aboutsummaryrefslogtreecommitdiff
path: root/contrib/gcc/function.c
diff options
context:
space:
mode:
authorPeter Wemm <peter@FreeBSD.org>1996-09-18 05:35:50 +0000
committerPeter Wemm <peter@FreeBSD.org>1996-09-18 05:35:50 +0000
commita4cd5630b060871c42e59f7b95cf1e823c417db6 (patch)
tree5b7ea73fc49c8998d9dc87d3eeff5b96439e6856 /contrib/gcc/function.c
downloadsrc-a4cd5630b060871c42e59f7b95cf1e823c417db6.tar.gz
src-a4cd5630b060871c42e59f7b95cf1e823c417db6.zip
Import of unmodified (but trimmed) gcc-2.7.2. The bigger parts of the
non-i386, non-unix, and generatable files have been trimmed, but can easily be added in later if needed. gcc-2.7.2.1 will follow shortly, it's a very small delta to this and it's handy to have both available for reference for such little cost. The freebsd-specific changes will then be committed, and once the dust has settled, the bmakefiles will be committed to use this code.
Notes
Notes: svn path=/vendor/gcc/dist/; revision=18334
Diffstat (limited to 'contrib/gcc/function.c')
-rw-r--r--contrib/gcc/function.c5703
1 files changed, 5703 insertions, 0 deletions
diff --git a/contrib/gcc/function.c b/contrib/gcc/function.c
new file mode 100644
index 000000000000..e45eec64e063
--- /dev/null
+++ b/contrib/gcc/function.c
@@ -0,0 +1,5703 @@
+/* Expands front end tree to back end RTL for GNU C-Compiler
+ Copyright (C) 1987, 88, 89, 91-94, 1995 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+
+/* This file handles the generation of rtl code from tree structure
+ at the level of the function as a whole.
+ It creates the rtl expressions for parameters and auto variables
+ and has full responsibility for allocating stack slots.
+
+ `expand_function_start' is called at the beginning of a function,
+ before the function body is parsed, and `expand_function_end' is
+ called after parsing the body.
+
+ Call `assign_stack_local' to allocate a stack slot for a local variable.
+ This is usually done during the RTL generation for the function body,
+ but it can also be done in the reload pass when a pseudo-register does
+ not get a hard register.
+
+ Call `put_var_into_stack' when you learn, belatedly, that a variable
+ previously given a pseudo-register must in fact go in the stack.
+ This function changes the DECL_RTL to be a stack slot instead of a reg
+ then scans all the RTL instructions so far generated to correct them. */
+
+#include "config.h"
+
+#include <stdio.h>
+
+#include "rtl.h"
+#include "tree.h"
+#include "flags.h"
+#include "function.h"
+#include "insn-flags.h"
+#include "expr.h"
+#include "insn-codes.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "insn-config.h"
+#include "recog.h"
+#include "output.h"
+#include "basic-block.h"
+#include "obstack.h"
+#include "bytecode.h"
+
+/* Some systems use __main in a way incompatible with its use in gcc, in these
+ cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
+ give the same symbol without quotes for an alternative entry point. You
+ must define both, or neither. */
+#ifndef NAME__MAIN
+#define NAME__MAIN "__main"
+#define SYMBOL__MAIN __main
+#endif
+
+/* Round a value to the lowest integer less than it that is a multiple of
+ the required alignment. Avoid using division in case the value is
+ negative. Assume the alignment is a power of two. */
+#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
+
+/* Similar, but round to the next highest integer that meets the
+ alignment. */
+#define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
+
+/* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
+ during rtl generation. If they are different register numbers, this is
+ always true. It may also be true if
+ FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
+ generation. See fix_lexical_addr for details. */
+
+#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
+#define NEED_SEPARATE_AP
+#endif
+
+/* Number of bytes of args popped by function being compiled on its return.
+ Zero if no bytes are to be popped.
+ May affect compilation of return insn or of function epilogue. */
+
+int current_function_pops_args;
+
+/* Nonzero if function being compiled needs to be given an address
+ where the value should be stored. */
+
+int current_function_returns_struct;
+
+/* Nonzero if function being compiled needs to
+ return the address of where it has put a structure value. */
+
+int current_function_returns_pcc_struct;
+
+/* Nonzero if function being compiled needs to be passed a static chain. */
+
+int current_function_needs_context;
+
+/* Nonzero if function being compiled can call setjmp. */
+
+int current_function_calls_setjmp;
+
+/* Nonzero if function being compiled can call longjmp. */
+
+int current_function_calls_longjmp;
+
+/* Nonzero if function being compiled receives nonlocal gotos
+ from nested functions. */
+
+int current_function_has_nonlocal_label;
+
+/* Nonzero if function being compiled has nonlocal gotos to parent
+ function. */
+
+int current_function_has_nonlocal_goto;
+
+/* Nonzero if function being compiled contains nested functions. */
+
+int current_function_contains_functions;
+
+/* Nonzero if function being compiled can call alloca,
+ either as a subroutine or builtin. */
+
+int current_function_calls_alloca;
+
+/* Nonzero if the current function returns a pointer type */
+
+int current_function_returns_pointer;
+
+/* If some insns can be deferred to the delay slots of the epilogue, the
+ delay list for them is recorded here. */
+
+rtx current_function_epilogue_delay_list;
+
+/* If function's args have a fixed size, this is that size, in bytes.
+ Otherwise, it is -1.
+ May affect compilation of return insn or of function epilogue. */
+
+int current_function_args_size;
+
+/* # bytes the prologue should push and pretend that the caller pushed them.
+ The prologue must do this, but only if parms can be passed in registers. */
+
+int current_function_pretend_args_size;
+
+/* # of bytes of outgoing arguments. If ACCUMULATE_OUTGOING_ARGS is
+ defined, the needed space is pushed by the prologue. */
+
+int current_function_outgoing_args_size;
+
+/* This is the offset from the arg pointer to the place where the first
+ anonymous arg can be found, if there is one. */
+
+rtx current_function_arg_offset_rtx;
+
+/* Nonzero if current function uses varargs.h or equivalent.
+ Zero for functions that use stdarg.h. */
+
+int current_function_varargs;
+
+/* Nonzero if current function uses stdarg.h or equivalent.
+ Zero for functions that use varargs.h. */
+
+int current_function_stdarg;
+
+/* Quantities of various kinds of registers
+ used for the current function's args. */
+
+CUMULATIVE_ARGS current_function_args_info;
+
+/* Name of function now being compiled. */
+
+char *current_function_name;
+
+/* If non-zero, an RTL expression for that location at which the current
+ function returns its result. Always equal to
+ DECL_RTL (DECL_RESULT (current_function_decl)), but provided
+ independently of the tree structures. */
+
+rtx current_function_return_rtx;
+
+/* Nonzero if the current function uses the constant pool. */
+
+int current_function_uses_const_pool;
+
+/* Nonzero if the current function uses pic_offset_table_rtx. */
+int current_function_uses_pic_offset_table;
+
+/* The arg pointer hard register, or the pseudo into which it was copied. */
+rtx current_function_internal_arg_pointer;
+
+/* The FUNCTION_DECL for an inline function currently being expanded. */
+tree inline_function_decl;
+
+/* Number of function calls seen so far in current function. */
+
+int function_call_count;
+
+/* List (chain of TREE_LIST) of LABEL_DECLs for all nonlocal labels
+ (labels to which there can be nonlocal gotos from nested functions)
+ in this function. */
+
+tree nonlocal_labels;
+
+/* RTX for stack slot that holds the current handler for nonlocal gotos.
+ Zero when function does not have nonlocal labels. */
+
+rtx nonlocal_goto_handler_slot;
+
+/* RTX for stack slot that holds the stack pointer value to restore
+ for a nonlocal goto.
+ Zero when function does not have nonlocal labels. */
+
+rtx nonlocal_goto_stack_level;
+
+/* Label that will go on parm cleanup code, if any.
+ Jumping to this label runs cleanup code for parameters, if
+ such code must be run. Following this code is the logical return label. */
+
+rtx cleanup_label;
+
+/* Label that will go on function epilogue.
+ Jumping to this label serves as a "return" instruction
+ on machines which require execution of the epilogue on all returns. */
+
+rtx return_label;
+
+/* List (chain of EXPR_LISTs) of pseudo-regs of SAVE_EXPRs.
+ So we can mark them all live at the end of the function, if nonopt. */
+rtx save_expr_regs;
+
+/* List (chain of EXPR_LISTs) of all stack slots in this function.
+ Made for the sake of unshare_all_rtl. */
+rtx stack_slot_list;
+
+/* Chain of all RTL_EXPRs that have insns in them. */
+tree rtl_expr_chain;
+
+/* Label to jump back to for tail recursion, or 0 if we have
+ not yet needed one for this function. */
+rtx tail_recursion_label;
+
+/* Place after which to insert the tail_recursion_label if we need one. */
+rtx tail_recursion_reentry;
+
+/* Location at which to save the argument pointer if it will need to be
+ referenced. There are two cases where this is done: if nonlocal gotos
+ exist, or if vars stored at an offset from the argument pointer will be
+ needed by inner routines. */
+
+rtx arg_pointer_save_area;
+
+/* Offset to end of allocated area of stack frame.
+ If stack grows down, this is the address of the last stack slot allocated.
+ If stack grows up, this is the address for the next slot. */
+int frame_offset;
+
+/* List (chain of TREE_LISTs) of static chains for containing functions.
+ Each link has a FUNCTION_DECL in the TREE_PURPOSE and a reg rtx
+ in an RTL_EXPR in the TREE_VALUE. */
+static tree context_display;
+
+/* List (chain of TREE_LISTs) of trampolines for nested functions.
+ The trampoline sets up the static chain and jumps to the function.
+ We supply the trampoline's address when the function's address is requested.
