/* $NetBSD: subr_asan.c,v 1.26 2020/09/10 14:10:46 maxv Exp $ */
/*
* Copyright (c) 2018-2020 Maxime Villard, m00nbsd.net
* All rights reserved.
*
* This code is part of the KASAN subsystem of the NetBSD kernel.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#define SAN_RUNTIME
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#if 0
__KERNEL_RCSID(0, "$NetBSD: subr_asan.c,v 1.26 2020/09/10 14:10:46 maxv Exp $");
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/asan.h>
#include <sys/kernel.h>
#include <sys/stack.h>
#include <sys/sysctl.h>
#include <machine/asan.h>
#include <machine/bus.h>
/* ASAN constants. Part of the compiler ABI. */
#define KASAN_SHADOW_MASK (KASAN_SHADOW_SCALE - 1)
#define KASAN_ALLOCA_SCALE_SIZE 32
/* ASAN ABI version. */
#if defined(__clang__) && (__clang_major__ - 0 >= 6)
#define ASAN_ABI_VERSION 8
#elif __GNUC_PREREQ__(7, 1) && !defined(__clang__)
#define ASAN_ABI_VERSION 8
#elif __GNUC_PREREQ__(6, 1) && !defined(__clang__)
#define ASAN_ABI_VERSION 6
#else
#error "Unsupported compiler version"
#endif
#define __RET_ADDR (unsigned long)__builtin_return_address(0)
/* Global variable descriptor. Part of the compiler ABI. */
struct __asan_global_source_location {
const char *filename;
int line_no;
int column_no;
};
struct __asan_global {
const void *beg; /* address of the global variable */
size_t size; /* size of the global variable */
size_t size_with_redzone; /* size with the redzone */
const void *name; /* name of the variable */
const void *module_name; /* name of the module where the var is declared */
unsigned long has_dynamic_init; /* the var has dyn initializer (c++) */
struct __asan_global_source_location *location;
#if ASAN_ABI_VERSION >= 7
uintptr_t odr_indicator; /* the address of the ODR indicator symbol */
#endif
};
FEATURE(kasan, "Kernel address sanitizer");
static SYSCTL_NODE(_debug, OID_AUTO, kasan, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"KASAN options");
static int panic_on_violation = 1;
SYSCTL_INT(_debug_kasan, OID_AUTO, panic_on_violation, CTLFLAG_RDTUN,
&panic_on_violation, 0,
"Panic if an invalid access is detected");
static bool kasan_enabled __read_mostly = false;
/* -------------------------------------------------------------------------- */
void
kasan_shadow_map(vm_offset_t addr, size_t size)
{
size_t sz, npages, i;
vm_offset_t sva, eva;
KASSERT(addr % KASAN_SHADOW_SCALE == 0,
("%s: invalid address %#lx", __func__, addr));
sz = roundup(size, KASAN_SHADOW_SCALE) / KASAN_SHADOW_SCALE;
sva = kasan_md_addr_to_shad(addr);
eva = kasan_md_addr_to_shad(addr) + sz;
sva = rounddown(sva, PAGE_SIZE);
eva = roundup(eva, PAGE_SIZE);
npages = (eva - sva) / PAGE_SIZE;
KASSERT(sva >= KASAN_MIN_ADDRESS && eva < KASAN_MAX_ADDRESS,
("%s: invalid address range %#lx-%#lx", __func__, sva, eva));
for (i = 0; i < npages; i++)
pmap_kasan_enter(sva + ptoa(i));
}
void
kasan_init(void)
{
int disabled;
disabled = 0;
TUNABLE_INT_FETCH("debug.kasan.disabled", &disabled);
if (disabled)
return;
/* MD initialization. */
kasan_md_init();
/* Now officially enabled. */
kasan_enabled = true;
}
static inline const char *
kasan_code_name(uint8_t code)
{
switch (code) {
case KASAN_GENERIC_REDZONE:
return "GenericRedZone";
case KASAN_MALLOC_REDZONE:
return "MallocRedZone";
case KASAN_KMEM_REDZONE:
return "KmemRedZone";
case KASAN_UMA_FREED:
return "UMAUseAfterFree";
case KASAN_KSTACK_FREED:
return "KernelStack";
case KASAN_EXEC_ARGS_FREED:
return "ExecKVA";
case 1 ... 7:
return "RedZonePartial";
case KASAN_STACK_LEFT:
return "StackLeft";
case KASAN_STACK_MID:
return "StackMiddle";
case KASAN_STACK_RIGHT:
return "StackRight";
case KASAN_USE_AFTER_RET:
return "UseAfterRet";
case KASAN_USE_AFTER_SCOPE:
return "UseAfterScope";
default:
return "Unknown";
}
}
#define REPORT(f, ...) do { \
if (panic_on_violation) { \
kasan_enabled = false; \
panic(f, __VA_ARGS__); \
} else { \
struct stack st; \
\
stack_save(&st); \
printf(f "\n", __VA_ARGS__); \
stack_print_ddb(&st); \
} \
} while (0)
static void
kasan_report(unsigned long addr, size_t size, bool write, unsigned long pc,
uint8_t code)
{
REPORT("ASan: Invalid access, %zu-byte %s at %#lx, %s(%x)",
size, (write ? "write" : "read"), addr, kasan_code_name(code),
code);
}
static __always_inline void
kasan_shadow_1byte_markvalid(unsigned long addr)
{
int8_t *byte = (int8_t *)kasan_md_addr_to_shad(addr);
int8_t last = (addr & KASAN_SHADOW_MASK) + 1;
*byte = last;
}
static __always_inline void
kasan_shadow_Nbyte_markvalid(const void *addr, size_t size)
{
size_t i;
for (i = 0; i < size; i++) {
kasan_shadow_1byte_markvalid((unsigned long)addr + i);
}
}
static __always_inline void
kasan_shadow_Nbyte_fill(const void *addr, size_t size, uint8_t code)
{
void *shad;
if (__predict_false(size == 0))
return;
if (__predict_false(kasan_md_unsupported((vm_offset_t)addr)))
return;
KASSERT((vm_offset_t)addr % KASAN_SHADOW_SCALE == 0,
("%s: invalid address %p", __func__, addr));
KASSERT(size % KASAN_SHADOW_SCALE == 0,
("%s: invalid size %zu", __func__, size));
shad = (void *)kasan_md_addr_to_shad((uintptr_t)addr);
size = size >> KASAN_SHADOW_SCALE_SHIFT;
__builtin_memset(shad, code, size);
}
/*
* In an area of size 'sz_with_redz', mark the 'size' first bytes as valid,
* and the rest as invalid. There are generally two use cases:
*
* o kasan_mark(addr, origsize, size, code), with origsize < size. This marks
* the redzone at the end of the buffer as invalid. If the entire is to be
* marked invalid, origsize will be 0.
