp->v_object;
if (ovp == unp->un_uppervp) {
unsp->uns_upper_opencnt--;
if (unsp->uns_upper_opencnt == 0) {
if (unsp->uns_node_flag & UNS_OPENL_4_READDIR) {
VOP_CLOSE(unp->un_lowervp, FREAD, cred, td);
unsp->uns_node_flag &= ~UNS_OPENL_4_READDIR;
unsp->uns_lower_opencnt--;
}
if (unsp->uns_lower_opencnt > 0)
vp->v_object = unp->un_lowervp->v_object;
}
} else
unsp->uns_lower_opencnt--;
unionfs_close_abort:
unionfs_tryrem_node_status(unp, unsp);
unionfs_close_cleanup:
unionfs_downgrade_lock(vp, lkstatus);
UNIONFS_INTERNAL_DEBUG("unionfs_close: leave (%d)\n", error);
return (error);
}
/*
* Check the access mode toward shadow file/dir.
*/
static int
unionfs_check_corrected_access(accmode_t accmode, struct vattr *va,
struct ucred *cred)
{
uid_t uid; /* upper side vnode's uid */
gid_t gid; /* upper side vnode's gid */
u_short vmode; /* upper side vnode's mode */
u_short mask;
mask = 0;
uid = va->va_uid;
gid = va->va_gid;
vmode = va->va_mode;
/* check owner */
if (cred->cr_uid == uid) {
if (accmode & VEXEC)
mask |= S_IXUSR;
if (accmode & VREAD)
mask |= S_IRUSR;
if (accmode & VWRITE)
mask |= S_IWUSR;
return ((vmode & mask) == mask ? 0 : EACCES);
}
/* check group */
if (groupmember(gid, cred)) {
if (accmode & VEXEC)
mask |= S_IXGRP;
if (accmode & VREAD)
mask |= S_IRGRP;
if (accmode & VWRITE)
mask |= S_IWGRP;
return ((vmode & mask) == mask ? 0 : EACCES);
}
/* check other */
if (accmode & VEXEC)
mask |= S_IXOTH;
if (accmode & VREAD)
mask |= S_IROTH;
if (accmode & VWRITE)
mask |= S_IWOTH;
return ((vmode & mask) == mask ? 0 : EACCES);
}
static int
unionfs_access(struct vop_access_args *ap)
{
struct unionfs_mount *ump;
struct unionfs_node *unp;
struct vnode *uvp;
struct vnode *lvp;
struct thread *td;
struct vattr va;
accmode_t accmode;
int error;
UNIONFS_INTERNAL_DEBUG("unionfs_access: enter\n");
KASSERT_UNIONFS_VNODE(ap->a_vp);
ump = MOUNTTOUNIONFSMOUNT(ap->a_vp->v_mount);
unp = VTOUNIONFS(ap->a_vp);
uvp = unp->un_uppervp;
lvp = unp->un_lowervp;
td = ap->a_td;
accmode = ap->a_accmode;
error = EACCES;
if ((accmode & VWRITE) &&
(ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)) {
switch (ap->a_vp->v_type) {
case VREG:
case VDIR:
case VLNK:
return (EROFS);
default:
break;
}
}
if (uvp != NULLVP) {
error = VOP_ACCESS(uvp, accmode, ap->a_cred, td);
UNIONFS_INTERNAL_DEBUG("unionfs_access: leave (%d)\n", error);
return (error);
}
if (lvp != NULLVP) {
if (accmode & VWRITE) {
if ((ump->um_uppermp->mnt_flag & MNT_RDONLY) != 0) {
switch (ap->a_vp->v_type) {
case VREG:
case VDIR:
case VLNK:
return (EROFS);
default:
break;
}
} else if (ap->a_vp->v_type == VREG ||
ap->a_vp->v_type == VDIR) {
/* check shadow file/dir */
if (ump->um_copymode != UNIONFS_TRANSPARENT) {
error = unionfs_create_uppervattr(ump,
lvp, &va, ap->a_cred, td);
if (error != 0)
return (error);
error = unionfs_check_corrected_access(
accmode, &va, ap->a_cred);
if (error != 0)
return (error);
}
}
accmode &= ~(VWRITE | VAPPEND);
accmode |= VREAD; /* will copy to upper */
}
error = VOP_ACCESS(lvp, accmode, ap->a_cred, td);
}
UNIONFS_INTERNAL_DEBUG("unionfs_access: leave (%d)\n", error);
return (error);
}
static int
unionfs_getattr(struct vop_getattr_args *ap)
{
struct unionfs_node *unp;
struct unionfs_mount *ump;
struct vnode *uvp;
struct vnode *lvp;
struct thread *td;
struct vattr va;
int error;
UNIONFS_INTERNAL_DEBUG("unionfs_getattr: enter\n");
KASSERT_UNIONFS_VNODE(ap->a_vp);
unp = VTOUNIONFS(ap->a_vp);
ump = MOUNTTOUNIONFSMOUNT(ap->a_vp->v_mount);
uvp = unp->un_uppervp;
lvp = unp->un_lowervp;
td = curthread;
if (uvp != NULLVP) {
if ((error = VOP_GETATTR(uvp, ap->a_vap, ap->a_cred)) == 0)
ap->a_vap->va_fsid =
ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
UNIONFS_INTERNAL_DEBUG(
"unionfs_getattr: leave mode=%o, uid=%d, gid=%d (%d)\n",
ap->a_vap->va_mode, ap->a_vap->va_uid,
ap->a_vap->va_gid, error);
return (error);
}
error = VOP_GETATTR(lvp, ap->a_vap, ap->a_cred);
if (error == 0 && (ump->um_uppermp->mnt_flag & MNT_RDONLY) == 0) {
/* correct the attr toward shadow file/dir. */
if (ap->a_vp->v_type == VREG || ap->a_vp->v_type == VDIR) {
unionfs_create_uppervattr_core(ump, ap->a_vap, &va, td);
ap->a_vap->va_mode = va.va_mode;
ap->a_vap->va_uid = va.va_uid;
ap->a_vap->va_gid = va.va_gid;
}
}
if (error == 0)
ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
UNIONFS_INTERNAL_DEBUG(
"unionfs_getattr: leave mode=%o, uid=%d, gid=%d (%d)\n",
ap->a_vap->va_mode, ap->a_vap->va_uid, ap->a_vap->va_gid, error);
return (error);
}
static int
unionfs_setattr(struct vop_setattr_args *ap)
{
struct unionfs_node *unp;
struct vnode *uvp;
struct vnode *lvp;
struct thread *td;
struct vattr *vap;
int error;
UNIONFS_INTERNAL_DEBUG("unionfs_setattr: enter\n");
KASSERT_UNIONFS_VNODE(ap->a_vp);
error = EROFS;
unp = VTOUNIONFS(ap->a_vp);
uvp = unp->un_uppervp;
lvp = unp->un_lowervp;
td = curthread;
vap = ap->a_vap;
if ((ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) &&
(vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL))
return (EROFS);
if (uvp == NULLVP && lvp->v_type == VREG) {
error = unionfs_copyfile(unp, (vap->va_size != 0),
ap->a_cred, td);
if (error != 0)
return (error);
uvp = unp->un_uppervp;
}
if (uvp != NULLVP) {
int lkflags;
unionfs_forward_vop_start(uvp, &lkflags);
error = VOP_SETATTR(uvp, vap, ap->a_cred);
unionfs_forward_vop_finish(ap->a_vp, uvp, lkflags);
}
UNIONFS_INTERNAL_DEBUG("unionfs_setattr: leave (%d)\n", error);
return (error);
}
static int
unionfs_read(struct vop_read_args *ap)
{
struct unionfs_node *unp;
struct vnode *tvp;
int error;
/* UNIONFS_INTERNAL_DEBUG("unionfs_read: enter\n"); */
KASSERT_UNIONFS_VNODE(ap->a_vp);
unp = VTOUNIONFS(ap->a_vp);
tvp = (unp->un_uppervp != NULLVP ? unp->un_uppervp : unp->un_lowervp);
error = VOP_READ(tvp, ap->a_uio, ap->a_ioflag, ap->a_cred);
/* UNIONFS_INTERNAL_DEBUG("unionfs_read: leave (%d)\n", error); */
return (error);
}
static int
unionfs_write(struct vop_write_args *ap)
{
struct unionfs_node *unp;