+
+ Each link has a FUNCTION_DECL in the TREE_PURPOSE and a reg rtx
+ in an RTL_EXPR in the TREE_VALUE. */
+static tree trampoline_list;
+
+/* Insn after which register parms and SAVE_EXPRs are born, if nonopt. */
+static rtx parm_birth_insn;
+
+#if 0
+/* Nonzero if a stack slot has been generated whose address is not
+ actually valid. It means that the generated rtl must all be scanned
+ to detect and correct the invalid addresses where they occur. */
+static int invalid_stack_slot;
+#endif
+
+/* Last insn of those whose job was to put parms into their nominal homes. */
+static rtx last_parm_insn;
+
+/* 1 + last pseudo register number used for loading a copy
+ of a parameter of this function. */
+static int max_parm_reg;
+
+/* Vector indexed by REGNO, containing location on stack in which
+ to put the parm which is nominally in pseudo register REGNO,
+ if we discover that that parm must go in the stack. */
+static rtx *parm_reg_stack_loc;
+
+#if 0 /* Turned off because 0 seems to work just as well. */
+/* Cleanup lists are required for binding levels regardless of whether
+ that binding level has cleanups or not. This node serves as the
+ cleanup list whenever an empty list is required. */
+static tree empty_cleanup_list;
+#endif
+
+/* Nonzero once virtual register instantiation has been done.
+ assign_stack_local uses frame_pointer_rtx when this is nonzero. */
+static int virtuals_instantiated;
+
+/* These variables hold pointers to functions to
+ save and restore machine-specific data,
+ in push_function_context and pop_function_context. */
+void (*save_machine_status) ();
+void (*restore_machine_status) ();
+
+/* Nonzero if we need to distinguish between the return value of this function
+ and the return value of a function called by this function. This helps
+ integrate.c */
+
+extern int rtx_equal_function_value_matters;
+extern tree sequence_rtl_expr;
+extern tree bc_runtime_type_code ();
+extern rtx bc_build_calldesc ();
+extern char *bc_emit_trampoline ();
+extern char *bc_end_function ();
+
+/* In order to evaluate some expressions, such as function calls returning
+ structures in memory, we need to temporarily allocate stack locations.
+ We record each allocated temporary in the following structure.
+
+ Associated with each temporary slot is a nesting level. When we pop up
+ one level, all temporaries associated with the previous level are freed.
+ Normally, all temporaries are freed after the execution of the statement
+ in which they were created. However, if we are inside a ({...}) grouping,
+ the result may be in a temporary and hence must be preserved. If the
+ result could be in a temporary, we preserve it if we can determine which
+ one it is in. If we cannot determine which temporary may contain the
+ result, all temporaries are preserved. A temporary is preserved by
+ pretending it was allocated at the previous nesting level.
+
+ Automatic variables are also assigned temporary slots, at the nesting
+ level where they are defined. They are marked a "kept" so that
+ free_temp_slots will not free them. */
+
+struct temp_slot
+{
+ /* Points to next temporary slot. */
+ struct temp_slot *next;
+ /* The rtx to used to reference the slot. */
+ rtx slot;
+ /* The rtx used to represent the address if not the address of the
+ slot above. May be an EXPR_LIST if multiple addresses exist. */
+ rtx address;
+ /* The size, in units, of the slot. */
+ int size;
+ /* The value of `sequence_rtl_expr' when this temporary is allocated. */
+ tree rtl_expr;
+ /* Non-zero if this temporary is currently in use. */
+ char in_use;
+ /* Non-zero if this temporary has its address taken. */
+ char addr_taken;
+ /* Nesting level at which this slot is being used. */
+ int level;
+ /* Non-zero if this should survive a call to free_temp_slots. */
+ int keep;
+ /* The offset of the slot from the frame_pointer, including extra space
+ for alignment. This info is for combine_temp_slots. */
+ int base_offset;
+ /* The size of the slot, including extra space for alignment. This
+ info is for combine_temp_slots. */
+ int full_size;
+};
+
+/* List of all temporaries allocated, both available and in use. */
+
+struct temp_slot *temp_slots;
+
+/* Current nesting level for temporaries. */
+
+int temp_slot_level;
+
+/* The FUNCTION_DECL node for the current function. */
+static tree this_function_decl;
+
+/* Callinfo pointer for the current function. */
+static rtx this_function_callinfo;
+
+/* The label in the bytecode file of this function's actual bytecode.
+ Not an rtx. */
+static char *this_function_bytecode;
+
+/* The call description vector for the current function. */
+static rtx this_function_calldesc;
+
+/* Size of the local variables allocated for the current function. */
+int local_vars_size;
+
+/* Current depth of the bytecode evaluation stack. */
+int stack_depth;
+
+/* Maximum depth of the evaluation stack in this function. */
+int max_stack_depth;
+
+/* Current depth in statement expressions. */
+static int stmt_expr_depth;
+
+/* This structure is used to record MEMs or pseudos used to replace VAR, any
+ SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
+ maintain this list in case two operands of an insn were required to match;
+ in that case we must ensure we use the same replacement. */
+
+struct fixup_replacement
+{
+ rtx old;
+ rtx new;
+ struct fixup_replacement *next;
+};
+
+/* Forward declarations. */
+
+static struct temp_slot *find_temp_slot_from_address PROTO((rtx));
+static void put_reg_into_stack PROTO((struct function *, rtx, tree,
+ enum machine_mode, enum machine_mode,
+ int));
+static void fixup_var_refs PROTO((rtx, enum machine_mode, int));
+static struct fixup_replacement
+ *find_fixup_replacement PROTO((struct fixup_replacement **, rtx));
+static void fixup_var_refs_insns PROTO((rtx, enum machine_mode, int,
+ rtx, int));
+static void fixup_var_refs_1 PROTO((rtx, enum machine_mode, rtx *, rtx,
+ struct fixup_replacement **));
+static rtx fixup_memory_subreg PROTO((rtx, rtx, int));
+static rtx walk_fixup_memory_subreg PROTO((rtx, rtx, int));
+static rtx fixup_stack_1 PROTO((rtx, rtx));
+static void optimize_bit_field PROTO((rtx, rtx, rtx *));
+static void instantiate_decls PROTO((tree, int));
+static void instantiate_decls_1 PROTO((tree, int));
+static void instantiate_decl PROTO((rtx, int, int));
+static int instantiate_virtual_regs_1 PROTO((rtx *, rtx, int));
+static void delete_handlers PROTO((void));
+static void pad_to_arg_alignment PROTO((struct args_size *, int));
+static void pad_below PROTO((struct args_size *, enum machine_mode,
+ tree));
+static tree round_down PROTO((tree, int));
+static rtx round_trampoline_addr PROTO((rtx));
+static tree blocks_nreverse PROTO((tree));
+static int all_blocks PROTO((tree, tree *));
+static int *record_insns PROTO((rtx));
+static int contains PROTO((rtx, int *));
+
+/* Pointer to chain of `struct function' for containing functions. */
+struct function *outer_function_chain;
+
+/* Given a function decl for a containing function,
+ return the `struct function' for it. */
+
+struct function *
+find_function_data (decl)
+ tree decl;
+{
+ struct function *p;
+ for (p = outer_function_chain; p; p = p->next)
+ if (p->decl == decl)
+ return p;
+ abort ();
+}
+
+/* Save the current context for compilation of a nested function.
+ This is called from language-specific code.
+ The caller is responsible for saving any language-specific status,
+ since this function knows only about language-independent variables. */
+
+void
+push_function_context_to (context)
+ tree context;
+{
+ struct function *p = (struct function *) xmalloc (sizeof (struct function));
+
+ p->next = outer_function_chain;
+ outer_function_chain = p;
+
+ p->name = current_function_name;
+ p->decl = current_function_decl;
+ p->pops_args = current_function_pops_args;
+ p->returns_struct = current_function_returns_struct;
+ p->returns_pcc_struct = current_function_returns_pcc_struct;
+ p->needs_context = current_function_needs_context;
+ p->calls_setjmp = current_function_calls_setjmp;
+ p->calls_longjmp = current_function_calls_longjmp;
+ p->calls_alloca = current_function_calls_alloca;
+ p->has_nonlocal_label = current_function_has_nonlocal_label;
+ p->has_nonlocal_goto = current_function_has_nonlocal_goto;
+ p->contains_functions = current_function_contains_functions;
+ p->args_size = current_function_args_size;
+ p->pretend_args_size = current_function_pretend_args_size;
+ p->arg_offset_rtx = current_function_arg_offset_rtx;
+ p->varargs = current_function_varargs;
+ p->stdarg = current_function_stdarg;
+ p->uses_const_pool = current_function_uses_const_pool;
+ p->uses_pic_offset_table = current_function_uses_pic_offset_table;
+ p->internal_arg_pointer = current_function_internal_arg_pointer;
+ p->max_parm_reg = max_parm_reg;
+ p->parm_reg_stack_loc = parm_reg_stack_loc;
+ p->outgoing_args_size = current_function_outgoing_args_size;
+ p->return_rtx = current_function_return_rtx;
+ p->nonlocal_goto_handler_slot = nonlocal_goto_handler_slot;
+ p->nonlocal_goto_stack_level = nonlocal_goto_stack_level;
+ p->nonlocal_labels = nonlocal_labels;
+ p->cleanup_label = cleanup_label;
+ p->return_label = return_label;
+ p->save_expr_regs = save_expr_regs;
+ p->stack_slot_list = stack_slot_list;
+ p->parm_birth_insn = parm_birth_insn;
+ p->frame_offset = frame_offset;
+ p->tail_recursion_label = tail_recursion_label;
+ p->tail_recursion_reentry = tail_recursion_reentry;
+ p->arg_pointer_save_area = arg_pointer_save_area;
+ p->rtl_expr_chain = rtl_expr_chain;
+ p->last_parm_insn = last_parm_insn;
+ p->context_display = context_display;
+ p->trampoline_list = trampoline_list;
+ p->function_call_count = function_call_count;
+ p->temp_slots = temp_slots;
+ p->temp_slot_level = temp_slot_level;
+ p->fixup_var_refs_queue = 0;
+ p->epilogue_delay_list = current_function_epilogue_delay_list;
+
+ save_tree_status (p, context);
+ save_storage_status (p);
+ save_emit_status (p);
+ init_emit ();
+ save_expr_status (p);
+ save_stmt_status (p);
+ save_varasm_status (p);
+
+ if (save_machine_status)
+ (*save_machine_status) (p);
+}
+
+void
+push_function_context ()
+{
+ push_function_context_to (current_function_decl);
+}
+
+/* Restore the last saved context, at the end of a nested function.