*
* o kasan_mark(addr, size, size, 0). This marks the entire buffer as valid.
*/
void
kasan_mark(const void *addr, size_t size, size_t redzsize, uint8_t code)
{
size_t i, n, redz;
int8_t *shad;
if (__predict_false(!kasan_enabled))
return;
if ((vm_offset_t)addr >= DMAP_MIN_ADDRESS &&
(vm_offset_t)addr < DMAP_MAX_ADDRESS)
return;
KASSERT((vm_offset_t)addr >= VM_MIN_KERNEL_ADDRESS &&
(vm_offset_t)addr < VM_MAX_KERNEL_ADDRESS,
("%s: invalid address %p", __func__, addr));
KASSERT((vm_offset_t)addr % KASAN_SHADOW_SCALE == 0,
("%s: invalid address %p", __func__, addr));
redz = redzsize - roundup(size, KASAN_SHADOW_SCALE);
KASSERT(redz % KASAN_SHADOW_SCALE == 0,
("%s: invalid size %zu", __func__, redz));
shad = (int8_t *)kasan_md_addr_to_shad((uintptr_t)addr);
/* Chunks of 8 bytes, valid. */
n = size / KASAN_SHADOW_SCALE;
for (i = 0; i < n; i++) {
*shad++ = 0;
}
/* Possibly one chunk, mid. */
if ((size & KASAN_SHADOW_MASK) != 0) {
*shad++ = (size & KASAN_SHADOW_MASK);
}
/* Chunks of 8 bytes, invalid. */
n = redz / KASAN_SHADOW_SCALE;
for (i = 0; i < n; i++) {
*shad++ = code;
}
}
/* -------------------------------------------------------------------------- */
#define ADDR_CROSSES_SCALE_BOUNDARY(addr, size) \
(addr >> KASAN_SHADOW_SCALE_SHIFT) != \
((addr + size - 1) >> KASAN_SHADOW_SCALE_SHIFT)
static __always_inline bool
kasan_shadow_1byte_isvalid(unsigned long addr, uint8_t *code)
{
int8_t *byte = (int8_t *)kasan_md_addr_to_shad(addr);
int8_t last = (addr & KASAN_SHADOW_MASK) + 1;
if (__predict_true(*byte == 0 || last <= *byte)) {
return (true);
}
*code = *byte;
return (false);
}
static __always_inline bool
kasan_shadow_2byte_isvalid(unsigned long addr, uint8_t *code)
{
int8_t *byte, last;
if (ADDR_CROSSES_SCALE_BOUNDARY(addr, 2)) {
return (kasan_shadow_1byte_isvalid(addr, code) &&
kasan_shadow_1byte_isvalid(addr+1, code));
}
byte = (int8_t *)kasan_md_addr_to_shad(addr);
last = ((addr + 1) & KASAN_SHADOW_MASK) + 1;
if (__predict_true(*byte == 0 || last <= *byte)) {
return (true);
}
*code = *byte;
return (false);
}
static __always_inline bool
kasan_shadow_4byte_isvalid(unsigned long addr, uint8_t *code)
{
int8_t *byte, last;
if (ADDR_CROSSES_SCALE_BOUNDARY(addr, 4)) {
return (kasan_shadow_2byte_isvalid(addr, code) &&
kasan_shadow_2byte_isvalid(addr+2, code));
}
byte = (int8_t *)kasan_md_addr_to_shad(addr);
last = ((addr + 3) & KASAN_SHADOW_MASK) + 1;
if (__predict_true(*byte == 0 || last <= *byte)) {
return (true);
}
*code = *byte;
return (false);
}
static __always_inline bool
kasan_shadow_8byte_isvalid(unsigned long addr, uint8_t *code)
{
int8_t *byte, last;
if (ADDR_CROSSES_SCALE_BOUNDARY(addr, 8)) {
return (kasan_shadow_4byte_isvalid(addr, code) &&
kasan_shadow_4byte_isvalid(addr+4, code));
}
byte = (int8_t *)kasan_md_addr_to_shad(addr);
last = ((addr + 7) & KASAN_SHADOW_MASK) + 1;
if (__predict_true(*byte == 0 || last <= *byte)) {
return (true);
}
*code = *byte;
return (false);
}
static __always_inline bool
kasan_shadow_Nbyte_isvalid(unsigned long addr, size_t size, uint8_t *code)
{
size_t i;
for (i = 0; i < size; i++) {
if (!kasan_shadow_1byte_isvalid(addr+i, code))
return (false);
}
return (true);
}
static __always_inline void
kasan_shadow_check(unsigned long addr, size_t size, bool write,
unsigned long retaddr)
{
uint8_t code;
bool valid;
if (__predict_false(!kasan_enabled))
return;
if (__predict_false(size == 0))
return;