struct vnode *tvp;
int error;
int lkflags;
/* UNIONFS_INTERNAL_DEBUG("unionfs_write: enter\n"); */
KASSERT_UNIONFS_VNODE(ap->a_vp);
unp = VTOUNIONFS(ap->a_vp);
tvp = (unp->un_uppervp != NULLVP ? unp->un_uppervp : unp->un_lowervp);
unionfs_forward_vop_start(tvp, &lkflags);
error = VOP_WRITE(tvp, ap->a_uio, ap->a_ioflag, ap->a_cred);
unionfs_forward_vop_finish(ap->a_vp, tvp, lkflags);
/* UNIONFS_INTERNAL_DEBUG("unionfs_write: leave (%d)\n", error); */
return (error);
}
static int
unionfs_ioctl(struct vop_ioctl_args *ap)
{
struct unionfs_node *unp;
struct unionfs_node_status *unsp;
struct vnode *ovp;
int error;
UNIONFS_INTERNAL_DEBUG("unionfs_ioctl: enter\n");
KASSERT_UNIONFS_VNODE(ap->a_vp);
vn_lock(ap->a_vp, LK_EXCLUSIVE | LK_RETRY);
unp = VTOUNIONFS(ap->a_vp);
unionfs_get_node_status(unp, ap->a_td, &unsp);
ovp = (unsp->uns_upper_opencnt ? unp->un_uppervp : unp->un_lowervp);
unionfs_tryrem_node_status(unp, unsp);
VOP_UNLOCK(ap->a_vp);
if (ovp == NULLVP)
return (EBADF);
error = VOP_IOCTL(ovp, ap->a_command, ap->a_data, ap->a_fflag,
ap->a_cred, ap->a_td);
UNIONFS_INTERNAL_DEBUG("unionfs_ioctl: leave (%d)\n", error);
return (error);
}
static int
unionfs_poll(struct vop_poll_args *ap)
{
struct unionfs_node *unp;
struct unionfs_node_status *unsp;
struct vnode *ovp;
KASSERT_UNIONFS_VNODE(ap->a_vp);
vn_lock(ap->a_vp, LK_EXCLUSIVE | LK_RETRY);
unp = VTOUNIONFS(ap->a_vp);
unionfs_get_node_status(unp, ap->a_td, &unsp);
ovp = (unsp->uns_upper_opencnt ? unp->un_uppervp : unp->un_lowervp);
unionfs_tryrem_node_status(unp, unsp);
VOP_UNLOCK(ap->a_vp);
if (ovp == NULLVP)
return (EBADF);
return (VOP_POLL(ovp, ap->a_events, ap->a_cred, ap->a_td));
}
static int
unionfs_fsync(struct vop_fsync_args *ap)
{
struct unionfs_node *unp;
struct unionfs_node_status *unsp;
struct vnode *ovp;
enum unionfs_lkupgrade lkstatus;
int error, lkflags;
KASSERT_UNIONFS_VNODE(ap->a_vp);
unp = VTOUNIONFS(ap->a_vp);
lkstatus = unionfs_upgrade_lock(ap->a_vp);
if (lkstatus == UNIONFS_LKUPGRADE_DOOMED) {
unionfs_downgrade_lock(ap->a_vp, lkstatus);
return (ENOENT);
}
unionfs_get_node_status(unp, ap->a_td, &unsp);
ovp = (unsp->uns_upper_opencnt ? unp->un_uppervp : unp->un_lowervp);
unionfs_tryrem_node_status(unp, unsp);
unionfs_downgrade_lock(ap->a_vp, lkstatus);
if (ovp == NULLVP)
return (EBADF);
unionfs_forward_vop_start(ovp, &lkflags);
error = VOP_FSYNC(ovp, ap->a_waitfor, ap->a_td);
unionfs_forward_vop_finish(ap->a_vp, ovp, lkflags);
return (error);
}
static int
unionfs_remove(struct vop_remove_args *ap)
{
char *path;
struct unionfs_node *dunp;
struct unionfs_node *unp;
struct unionfs_mount *ump;
struct vnode *udvp;
struct vnode *uvp;
struct vnode *lvp;
struct componentname *cnp;
struct thread *td;
int error;
int pathlen;
UNIONFS_INTERNAL_DEBUG("unionfs_remove: enter\n");
KASSERT_UNIONFS_VNODE(ap->a_dvp);
KASSERT_UNIONFS_VNODE(ap->a_vp);
error = 0;
dunp = VTOUNIONFS(ap->a_dvp);
udvp = dunp->un_uppervp;
cnp = ap->a_cnp;
td = curthread;
ump = MOUNTTOUNIONFSMOUNT(ap->a_vp->v_mount);
unp = VTOUNIONFS(ap->a_vp);
uvp = unp->un_uppervp;
lvp = unp->un_lowervp;
path = unp->un_path;
pathlen = unp->un_pathlen;
if (udvp == NULLVP)
return (EROFS);
if (uvp != NULLVP) {
int udvp_lkflags, uvp_lkflags;
if (ump == NULL || ump->um_whitemode == UNIONFS_WHITE_ALWAYS ||
lvp != NULLVP)
cnp->cn_flags |= DOWHITEOUT;
unionfs_forward_vop_start_pair(udvp, &udvp_lkflags,
uvp, &uvp_lkflags);
error = VOP_REMOVE(udvp, uvp, cnp);
unionfs_forward_vop_finish_pair(ap->a_dvp, udvp, udvp_lkflags,
ap->a_vp, uvp, uvp_lkflags);
} else if (lvp != NULLVP)
error = unionfs_mkwhiteout(ap->a_dvp, udvp, cnp, td, path, pathlen);
UNIONFS_INTERNAL_DEBUG("unionfs_remove: leave (%d)\n", error);
return (error);
}
static int
unionfs_link(struct vop_link_args *ap)
{
struct unionfs_node *dunp;
struct unionfs_node *unp;
struct vnode *udvp;
struct vnode *uvp;
struct componentname *cnp;
struct thread *td;
int error;
int needrelookup;
UNIONFS_INTERNAL_DEBUG("unionfs_link: enter\n");
KASSERT_UNIONFS_VNODE(ap->a_tdvp);
KASSERT_UNIONFS_VNODE(ap->a_vp);
error = 0;
needrelookup = 0;
dunp = VTOUNIONFS(ap->a_tdvp);
unp = NULL;
udvp = dunp->un_uppervp;
uvp = NULLVP;
cnp = ap->a_cnp;
td = curthread;
if (udvp == NULLVP)
return (EROFS);
unp = VTOUNIONFS(ap->a_vp);
if (unp->un_uppervp == NULLVP) {
if (ap->a_vp->v_type != VREG)
return (EOPNOTSUPP);
error = unionfs_copyfile(unp, 1, cnp->cn_cred, td);
if (error != 0)
return (error);
needrelookup = 1;
}
uvp = unp->un_uppervp;
if (needrelookup != 0)
error = unionfs_relookup_for_create(ap->a_tdvp, cnp, td);
if (error == 0) {
int udvp_lkflags, uvp_lkflags;
unionfs_forward_vop_start_pair(udvp, &udvp_lkflags,
uvp, &uvp_lkflags);
error = VOP_LINK(udvp, uvp, cnp);
unionfs_forward_vop_finish_pair(ap->a_tdvp, udvp, udvp_lkflags,
ap->a_vp, uvp, uvp_lkflags);
}
UNIONFS_INTERNAL_DEBUG("unionfs_link: leave (%d)\n", error);
return (error);
}
static int
unionfs_rename(struct vop_rename_args *ap)
{
struct vnode *fdvp;
struct vnode *fvp;
struct componentname *fcnp;
struct vnode *tdvp;
struct vnode *tvp;
struct componentname *tcnp;
struct vnode *ltdvp;
struct vnode *ltvp;
struct thread *td;
/* rename target vnodes */
struct vnode *rfdvp;
struct vnode *rfvp;
struct vnode *rtdvp;
struct vnode *rtvp;
struct unionfs_mount *ump;
struct unionfs_node *unp;
int error;
int needrelookup;
UNIONFS_INTERNAL_DEBUG("unionfs_rename: enter\n");
error = 0;
fdvp = ap->a_fdvp;
fvp = ap->a_fvp;
fcnp = ap->a_fcnp;
tdvp = ap->a_tdvp;
tvp = ap->a_tvp;
tcnp = ap->a_tcnp;
ltdvp = NULLVP;
ltvp = NULLVP;
td = curthread;
rfdvp = fdvp;
rfvp = fvp;
rtdvp = tdvp;
rtvp = tvp;
needrelookup = 0;
/* check for cross device rename */
if (fvp->v_mount != tdvp->v_mount ||
(tvp != NULLVP && fvp->v_mount != tvp->v_mount)) {
if (fvp->v_op != &unionfs_vnodeops)
error = ENODEV;
else
error = EXDEV;
goto unionfs_rename_abort;
}
/* Renaming a file to itself has no effect. */
if (fvp == tvp)
goto unionfs_rename_abort;
/*
* from/to vnode is unionfs node.