+ This function is called from language-specific code. */
+
+void
+pop_function_context_from (context)
+ tree context;
+{
+ struct function *p = outer_function_chain;
+
+ outer_function_chain = p->next;
+
+ current_function_contains_functions
+ = p->contains_functions || p->inline_obstacks
+ || context == current_function_decl;
+ current_function_name = p->name;
+ current_function_decl = p->decl;
+ current_function_pops_args = p->pops_args;
+ current_function_returns_struct = p->returns_struct;
+ current_function_returns_pcc_struct = p->returns_pcc_struct;
+ current_function_needs_context = p->needs_context;
+ current_function_calls_setjmp = p->calls_setjmp;
+ current_function_calls_longjmp = p->calls_longjmp;
+ current_function_calls_alloca = p->calls_alloca;
+ current_function_has_nonlocal_label = p->has_nonlocal_label;
+ current_function_has_nonlocal_goto = p->has_nonlocal_goto;
+ current_function_args_size = p->args_size;
+ current_function_pretend_args_size = p->pretend_args_size;
+ current_function_arg_offset_rtx = p->arg_offset_rtx;
+ current_function_varargs = p->varargs;
+ current_function_stdarg = p->stdarg;
+ current_function_uses_const_pool = p->uses_const_pool;
+ current_function_uses_pic_offset_table = p->uses_pic_offset_table;
+ current_function_internal_arg_pointer = p->internal_arg_pointer;
+ max_parm_reg = p->max_parm_reg;
+ parm_reg_stack_loc = p->parm_reg_stack_loc;
+ current_function_outgoing_args_size = p->outgoing_args_size;
+ current_function_return_rtx = p->return_rtx;
+ nonlocal_goto_handler_slot = p->nonlocal_goto_handler_slot;
+ nonlocal_goto_stack_level = p->nonlocal_goto_stack_level;
+ nonlocal_labels = p->nonlocal_labels;
+ cleanup_label = p->cleanup_label;
+ return_label = p->return_label;
+ save_expr_regs = p->save_expr_regs;
+ stack_slot_list = p->stack_slot_list;
+ parm_birth_insn = p->parm_birth_insn;
+ frame_offset = p->frame_offset;
+ tail_recursion_label = p->tail_recursion_label;
+ tail_recursion_reentry = p->tail_recursion_reentry;
+ arg_pointer_save_area = p->arg_pointer_save_area;
+ rtl_expr_chain = p->rtl_expr_chain;
+ last_parm_insn = p->last_parm_insn;
+ context_display = p->context_display;
+ trampoline_list = p->trampoline_list;
+ function_call_count = p->function_call_count;
+ temp_slots = p->temp_slots;
+ temp_slot_level = p->temp_slot_level;
+ current_function_epilogue_delay_list = p->epilogue_delay_list;
+ reg_renumber = 0;
+
+ restore_tree_status (p);
+ restore_storage_status (p);
+ restore_expr_status (p);
+ restore_emit_status (p);
+ restore_stmt_status (p);
+ restore_varasm_status (p);
+
+ if (restore_machine_status)
+ (*restore_machine_status) (p);
+
+ /* Finish doing put_var_into_stack for any of our variables
+ which became addressable during the nested function. */
+ {
+ struct var_refs_queue *queue = p->fixup_var_refs_queue;
+ for (; queue; queue = queue->next)
+ fixup_var_refs (queue->modified, queue->promoted_mode, queue->unsignedp);
+ }
+
+ free (p);
+
+ /* Reset variables that have known state during rtx generation. */
+ rtx_equal_function_value_matters = 1;
+ virtuals_instantiated = 0;
+}
+
+void pop_function_context ()
+{
+ pop_function_context_from (current_function_decl);
+}
+
+/* Allocate fixed slots in the stack frame of the current function. */
+
+/* Return size needed for stack frame based on slots so far allocated.
+ This size counts from zero. It is not rounded to STACK_BOUNDARY;
+ the caller may have to do that. */
+
+int
+get_frame_size ()
+{
+#ifdef FRAME_GROWS_DOWNWARD
+ return -frame_offset;
+#else
+ return frame_offset;
+#endif
+}
+
+/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
+ with machine mode MODE.
+
+ ALIGN controls the amount of alignment for the address of the slot:
+ 0 means according to MODE,
+ -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
+ positive specifies alignment boundary in bits.
+
+ We do not round to stack_boundary here. */
+
+rtx
+assign_stack_local (mode, size, align)
+ enum machine_mode mode;
+ int size;
+ int align;
+{
+ register rtx x, addr;
+ int bigend_correction = 0;
+ int alignment;
+
+ if (align == 0)
+ {
+ alignment = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
+ if (mode == BLKmode)
+ alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
+ }
+ else if (align == -1)
+ {
+ alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
+ size = CEIL_ROUND (size, alignment);
+ }
+ else
+ alignment = align / BITS_PER_UNIT;
+
+ /* Round frame offset to that alignment.
+ We must be careful here, since FRAME_OFFSET might be negative and
+ division with a negative dividend isn't as well defined as we might
+ like. So we instead assume that ALIGNMENT is a power of two and
+ use logical operations which are unambiguous. */
+#ifdef FRAME_GROWS_DOWNWARD
+ frame_offset = FLOOR_ROUND (frame_offset, alignment);
+#else
+ frame_offset = CEIL_ROUND (frame_offset, alignment);
+#endif
+
+ /* On a big-endian machine, if we are allocating more space than we will use,
+ use the least significant bytes of those that are allocated. */
+ if (BYTES_BIG_ENDIAN && mode != BLKmode)
+ bigend_correction = size - GET_MODE_SIZE (mode);
+
+#ifdef FRAME_GROWS_DOWNWARD
+ frame_offset -= size;
+#endif
+
+ /* If we have already instantiated virtual registers, return the actual
+ address relative to the frame pointer. */
+ if (virtuals_instantiated)
+ addr = plus_constant (frame_pointer_rtx,
+ (frame_offset + bigend_correction
+ + STARTING_FRAME_OFFSET));
+ else
+ addr = plus_constant (virtual_stack_vars_rtx,
+ frame_offset + bigend_correction);
+
+#ifndef FRAME_GROWS_DOWNWARD
+ frame_offset += size;
+#endif
+
+ x = gen_rtx (MEM, mode, addr);
+
+ stack_slot_list = gen_rtx (EXPR_LIST, VOIDmode, x, stack_slot_list);
+
+ return x;
+}
+
+/* Assign a stack slot in a containing function.
+ First three arguments are same as in preceding function.
+ The last argument specifies the function to allocate in. */
+
+rtx
+assign_outer_stack_local (mode, size, align, function)
+ enum machine_mode mode;
+ int size;
+ int align;
+ struct function *function;
+{
+ register rtx x, addr;
+ int bigend_correction = 0;
+ int alignment;
+
+ /* Allocate in the memory associated with the function in whose frame
+ we are assigning. */
+ push_obstacks (function->function_obstack,
+ function->function_maybepermanent_obstack);
+
+ if (align == 0)
+ {
+ alignment = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
+ if (mode == BLKmode)
+ alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
+ }
+ else if (align == -1)
+ {
+ alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
+ size = CEIL_ROUND (size, alignment);
+ }
+ else
+ alignment = align / BITS_PER_UNIT;
+
+ /* Round frame offset to that alignment. */
+#ifdef FRAME_GROWS_DOWNWARD
+ function->frame_offset = FLOOR_ROUND (function->frame_offset, alignment);
+#else
+ function->frame_offset = CEIL_ROUND (function->frame_offset, alignment);
+#endif
+
+ /* On a big-endian machine, if we are allocating more space than we will use,
+ use the least significant bytes of those that are allocated. */
+ if (BYTES_BIG_ENDIAN && mode != BLKmode)
+ bigend_correction = size - GET_MODE_SIZE (mode);
+
+#ifdef FRAME_GROWS_DOWNWARD
+ function->frame_offset -= size;
+#endif
+ addr = plus_constant (virtual_stack_vars_rtx,
+ function->frame_offset + bigend_correction);
+#ifndef FRAME_GROWS_DOWNWARD
+ function->frame_offset += size;
+#endif
+
+ x = gen_rtx (MEM, mode, addr);
+
+ function->stack_slot_list
+ = gen_rtx (EXPR_LIST, VOIDmode, x, function->stack_slot_list);
+
+ pop_obstacks ();
+
+ return x;
+}
+
+/* Allocate a temporary stack slot and record it for possible later
+ reuse.
+
+ MODE is the machine mode to be given to the returned rtx.
+
+ SIZE is the size in units of the space required. We do no rounding here
+ since assign_stack_local will do any required rounding.