if (__predict_false(kasan_md_unsupported(addr)))
return;
if (KERNEL_PANICKED())
return;
if (__builtin_constant_p(size)) {
switch (size) {
case 1:
valid = kasan_shadow_1byte_isvalid(addr, &code);
break;
case 2:
valid = kasan_shadow_2byte_isvalid(addr, &code);
break;
case 4:
valid = kasan_shadow_4byte_isvalid(addr, &code);
break;
case 8:
valid = kasan_shadow_8byte_isvalid(addr, &code);
break;
default:
valid = kasan_shadow_Nbyte_isvalid(addr, size, &code);
break;
}
} else {
valid = kasan_shadow_Nbyte_isvalid(addr, size, &code);
}
if (__predict_false(!valid)) {
kasan_report(addr, size, write, retaddr, code);
}
}
/* -------------------------------------------------------------------------- */
void *
kasan_memcpy(void *dst, const void *src, size_t len)
{
kasan_shadow_check((unsigned long)src, len, false, __RET_ADDR);
kasan_shadow_check((unsigned long)dst, len, true, __RET_ADDR);
return (__builtin_memcpy(dst, src, len));
}
int
kasan_memcmp(const void *b1, const void *b2, size_t len)
{
kasan_shadow_check((unsigned long)b1, len, false, __RET_ADDR);
kasan_shadow_check((unsigned long)b2, len, false, __RET_ADDR);
return (__builtin_memcmp(b1, b2, len));
}
void *
kasan_memset(void *b, int c, size_t len)
{
kasan_shadow_check((unsigned long)b, len, true, __RET_ADDR);
return (__builtin_memset(b, c, len));
}
void *
kasan_memmove(void *dst, const void *src, size_t len)
{
kasan_shadow_check((unsigned long)src, len, false, __RET_ADDR);
kasan_shadow_check((unsigned long)dst, len, true, __RET_ADDR);
return (__builtin_memmove(dst, src, len));
}
size_t
kasan_strlen(const char *str)
{
const char *s;
s = str;
while (1) {
kasan_shadow_check((unsigned long)s, 1, false, __RET_ADDR);
if (*s == '\0')
break;
s++;
}
return (s - str);
}
char *
kasan_strcpy(char *dst, const char *src)
{
char *save = dst;
while (1) {
kasan_shadow_check((unsigned long)src, 1, false, __RET_ADDR);
kasan_shadow_check((unsigned long)dst, 1, true, __RET_ADDR);
*dst = *src;
if (*src == '\0')
break;
src++, dst++;
}
return save;
}
int
kasan_strcmp(const char *s1, const char *s2)
{
while (1) {
kasan_shadow_check((unsigned long)s1, 1, false, __RET_ADDR);
kasan_shadow_check((unsigned long)s2, 1, false, __RET_ADDR);
if (*s1 != *s2)
break;
if (*s1 == '\0')
return 0;
s1++, s2++;
}
return (*(const unsigned char *)s1 - *(const unsigned char *)s2);
}
int
kasan_copyin(const void *uaddr, void *kaddr, size_t len)
{
kasan_shadow_check((unsigned long)kaddr, len, true, __RET_ADDR);
return (copyin(uaddr, kaddr, len));
}
int
kasan_copyinstr(const void *uaddr, void *kaddr, size_t len, size_t *done)
{
kasan_shadow_check((unsigned long)kaddr, len, true, __RET_ADDR);
return (copyinstr(uaddr, kaddr, len, done));
}
int
kasan_copyout(const void *kaddr, void *uaddr, size_t len)
{
kasan_shadow_check((unsigned long)kaddr, len, false, __RET_ADDR);
return (copyout(kaddr, uaddr, len));
}
/* -------------------------------------------------------------------------- */
#include <machine/atomic.h>
#include <sys/atomic_san.h>
#define _ASAN_ATOMIC_FUNC_ADD(name, type) \
void kasan_atomic_add_##name(volatile type *ptr, type val) \
{ \
kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \
__RET_ADDR); \
atomic_add_##name(ptr, val); \
}
#define ASAN_ATOMIC_FUNC_ADD(name, type) \
_ASAN_ATOMIC_FUNC_ADD(name, type) \
_ASAN_ATOMIC_FUNC_ADD(acq_##name, type) \
_ASAN_ATOMIC_FUNC_ADD(rel_##name, type)
#define _ASAN_ATOMIC_FUNC_SUBTRACT(name, type) \