*/
KASSERT_UNIONFS_VNODE(fdvp);
KASSERT_UNIONFS_VNODE(fvp);
KASSERT_UNIONFS_VNODE(tdvp);
if (tvp != NULLVP)
KASSERT_UNIONFS_VNODE(tvp);
unp = VTOUNIONFS(fdvp);
#ifdef UNIONFS_IDBG_RENAME
UNIONFS_INTERNAL_DEBUG("fdvp=%p, ufdvp=%p, lfdvp=%p\n",
fdvp, unp->un_uppervp, unp->un_lowervp);
#endif
if (unp->un_uppervp == NULLVP) {
error = ENODEV;
goto unionfs_rename_abort;
}
rfdvp = unp->un_uppervp;
vref(rfdvp);
unp = VTOUNIONFS(fvp);
#ifdef UNIONFS_IDBG_RENAME
UNIONFS_INTERNAL_DEBUG("fvp=%p, ufvp=%p, lfvp=%p\n",
fvp, unp->un_uppervp, unp->un_lowervp);
#endif
ump = MOUNTTOUNIONFSMOUNT(fvp->v_mount);
if (unp->un_uppervp == NULLVP) {
switch (fvp->v_type) {
case VREG:
if ((error = vn_lock(fvp, LK_EXCLUSIVE)) != 0)
goto unionfs_rename_abort;
error = unionfs_copyfile(unp, 1, fcnp->cn_cred, td);
VOP_UNLOCK(fvp);
if (error != 0)
goto unionfs_rename_abort;
break;
case VDIR:
if ((error = vn_lock(fvp, LK_EXCLUSIVE)) != 0)
goto unionfs_rename_abort;
error = unionfs_mkshadowdir(ump, rfdvp, unp, fcnp, td);
VOP_UNLOCK(fvp);
if (error != 0)
goto unionfs_rename_abort;
break;
default:
error = ENODEV;
goto unionfs_rename_abort;
}
needrelookup = 1;
}
if (unp->un_lowervp != NULLVP)
fcnp->cn_flags |= DOWHITEOUT;
rfvp = unp->un_uppervp;
vref(rfvp);
unp = VTOUNIONFS(tdvp);
#ifdef UNIONFS_IDBG_RENAME
UNIONFS_INTERNAL_DEBUG("tdvp=%p, utdvp=%p, ltdvp=%p\n",
tdvp, unp->un_uppervp, unp->un_lowervp);
#endif
if (unp->un_uppervp == NULLVP) {
error = ENODEV;
goto unionfs_rename_abort;
}
rtdvp = unp->un_uppervp;
ltdvp = unp->un_lowervp;
vref(rtdvp);
if (tdvp == tvp) {
rtvp = rtdvp;
vref(rtvp);
} else if (tvp != NULLVP) {
unp = VTOUNIONFS(tvp);
#ifdef UNIONFS_IDBG_RENAME
UNIONFS_INTERNAL_DEBUG("tvp=%p, utvp=%p, ltvp=%p\n",
tvp, unp->un_uppervp, unp->un_lowervp);
#endif
if (unp->un_uppervp == NULLVP)
rtvp = NULLVP;
else {
if (tvp->v_type == VDIR) {
error = EINVAL;
goto unionfs_rename_abort;
}
rtvp = unp->un_uppervp;
ltvp = unp->un_lowervp;
vref(rtvp);
}
}
if (rfvp == rtvp)
goto unionfs_rename_abort;
if (needrelookup != 0) {
if ((error = vn_lock(fdvp, LK_EXCLUSIVE)) != 0)
goto unionfs_rename_abort;
error = unionfs_relookup_for_delete(fdvp, fcnp, td);
VOP_UNLOCK(fdvp);
if (error != 0)
goto unionfs_rename_abort;
/* Lock of tvp is canceled in order to avoid recursive lock. */
if (tvp != NULLVP && tvp != tdvp)
VOP_UNLOCK(tvp);
error = unionfs_relookup_for_rename(tdvp, tcnp, td);
if (tvp != NULLVP && tvp != tdvp)
vn_lock(tvp, LK_EXCLUSIVE | LK_RETRY);
if (error != 0)
goto unionfs_rename_abort;
}
error = VOP_RENAME(rfdvp, rfvp, fcnp, rtdvp, rtvp, tcnp);
if (error == 0) {
if (rtvp != NULLVP && rtvp->v_type == VDIR)
cache_purge(tdvp);
if (fvp->v_type == VDIR && fdvp != tdvp)
cache_purge(fdvp);
}
if (ltdvp != NULLVP)
VOP_UNLOCK(ltdvp);
if (tdvp != rtdvp)
vrele(tdvp);
if (ltvp != NULLVP)
VOP_UNLOCK(ltvp);
if (tvp != rtvp && tvp != NULLVP) {
if (rtvp == NULLVP)
vput(tvp);
else
vrele(tvp);
}
if (fdvp != rfdvp)
vrele(fdvp);
if (fvp != rfvp)
vrele(fvp);
UNIONFS_INTERNAL_DEBUG("unionfs_rename: leave (%d)\n", error);
return (error);
unionfs_rename_abort:
vput(tdvp);
if (tdvp != rtdvp)
vrele(rtdvp);
if (tvp != NULLVP) {
if (tdvp != tvp)
vput(tvp);
else
vrele(tvp);
}
if (tvp != rtvp && rtvp != NULLVP)
vrele(rtvp);
if (fdvp != rfdvp)
vrele(rfdvp);
if (fvp != rfvp)
vrele(rfvp);
vrele(fdvp);
vrele(fvp);
UNIONFS_INTERNAL_DEBUG("unionfs_rename: leave (%d)\n", error);
return (error);
}
static int
unionfs_mkdir(struct vop_mkdir_args *ap)
{
struct unionfs_node *dunp;
struct componentname *cnp;
struct vnode *dvp;
struct vnode *udvp;
struct vnode *uvp;
struct vattr va;
int error;
int lkflags;
UNIONFS_INTERNAL_DEBUG("unionfs_mkdir: enter\n");
KASSERT_UNIONFS_VNODE(ap->a_dvp);
error = EROFS;
dvp = ap->a_dvp;
dunp = VTOUNIONFS(dvp);
cnp = ap->a_cnp;
lkflags = cnp->cn_lkflags;
udvp = dunp->un_uppervp;
if (udvp != NULLVP) {
/* check opaque */
if (!(cnp->cn_flags & ISWHITEOUT)) {
error = VOP_GETATTR(udvp, &va, cnp->cn_cred);
if (error != 0)
goto unionfs_mkdir_cleanup;
if ((va.va_flags & OPAQUE) != 0)
cnp->cn_flags |= ISWHITEOUT;
}
int udvp_lkflags;
bool uvp_created = false;
unionfs_forward_vop_start(udvp, &udvp_lkflags);
error = VOP_MKDIR(udvp, &uvp, cnp, ap->a_vap);
if (error == 0)
uvp_created = true;
if (__predict_false(unionfs_forward_vop_finish(dvp, udvp,
udvp_lkflags)) && error == 0)
error = ENOENT;
if (error == 0) {
VOP_UNLOCK(uvp);
cnp->cn_lkflags = LK_EXCLUSIVE;
error = unionfs_nodeget(dvp->v_mount, uvp, NULLVP,
dvp, ap->a_vpp, cnp);
vrele(uvp);
cnp->cn_lkflags = lkflags;
} else if (uvp_created)
vput(uvp);
}
unionfs_mkdir_cleanup:
UNIONFS_INTERNAL_DEBUG("unionfs_mkdir: leave (%d)\n", error);
return (error);
}
static int
unionfs_rmdir(struct vop_rmdir_args *ap)
{
struct unionfs_node *dunp;
struct unionfs_node *unp;
struct unionfs_mount *ump;
struct componentname *cnp;
struct thread *td;
struct vnode *udvp;
struct vnode *uvp;
struct vnode *lvp;
int error;
UNIONFS_INTERNAL_DEBUG("unionfs_rmdir: enter\n");
KASSERT_UNIONFS_VNODE(ap->a_dvp);
KASSERT_UNIONFS_VNODE(ap->a_vp);
error = 0;
dunp = VTOUNIONFS(ap->a_dvp);
unp = VTOUNIONFS(ap->a_vp);
cnp = ap->a_cnp;
td = curthread;
udvp = dunp->un_uppervp;
uvp = unp->un_uppervp;
lvp = unp->un_lowervp;
if (udvp == NULLVP)
return (EROFS);
if (udvp == uvp)
return (EOPNOTSUPP);
if (uvp != NULLVP) {
if (lvp != NULLVP) {
error = unionfs_check_rmdir(ap->a_vp, cnp->cn_cred, td);
if (error != 0)
return (error);
}
ump = MOUNTTOUNIONFSMOUNT(ap->a_vp->v_mount);
if (ump->um_whitemode == UNIONFS_WHITE_ALWAYS || lvp != NULLVP)
cnp->cn_flags |= DOWHITEOUT;
/*
* The relookup path will need to relock the parent dvp and
* possibly the vp as well. Locking is expected to be done
* in parent->child order; drop the lock on vp to avoid LOR
* and potential recursion on vp's lock.
* vp is expected to remain referenced during VOP_RMDIR(),
* so vref/vrele should not be necessary here.