+
+ KEEP is 1 if this slot is to be retained after a call to
+ free_temp_slots. Automatic variables for a block are allocated
+ with this flag. KEEP is 2, if we allocate a longer term temporary,
+ whose lifetime is controlled by CLEANUP_POINT_EXPRs. */
+
+rtx
+assign_stack_temp (mode, size, keep)
+ enum machine_mode mode;
+ int size;
+ int keep;
+{
+ struct temp_slot *p, *best_p = 0;
+
+ /* If SIZE is -1 it means that somebody tried to allocate a temporary
+ of a variable size. */
+ if (size == -1)
+ abort ();
+
+ /* First try to find an available, already-allocated temporary that is the
+ exact size we require. */
+ for (p = temp_slots; p; p = p->next)
+ if (p->size == size && GET_MODE (p->slot) == mode && ! p->in_use)
+ break;
+
+ /* If we didn't find, one, try one that is larger than what we want. We
+ find the smallest such. */
+ if (p == 0)
+ for (p = temp_slots; p; p = p->next)
+ if (p->size > size && GET_MODE (p->slot) == mode && ! p->in_use
+ && (best_p == 0 || best_p->size > p->size))
+ best_p = p;
+
+ /* Make our best, if any, the one to use. */
+ if (best_p)
+ {
+ /* If there are enough aligned bytes left over, make them into a new
+ temp_slot so that the extra bytes don't get wasted. Do this only
+ for BLKmode slots, so that we can be sure of the alignment. */
+ if (GET_MODE (best_p->slot) == BLKmode)
+ {
+ int alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
+ int rounded_size = CEIL_ROUND (size, alignment);
+
+ if (best_p->size - rounded_size >= alignment)
+ {
+ p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
+ p->in_use = p->addr_taken = 0;
+ p->size = best_p->size - rounded_size;
+ p->base_offset = best_p->base_offset + rounded_size;
+ p->full_size = best_p->full_size - rounded_size;
+ p->slot = gen_rtx (MEM, BLKmode,
+ plus_constant (XEXP (best_p->slot, 0),
+ rounded_size));
+ p->address = 0;
+ p->rtl_expr = 0;
+ p->next = temp_slots;
+ temp_slots = p;
+
+ stack_slot_list = gen_rtx (EXPR_LIST, VOIDmode, p->slot,
+ stack_slot_list);
+
+ best_p->size = rounded_size;
+ best_p->full_size = rounded_size;
+ }
+ }
+
+ p = best_p;
+ }
+
+ /* If we still didn't find one, make a new temporary. */
+ if (p == 0)
+ {
+ int frame_offset_old = frame_offset;
+ p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
+ /* If the temp slot mode doesn't indicate the alignment,
+ use the largest possible, so no one will be disappointed. */
+ p->slot = assign_stack_local (mode, size, mode == BLKmode ? -1 : 0);
+ /* The following slot size computation is necessary because we don't
+ know the actual size of the temporary slot until assign_stack_local
+ has performed all the frame alignment and size rounding for the
+ requested temporary. Note that extra space added for alignment
+ can be either above or below this stack slot depending on which
+ way the frame grows. We include the extra space if and only if it
+ is above this slot. */
+#ifdef FRAME_GROWS_DOWNWARD
+ p->size = frame_offset_old - frame_offset;
+#else
+ p->size = size;
+#endif
+ /* Now define the fields used by combine_temp_slots. */
+#ifdef FRAME_GROWS_DOWNWARD
+ p->base_offset = frame_offset;
+ p->full_size = frame_offset_old - frame_offset;
+#else
+ p->base_offset = frame_offset_old;
+ p->full_size = frame_offset - frame_offset_old;
+#endif
+ p->address = 0;
+ p->next = temp_slots;
+ temp_slots = p;
+ }
+
+ p->in_use = 1;
+ p->addr_taken = 0;
+ p->rtl_expr = sequence_rtl_expr;
+
+ if (keep == 2)
+ {
+ p->level = target_temp_slot_level;
+ p->keep = 0;
+ }
+ else
+ {
+ p->level = temp_slot_level;
+ p->keep = keep;
+ }
+ return p->slot;
+}
+
+/* Combine temporary stack slots which are adjacent on the stack.
+
+ This allows for better use of already allocated stack space. This is only
+ done for BLKmode slots because we can be sure that we won't have alignment
+ problems in this case. */
+
+void
+combine_temp_slots ()
+{
+ struct temp_slot *p, *q;
+ struct temp_slot *prev_p, *prev_q;
+ /* Determine where to free back to after this function. */
+ rtx free_pointer = rtx_alloc (CONST_INT);
+
+ for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
+ {
+ int delete_p = 0;
+ if (! p->in_use && GET_MODE (p->slot) == BLKmode)
+ for (q = p->next, prev_q = p; q; q = prev_q->next)
+ {
+ int delete_q = 0;
+ if (! q->in_use && GET_MODE (q->slot) == BLKmode)
+ {
+ if (p->base_offset + p->full_size == q->base_offset)
+ {
+ /* Q comes after P; combine Q into P. */
+ p->size += q->size;
+ p->full_size += q->full_size;
+ delete_q = 1;
+ }
+ else if (q->base_offset + q->full_size == p->base_offset)
+ {
+ /* P comes after Q; combine P into Q. */
+ q->size += p->size;
+ q->full_size += p->full_size;
+ delete_p = 1;
+ break;
+ }
+ }
+ /* Either delete Q or advance past it. */
+ if (delete_q)
+ prev_q->next = q->next;
+ else
+ prev_q = q;
+ }
+ /* Either delete P or advance past it. */
+ if (delete_p)
+ {
+ if (prev_p)
+ prev_p->next = p->next;
+ else
+ temp_slots = p->next;
+ }
+ else
+ prev_p = p;
+ }
+
+ /* Free all the RTL made by plus_constant. */
+ rtx_free (free_pointer);
+}
+
+/* Find the temp slot corresponding to the object at address X. */
+
+static struct temp_slot *
+find_temp_slot_from_address (x)
+ rtx x;
+{
+ struct temp_slot *p;
+ rtx next;
+
+ for (p = temp_slots; p; p = p->next)
+ {
+ if (! p->in_use)
+ continue;
+ else if (XEXP (p->slot, 0) == x
+ || p->address == x)
+ return p;
+
+ else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
+ for (next = p->address; next; next = XEXP (next, 1))
+ if (XEXP (next, 0) == x)
+ return p;
+ }
+
+ return 0;
+}
+
+/* Indicate that NEW is an alternate way of referring to the temp slot
+ that previous was known by OLD. */
+
+void
+update_temp_slot_address (old, new)
+ rtx old, new;
+{
+ struct temp_slot *p = find_temp_slot_from_address (old);
+
+ /* If none, return. Else add NEW as an alias. */
+ if (p == 0)
+ return;
+ else if (p->address == 0)
+ p->address = new;
+ else
+ {
+ if (GET_CODE (p->address) != EXPR_LIST)
+ p->address = gen_rtx (EXPR_LIST, VOIDmode, p->address, NULL_RTX);
+
+ p->address = gen_rtx (EXPR_LIST, VOIDmode, new, p->address);
+ }
+}
+
+/* If X could be a reference to a temporary slot, mark the fact that its
+ address was taken. */
+
+void
+mark_temp_addr_taken (x)
+ rtx x;
+{
+ struct temp_slot *p;
+
+ if (x == 0)
+ return;
+
+ /* If X is not in memory or is at a constant address, it cannot be in
+ a temporary slot. */
+ if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
+ return;
+
+ p = find_temp_slot_from_address (XEXP (x, 0));
+ if (p != 0)
+ p->addr_taken = 1;
+}
+
+/* If X could be a reference to a temporary slot, mark that slot as belonging
+ to the to one level higher. If X matched one of our slots, just mark that
+ one. Otherwise, we can't easily predict which it is, so upgrade all of
+ them. Kept slots need not be touched.
+
+ This is called when an ({...}) construct occurs and a statement
+ returns a value in memory. */
+
+void
+preserve_temp_slots (x)
+ rtx x;
+{
+ struct temp_slot *p = 0;
+
+ /* If there is no result, we still might have some objects whose address
+ were taken, so we need to make sure they stay around. */
+ if (x == 0)
+ {
+ for (p = temp_slots; p; p = p->next)
+ if (p->in_use && p->level == temp_slot_level && p->addr_taken)
+ p->level--;
+
+ return;
+ }
+
+ /* If X is a register that is being used as a pointer, see if we have
+ a temporary slot we know it points to. To be consistent with
+ the code below, we really should preserve all non-kept slots
+ if we can't find a match, but that seems to be much too costly. */
+ if (GET_CODE (x) == REG && REGNO_POINTER_FLAG (REGNO (x)))
+ p = find_temp_slot_from_address (x);
+
+ /* If X is not in memory or is at a constant address, it cannot be in
+ a temporary slot, but it can contain something whose address was
+ taken. */
+ if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
+ {
+ for (p = temp_slots; p; p = p->next)
+ if (p->in_use && p->level == temp_slot_level && p->addr_taken)
+ p->level--;
+
+ return;
+ }
+
+ /* First see if we can find a match. */
+ if (p == 0)
+ p = find_temp_slot_from_address (XEXP (x, 0));
+
+ if (p != 0)
+ {
+ /* Move everything at our level whose address was taken to our new
+ level in case we used its address. */
+ struct temp_slot *q;
+
+ for (q = temp_slots; q; q = q->next)
+ if (q != p && q->addr_taken && q->level == p->level)
+ q->level--;
+
+ p->level--;
+ p->addr_taken = 0;
+ return;
+ }
+
+ /* Otherwise, preserve all non-kept slots at this level. */
+ for (p = temp_slots; p; p = p->next)
+ if (p->in_use && p->level == temp_slot_level && ! p->keep)
+ p->level--;
+}
+
+/* X is the result of an RTL_EXPR. If it is a temporary slot associated
+ with that RTL_EXPR, promote it into a temporary slot at the present
+ level so it will not be freed when we free slots made in the
+ RTL_EXPR. */
+
+void
+preserve_rtl_expr_result (x)
+ rtx x;
+{
+ struct temp_slot *p;
+
+ /* If X is not in memory or is at a constant address, it cannot be in
+ a temporary slot. */
+ if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
+ return;
+
+ /* If we can find a match, move it to our level unless it is already at
+ an upper level. */
+ p = find_temp_slot_from_address (XEXP (x, 0));
+ if (p != 0)
+ {
+ p->level = MIN (p->level, temp_slot_level);
+ p->rtl_expr = 0;
+ }
+
+ return;
+}
+
+/* Free all temporaries used so far. This is normally called at the end
+ of generating code for a statement. Don't free any temporaries
+ currently in use for an RTL_EXPR that hasn't yet been emitted.
+ We could eventually do better than this since it can be reused while
+ generating the same RTL_EXPR, but this is complex and probably not
+ worthwhile. */
+
+void
+free_temp_slots ()
+{
+ struct temp_slot *p;
+
+ for (p = temp_slots; p; p = p->next)
+ if (p->in_use && p->level == temp_slot_level && ! p->keep
+ && p->rtl_expr == 0)
+ p->in_use = 0;
+
+ combine_temp_slots ();
+}
+
+/* Free all temporary slots used in T, an RTL_EXPR node. */
+
+void
+free_temps_for_rtl_expr (t)
+ tree t;
+{
+ struct temp_slot *p;
+
+ for (p = temp_slots; p; p = p->next)
+ if (p->rtl_expr == t)
+ p->in_use = 0;
+
+ combine_temp_slots ();
+}
+
+/* Push deeper into the nesting level for stack temporaries. */
+
+void
+push_temp_slots ()
+{
+ temp_slot_level++;
+}
+
+/* Pop a temporary nesting level. All slots in use in the current level
+ are freed. */
+
+void
+pop_temp_slots ()
+{
+ struct temp_slot *p;
+
+ for (p = temp_slots; p; p = p->next)
+ if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
+ p->in_use = 0;
+
+ combine_temp_slots ();
+
+ temp_slot_level--;
+}
+
+/* Retroactively move an auto variable from a register to a stack slot.