void kasan_atomic_subtract_##name(volatile type *ptr, type val) \
{ \
kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \
__RET_ADDR); \
atomic_subtract_##name(ptr, val); \
}
#define ASAN_ATOMIC_FUNC_SUBTRACT(name, type) \
_ASAN_ATOMIC_FUNC_SUBTRACT(name, type) \
_ASAN_ATOMIC_FUNC_SUBTRACT(acq_##name, type) \
_ASAN_ATOMIC_FUNC_SUBTRACT(rel_##name, type)
#define _ASAN_ATOMIC_FUNC_SET(name, type) \
void kasan_atomic_set_##name(volatile type *ptr, type val) \
{ \
kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \
__RET_ADDR); \
atomic_set_##name(ptr, val); \
}
#define ASAN_ATOMIC_FUNC_SET(name, type) \
_ASAN_ATOMIC_FUNC_SET(name, type) \
_ASAN_ATOMIC_FUNC_SET(acq_##name, type) \
_ASAN_ATOMIC_FUNC_SET(rel_##name, type)
#define _ASAN_ATOMIC_FUNC_CLEAR(name, type) \
void kasan_atomic_clear_##name(volatile type *ptr, type val) \
{ \
kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \
__RET_ADDR); \
atomic_clear_##name(ptr, val); \
}
#define ASAN_ATOMIC_FUNC_CLEAR(name, type) \
_ASAN_ATOMIC_FUNC_CLEAR(name, type) \
_ASAN_ATOMIC_FUNC_CLEAR(acq_##name, type) \
_ASAN_ATOMIC_FUNC_CLEAR(rel_##name, type)
#define ASAN_ATOMIC_FUNC_FETCHADD(name, type) \
type kasan_atomic_fetchadd_##name(volatile type *ptr, type val) \
{ \
kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \
__RET_ADDR); \
return (atomic_fetchadd_##name(ptr, val)); \
}
#define ASAN_ATOMIC_FUNC_READANDCLEAR(name, type) \
type kasan_atomic_readandclear_##name(volatile type *ptr) \
{ \
kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \
__RET_ADDR); \
return (atomic_readandclear_##name(ptr)); \
}
#define ASAN_ATOMIC_FUNC_TESTANDCLEAR(name, type) \
int kasan_atomic_testandclear_##name(volatile type *ptr, u_int v) \
{ \
kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \
__RET_ADDR); \
return (atomic_testandclear_##name(ptr, v)); \
}
#define ASAN_ATOMIC_FUNC_TESTANDSET(name, type) \
int kasan_atomic_testandset_##name(volatile type *ptr, u_int v) \
{ \
kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \
__RET_ADDR); \
return (atomic_testandset_##name(ptr, v)); \
}
#define ASAN_ATOMIC_FUNC_SWAP(name, type) \
type kasan_atomic_swap_##name(volatile type *ptr, type val) \
{ \
kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \
__RET_ADDR); \
return (atomic_swap_##name(ptr, val)); \
}
#define _ASAN_ATOMIC_FUNC_CMPSET(name, type) \
int kasan_atomic_cmpset_##name(volatile type *ptr, type oval, \
type nval) \
{ \
kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \
__RET_ADDR); \
return (atomic_cmpset_##name(ptr, oval, nval)); \
}
#define ASAN_ATOMIC_FUNC_CMPSET(name, type) \
_ASAN_ATOMIC_FUNC_CMPSET(name, type) \
_ASAN_ATOMIC_FUNC_CMPSET(acq_##name, type) \
_ASAN_ATOMIC_FUNC_CMPSET(rel_##name, type)
#define _ASAN_ATOMIC_FUNC_FCMPSET(name, type) \
int kasan_atomic_fcmpset_##name(volatile type *ptr, type *oval, \
type nval) \
{ \
kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \
__RET_ADDR); \
return (atomic_fcmpset_##name(ptr, oval, nval)); \
}
#define ASAN_ATOMIC_FUNC_FCMPSET(name, type) \
_ASAN_ATOMIC_FUNC_FCMPSET(name, type) \
_ASAN_ATOMIC_FUNC_FCMPSET(acq_##name, type) \
_ASAN_ATOMIC_FUNC_FCMPSET(rel_##name, type)
#define ASAN_ATOMIC_FUNC_THREAD_FENCE(name) \
void kasan_atomic_thread_fence_##name(void) \
{ \
atomic_thread_fence_##name(); \
}
#define _ASAN_ATOMIC_FUNC_LOAD(name, type) \
type kasan_atomic_load_##name(volatile type *ptr) \