*/
VOP_UNLOCK(ap->a_vp);
VNPASS(vrefcnt(ap->a_vp) > 0, ap->a_vp);
error = unionfs_relookup_for_delete(ap->a_dvp, cnp, td);
vn_lock(ap->a_vp, LK_EXCLUSIVE | LK_RETRY);
/*
* VOP_RMDIR is dispatched against udvp, so if uvp became
* doomed while the lock was dropped above the target
* filesystem may not be able to cope.
*/
if (error == 0 && VN_IS_DOOMED(uvp))
error = ENOENT;
if (error == 0) {
int udvp_lkflags, uvp_lkflags;
unionfs_forward_vop_start_pair(udvp, &udvp_lkflags,
uvp, &uvp_lkflags);
error = VOP_RMDIR(udvp, uvp, cnp);
unionfs_forward_vop_finish_pair(ap->a_dvp, udvp, udvp_lkflags,
ap->a_vp, uvp, uvp_lkflags);
}
} else if (lvp != NULLVP)
error = unionfs_mkwhiteout(ap->a_dvp, udvp, cnp, td,
unp->un_path, unp->un_pathlen);
if (error == 0) {
cache_purge(ap->a_dvp);
cache_purge(ap->a_vp);
}
UNIONFS_INTERNAL_DEBUG("unionfs_rmdir: leave (%d)\n", error);
return (error);
}
static int
unionfs_symlink(struct vop_symlink_args *ap)
{
struct unionfs_node *dunp;
struct componentname *cnp;
struct vnode *udvp;
struct vnode *uvp;
int error;
int lkflags;
UNIONFS_INTERNAL_DEBUG("unionfs_symlink: enter\n");
KASSERT_UNIONFS_VNODE(ap->a_dvp);
error = EROFS;
dunp = VTOUNIONFS(ap->a_dvp);
cnp = ap->a_cnp;
lkflags = cnp->cn_lkflags;
udvp = dunp->un_uppervp;
if (udvp != NULLVP) {
int udvp_lkflags;
bool uvp_created = false;
unionfs_forward_vop_start(udvp, &udvp_lkflags);
error = VOP_SYMLINK(udvp, &uvp, cnp, ap->a_vap, ap->a_target);
if (error == 0)
uvp_created = true;
if (__predict_false(unionfs_forward_vop_finish(ap->a_dvp, udvp,
udvp_lkflags)) && error == 0)
error = ENOENT;
if (error == 0) {
VOP_UNLOCK(uvp);
cnp->cn_lkflags = LK_EXCLUSIVE;
error = unionfs_nodeget(ap->a_dvp->v_mount, uvp, NULLVP,
ap->a_dvp, ap->a_vpp, cnp);
vrele(uvp);
cnp->cn_lkflags = lkflags;
} else if (uvp_created)
vput(uvp);
}
UNIONFS_INTERNAL_DEBUG("unionfs_symlink: leave (%d)\n", error);
return (error);
}
static int
unionfs_readdir(struct vop_readdir_args *ap)
{
struct unionfs_node *unp;
struct unionfs_node_status *unsp;
struct uio *uio;
struct vnode *vp;
struct vnode *uvp;
struct vnode *lvp;
struct thread *td;
struct vattr va;
uint64_t *cookies_bk;
int error;
int eofflag;
int ncookies_bk;
int uio_offset_bk;
enum unionfs_lkupgrade lkstatus;
UNIONFS_INTERNAL_DEBUG("unionfs_readdir: enter\n");
KASSERT_UNIONFS_VNODE(ap->a_vp);
error = 0;
eofflag = 0;
uio_offset_bk = 0;
uio = ap->a_uio;
uvp = NULLVP;
lvp = NULLVP;
td = uio->uio_td;
ncookies_bk = 0;
cookies_bk = NULL;
vp = ap->a_vp;
if (vp->v_type != VDIR)
return (ENOTDIR);
/*
* If the vnode is reclaimed while upgrading, we can't safely use unp
* or do anything else unionfs- specific.
*/
lkstatus = unionfs_upgrade_lock(vp);
if (lkstatus == UNIONFS_LKUPGRADE_DOOMED)
error = EBADF;
if (error == 0) {
unp = VTOUNIONFS(vp);
uvp = unp->un_uppervp;
lvp = unp->un_lowervp;
/* check the open count. unionfs needs open before readdir. */
unionfs_get_node_status(unp, td, &unsp);
if ((uvp != NULLVP && unsp->uns_upper_opencnt <= 0) ||
(lvp != NULLVP && unsp->uns_lower_opencnt <= 0)) {
unionfs_tryrem_node_status(unp, unsp);
error = EBADF;
}
}
unionfs_downgrade_lock(vp, lkstatus);
if (error != 0)
goto unionfs_readdir_exit;
/* check opaque */
if (uvp != NULLVP && lvp != NULLVP) {
if ((error = VOP_GETATTR(uvp, &va, ap->a_cred)) != 0)
goto unionfs_readdir_exit;
if (va.va_flags & OPAQUE)
lvp = NULLVP;
}
/* upper only */
if (uvp != NULLVP && lvp == NULLVP) {
error = VOP_READDIR(uvp, uio, ap->a_cred, ap->a_eofflag,
ap->a_ncookies, ap->a_cookies);
unsp->uns_readdir_status = 0;
goto unionfs_readdir_exit;
}
/* lower only */
if (uvp == NULLVP && lvp != NULLVP) {
error = VOP_READDIR(lvp, uio, ap->a_cred, ap->a_eofflag,
ap->a_ncookies, ap->a_cookies);
unsp->uns_readdir_status = 2;
goto unionfs_readdir_exit;
}
/*
* readdir upper and lower
*/
KASSERT(uvp != NULLVP, ("unionfs_readdir: null upper vp"));
KASSERT(lvp != NULLVP, ("unionfs_readdir: null lower vp"));
if (uio->uio_offset == 0)
unsp->uns_readdir_status = 0;
if (unsp->uns_readdir_status == 0) {
/* read upper */
error = VOP_READDIR(uvp, uio, ap->a_cred, &eofflag,
ap->a_ncookies, ap->a_cookies);
if (error != 0 || eofflag == 0)
goto unionfs_readdir_exit;
unsp->uns_readdir_status = 1;
/*
* UFS(and other FS) needs size of uio_resid larger than
* DIRBLKSIZ.
* size of DIRBLKSIZ equals DEV_BSIZE.
* (see: ufs/ufs/ufs_vnops.c ufs_readdir func , ufs/ufs/dir.h)
*/
if (uio->uio_resid <= (uio->uio_resid & (DEV_BSIZE -1)))
goto unionfs_readdir_exit;
/*
* Backup cookies.
* It prepares to readdir in lower.
*/
if (ap->a_ncookies != NULL) {
ncookies_bk = *(ap->a_ncookies);
*(ap->a_ncookies) = 0;
}
if (ap->a_cookies != NULL) {
cookies_bk = *(ap->a_cookies);
*(ap->a_cookies) = NULL;
}
}
/* initialize for readdir in lower */
if (unsp->uns_readdir_status == 1) {
unsp->uns_readdir_status = 2;
/*
* Backup uio_offset. See the comment after the
* VOP_READDIR call on the lower layer.
*/
uio_offset_bk = uio->uio_offset;
uio->uio_offset = 0;
}
if (lvp == NULLVP) {
error = EBADF;
goto unionfs_readdir_exit;
}
/* read lower */
error = VOP_READDIR(lvp, uio, ap->a_cred, ap->a_eofflag,
ap->a_ncookies, ap->a_cookies);
/*
* We can't return an uio_offset of 0: this would trigger an
* infinite loop, because the next call to unionfs_readdir would
* always restart with the upper layer (uio_offset == 0) and
* always return some data.
*
* This happens when the lower layer root directory is removed.
* (A root directory deleting of unionfs should not be permitted.
* But current VFS can not do it.)
*/
if (uio->uio_offset == 0)
uio->uio_offset = uio_offset_bk;
if (cookies_bk != NULL) {
/* merge cookies */
int size;
uint64_t *newcookies, *pos;
size = *(ap->a_ncookies) + ncookies_bk;
newcookies = (uint64_t *) malloc(size * sizeof(*newcookies),
M_TEMP, M_WAITOK);
pos = newcookies;
memcpy(pos, cookies_bk, ncookies_bk * sizeof(*newcookies));
pos += ncookies_bk;
memcpy(pos, *(ap->a_cookies),
*(ap->a_ncookies) * sizeof(*newcookies));
free(cookies_bk, M_TEMP);
free(*(ap->a_cookies), M_TEMP);
*(ap->a_ncookies) = size;
*(ap->a_cookies) = newcookies;
}
unionfs_readdir_exit:
if (error != 0 && ap->a_eofflag != NULL)
*(ap->a_eofflag) = 1;
UNIONFS_INTERNAL_DEBUG("unionfs_readdir: leave (%d)\n", error);
return (error);
}
static int
unionfs_readlink(struct vop_readlink_args *ap)
{
struct unionfs_node *unp;
struct vnode *vp;
int error;
UNIONFS_INTERNAL_DEBUG("unionfs_readlink: enter\n");
KASSERT_UNIONFS_VNODE(ap->a_vp);
unp = VTOUNIONFS(ap->a_vp);
vp = (unp->un_uppervp != NULLVP ? unp->un_uppervp : unp->un_lowervp);
error = VOP_READLINK(vp, ap->a_uio, ap->a_cred);
UNIONFS_INTERNAL_DEBUG("unionfs_readlink: leave (%d)\n", error);
return (error);
}
static int
unionfs_getwritemount(struct vop_getwritemount_args *ap)
{
struct unionfs_node *unp;
struct vnode *uvp;
struct vnode *vp, *ovp;
int error;
UNIONFS_INTERNAL_DEBUG("unionfs_getwritemount: enter\n");
error = 0;
vp = ap->a_vp;
uvp = NULLVP;
VI_LOCK(vp);
unp = VTOUNIONFS(vp);
if (unp != NULL)
uvp = unp->un_uppervp;
/*
* If our node has no upper vnode, check the parent directory.