+ This is done when an address-reference to the variable is seen. */
+
+void
+put_var_into_stack (decl)
+ tree decl;
+{
+ register rtx reg;
+ enum machine_mode promoted_mode, decl_mode;
+ struct function *function = 0;
+ tree context;
+
+ if (output_bytecode)
+ return;
+
+ context = decl_function_context (decl);
+
+ /* Get the current rtl used for this object and it's original mode. */
+ reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl);
+
+ /* No need to do anything if decl has no rtx yet
+ since in that case caller is setting TREE_ADDRESSABLE
+ and a stack slot will be assigned when the rtl is made. */
+ if (reg == 0)
+ return;
+
+ /* Get the declared mode for this object. */
+ decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
+ : DECL_MODE (decl));
+ /* Get the mode it's actually stored in. */
+ promoted_mode = GET_MODE (reg);
+
+ /* If this variable comes from an outer function,
+ find that function's saved context. */
+ if (context != current_function_decl)
+ for (function = outer_function_chain; function; function = function->next)
+ if (function->decl == context)
+ break;
+
+ /* If this is a variable-size object with a pseudo to address it,
+ put that pseudo into the stack, if the var is nonlocal. */
+ if (DECL_NONLOCAL (decl)
+ && GET_CODE (reg) == MEM
+ && GET_CODE (XEXP (reg, 0)) == REG
+ && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
+ {
+ reg = XEXP (reg, 0);
+ decl_mode = promoted_mode = GET_MODE (reg);
+ }
+
+ /* Now we should have a value that resides in one or more pseudo regs. */
+
+ if (GET_CODE (reg) == REG)
+ put_reg_into_stack (function, reg, TREE_TYPE (decl),
+ promoted_mode, decl_mode, TREE_SIDE_EFFECTS (decl));
+ else if (GET_CODE (reg) == CONCAT)
+ {
+ /* A CONCAT contains two pseudos; put them both in the stack.
+ We do it so they end up consecutive. */
+ enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
+ tree part_type = TREE_TYPE (TREE_TYPE (decl));
+#ifdef FRAME_GROWS_DOWNWARD
+ /* Since part 0 should have a lower address, do it second. */
+ put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
+ part_mode, TREE_SIDE_EFFECTS (decl));
+ put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
+ part_mode, TREE_SIDE_EFFECTS (decl));
+#else
+ put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
+ part_mode, TREE_SIDE_EFFECTS (decl));
+ put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
+ part_mode, TREE_SIDE_EFFECTS (decl));
+#endif
+
+ /* Change the CONCAT into a combined MEM for both parts. */
+ PUT_CODE (reg, MEM);
+ MEM_VOLATILE_P (reg) = MEM_VOLATILE_P (XEXP (reg, 0));
+
+ /* The two parts are in memory order already.
+ Use the lower parts address as ours. */
+ XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
+ /* Prevent sharing of rtl that might lose. */
+ if (GET_CODE (XEXP (reg, 0)) == PLUS)
+ XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
+ }
+}
+
+/* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
+ into the stack frame of FUNCTION (0 means the current function).
+ DECL_MODE is the machine mode of the user-level data type.
+ PROMOTED_MODE is the machine mode of the register.
+ VOLATILE_P is nonzero if this is for a "volatile" decl. */
+
+static void
+put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p)
+ struct function *function;
+ rtx reg;
+ tree type;
+ enum machine_mode promoted_mode, decl_mode;
+ int volatile_p;
+{
+ rtx new = 0;
+
+ if (function)
+ {
+ if (REGNO (reg) < function->max_parm_reg)
+ new = function->parm_reg_stack_loc[REGNO (reg)];
+ if (new == 0)
+ new = assign_outer_stack_local (decl_mode, GET_MODE_SIZE (decl_mode),
+ 0, function);
+ }
+ else
+ {
+ if (REGNO (reg) < max_parm_reg)
+ new = parm_reg_stack_loc[REGNO (reg)];
+ if (new == 0)
+ new = assign_stack_local (decl_mode, GET_MODE_SIZE (decl_mode), 0);
+ }
+
+ PUT_MODE (reg, decl_mode);
+ XEXP (reg, 0) = XEXP (new, 0);
+ /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
+ MEM_VOLATILE_P (reg) = volatile_p;
+ PUT_CODE (reg, MEM);
+
+ /* If this is a memory ref that contains aggregate components,
+ mark it as such for cse and loop optimize. */
+ MEM_IN_STRUCT_P (reg) = AGGREGATE_TYPE_P (type);
+
+ /* Now make sure that all refs to the variable, previously made
+ when it was a register, are fixed up to be valid again. */
+ if (function)
+ {
+ struct var_refs_queue *temp;
+
+ /* Variable is inherited; fix it up when we get back to its function. */
+ push_obstacks (function->function_obstack,
+ function->function_maybepermanent_obstack);
+
+ /* See comment in restore_tree_status in tree.c for why this needs to be
+ on saveable obstack. */
+ temp
+ = (struct var_refs_queue *) savealloc (sizeof (struct var_refs_queue));
+ temp->modified = reg;
+ temp->promoted_mode = promoted_mode;
+ temp->unsignedp = TREE_UNSIGNED (type);
+ temp->next = function->fixup_var_refs_queue;
+ function->fixup_var_refs_queue = temp;
+ pop_obstacks ();
+ }
+ else
+ /* Variable is local; fix it up now. */
+ fixup_var_refs (reg, promoted_mode, TREE_UNSIGNED (type));
+}
+
+static void
+fixup_var_refs (var, promoted_mode, unsignedp)
+ rtx var;
+ enum machine_mode promoted_mode;
+ int unsignedp;
+{
+ tree pending;
+ rtx first_insn = get_insns ();
+ struct sequence_stack *stack = sequence_stack;
+ tree rtl_exps = rtl_expr_chain;
+
+ /* Must scan all insns for stack-refs that exceed the limit. */
+ fixup_var_refs_insns (var, promoted_mode, unsignedp, first_insn, stack == 0);
+
+ /* Scan all pending sequences too. */
+ for (; stack; stack = stack->next)
+ {
+ push_to_sequence (stack->first);
+ fixup_var_refs_insns (var, promoted_mode, unsignedp,
+ stack->first, stack->next != 0);
+ /* Update remembered end of sequence
+ in case we added an insn at the end. */
+ stack->last = get_last_insn ();
+ end_sequence ();
+ }
+
+ /* Scan all waiting RTL_EXPRs too. */
+ for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
+ {
+ rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
+ if (seq != const0_rtx && seq != 0)
+ {
+ push_to_sequence (seq);
+ fixup_var_refs_insns (var, promoted_mode, unsignedp, seq, 0);
+ end_sequence ();
+ }
+ }
+}
+
+/* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
+ some part of an insn. Return a struct fixup_replacement whose OLD
+ value is equal to X. Allocate a new structure if no such entry exists. */
+
+static struct fixup_replacement *
+find_fixup_replacement (replacements, x)
+ struct fixup_replacement **replacements;
+ rtx x;
+{
+ struct fixup_replacement *p;
+
+ /* See if we have already replaced this. */
+ for (p = *replacements; p && p->old != x; p = p->next)
+ ;
+
+ if (p == 0)
+ {
+ p = (struct fixup_replacement *) oballoc (sizeof (struct fixup_replacement));
+ p->old = x;
+ p->new = 0;
+ p->next = *replacements;
+ *replacements = p;
+ }
+
+ return p;
+}
+
+/* Scan the insn-chain starting with INSN for refs to VAR
+ and fix them up. TOPLEVEL is nonzero if this chain is the
+ main chain of insns for the current function. */
+
+static void
+fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel)
+ rtx var;
+ enum machine_mode promoted_mode;
+ int unsignedp;
+ rtx insn;
+ int toplevel;
+{
+ rtx call_dest = 0;
+
+ while (insn)
+ {
+ rtx next = NEXT_INSN (insn);
+ rtx note;
+ if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
+ {
+ /* If this is a CLOBBER of VAR, delete it.
+
+ If it has a REG_LIBCALL note, delete the REG_LIBCALL
+ and REG_RETVAL notes too. */
+ if (GET_CODE (PATTERN (insn)) == CLOBBER
+ && XEXP (PATTERN (insn), 0) == var)
+ {
+ if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
+ /* The REG_LIBCALL note will go away since we are going to
+ turn INSN into a NOTE, so just delete the
+ corresponding REG_RETVAL note. */
+ remove_note (XEXP (note, 0),
+ find_reg_note (XEXP (note, 0), REG_RETVAL,
+ NULL_RTX));
+
+ /* In unoptimized compilation, we shouldn't call delete_insn
+ except in jump.c doing warnings. */
+ PUT_CODE (insn, NOTE);
+ NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (insn) = 0;
+ }
+
+ /* The insn to load VAR from a home in the arglist
+ is now a no-op. When we see it, just delete it. */
+ else if (toplevel
+ && GET_CODE (PATTERN (insn)) == SET
+ && SET_DEST (PATTERN (insn)) == var
+ /* If this represents the result of an insn group,
+ don't delete the insn. */
+ && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
+ && rtx_equal_p (SET_SRC (PATTERN (insn)), var))
+ {
+ /* In unoptimized compilation, we shouldn't call delete_insn
+ except in jump.c doing warnings. */
+ PUT_CODE (insn, NOTE);
+ NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (insn) = 0;
+ if (insn == last_parm_insn)
+ last_parm_insn = PREV_INSN (next);
+ }
+ else
+ {
+ struct fixup_replacement *replacements = 0;
+ rtx next_insn = NEXT_INSN (insn);
+
+#ifdef SMALL_REGISTER_CLASSES
+ /* If the insn that copies the results of a CALL_INSN
+ into a pseudo now references VAR, we have to use an
+ intermediate pseudo since we want the life of the
+ return value register to be only a single insn.