{ \
kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \
__RET_ADDR); \
return (atomic_load_##name(ptr)); \
}
#define ASAN_ATOMIC_FUNC_LOAD(name, type) \
_ASAN_ATOMIC_FUNC_LOAD(name, type) \
_ASAN_ATOMIC_FUNC_LOAD(acq_##name, type)
#define _ASAN_ATOMIC_FUNC_STORE(name, type) \
void kasan_atomic_store_##name(volatile type *ptr, type val) \
{ \
kasan_shadow_check((uintptr_t)ptr, sizeof(type), true, \
__RET_ADDR); \
atomic_store_##name(ptr, val); \
}
#define ASAN_ATOMIC_FUNC_STORE(name, type) \
_ASAN_ATOMIC_FUNC_STORE(name, type) \
_ASAN_ATOMIC_FUNC_STORE(rel_##name, type)
ASAN_ATOMIC_FUNC_ADD(8, uint8_t);
ASAN_ATOMIC_FUNC_ADD(16, uint16_t);
ASAN_ATOMIC_FUNC_ADD(32, uint32_t);
ASAN_ATOMIC_FUNC_ADD(64, uint64_t);
ASAN_ATOMIC_FUNC_ADD(int, u_int);
ASAN_ATOMIC_FUNC_ADD(long, u_long);
ASAN_ATOMIC_FUNC_ADD(ptr, uintptr_t);
ASAN_ATOMIC_FUNC_SUBTRACT(8, uint8_t);
ASAN_ATOMIC_FUNC_SUBTRACT(16, uint16_t);
ASAN_ATOMIC_FUNC_SUBTRACT(32, uint32_t);
ASAN_ATOMIC_FUNC_SUBTRACT(64, uint64_t);
ASAN_ATOMIC_FUNC_SUBTRACT(int, u_int);
ASAN_ATOMIC_FUNC_SUBTRACT(long, u_long);
ASAN_ATOMIC_FUNC_SUBTRACT(ptr, uintptr_t);
ASAN_ATOMIC_FUNC_SET(8, uint8_t);
ASAN_ATOMIC_FUNC_SET(16, uint16_t);
ASAN_ATOMIC_FUNC_SET(32, uint32_t);
ASAN_ATOMIC_FUNC_SET(64, uint64_t);
ASAN_ATOMIC_FUNC_SET(int, u_int);
ASAN_ATOMIC_FUNC_SET(long, u_long);
ASAN_ATOMIC_FUNC_SET(ptr, uintptr_t);
ASAN_ATOMIC_FUNC_CLEAR(8, uint8_t);
ASAN_ATOMIC_FUNC_CLEAR(16, uint16_t);
ASAN_ATOMIC_FUNC_CLEAR(32, uint32_t);
ASAN_ATOMIC_FUNC_CLEAR(64, uint64_t);
ASAN_ATOMIC_FUNC_CLEAR(int, u_int);
ASAN_ATOMIC_FUNC_CLEAR(long, u_long);
ASAN_ATOMIC_FUNC_CLEAR(ptr, uintptr_t);
ASAN_ATOMIC_FUNC_FETCHADD(32, uint32_t);
ASAN_ATOMIC_FUNC_FETCHADD(64, uint64_t);
ASAN_ATOMIC_FUNC_FETCHADD(int, u_int);
ASAN_ATOMIC_FUNC_FETCHADD(long, u_long);
ASAN_ATOMIC_FUNC_READANDCLEAR(32, uint32_t);
ASAN_ATOMIC_FUNC_READANDCLEAR(64, uint64_t);
ASAN_ATOMIC_FUNC_READANDCLEAR(int, u_int);
ASAN_ATOMIC_FUNC_READANDCLEAR(long, u_long);
ASAN_ATOMIC_FUNC_READANDCLEAR(ptr, uintptr_t);
ASAN_ATOMIC_FUNC_TESTANDCLEAR(32, uint32_t);
ASAN_ATOMIC_FUNC_TESTANDCLEAR(64, uint64_t);
ASAN_ATOMIC_FUNC_TESTANDCLEAR(int, u_int);
ASAN_ATOMIC_FUNC_TESTANDCLEAR(long, u_long);
ASAN_ATOMIC_FUNC_TESTANDSET(32, uint32_t);
ASAN_ATOMIC_FUNC_TESTANDSET(64, uint64_t);
ASAN_ATOMIC_FUNC_TESTANDSET(int, u_int);
ASAN_ATOMIC_FUNC_TESTANDSET(long, u_long);
ASAN_ATOMIC_FUNC_SWAP(32, uint32_t);
ASAN_ATOMIC_FUNC_SWAP(64, uint64_t);
ASAN_ATOMIC_FUNC_SWAP(int, u_int);
ASAN_ATOMIC_FUNC_SWAP(long, u_long);
ASAN_ATOMIC_FUNC_SWAP(ptr, uintptr_t);
ASAN_ATOMIC_FUNC_CMPSET(8, uint8_t);
ASAN_ATOMIC_FUNC_CMPSET(16, uint16_t);
ASAN_ATOMIC_FUNC_CMPSET(32, uint32_t);
ASAN_ATOMIC_FUNC_CMPSET(64, uint64_t);
ASAN_ATOMIC_FUNC_CMPSET(int, u_int);
ASAN_ATOMIC_FUNC_CMPSET(long, u_long);
ASAN_ATOMIC_FUNC_CMPSET(ptr, uintptr_t);
ASAN_ATOMIC_FUNC_FCMPSET(8, uint8_t);
ASAN_ATOMIC_FUNC_FCMPSET(16, uint16_t);
ASAN_ATOMIC_FUNC_FCMPSET(32, uint32_t);
ASAN_ATOMIC_FUNC_FCMPSET(64, uint64_t);
ASAN_ATOMIC_FUNC_FCMPSET(int, u_int);
ASAN_ATOMIC_FUNC_FCMPSET(long, u_long);
ASAN_ATOMIC_FUNC_FCMPSET(ptr, uintptr_t);
_ASAN_ATOMIC_FUNC_LOAD(bool, bool);
ASAN_ATOMIC_FUNC_LOAD(8, uint8_t);
ASAN_ATOMIC_FUNC_LOAD(16, uint16_t);
ASAN_ATOMIC_FUNC_LOAD(32, uint32_t);
ASAN_ATOMIC_FUNC_LOAD(64, uint64_t);
ASAN_ATOMIC_FUNC_LOAD(char, u_char);
ASAN_ATOMIC_FUNC_LOAD(short, u_short);
ASAN_ATOMIC_FUNC_LOAD(int, u_int);