* We may be initiating a write operation that will produce a
* new upper vnode through CoW.
*/
if (uvp == NULLVP && unp != NULL) {
ovp = vp;
vp = unp->un_dvp;
/*
* Only the root vnode should have an empty parent, but it
* should not have an empty uppervp, so we shouldn't get here.
*/
VNASSERT(vp != NULL, ovp, ("%s: NULL parent vnode", __func__));
VI_UNLOCK(ovp);
VI_LOCK(vp);
unp = VTOUNIONFS(vp);
if (unp != NULL)
uvp = unp->un_uppervp;
if (uvp == NULLVP)
error = EACCES;
}
if (uvp != NULLVP) {
vholdnz(uvp);
VI_UNLOCK(vp);
error = VOP_GETWRITEMOUNT(uvp, ap->a_mpp);
vdrop(uvp);
} else {
VI_UNLOCK(vp);
*(ap->a_mpp) = NULL;
}
UNIONFS_INTERNAL_DEBUG("unionfs_getwritemount: leave (%d)\n", error);
return (error);
}
static int
unionfs_inactive(struct vop_inactive_args *ap)
{
ap->a_vp->v_object = NULL;
vrecycle(ap->a_vp);
return (0);
}
static int
unionfs_reclaim(struct vop_reclaim_args *ap)
{
/* UNIONFS_INTERNAL_DEBUG("unionfs_reclaim: enter\n"); */
unionfs_noderem(ap->a_vp);
/* UNIONFS_INTERNAL_DEBUG("unionfs_reclaim: leave\n"); */
return (0);
}
static int
unionfs_print(struct vop_print_args *ap)
{
struct unionfs_node *unp;
/* struct unionfs_node_status *unsp; */
unp = VTOUNIONFS(ap->a_vp);
/* unionfs_get_node_status(unp, curthread, &unsp); */
printf("unionfs_vp=%p, uppervp=%p, lowervp=%p\n",
ap->a_vp, unp->un_uppervp, unp->un_lowervp);
/*
printf("unionfs opencnt: uppervp=%d, lowervp=%d\n",
unsp->uns_upper_opencnt, unsp->uns_lower_opencnt);
*/
if (unp->un_uppervp != NULLVP)
vn_printf(unp->un_uppervp, "unionfs: upper ");
if (unp->un_lowervp != NULLVP)
vn_printf(unp->un_lowervp, "unionfs: lower ");
return (0);
}
static int
unionfs_get_llt_revlock(struct vnode *vp, int flags)
{
int revlock;
revlock = 0;
switch (flags & LK_TYPE_MASK) {
case LK_SHARED:
if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
revlock = LK_UPGRADE;
else
revlock = LK_RELEASE;
break;
case LK_EXCLUSIVE:
case LK_UPGRADE:
revlock = LK_RELEASE;
break;
case LK_DOWNGRADE:
revlock = LK_UPGRADE;
break;
default:
break;
}
return (revlock);
}
/*
* The state of an acquired lock is adjusted similarly to
* the time of error generating.
* flags: LK_RELEASE or LK_UPGRADE
*/
static void
unionfs_revlock(struct vnode *vp, int flags)
{
if (flags & LK_RELEASE)
VOP_UNLOCK_FLAGS(vp, flags);
else {
/* UPGRADE */
if (vn_lock(vp, flags) != 0)
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
}
}
static int
unionfs_lock(struct vop_lock1_args *ap)
{
struct unionfs_node *unp;
struct vnode *vp;
struct vnode *uvp;
struct vnode *lvp;
int error;
int flags;
int revlock;
int interlock;
int uhold;
/*
* TODO: rework the unionfs locking scheme.
* It's not guaranteed to be safe to blindly lock two vnodes on
* different mounts as is done here. Further, the entanglement
* of locking both vnodes with the various options that can be
* passed to VOP_LOCK() makes this code hard to reason about.
* Instead, consider locking only the upper vnode, or the lower
* vnode is the upper is not present, and taking separate measures
* to lock both vnodes in the few cases when that is needed.
*/
error = 0;
interlock = 1;
uhold = 0;
flags = ap->a_flags;
vp = ap->a_vp;
if (LK_RELEASE == (flags & LK_TYPE_MASK) || !(flags & LK_TYPE_MASK))
return (VOP_UNLOCK_FLAGS(vp, flags | LK_RELEASE));
if ((flags & LK_INTERLOCK) == 0)
VI_LOCK(vp);
unp = VTOUNIONFS(vp);
if (unp == NULL)
goto unionfs_lock_null_vnode;
KASSERT_UNIONFS_VNODE(ap->a_vp);
lvp = unp->un_lowervp;
uvp = unp->un_uppervp;
if ((revlock = unionfs_get_llt_revlock(vp, flags)) == 0)
panic("unknown lock type: 0x%x", flags & LK_TYPE_MASK);
/*
* During unmount, the root vnode lock may be taken recursively,
* because it may share the same v_vnlock field as the vnode covered by
* the unionfs mount. The covered vnode is locked across VFS_UNMOUNT(),
* and the same lock may be taken recursively here during vflush()
* issued by unionfs_unmount().
*/
if ((flags & LK_TYPE_MASK) == LK_EXCLUSIVE &&
(vp->v_vflag & VV_ROOT) != 0)
flags |= LK_CANRECURSE;
if (lvp != NULLVP) {
if (uvp != NULLVP && flags & LK_UPGRADE) {
/*
* Share Lock is once released and a deadlock is
* avoided.
*/
vholdnz(uvp);
uhold = 1;
VOP_UNLOCK(uvp);
}
VI_LOCK_FLAGS(lvp, MTX_DUPOK);
flags |= LK_INTERLOCK;
vholdl(lvp);
VI_UNLOCK(vp);
ap->a_flags &= ~LK_INTERLOCK;
error = VOP_LOCK(lvp, flags);
VI_LOCK(vp);
unp = VTOUNIONFS(vp);
if (unp == NULL) {
/* vnode is released. */
VI_UNLOCK(vp);
if (error == 0)
VOP_UNLOCK(lvp);
vdrop(lvp);
if (uhold != 0)
vdrop(uvp);
goto unionfs_lock_fallback;
}
}
if (error == 0 && uvp != NULLVP) {
if (uhold && flags & LK_UPGRADE) {
flags &= ~LK_TYPE_MASK;
flags |= LK_EXCLUSIVE;
}
VI_LOCK_FLAGS(uvp, MTX_DUPOK);
flags |= LK_INTERLOCK;
if (uhold == 0) {
vholdl(uvp);
uhold = 1;
}
VI_UNLOCK(vp);
ap->a_flags &= ~LK_INTERLOCK;
error = VOP_LOCK(uvp, flags);
VI_LOCK(vp);
unp = VTOUNIONFS(vp);
if (unp == NULL) {
/* vnode is released. */
VI_UNLOCK(vp);
if (error == 0)
VOP_UNLOCK(uvp);
vdrop(uvp);
if (lvp != NULLVP) {
VOP_UNLOCK(lvp);
vdrop(lvp);
}
goto unionfs_lock_fallback;
}
if (error != 0 && lvp != NULLVP) {
/* rollback */
VI_UNLOCK(vp);
unionfs_revlock(lvp, revlock);
interlock = 0;
}
}
if (interlock)
VI_UNLOCK(vp);
if (lvp != NULLVP)
vdrop(lvp);
if (uhold != 0)
vdrop(uvp);
return (error);
unionfs_lock_null_vnode:
ap->a_flags |= LK_INTERLOCK;
return (vop_stdlock(ap));
unionfs_lock_fallback:
/*
* If we reach this point, we've discovered the unionfs vnode
* has been reclaimed while the upper/lower vnode locks were
* temporarily dropped. Such temporary droppage may happen
* during the course of an LK_UPGRADE operation itself, and in
* that case LK_UPGRADE must be cleared as the unionfs vnode's
* lock has been reset to point to the standard v_lock field,
* which has not previously been held.