+
+ If we don't use an intermediate pseudo, such things as
+ address computations to make the address of VAR valid
+ if it is not can be placed between the CALL_INSN and INSN.
+
+ To make sure this doesn't happen, we record the destination
+ of the CALL_INSN and see if the next insn uses both that
+ and VAR. */
+
+ if (call_dest != 0 && GET_CODE (insn) == INSN
+ && reg_mentioned_p (var, PATTERN (insn))
+ && reg_mentioned_p (call_dest, PATTERN (insn)))
+ {
+ rtx temp = gen_reg_rtx (GET_MODE (call_dest));
+
+ emit_insn_before (gen_move_insn (temp, call_dest), insn);
+
+ PATTERN (insn) = replace_rtx (PATTERN (insn),
+ call_dest, temp);
+ }
+
+ if (GET_CODE (insn) == CALL_INSN
+ && GET_CODE (PATTERN (insn)) == SET)
+ call_dest = SET_DEST (PATTERN (insn));
+ else if (GET_CODE (insn) == CALL_INSN
+ && GET_CODE (PATTERN (insn)) == PARALLEL
+ && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
+ call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
+ else
+ call_dest = 0;
+#endif
+
+ /* See if we have to do anything to INSN now that VAR is in
+ memory. If it needs to be loaded into a pseudo, use a single
+ pseudo for the entire insn in case there is a MATCH_DUP
+ between two operands. We pass a pointer to the head of
+ a list of struct fixup_replacements. If fixup_var_refs_1
+ needs to allocate pseudos or replacement MEMs (for SUBREGs),
+ it will record them in this list.
+
+ If it allocated a pseudo for any replacement, we copy into
+ it here. */
+
+ fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
+ &replacements);
+
+ /* If this is last_parm_insn, and any instructions were output
+ after it to fix it up, then we must set last_parm_insn to
+ the last such instruction emitted. */
+ if (insn == last_parm_insn)
+ last_parm_insn = PREV_INSN (next_insn);
+
+ while (replacements)
+ {
+ if (GET_CODE (replacements->new) == REG)
+ {
+ rtx insert_before;
+ rtx seq;
+
+ /* OLD might be a (subreg (mem)). */
+ if (GET_CODE (replacements->old) == SUBREG)
+ replacements->old
+ = fixup_memory_subreg (replacements->old, insn, 0);
+ else
+ replacements->old
+ = fixup_stack_1 (replacements->old, insn);
+
+ insert_before = insn;
+
+ /* If we are changing the mode, do a conversion.
+ This might be wasteful, but combine.c will
+ eliminate much of the waste. */
+
+ if (GET_MODE (replacements->new)
+ != GET_MODE (replacements->old))
+ {
+ start_sequence ();
+ convert_move (replacements->new,
+ replacements->old, unsignedp);
+ seq = gen_sequence ();
+ end_sequence ();
+ }
+ else
+ seq = gen_move_insn (replacements->new,
+ replacements->old);
+
+ emit_insn_before (seq, insert_before);
+ }
+
+ replacements = replacements->next;
+ }
+ }
+
+ /* Also fix up any invalid exprs in the REG_NOTES of this insn.
+ But don't touch other insns referred to by reg-notes;
+ we will get them elsewhere. */
+ for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
+ if (GET_CODE (note) != INSN_LIST)
+ XEXP (note, 0)
+ = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
+ }
+ insn = next;
+ }
+}
+
+/* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
+ See if the rtx expression at *LOC in INSN needs to be changed.
+
+ REPLACEMENTS is a pointer to a list head that starts out zero, but may
+ contain a list of original rtx's and replacements. If we find that we need
+ to modify this insn by replacing a memory reference with a pseudo or by
+ making a new MEM to implement a SUBREG, we consult that list to see if
+ we have already chosen a replacement. If none has already been allocated,
+ we allocate it and update the list. fixup_var_refs_insns will copy VAR
+ or the SUBREG, as appropriate, to the pseudo. */
+
+static void
+fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
+ register rtx var;
+ enum machine_mode promoted_mode;
+ register rtx *loc;
+ rtx insn;
+ struct fixup_replacement **replacements;
+{
+ register int i;
+ register rtx x = *loc;
+ RTX_CODE code = GET_CODE (x);
+ register char *fmt;
+ register rtx tem, tem1;
+ struct fixup_replacement *replacement;
+
+ switch (code)
+ {
+ case MEM:
+ if (var == x)
+ {
+ /* If we already have a replacement, use it. Otherwise,
+ try to fix up this address in case it is invalid. */
+
+ replacement = find_fixup_replacement (replacements, var);
+ if (replacement->new)
+ {
+ *loc = replacement->new;
+ return;
+ }
+
+ *loc = replacement->new = x = fixup_stack_1 (x, insn);
+
+ /* Unless we are forcing memory to register or we changed the mode,
+ we can leave things the way they are if the insn is valid. */
+
+ INSN_CODE (insn) = -1;
+ if (! flag_force_mem && GET_MODE (x) == promoted_mode
+ && recog_memoized (insn) >= 0)
+ return;
+
+ *loc = replacement->new = gen_reg_rtx (promoted_mode);
+ return;
+ }
+
+ /* If X contains VAR, we need to unshare it here so that we update
+ each occurrence separately. But all identical MEMs in one insn
+ must be replaced with the same rtx because of the possibility of
+ MATCH_DUPs. */
+
+ if (reg_mentioned_p (var, x))
+ {
+ replacement = find_fixup_replacement (replacements, x);
+ if (replacement->new == 0)
+ replacement->new = copy_most_rtx (x, var);
+
+ *loc = x = replacement->new;
+ }
+ break;
+
+ case REG:
+ case CC0:
+ case PC:
+ case CONST_INT:
+ case CONST:
+ case SYMBOL_REF:
+ case LABEL_REF:
+ case CONST_DOUBLE:
+ return;
+
+ case SIGN_EXTRACT:
+ case ZERO_EXTRACT:
+ /* Note that in some cases those types of expressions are altered
+ by optimize_bit_field, and do not survive to get here. */
+ if (XEXP (x, 0) == var
+ || (GET_CODE (XEXP (x, 0)) == SUBREG
+ && SUBREG_REG (XEXP (x, 0)) == var))
+ {
+ /* Get TEM as a valid MEM in the mode presently in the insn.
+
+ We don't worry about the possibility of MATCH_DUP here; it
+ is highly unlikely and would be tricky to handle. */
+
+ tem = XEXP (x, 0);
+ if (GET_CODE (tem) == SUBREG)
+ tem = fixup_memory_subreg (tem, insn, 1);
+ tem = fixup_stack_1 (tem, insn);
+
+ /* Unless we want to load from memory, get TEM into the proper mode
+ for an extract from memory. This can only be done if the
+ extract is at a constant position and length. */
+
+ if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
+ && GET_CODE (XEXP (x, 2)) == CONST_INT
+ && ! mode_dependent_address_p (XEXP (tem, 0))
+ && ! MEM_VOLATILE_P (tem))
+ {
+ enum machine_mode wanted_mode = VOIDmode;
+ enum machine_mode is_mode = GET_MODE (tem);
+ int width = INTVAL (XEXP (x, 1));
+ int pos = INTVAL (XEXP (x, 2));
+
+#ifdef HAVE_extzv
+ if (GET_CODE (x) == ZERO_EXTRACT)
+ wanted_mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
+#endif
+#ifdef HAVE_extv
+ if (GET_CODE (x) == SIGN_EXTRACT)
+ wanted_mode = insn_operand_mode[(int) CODE_FOR_extv][1];
+#endif
+ /* If we have a narrower mode, we can do something. */
+ if (wanted_mode != VOIDmode
+ && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
+ {
+ int offset = pos / BITS_PER_UNIT;
+ rtx old_pos = XEXP (x, 2);
+ rtx newmem;
+
+ /* If the bytes and bits are counted differently, we
+ must adjust the offset. */
+ if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
+ offset = (GET_MODE_SIZE (is_mode)
+ - GET_MODE_SIZE (wanted_mode) - offset);
+
+ pos %= GET_MODE_BITSIZE (wanted_mode);
+
+ newmem = gen_rtx (MEM, wanted_mode,
+ plus_constant (XEXP (tem, 0), offset));
+ RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
+ MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (tem);
+ MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (tem);
+
+ /* Make the change and see if the insn remains valid. */
+ INSN_CODE (insn) = -1;
+ XEXP (x, 0) = newmem;
+ XEXP (x, 2) = GEN_INT (pos);
+
+ if (recog_memoized (insn) >= 0)
+ return;
+
+ /* Otherwise, restore old position. XEXP (x, 0) will be
+ restored later. */
+ XEXP (x, 2) = old_pos;
+ }
+ }
+
+ /* If we get here, the bitfield extract insn can't accept a memory
+ reference. Copy the input into a register. */
+
+ tem1 = gen_reg_rtx (GET_MODE (tem));
+ emit_insn_before (gen_move_insn (tem1, tem), insn);
+ XEXP (x, 0) = tem1;
+ return;
+ }
+ break;
+
+ case SUBREG:
+ if (SUBREG_REG (x) == var)
+ {
+ /* If this is a special SUBREG made because VAR was promoted
+ from a wider mode, replace it with VAR and call ourself
+ recursively, this time saying that the object previously
+ had its current mode (by virtue of the SUBREG). */
+
+ if (SUBREG_PROMOTED_VAR_P (x))
+ {
+ *loc = var;
+ fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
+ return;
+ }
+
+ /* If this SUBREG makes VAR wider, it has become a paradoxical
+ SUBREG with VAR in memory, but these aren't allowed at this
+ stage of the compilation. So load VAR into a pseudo and take
+ a SUBREG of that pseudo. */
+ if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
+ {
+ replacement = find_fixup_replacement (replacements, var);
+ if (replacement->new == 0)
+ replacement->new = gen_reg_rtx (GET_MODE (var));
+ SUBREG_REG (x) = replacement->new;
+ return;
+ }
+
+ /* See if we have already found a replacement for this SUBREG.