ASAN_ATOMIC_FUNC_LOAD(long, u_long);
ASAN_ATOMIC_FUNC_LOAD(ptr, uintptr_t);
_ASAN_ATOMIC_FUNC_STORE(bool, bool);
ASAN_ATOMIC_FUNC_STORE(8, uint8_t);
ASAN_ATOMIC_FUNC_STORE(16, uint16_t);
ASAN_ATOMIC_FUNC_STORE(32, uint32_t);
ASAN_ATOMIC_FUNC_STORE(64, uint64_t);
ASAN_ATOMIC_FUNC_STORE(char, u_char);
ASAN_ATOMIC_FUNC_STORE(short, u_short);
ASAN_ATOMIC_FUNC_STORE(int, u_int);
ASAN_ATOMIC_FUNC_STORE(long, u_long);
ASAN_ATOMIC_FUNC_STORE(ptr, uintptr_t);
ASAN_ATOMIC_FUNC_THREAD_FENCE(acq);
ASAN_ATOMIC_FUNC_THREAD_FENCE(rel);
ASAN_ATOMIC_FUNC_THREAD_FENCE(acq_rel);
ASAN_ATOMIC_FUNC_THREAD_FENCE(seq_cst);
void
kasan_atomic_interrupt_fence(void)
{
}
/* -------------------------------------------------------------------------- */
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/bus_san.h>
int
kasan_bus_space_map(bus_space_tag_t tag, bus_addr_t hnd, bus_size_t size,
int flags, bus_space_handle_t *handlep)
{
return (bus_space_map(tag, hnd, size, flags, handlep));
}
void
kasan_bus_space_unmap(bus_space_tag_t tag, bus_space_handle_t hnd,
bus_size_t size)
{
bus_space_unmap(tag, hnd, size);
}
int
kasan_bus_space_subregion(bus_space_tag_t tag, bus_space_handle_t hnd,
bus_size_t offset, bus_size_t size, bus_space_handle_t *handlep)
{
return (bus_space_subregion(tag, hnd, offset, size, handlep));
}
void
kasan_bus_space_free(bus_space_tag_t tag, bus_space_handle_t hnd,
bus_size_t size)
{
bus_space_free(tag, hnd, size);
}
void
kasan_bus_space_barrier(bus_space_tag_t tag, bus_space_handle_t hnd,
bus_size_t offset, bus_size_t size, int flags)
{
bus_space_barrier(tag, hnd, offset, size, flags);
}
#define ASAN_BUS_READ_FUNC(func, width, type) \
type kasan_bus_space_read##func##_##width(bus_space_tag_t tag, \
bus_space_handle_t hnd, bus_size_t offset) \
{ \
return (bus_space_read##func##_##width(tag, hnd, \
offset)); \
} \
#define ASAN_BUS_READ_PTR_FUNC(func, width, type) \
void kasan_bus_space_read_##func##_##width(bus_space_tag_t tag, \
bus_space_handle_t hnd, bus_size_t size, type *buf, \
bus_size_t count) \
{ \
kasan_shadow_check((uintptr_t)buf, sizeof(type) * count,\
false, __RET_ADDR); \
bus_space_read_##func##_##width(tag, hnd, size, buf, \
count); \
}
ASAN_BUS_READ_FUNC(, 1, uint8_t)
ASAN_BUS_READ_FUNC(_stream, 1, uint8_t)
ASAN_BUS_READ_PTR_FUNC(multi, 1, uint8_t)
ASAN_BUS_READ_PTR_FUNC(multi_stream, 1, uint8_t)
ASAN_BUS_READ_PTR_FUNC(region, 1, uint8_t)
ASAN_BUS_READ_PTR_FUNC(region_stream, 1, uint8_t)
ASAN_BUS_READ_FUNC(, 2, uint16_t)
ASAN_BUS_READ_FUNC(_stream, 2, uint16_t)
ASAN_BUS_READ_PTR_FUNC(multi, 2, uint16_t)
ASAN_BUS_READ_PTR_FUNC(multi_stream, 2, uint16_t)
ASAN_BUS_READ_PTR_FUNC(region, 2, uint16_t)
ASAN_BUS_READ_PTR_FUNC(region_stream, 2, uint16_t)
ASAN_BUS_READ_FUNC(, 4, uint32_t)
ASAN_BUS_READ_FUNC(_stream, 4, uint32_t)
ASAN_BUS_READ_PTR_FUNC(multi, 4, uint32_t)
ASAN_BUS_READ_PTR_FUNC(multi_stream, 4, uint32_t)
ASAN_BUS_READ_PTR_FUNC(region, 4, uint32_t)
ASAN_BUS_READ_PTR_FUNC(region_stream, 4, uint32_t)
ASAN_BUS_READ_FUNC(, 8, uint64_t)
#if defined(__aarch64__)
ASAN_BUS_READ_FUNC(_stream, 8, uint64_t)
ASAN_BUS_READ_PTR_FUNC(multi, 8, uint64_t)
ASAN_BUS_READ_PTR_FUNC(multi_stream, 8, uint64_t)
ASAN_BUS_READ_PTR_FUNC(region, 8, uint64_t)
ASAN_BUS_READ_PTR_FUNC(region_stream, 8, uint64_t)
#endif
#define ASAN_BUS_WRITE_FUNC(func, width, type) \
void kasan_bus_space_write##func##_##width(bus_space_tag_t tag, \