*/
if (flags & LK_UPGRADE) {
ap->a_flags &= ~LK_TYPE_MASK;
ap->a_flags |= LK_EXCLUSIVE;
}
return (vop_stdlock(ap));
}
static int
unionfs_unlock(struct vop_unlock_args *ap)
{
struct vnode *vp;
struct vnode *lvp;
struct vnode *uvp;
struct unionfs_node *unp;
int error;
int uhold;
KASSERT_UNIONFS_VNODE(ap->a_vp);
error = 0;
uhold = 0;
vp = ap->a_vp;
unp = VTOUNIONFS(vp);
if (unp == NULL)
goto unionfs_unlock_null_vnode;
lvp = unp->un_lowervp;
uvp = unp->un_uppervp;
if (lvp != NULLVP) {
vholdnz(lvp);
error = VOP_UNLOCK(lvp);
}
if (error == 0 && uvp != NULLVP) {
vholdnz(uvp);
uhold = 1;
error = VOP_UNLOCK(uvp);
}
if (lvp != NULLVP)
vdrop(lvp);
if (uhold != 0)
vdrop(uvp);
return error;
unionfs_unlock_null_vnode:
return (vop_stdunlock(ap));
}
static int
unionfs_pathconf(struct vop_pathconf_args *ap)
{
struct unionfs_node *unp;
struct vnode *vp;
KASSERT_UNIONFS_VNODE(ap->a_vp);
unp = VTOUNIONFS(ap->a_vp);
vp = (unp->un_uppervp != NULLVP ? unp->un_uppervp : unp->un_lowervp);
return (VOP_PATHCONF(vp, ap->a_name, ap->a_retval));
}
static int
unionfs_advlock(struct vop_advlock_args *ap)
{
struct unionfs_node *unp;
struct unionfs_node_status *unsp;
struct vnode *vp;
struct vnode *uvp;
struct thread *td;
int error;
UNIONFS_INTERNAL_DEBUG("unionfs_advlock: enter\n");
KASSERT_UNIONFS_VNODE(ap->a_vp);
vp = ap->a_vp;
td = curthread;
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
unp = VTOUNIONFS(ap->a_vp);
uvp = unp->un_uppervp;
if (uvp == NULLVP) {
error = unionfs_copyfile(unp, 1, td->td_ucred, td);
if (error != 0)
goto unionfs_advlock_abort;
uvp = unp->un_uppervp;
unionfs_get_node_status(unp, td, &unsp);
if (unsp->uns_lower_opencnt > 0) {
/* try reopen the vnode */
error = VOP_OPEN(uvp, unsp->uns_lower_openmode,
td->td_ucred, td, NULL);
if (error)
goto unionfs_advlock_abort;
unsp->uns_upper_opencnt++;
VOP_CLOSE(unp->un_lowervp, unsp->uns_lower_openmode,
td->td_ucred, td);
unsp->uns_lower_opencnt--;
} else
unionfs_tryrem_node_status(unp, unsp);
}
VOP_UNLOCK(vp);
error = VOP_ADVLOCK(uvp, ap->a_id, ap->a_op, ap->a_fl, ap->a_flags);
UNIONFS_INTERNAL_DEBUG("unionfs_advlock: leave (%d)\n", error);
return error;
unionfs_advlock_abort:
VOP_UNLOCK(vp);
UNIONFS_INTERNAL_DEBUG("unionfs_advlock: leave (%d)\n", error);
return error;
}
static int
unionfs_strategy(struct vop_strategy_args *ap)
{
struct unionfs_node *unp;
struct vnode *vp;
KASSERT_UNIONFS_VNODE(ap->a_vp);
unp = VTOUNIONFS(ap->a_vp);
vp = (unp->un_uppervp != NULLVP ? unp->un_uppervp : unp->un_lowervp);
#ifdef DIAGNOSTIC
if (vp == NULLVP)
panic("unionfs_strategy: nullvp");
if (ap->a_bp->b_iocmd == BIO_WRITE && vp == unp->un_lowervp)
panic("unionfs_strategy: writing to lowervp");
#endif
return (VOP_STRATEGY(vp, ap->a_bp));
}
static int
unionfs_getacl(struct vop_getacl_args *ap)
{
struct unionfs_node *unp;
struct vnode *vp;
int error;
KASSERT_UNIONFS_VNODE(ap->a_vp);
unp = VTOUNIONFS(ap->a_vp);
vp = (unp->un_uppervp != NULLVP ? unp->un_uppervp : unp->un_lowervp);
UNIONFS_INTERNAL_DEBUG("unionfs_getacl: enter\n");
error = VOP_GETACL(vp, ap->a_type, ap->a_aclp, ap->a_cred, ap->a_td);
UNIONFS_INTERNAL_DEBUG("unionfs_getacl: leave (%d)\n", error);
return (error);
}
static int
unionfs_setacl(struct vop_setacl_args *ap)
{
struct unionfs_node *unp;
struct vnode *uvp;
struct vnode *lvp;
struct thread *td;
int error;
UNIONFS_INTERNAL_DEBUG("unionfs_setacl: enter\n");
KASSERT_UNIONFS_VNODE(ap->a_vp);
error = EROFS;
unp = VTOUNIONFS(ap->a_vp);
uvp = unp->un_uppervp;
lvp = unp->un_lowervp;
td = ap->a_td;
if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
return (EROFS);
if (uvp == NULLVP && lvp->v_type == VREG) {
if ((error = unionfs_copyfile(unp, 1, ap->a_cred, td)) != 0)
return (error);
uvp = unp->un_uppervp;
}
if (uvp != NULLVP) {
int lkflags;
unionfs_forward_vop_start(uvp, &lkflags);
error = VOP_SETACL(uvp, ap->a_type, ap->a_aclp, ap->a_cred, td);
unionfs_forward_vop_finish(ap->a_vp, uvp, lkflags);
}
UNIONFS_INTERNAL_DEBUG("unionfs_setacl: leave (%d)\n", error);
return (error);
}
static int
unionfs_aclcheck(struct vop_aclcheck_args *ap)
{
struct unionfs_node *unp;
struct vnode *vp;
int error;
UNIONFS_INTERNAL_DEBUG("unionfs_aclcheck: enter\n");
KASSERT_UNIONFS_VNODE(ap->a_vp);
unp = VTOUNIONFS(ap->a_vp);
vp = (unp->un_uppervp != NULLVP ? unp->un_uppervp : unp->un_lowervp);
error = VOP_ACLCHECK(vp, ap->a_type, ap->a_aclp, ap->a_cred, ap->a_td);
UNIONFS_INTERNAL_DEBUG("unionfs_aclcheck: leave (%d)\n", error);
return (error);
}
static int
unionfs_openextattr(struct vop_openextattr_args *ap)
{
struct unionfs_node *unp;
struct vnode *vp;
struct vnode *tvp;
int error;
KASSERT_UNIONFS_VNODE(ap->a_vp);
vp = ap->a_vp;
unp = VTOUNIONFS(vp);
tvp = (unp->un_uppervp != NULLVP ? unp->un_uppervp : unp->un_lowervp);
if ((tvp == unp->un_uppervp && (unp->un_flag & UNIONFS_OPENEXTU)) ||
(tvp == unp->un_lowervp && (unp->un_flag & UNIONFS_OPENEXTL)))
return (EBUSY);
error = VOP_OPENEXTATTR(tvp, ap->a_cred, ap->a_td);
if (error == 0) {
if (vn_lock(vp, LK_UPGRADE) != 0)
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
if (!VN_IS_DOOMED(vp)) {
if (tvp == unp->un_uppervp)
unp->un_flag |= UNIONFS_OPENEXTU;
else
unp->un_flag |= UNIONFS_OPENEXTL;
}
vn_lock(vp, LK_DOWNGRADE | LK_RETRY);
}
return (error);
}
static int
unionfs_closeextattr(struct vop_closeextattr_args *ap)
{
struct unionfs_node *unp;
struct vnode *vp;
struct vnode *tvp;
int error;
KASSERT_UNIONFS_VNODE(ap->a_vp);
vp = ap->a_vp;
unp = VTOUNIONFS(vp);
tvp = NULLVP;
if (unp->un_flag & UNIONFS_OPENEXTU)
tvp = unp->un_uppervp;
else if (unp->un_flag & UNIONFS_OPENEXTL)
tvp = unp->un_lowervp;
if (tvp == NULLVP)
return (EOPNOTSUPP);
error = VOP_CLOSEEXTATTR(tvp, ap->a_commit, ap->a_cred, ap->a_td);
if (error == 0) {
if (vn_lock(vp, LK_UPGRADE) != 0)
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
if (!VN_IS_DOOMED(vp)) {
if (tvp == unp->un_uppervp)
unp->un_flag &= ~UNIONFS_OPENEXTU;
else
unp->un_flag &= ~UNIONFS_OPENEXTL;
}
vn_lock(vp, LK_DOWNGRADE | LK_RETRY);
}
return (error);
}
static int
unionfs_getextattr(struct vop_getextattr_args *ap)
{
struct unionfs_node *unp;
struct vnode *vp;
KASSERT_UNIONFS_VNODE(ap->a_vp);