+ If so, use it. Otherwise, make a MEM and see if the insn
+ is recognized. If not, or if we should force MEM into a register,
+ make a pseudo for this SUBREG. */
+ replacement = find_fixup_replacement (replacements, x);
+ if (replacement->new)
+ {
+ *loc = replacement->new;
+ return;
+ }
+
+ replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
+
+ INSN_CODE (insn) = -1;
+ if (! flag_force_mem && recog_memoized (insn) >= 0)
+ return;
+
+ *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
+ return;
+ }
+ break;
+
+ case SET:
+ /* First do special simplification of bit-field references. */
+ if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
+ || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
+ optimize_bit_field (x, insn, 0);
+ if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
+ || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
+ optimize_bit_field (x, insn, NULL_PTR);
+
+ /* If SET_DEST is now a paradoxical SUBREG, put the result of this
+ insn into a pseudo and store the low part of the pseudo into VAR. */
+ if (GET_CODE (SET_DEST (x)) == SUBREG
+ && SUBREG_REG (SET_DEST (x)) == var
+ && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
+ > GET_MODE_SIZE (GET_MODE (var))))
+ {
+ SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
+ emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
+ tem)),
+ insn);
+ break;
+ }
+
+ {
+ rtx dest = SET_DEST (x);
+ rtx src = SET_SRC (x);
+ rtx outerdest = dest;
+
+ while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
+ || GET_CODE (dest) == SIGN_EXTRACT
+ || GET_CODE (dest) == ZERO_EXTRACT)
+ dest = XEXP (dest, 0);
+
+ if (GET_CODE (src) == SUBREG)
+ src = XEXP (src, 0);
+
+ /* If VAR does not appear at the top level of the SET
+ just scan the lower levels of the tree. */
+
+ if (src != var && dest != var)
+ break;
+
+ /* We will need to rerecognize this insn. */
+ INSN_CODE (insn) = -1;
+
+#ifdef HAVE_insv
+ if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
+ {
+ /* Since this case will return, ensure we fixup all the
+ operands here. */
+ fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
+ insn, replacements);
+ fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
+ insn, replacements);
+ fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
+ insn, replacements);
+
+ tem = XEXP (outerdest, 0);
+
+ /* Clean up (SUBREG:SI (MEM:mode ...) 0)
+ that may appear inside a ZERO_EXTRACT.
+ This was legitimate when the MEM was a REG. */
+ if (GET_CODE (tem) == SUBREG
+ && SUBREG_REG (tem) == var)
+ tem = fixup_memory_subreg (tem, insn, 1);
+ else
+ tem = fixup_stack_1 (tem, insn);
+
+ if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
+ && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
+ && ! mode_dependent_address_p (XEXP (tem, 0))
+ && ! MEM_VOLATILE_P (tem))
+ {
+ enum machine_mode wanted_mode
+ = insn_operand_mode[(int) CODE_FOR_insv][0];
+ enum machine_mode is_mode = GET_MODE (tem);
+ int width = INTVAL (XEXP (outerdest, 1));
+ int pos = INTVAL (XEXP (outerdest, 2));
+
+ /* If we have a narrower mode, we can do something. */
+ if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
+ {
+ int offset = pos / BITS_PER_UNIT;
+ rtx old_pos = XEXP (outerdest, 2);
+ rtx newmem;
+
+ if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
+ offset = (GET_MODE_SIZE (is_mode)
+ - GET_MODE_SIZE (wanted_mode) - offset);
+
+ pos %= GET_MODE_BITSIZE (wanted_mode);
+
+ newmem = gen_rtx (MEM, wanted_mode,
+ plus_constant (XEXP (tem, 0), offset));
+ RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
+ MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (tem);
+ MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (tem);
+
+ /* Make the change and see if the insn remains valid. */
+ INSN_CODE (insn) = -1;
+ XEXP (outerdest, 0) = newmem;
+ XEXP (outerdest, 2) = GEN_INT (pos);
+
+ if (recog_memoized (insn) >= 0)
+ return;
+
+ /* Otherwise, restore old position. XEXP (x, 0) will be
+ restored later. */
+ XEXP (outerdest, 2) = old_pos;
+ }
+ }
+
+ /* If we get here, the bit-field store doesn't allow memory
+ or isn't located at a constant position. Load the value into
+ a register, do the store, and put it back into memory. */
+
+ tem1 = gen_reg_rtx (GET_MODE (tem));
+ emit_insn_before (gen_move_insn (tem1, tem), insn);
+ emit_insn_after (gen_move_insn (tem, tem1), insn);
+ XEXP (outerdest, 0) = tem1;
+ return;
+ }
+#endif
+
+ /* STRICT_LOW_PART is a no-op on memory references
+ and it can cause combinations to be unrecognizable,
+ so eliminate it. */
+
+ if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
+ SET_DEST (x) = XEXP (SET_DEST (x), 0);
+
+ /* A valid insn to copy VAR into or out of a register
+ must be left alone, to avoid an infinite loop here.
+ If the reference to VAR is by a subreg, fix that up,
+ since SUBREG is not valid for a memref.
+ Also fix up the address of the stack slot.
+
+ Note that we must not try to recognize the insn until
+ after we know that we have valid addresses and no
+ (subreg (mem ...) ...) constructs, since these interfere
+ with determining the validity of the insn. */
+
+ if ((SET_SRC (x) == var
+ || (GET_CODE (SET_SRC (x)) == SUBREG
+ && SUBREG_REG (SET_SRC (x)) == var))
+ && (GET_CODE (SET_DEST (x)) == REG
+ || (GET_CODE (SET_DEST (x)) == SUBREG
+ && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
+ && x == single_set (PATTERN (insn)))
+ {
+ rtx pat;
+
+ replacement = find_fixup_replacement (replacements, SET_SRC (x));
+ if (replacement->new)
+ SET_SRC (x) = replacement->new;
+ else if (GET_CODE (SET_SRC (x)) == SUBREG)
+ SET_SRC (x) = replacement->new
+ = fixup_memory_subreg (SET_SRC (x), insn, 0);
+ else
+ SET_SRC (x) = replacement->new
+ = fixup_stack_1 (SET_SRC (x), insn);
+
+ if (recog_memoized (insn) >= 0)
+ return;
+
+ /* INSN is not valid, but we know that we want to
+ copy SET_SRC (x) to SET_DEST (x) in some way. So
+ we generate the move and see whether it requires more
+ than one insn. If it does, we emit those insns and
+ delete INSN. Otherwise, we an just replace the pattern
+ of INSN; we have already verified above that INSN has
+ no other function that to do X. */
+
+ pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
+ if (GET_CODE (pat) == SEQUENCE)
+ {
+ emit_insn_after (pat, insn);
+ PUT_CODE (insn, NOTE);
+ NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (insn) = 0;
+ }
+ else
+ PATTERN (insn) = pat;
+
+ return;
+ }
+
+ if ((SET_DEST (x) == var
+ || (GET_CODE (SET_DEST (x)) == SUBREG
+ && SUBREG_REG (SET_DEST (x)) == var))
+ && (GET_CODE (SET_SRC (x)) == REG
+ || (GET_CODE (SET_SRC (x)) == SUBREG
+ && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
+ && x == single_set (PATTERN (insn)))
+ {
+ rtx pat;
+
+ if (GET_CODE (SET_DEST (x)) == SUBREG)
+ SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
+ else
+ SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
+
+ if (recog_memoized (insn) >= 0)
+ return;
+
+ pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
+ if (GET_CODE (pat) == SEQUENCE)
+ {
+ emit_insn_after (pat, insn);
+ PUT_CODE (insn, NOTE);
+ NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (insn) = 0;
+ }
+ else
+ PATTERN (insn) = pat;
+
+ return;
+ }
+
+ /* Otherwise, storing into VAR must be handled specially
+ by storing into a temporary and copying that into VAR
+ with a new insn after this one. Note that this case
+ will be used when storing into a promoted scalar since
+ the insn will now have different modes on the input
+ and output and hence will be invalid (except for the case
+ of setting it to a constant, which does not need any
+ change if it is valid). We generate extra code in that case,
+ but combine.c will eliminate it. */
+
+ if (dest == var)
+ {
+ rtx temp;
+ rtx fixeddest = SET_DEST (x);
+
+ /* STRICT_LOW_PART can be discarded, around a MEM. */
+ if (GET_CODE (fixeddest) == STRICT_LOW_PART)
+ fixeddest = XEXP (fixeddest, 0);
+ /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
+ if (GET_CODE (fixeddest) == SUBREG)
+ {
+ fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
+ promoted_mode = GET_MODE (fixeddest);
+ }
+ else
+ fixeddest = fixup_stack_1 (fixeddest, insn);
+
+ temp = gen_reg_rtx (promoted_mode);
+
+ emit_insn_after (gen_move_insn (fixeddest,
+ gen_lowpart (GET_MODE (fixeddest),
+ temp)),
+ insn);
+
+ SET_DEST (x) = temp;
+ }
+ }
+ }
+
+ /* Nothing special about this RTX; fix its operands. */
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
+ if (fmt[i] == 'E')
+ {
+ register int j;
+ for (j = 0; j < XVECLEN (x, i); j++)
+ fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
+ insn, replacements);
+ }
+ }
+}
+
+/* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
+ return an rtx (MEM:m1 newaddr) which is equivalent.
+ If any insns must be emitted to compute NEWADDR, put them before INSN.
+
+ UNCRITICAL nonzero means accept paradoxical subregs.
+ This is used for subregs found inside of ZERO_EXTRACTs and in REG_NOTES. */
+
+static rtx
+fixup_memory_subreg (x, insn, uncritical)
+ rtx x;
+ rtx insn;
+ int uncritical;
+{
+ int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
+ rtx addr = XEXP (SUBREG_REG (x), 0);
+ enum machine_mode mode = GET_MODE (x);
+ rtx saved, result;
+
+ /* Paradoxical SUBREGs are usually invalid during RTL generation. */
+ if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
+ && ! uncritical)
+ abort ();
+
+ if (BYTES_BIG_ENDIAN)
+ offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
+ - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
+ addr = plus_constant (addr, offset);
+ if (!flag_force_addr && memory_address_p (mode, addr))
+ /* Shortcut if no insns need be emitted. */
+ return change_address (SUBREG_REG (x), mode, addr);
+ start_sequence ();
+ result = change_address (SUBREG_REG (x), mode, addr);
+ emit_insn_before (gen_sequence (), insn);
+ end_sequence ();
+ return result;
+}
+
+/* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
+ Replace subexpressions of X in place.