bus_space_handle_t hnd, bus_size_t offset, type value) \
{ \
bus_space_write##func##_##width(tag, hnd, offset, value);\
} \
#define ASAN_BUS_WRITE_PTR_FUNC(func, width, type) \
void kasan_bus_space_write_##func##_##width(bus_space_tag_t tag,\
bus_space_handle_t hnd, bus_size_t size, const type *buf, \
bus_size_t count) \
{ \
kasan_shadow_check((uintptr_t)buf, sizeof(type) * count,\
true, __RET_ADDR); \
bus_space_write_##func##_##width(tag, hnd, size, buf, \
count); \
}
ASAN_BUS_WRITE_FUNC(, 1, uint8_t)
ASAN_BUS_WRITE_FUNC(_stream, 1, uint8_t)
ASAN_BUS_WRITE_PTR_FUNC(multi, 1, uint8_t)
ASAN_BUS_WRITE_PTR_FUNC(multi_stream, 1, uint8_t)
ASAN_BUS_WRITE_PTR_FUNC(region, 1, uint8_t)
ASAN_BUS_WRITE_PTR_FUNC(region_stream, 1, uint8_t)
ASAN_BUS_WRITE_FUNC(, 2, uint16_t)
ASAN_BUS_WRITE_FUNC(_stream, 2, uint16_t)
ASAN_BUS_WRITE_PTR_FUNC(multi, 2, uint16_t)
ASAN_BUS_WRITE_PTR_FUNC(multi_stream, 2, uint16_t)
ASAN_BUS_WRITE_PTR_FUNC(region, 2, uint16_t)
ASAN_BUS_WRITE_PTR_FUNC(region_stream, 2, uint16_t)
ASAN_BUS_WRITE_FUNC(, 4, uint32_t)
ASAN_BUS_WRITE_FUNC(_stream, 4, uint32_t)
ASAN_BUS_WRITE_PTR_FUNC(multi, 4, uint32_t)
ASAN_BUS_WRITE_PTR_FUNC(multi_stream, 4, uint32_t)
ASAN_BUS_WRITE_PTR_FUNC(region, 4, uint32_t)
ASAN_BUS_WRITE_PTR_FUNC(region_stream, 4, uint32_t)
ASAN_BUS_WRITE_FUNC(, 8, uint64_t)
#define ASAN_BUS_SET_FUNC(func, width, type) \
void kasan_bus_space_set_##func##_##width(bus_space_tag_t tag, \
bus_space_handle_t hnd, bus_size_t offset, type value, \
bus_size_t count) \
{ \
bus_space_set_##func##_##width(tag, hnd, offset, value, \
count); \
}
ASAN_BUS_SET_FUNC(multi, 1, uint8_t)
ASAN_BUS_SET_FUNC(region, 1, uint8_t)
ASAN_BUS_SET_FUNC(multi_stream, 1, uint8_t)
ASAN_BUS_SET_FUNC(region_stream, 1, uint8_t)
ASAN_BUS_SET_FUNC(multi, 2, uint16_t)
ASAN_BUS_SET_FUNC(region, 2, uint16_t)
ASAN_BUS_SET_FUNC(multi_stream, 2, uint16_t)
ASAN_BUS_SET_FUNC(region_stream, 2, uint16_t)
ASAN_BUS_SET_FUNC(multi, 4, uint32_t)
ASAN_BUS_SET_FUNC(region, 4, uint32_t)
ASAN_BUS_SET_FUNC(multi_stream, 4, uint32_t)
ASAN_BUS_SET_FUNC(region_stream, 4, uint32_t)
#define ASAN_BUS_PEEK_FUNC(width, type) \
int kasan_bus_space_peek_##width(bus_space_tag_t tag, \
bus_space_handle_t hnd, bus_size_t offset, type *valuep) \
{ \
return (bus_space_peek_##width(tag, hnd, offset, \
valuep)); \
}
ASAN_BUS_PEEK_FUNC(1, uint8_t)
ASAN_BUS_PEEK_FUNC(2, uint16_t)
ASAN_BUS_PEEK_FUNC(4, uint32_t)
ASAN_BUS_PEEK_FUNC(8, uint64_t)
#define ASAN_BUS_POKE_FUNC(width, type) \
int kasan_bus_space_poke_##width(bus_space_tag_t tag, \
bus_space_handle_t hnd, bus_size_t offset, type value) \
{ \
return (bus_space_poke_##width(tag, hnd, offset, \
value)); \
}
ASAN_BUS_POKE_FUNC(1, uint8_t)
ASAN_BUS_POKE_FUNC(2, uint16_t)
ASAN_BUS_POKE_FUNC(4, uint32_t)
ASAN_BUS_POKE_FUNC(8, uint64_t)
/* -------------------------------------------------------------------------- */
void __asan_register_globals(struct __asan_global *, size_t);
void __asan_unregister_globals(struct __asan_global *, size_t);
void
__asan_register_globals(struct __asan_global *globals, size_t n)
{
size_t i;
for (i = 0; i < n; i++) {
kasan_mark(globals[i].beg, globals[i].size,
globals[i].size_with_redzone, KASAN_GENERIC_REDZONE);
}
}
void
__asan_unregister_globals(struct __asan_global *globals, size_t n)
{
size_t i;
for (i = 0; i < n; i++) {
kasan_mark(globals[i].beg, globals[i].size_with_redzone,
globals[i].size_with_redzone, 0);