unp = VTOUNIONFS(ap->a_vp);
vp = NULLVP;
if (unp->un_flag & UNIONFS_OPENEXTU)
vp = unp->un_uppervp;
else if (unp->un_flag & UNIONFS_OPENEXTL)
vp = unp->un_lowervp;
if (vp == NULLVP)
return (EOPNOTSUPP);
return (VOP_GETEXTATTR(vp, ap->a_attrnamespace, ap->a_name,
ap->a_uio, ap->a_size, ap->a_cred, ap->a_td));
}
static int
unionfs_setextattr(struct vop_setextattr_args *ap)
{
struct unionfs_node *unp;
struct vnode *uvp;
struct vnode *lvp;
struct vnode *ovp;
struct ucred *cred;
struct thread *td;
int error;
KASSERT_UNIONFS_VNODE(ap->a_vp);
error = EROFS;
unp = VTOUNIONFS(ap->a_vp);
uvp = unp->un_uppervp;
lvp = unp->un_lowervp;
ovp = NULLVP;
cred = ap->a_cred;
td = ap->a_td;
UNIONFS_INTERNAL_DEBUG("unionfs_setextattr: enter (un_flag=%x)\n",
unp->un_flag);
if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
return (EROFS);
if (unp->un_flag & UNIONFS_OPENEXTU)
ovp = unp->un_uppervp;
else if (unp->un_flag & UNIONFS_OPENEXTL)
ovp = unp->un_lowervp;
if (ovp == NULLVP)
return (EOPNOTSUPP);
if (ovp == lvp && lvp->v_type == VREG) {
VOP_CLOSEEXTATTR(lvp, 0, cred, td);
if (uvp == NULLVP &&
(error = unionfs_copyfile(unp, 1, cred, td)) != 0) {
unionfs_setextattr_reopen:
if ((unp->un_flag & UNIONFS_OPENEXTL) &&
VOP_OPENEXTATTR(lvp, cred, td)) {
#ifdef DIAGNOSTIC
panic("unionfs: VOP_OPENEXTATTR failed");
#endif
unp->un_flag &= ~UNIONFS_OPENEXTL;
}
goto unionfs_setextattr_abort;
}
uvp = unp->un_uppervp;
if ((error = VOP_OPENEXTATTR(uvp, cred, td)) != 0)
goto unionfs_setextattr_reopen;
unp->un_flag &= ~UNIONFS_OPENEXTL;
unp->un_flag |= UNIONFS_OPENEXTU;
ovp = uvp;
}
if (ovp == uvp) {
int lkflags;
unionfs_forward_vop_start(ovp, &lkflags);
error = VOP_SETEXTATTR(ovp, ap->a_attrnamespace, ap->a_name,
ap->a_uio, cred, td);
unionfs_forward_vop_finish(ap->a_vp, ovp, lkflags);
}
unionfs_setextattr_abort:
UNIONFS_INTERNAL_DEBUG("unionfs_setextattr: leave (%d)\n", error);
return (error);
}
static int
unionfs_listextattr(struct vop_listextattr_args *ap)
{
struct unionfs_node *unp;
struct vnode *vp;
KASSERT_UNIONFS_VNODE(ap->a_vp);
unp = VTOUNIONFS(ap->a_vp);
vp = NULLVP;
if (unp->un_flag & UNIONFS_OPENEXTU)
vp = unp->un_uppervp;
else if (unp->un_flag & UNIONFS_OPENEXTL)
vp = unp->un_lowervp;
if (vp == NULLVP)
return (EOPNOTSUPP);
return (VOP_LISTEXTATTR(vp, ap->a_attrnamespace, ap->a_uio,
ap->a_size, ap->a_cred, ap->a_td));
}
static int
unionfs_deleteextattr(struct vop_deleteextattr_args *ap)
{
struct unionfs_node *unp;
struct vnode *uvp;
struct vnode *lvp;
struct vnode *ovp;
struct ucred *cred;
struct thread *td;
int error;
KASSERT_UNIONFS_VNODE(ap->a_vp);
error = EROFS;
unp = VTOUNIONFS(ap->a_vp);
uvp = unp->un_uppervp;
lvp = unp->un_lowervp;
ovp = NULLVP;
cred = ap->a_cred;
td = ap->a_td;
UNIONFS_INTERNAL_DEBUG("unionfs_deleteextattr: enter (un_flag=%x)\n",
unp->un_flag);
if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
return (EROFS);
if (unp->un_flag & UNIONFS_OPENEXTU)
ovp = unp->un_uppervp;
else if (unp->un_flag & UNIONFS_OPENEXTL)
ovp = unp->un_lowervp;
if (ovp == NULLVP)
return (EOPNOTSUPP);
if (ovp == lvp && lvp->v_type == VREG) {
VOP_CLOSEEXTATTR(lvp, 0, cred, td);
if (uvp == NULLVP &&
(error = unionfs_copyfile(unp, 1, cred, td)) != 0) {
unionfs_deleteextattr_reopen:
if ((unp->un_flag & UNIONFS_OPENEXTL) &&
VOP_OPENEXTATTR(lvp, cred, td)) {
#ifdef DIAGNOSTIC
panic("unionfs: VOP_OPENEXTATTR failed");
#endif
unp->un_flag &= ~UNIONFS_OPENEXTL;
}
goto unionfs_deleteextattr_abort;
}
uvp = unp->un_uppervp;
if ((error = VOP_OPENEXTATTR(uvp, cred, td)) != 0)
goto unionfs_deleteextattr_reopen;
unp->un_flag &= ~UNIONFS_OPENEXTL;
unp->un_flag |= UNIONFS_OPENEXTU;
ovp = uvp;
}
if (ovp == uvp)
error = VOP_DELETEEXTATTR(ovp, ap->a_attrnamespace, ap->a_name,
ap->a_cred, ap->a_td);
unionfs_deleteextattr_abort:
UNIONFS_INTERNAL_DEBUG("unionfs_deleteextattr: leave (%d)\n", error);
return (error);
}
static int
unionfs_setlabel(struct vop_setlabel_args *ap)
{
struct unionfs_node *unp;
struct vnode *uvp;
struct vnode *lvp;
struct thread *td;
int error;
UNIONFS_INTERNAL_DEBUG("unionfs_setlabel: enter\n");
KASSERT_UNIONFS_VNODE(ap->a_vp);
error = EROFS;
unp = VTOUNIONFS(ap->a_vp);
uvp = unp->un_uppervp;
lvp = unp->un_lowervp;
td = ap->a_td;
if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
return (EROFS);
if (uvp == NULLVP && lvp->v_type == VREG) {
if ((error = unionfs_copyfile(unp, 1, ap->a_cred, td)) != 0)
return (error);
uvp = unp->un_uppervp;
}
if (uvp != NULLVP)
error = VOP_SETLABEL(uvp, ap->a_label, ap->a_cred, td);
UNIONFS_INTERNAL_DEBUG("unionfs_setlabel: leave (%d)\n", error);
return (error);
}
static int
unionfs_vptofh(struct vop_vptofh_args *ap)
{
return (EOPNOTSUPP);
}
static int
unionfs_add_writecount(struct vop_add_writecount_args *ap)
{
struct vnode *tvp, *vp;
struct unionfs_node *unp;
int error, writerefs __diagused;
vp = ap->a_vp;
unp = VTOUNIONFS(vp);
tvp = unp->un_uppervp;
KASSERT(tvp != NULL,
("%s: adding write ref without upper vnode", __func__));
error = VOP_ADD_WRITECOUNT(tvp, ap->a_inc);
if (error != 0)
return (error);
/*
* We need to track the write refs we've passed to the underlying
* vnodes so that we can undo them in case we are forcibly unmounted.
*/
writerefs = atomic_fetchadd_int(&vp->v_writecount, ap->a_inc);
/* text refs are bypassed to lowervp */
VNASSERT(writerefs >= 0, vp,
("%s: invalid write count %d", __func__, writerefs));
VNASSERT(writerefs + ap->a_inc >= 0, vp,
("%s: invalid write count inc %d + %d", __func__,
writerefs, ap->a_inc));
return (0);
}
static int
unionfs_vput_pair(struct vop_vput_pair_args *ap)
{
struct mount *mp;
struct vnode *dvp, *vp, **vpp, *lvp, *ldvp, *uvp, *udvp, *tempvp;
struct unionfs_node *dunp, *unp;
int error, res;
dvp = ap->a_dvp;
vpp = ap->a_vpp;
vp = NULLVP;
lvp = NULLVP;
uvp = NULLVP;
unp = NULL;
dunp = VTOUNIONFS(dvp);
udvp = dunp->un_uppervp;
ldvp = dunp->un_lowervp;
/*
* Underlying vnodes should be locked because the encompassing unionfs
* node is locked, but will not be referenced, as the reference will
* only be on the unionfs node. Reference them now so that the vput()s
* performed by VOP_VPUT_PAIR() will have a reference to drop.