}
}
#define ASAN_LOAD_STORE(size) \
void __asan_load##size(unsigned long); \
void __asan_load##size(unsigned long addr) \
{ \
kasan_shadow_check(addr, size, false, __RET_ADDR);\
} \
void __asan_load##size##_noabort(unsigned long); \
void __asan_load##size##_noabort(unsigned long addr) \
{ \
kasan_shadow_check(addr, size, false, __RET_ADDR);\
} \
void __asan_store##size(unsigned long); \
void __asan_store##size(unsigned long addr) \
{ \
kasan_shadow_check(addr, size, true, __RET_ADDR);\
} \
void __asan_store##size##_noabort(unsigned long); \
void __asan_store##size##_noabort(unsigned long addr) \
{ \
kasan_shadow_check(addr, size, true, __RET_ADDR);\
}
ASAN_LOAD_STORE(1);
ASAN_LOAD_STORE(2);
ASAN_LOAD_STORE(4);
ASAN_LOAD_STORE(8);
ASAN_LOAD_STORE(16);
void __asan_loadN(unsigned long, size_t);
void __asan_loadN_noabort(unsigned long, size_t);
void __asan_storeN(unsigned long, size_t);
void __asan_storeN_noabort(unsigned long, size_t);
void __asan_handle_no_return(void);
void
__asan_loadN(unsigned long addr, size_t size)
{
kasan_shadow_check(addr, size, false, __RET_ADDR);
}
void
__asan_loadN_noabort(unsigned long addr, size_t size)
{
kasan_shadow_check(addr, size, false, __RET_ADDR);
}
void
__asan_storeN(unsigned long addr, size_t size)
{
kasan_shadow_check(addr, size, true, __RET_ADDR);
}
void
__asan_storeN_noabort(unsigned long addr, size_t size)
{
kasan_shadow_check(addr, size, true, __RET_ADDR);
}
void
__asan_handle_no_return(void)
{
/* nothing */
}
#define ASAN_SET_SHADOW(byte) \
void __asan_set_shadow_##byte(void *, size_t); \
void __asan_set_shadow_##byte(void *addr, size_t size) \
{ \
__builtin_memset((void *)addr, 0x##byte, size); \
}
ASAN_SET_SHADOW(00);
ASAN_SET_SHADOW(f1);
ASAN_SET_SHADOW(f2);
ASAN_SET_SHADOW(f3);
ASAN_SET_SHADOW(f5);
ASAN_SET_SHADOW(f8);
void __asan_poison_stack_memory(const void *, size_t);
void __asan_unpoison_stack_memory(const void *, size_t);
void
__asan_poison_stack_memory(const void *addr, size_t size)
{
size = roundup(size, KASAN_SHADOW_SCALE);
kasan_shadow_Nbyte_fill(addr, size, KASAN_USE_AFTER_SCOPE);
}
void
__asan_unpoison_stack_memory(const void *addr, size_t size)
{
kasan_shadow_Nbyte_markvalid(addr, size);
}
void __asan_alloca_poison(const void *, size_t);
void __asan_allocas_unpoison(const void *, const void *);
void
__asan_alloca_poison(const void *addr, size_t size)
{
const void *l, *r;
KASSERT((vm_offset_t)addr % KASAN_ALLOCA_SCALE_SIZE == 0,
("%s: invalid address %p", __func__, addr));
l = (const uint8_t *)addr - KASAN_ALLOCA_SCALE_SIZE;
r = (const uint8_t *)addr + roundup(size, KASAN_ALLOCA_SCALE_SIZE);
kasan_shadow_Nbyte_fill(l, KASAN_ALLOCA_SCALE_SIZE, KASAN_STACK_LEFT);
kasan_mark(addr, size, roundup(size, KASAN_ALLOCA_SCALE_SIZE),
KASAN_STACK_MID);
kasan_shadow_Nbyte_fill(r, KASAN_ALLOCA_SCALE_SIZE, KASAN_STACK_RIGHT);
}
void
__asan_allocas_unpoison(const void *stkbegin, const void *stkend)
{
size_t size;
if (__predict_false(!stkbegin))
return;
if (__predict_false((uintptr_t)stkbegin > (uintptr_t)stkend))
return;
size = (uintptr_t)stkend - (uintptr_t)stkbegin;
kasan_shadow_Nbyte_fill(stkbegin, size, 0);
}
void __asan_poison_memory_region(const void *addr, size_t size);
void __asan_unpoison_memory_region(const void *addr, size_t size);
void
__asan_poison_memory_region(const void *addr, size_t size)
{
}
void
__asan_unpoison_memory_region(const void *addr, size_t size)
{
}