*/
if (udvp != NULLVP)
vref(udvp);
if (ldvp != NULLVP)
vref(ldvp);
if (vpp != NULL)
vp = *vpp;
if (vp != NULLVP) {
unp = VTOUNIONFS(vp);
uvp = unp->un_uppervp;
lvp = unp->un_lowervp;
if (uvp != NULLVP)
vref(uvp);
if (lvp != NULLVP)
vref(lvp);
/*
* If we're being asked to return a locked child vnode, then
* we may need to create a replacement vnode in case the
* original is reclaimed while the lock is dropped. In that
* case we'll need to ensure the mount and the underlying
* vnodes aren't also recycled during that window.
*/
if (!ap->a_unlock_vp) {
vhold(vp);
if (uvp != NULLVP)
vhold(uvp);
if (lvp != NULLVP)
vhold(lvp);
mp = vp->v_mount;
vfs_ref(mp);
}
}
/*
* TODO: Because unionfs_lock() locks both the lower and upper vnodes
* (if available), we must also call VOP_VPUT_PAIR() on both the lower
* and upper parent/child pairs. If unionfs_lock() is reworked to lock
* only a single vnode, this code will need to change to also only
* operate on one vnode pair.
*/
ASSERT_VOP_LOCKED(ldvp, __func__);
ASSERT_VOP_LOCKED(udvp, __func__);
ASSERT_VOP_LOCKED(lvp, __func__);
ASSERT_VOP_LOCKED(uvp, __func__);
KASSERT(lvp == NULLVP || ldvp != NULLVP,
("%s: NULL ldvp with non-NULL lvp", __func__));
if (ldvp != NULLVP)
res = VOP_VPUT_PAIR(ldvp, lvp != NULLVP ? &lvp : NULL, true);
KASSERT(uvp == NULLVP || udvp != NULLVP,
("%s: NULL udvp with non-NULL uvp", __func__));
if (udvp != NULLVP)
res = VOP_VPUT_PAIR(udvp, uvp != NULLVP ? &uvp : NULL, true);
ASSERT_VOP_UNLOCKED(ldvp, __func__);
ASSERT_VOP_UNLOCKED(udvp, __func__);
ASSERT_VOP_UNLOCKED(lvp, __func__);
ASSERT_VOP_UNLOCKED(uvp, __func__);
/*
* VOP_VPUT_PAIR() dropped the references we added to the underlying
* vnodes, now drop the caller's reference to the unionfs vnodes.
*/
if (vp != NULLVP && ap->a_unlock_vp)
vrele(vp);
vrele(dvp);
if (vp == NULLVP || ap->a_unlock_vp)
return (res);
/*
* We're being asked to return a locked vnode. At this point, the
* underlying vnodes have been unlocked, so vp may have been reclaimed.
*/
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
if (vp->v_data == NULL && vfs_busy(mp, MBF_NOWAIT) == 0) {
vput(vp);
error = unionfs_nodeget(mp, uvp, lvp, dvp, &tempvp, NULL);
if (error == 0) {
vn_lock(tempvp, LK_EXCLUSIVE | LK_RETRY);
*vpp = tempvp;
} else
vget(vp, LK_EXCLUSIVE | LK_RETRY);
vfs_unbusy(mp);
}
if (lvp != NULLVP)
vdrop(lvp);
if (uvp != NULLVP)
vdrop(uvp);
vdrop(vp);
vfs_rel(mp);
return (res);
}
static int
unionfs_set_text(struct vop_set_text_args *ap)
{
struct vnode *tvp;
struct unionfs_node *unp;
int error;
/*
* We assume text refs are managed against lvp/uvp through the
* executable mapping backed by its VM object. We therefore don't
* need to track leased text refs in the case of a forcible unmount.
*/
unp = VTOUNIONFS(ap->a_vp);
ASSERT_VOP_LOCKED(ap->a_vp, __func__);
tvp = unp->un_uppervp != NULL ? unp->un_uppervp : unp->un_lowervp;
error = VOP_SET_TEXT(tvp);
return (error);
}
static int
unionfs_unset_text(struct vop_unset_text_args *ap)
{
struct vnode *tvp;
struct unionfs_node *unp;
ASSERT_VOP_LOCKED(ap->a_vp, __func__);
unp = VTOUNIONFS(ap->a_vp);
tvp = unp->un_uppervp != NULL ? unp->un_uppervp : unp->un_lowervp;
VOP_UNSET_TEXT_CHECKED(tvp);
return (0);
}
static int
unionfs_unp_bind(struct vop_unp_bind_args *ap)
{
struct vnode *tvp;
struct unionfs_node *unp;
ASSERT_VOP_LOCKED(ap->a_vp, __func__);
unp = VTOUNIONFS(ap->a_vp);
tvp = unp->un_uppervp != NULL ? unp->un_uppervp : unp->un_lowervp;
VOP_UNP_BIND(tvp, ap->a_unpcb);
return (0);
}
static int
unionfs_unp_connect(struct vop_unp_connect_args *ap)
{
struct vnode *tvp;
struct unionfs_node *unp;
ASSERT_VOP_LOCKED(ap->a_vp, __func__);
unp = VTOUNIONFS(ap->a_vp);
tvp = unp->un_uppervp != NULL ? unp->un_uppervp : unp->un_lowervp;
VOP_UNP_CONNECT(tvp, ap->a_unpcb);
return (0);
}
static int
unionfs_unp_detach(struct vop_unp_detach_args *ap)
{
struct vnode *tvp;
struct unionfs_node *unp;
tvp = NULL;
/*
* VOP_UNP_DETACH() is not guaranteed to be called with the unionfs
* vnode locked, so we take the interlock to prevent a concurrent
* unmount from freeing the unionfs private data.
*/
VI_LOCK(ap->a_vp);
unp = VTOUNIONFS(ap->a_vp);
if (unp != NULL) {
tvp = unp->un_uppervp != NULL ?
unp->un_uppervp : unp->un_lowervp;
/*
* Hold the target vnode to prevent a concurrent unionfs
* unmount from causing it to be recycled once the interlock
* is dropped.
*/
vholdnz(tvp);
}
VI_UNLOCK(ap->a_vp);
if (tvp != NULL) {
VOP_UNP_DETACH(tvp);
vdrop(tvp);
}
return (0);
}
struct vop_vector unionfs_vnodeops = {
.vop_default = &default_vnodeops,
.vop_access = unionfs_access,
.vop_aclcheck = unionfs_aclcheck,
.vop_advlock = unionfs_advlock,
.vop_bmap = VOP_EOPNOTSUPP,
.vop_cachedlookup = unionfs_lookup,
.vop_close = unionfs_close,
.vop_closeextattr = unionfs_closeextattr,
.vop_create = unionfs_create,
.vop_deleteextattr = unionfs_deleteextattr,
.vop_fsync = unionfs_fsync,
.vop_getacl = unionfs_getacl,
.vop_getattr = unionfs_getattr,
.vop_getextattr = unionfs_getextattr,
.vop_getwritemount = unionfs_getwritemount,
.vop_inactive = unionfs_inactive,
.vop_need_inactive = vop_stdneed_inactive,
.vop_islocked = vop_stdislocked,
.vop_ioctl = unionfs_ioctl,
.vop_link = unionfs_link,
.vop_listextattr = unionfs_listextattr,
.vop_lock1 = unionfs_lock,
.vop_lookup = vfs_cache_lookup,
.vop_mkdir = unionfs_mkdir,
.vop_mknod = unionfs_mknod,
.vop_open = unionfs_open,
.vop_openextattr = unionfs_openextattr,
.vop_pathconf = unionfs_pathconf,
.vop_poll = unionfs_poll,
.vop_print = unionfs_print,
.vop_read = unionfs_read,
.vop_readdir = unionfs_readdir,
.vop_readlink = unionfs_readlink,
.vop_reclaim = unionfs_reclaim,
.vop_remove = unionfs_remove,
.vop_rename = unionfs_rename,
.vop_rmdir = unionfs_rmdir,
.vop_setacl = unionfs_setacl,
.vop_setattr = unionfs_setattr,
.vop_setextattr = unionfs_setextattr,
.vop_setlabel = unionfs_setlabel,
.vop_strategy = unionfs_strategy,
.vop_symlink = unionfs_symlink,
.vop_unlock = unionfs_unlock,
.vop_whiteout = unionfs_whiteout,
.vop_write = unionfs_write,
.vop_vptofh = unionfs_vptofh,
.vop_add_writecount = unionfs_add_writecount,
.vop_vput_pair = unionfs_vput_pair,
.vop_set_text = unionfs_set_text,
.vop_unset_text = unionfs_unset_text,
.vop_unp_bind = unionfs_unp_bind,
.vop_unp_connect = unionfs_unp_connect,
.vop_unp_detach = unionfs_unp_detach,
};
VFS_VOP_VECTOR_REGISTER(unionfs_vnodeops);