+ If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
+ Otherwise return X, with its contents possibly altered.
+
+ If any insns must be emitted to compute NEWADDR, put them before INSN.
+
+ UNCRITICAL is as in fixup_memory_subreg. */
+
+static rtx
+walk_fixup_memory_subreg (x, insn, uncritical)
+ register rtx x;
+ rtx insn;
+ int uncritical;
+{
+ register enum rtx_code code;
+ register char *fmt;
+ register int i;
+
+ if (x == 0)
+ return 0;
+
+ code = GET_CODE (x);
+
+ if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
+ return fixup_memory_subreg (x, insn, uncritical);
+
+ /* Nothing special about this RTX; fix its operands. */
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
+ if (fmt[i] == 'E')
+ {
+ register int j;
+ for (j = 0; j < XVECLEN (x, i); j++)
+ XVECEXP (x, i, j)
+ = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
+ }
+ }
+ return x;
+}
+
+/* For each memory ref within X, if it refers to a stack slot
+ with an out of range displacement, put the address in a temp register
+ (emitting new insns before INSN to load these registers)
+ and alter the memory ref to use that register.
+ Replace each such MEM rtx with a copy, to avoid clobberage. */
+
+static rtx
+fixup_stack_1 (x, insn)
+ rtx x;
+ rtx insn;
+{
+ register int i;
+ register RTX_CODE code = GET_CODE (x);
+ register char *fmt;
+
+ if (code == MEM)
+ {
+ register rtx ad = XEXP (x, 0);
+ /* If we have address of a stack slot but it's not valid
+ (displacement is too large), compute the sum in a register. */
+ if (GET_CODE (ad) == PLUS
+ && GET_CODE (XEXP (ad, 0)) == REG
+ && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
+ && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
+ || XEXP (ad, 0) == current_function_internal_arg_pointer)
+ && GET_CODE (XEXP (ad, 1)) == CONST_INT)
+ {
+ rtx temp, seq;
+ if (memory_address_p (GET_MODE (x), ad))
+ return x;
+
+ start_sequence ();
+ temp = copy_to_reg (ad);
+ seq = gen_sequence ();
+ end_sequence ();
+ emit_insn_before (seq, insn);
+ return change_address (x, VOIDmode, temp);
+ }
+ return x;
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
+ if (fmt[i] == 'E')
+ {
+ register int j;
+ for (j = 0; j < XVECLEN (x, i); j++)
+ XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
+ }
+ }
+ return x;
+}
+
+/* Optimization: a bit-field instruction whose field
+ happens to be a byte or halfword in memory
+ can be changed to a move instruction.
+
+ We call here when INSN is an insn to examine or store into a bit-field.
+ BODY is the SET-rtx to be altered.
+
+ EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
+ (Currently this is called only from function.c, and EQUIV_MEM
+ is always 0.) */
+
+static void
+optimize_bit_field (body, insn, equiv_mem)
+ rtx body;
+ rtx insn;
+ rtx *equiv_mem;
+{
+ register rtx bitfield;
+ int destflag;
+ rtx seq = 0;
+ enum machine_mode mode;
+
+ if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
+ || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
+ bitfield = SET_DEST (body), destflag = 1;
+ else
+ bitfield = SET_SRC (body), destflag = 0;
+
+ /* First check that the field being stored has constant size and position
+ and is in fact a byte or halfword suitably aligned. */
+
+ if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
+ && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
+ && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
+ != BLKmode)
+ && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
+ {
+ register rtx memref = 0;
+
+ /* Now check that the containing word is memory, not a register,
+ and that it is safe to change the machine mode. */
+
+ if (GET_CODE (XEXP (bitfield, 0)) == MEM)
+ memref = XEXP (bitfield, 0);
+ else if (GET_CODE (XEXP (bitfield, 0)) == REG
+ && equiv_mem != 0)
+ memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
+ else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
+ && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
+ memref = SUBREG_REG (XEXP (bitfield, 0));
+ else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
+ && equiv_mem != 0
+ && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
+ memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
+
+ if (memref
+ && ! mode_dependent_address_p (XEXP (memref, 0))
+ && ! MEM_VOLATILE_P (memref))
+ {
+ /* Now adjust the address, first for any subreg'ing
+ that we are now getting rid of,
+ and then for which byte of the word is wanted. */
+
+ register int offset = INTVAL (XEXP (bitfield, 2));
+ rtx insns;
+
+ /* Adjust OFFSET to count bits from low-address byte. */
+ if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
+ offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
+ - offset - INTVAL (XEXP (bitfield, 1)));
+
+ /* Adjust OFFSET to count bytes from low-address byte. */
+ offset /= BITS_PER_UNIT;
+ if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
+ {
+ offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
+ if (BYTES_BIG_ENDIAN)
+ offset -= (MIN (UNITS_PER_WORD,
+ GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
+ - MIN (UNITS_PER_WORD,
+ GET_MODE_SIZE (GET_MODE (memref))));
+ }
+
+ start_sequence ();
+ memref = change_address (memref, mode,
+ plus_constant (XEXP (memref, 0), offset));
+ insns = get_insns ();
+ end_sequence ();
+ emit_insns_before (insns, insn);
+
+ /* Store this memory reference where
+ we found the bit field reference. */
+
+ if (destflag)
+ {
+ validate_change (insn, &SET_DEST (body), memref, 1);
+ if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
+ {
+ rtx src = SET_SRC (body);
+ while (GET_CODE (src) == SUBREG
+ && SUBREG_WORD (src) == 0)
+ src = SUBREG_REG (src);
+ if (GET_MODE (src) != GET_MODE (memref))
+ src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
+ validate_change (insn, &SET_SRC (body), src, 1);
+ }
+ else if (GET_MODE (SET_SRC (body)) != VOIDmode
+ && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
+ /* This shouldn't happen because anything that didn't have
+ one of these modes should have got converted explicitly
+ and then referenced through a subreg.
+ This is so because the original bit-field was
+ handled by agg_mode and so its tree structure had
+ the same mode that memref now has. */
+ abort ();
+ }
+ else
+ {
+ rtx dest = SET_DEST (body);
+
+ while (GET_CODE (dest) == SUBREG
+ && SUBREG_WORD (dest) == 0
+ && (GET_MODE_CLASS (GET_MODE (dest))
+ == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest)))))
+ dest = SUBREG_REG (dest);
+
+ validate_change (insn, &SET_DEST (body), dest, 1);
+
+ if (GET_MODE (dest) == GET_MODE (memref))
+ validate_change (insn, &SET_SRC (body), memref, 1);
+ else
+ {
+ /* Convert the mem ref to the destination mode. */
+ rtx newreg = gen_reg_rtx (GET_MODE (dest));
+
+ start_sequence ();
+ convert_move (newreg, memref,
+ GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
+ seq = get_insns ();
+ end_sequence ();
+
+ validate_change (insn, &SET_SRC (body), newreg, 1);
+ }
+ }
+
+ /* See if we can convert this extraction or insertion into
+ a simple move insn. We might not be able to do so if this
+ was, for example, part of a PARALLEL.
+
+ If we succeed, write out any needed conversions. If we fail,
+ it is hard to guess why we failed, so don't do anything
+ special; just let the optimization be suppressed. */
+
+ if (apply_change_group () && seq)
+ emit_insns_before (seq, insn);
+ }
+ }
+}
+
+/* These routines are responsible for converting virtual register references
+ to the actual hard register references once RTL generation is complete.
+
+ The following four variables are used for communication between the
+ routines. They contain the offsets of the virtual registers from their
+ respective hard registers. */
+
+static int in_arg_offset;
+static int var_offset;
+static int dynamic_offset;
+static int out_arg_offset;
+
+/* In most machines, the stack pointer register is equivalent to the bottom
+ of the stack. */
+
+#ifndef STACK_POINTER_OFFSET
+#define STACK_POINTER_OFFSET 0
+#endif
+
+/* If not defined, pick an appropriate default for the offset of dynamically
+ allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
+ REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
+
+#ifndef STACK_DYNAMIC_OFFSET
+
+#ifdef ACCUMULATE_OUTGOING_ARGS
+/* The bottom of the stack points to the actual arguments. If
+ REG_PARM_STACK_SPACE is defined, this includes the space for the register
+ parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
+ stack space for register parameters is not pushed by the caller, but
+ rather part of the fixed stack areas and hence not included in
+ `current_function_outgoing_args_size'. Nevertheless, we must allow
+ for it when allocating stack dynamic objects. */
+
+#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
+#define STACK_DYNAMIC_OFFSET(FNDECL) \
+(current_function_outgoing_args_size \
+ + REG_PARM_STACK_SPACE (FNDECL) + (STACK_POINTER_OFFSET))
+
+#else
+#define STACK_DYNAMIC_OFFSET(FNDECL) \
+(current_function_outgoing_args_size + (STACK_POINTER_OFFSET))
+#endif
+
+#else
+#define STACK_DYNAMIC_OFFSET(FNDECL) STACK_POINTER_OFFSET
+#endif
+#endif
+
+/* Pass through the INSNS of function FNDECL and convert virtual register
+ references to hard register references. */
+
+void
+instantiate_virtual_regs (fndecl, insns)
+ tree fndecl;
+ rtx insns;
+{
+ rtx insn;
+
+ /* Compute the offsets to use for this function. */
+ in_arg_offset = FIRST_PARM_OFFSET (fndecl);
+ var_offset = STARTING_FRAME_OFFSET;
+ dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
+ out_arg_offset = STACK_POINTER_OFFSET;
+
+ /* Scan all variables and parameters of this function. For each that is
+ in memory, instantiate all virtual registers if the result is a valid
+ address. If not, we do it later. That will handle most uses of virtual
+ regs on many machines. */
+ instantiate_decls (fndecl, 1);
+
+ /* Initialize recognition, indicating that volatile is OK. */
+ init_recog ();
+
+ /* Scan through all the insns, instantiating every virtual register still
+ present. */
+ for (insn = insns; insn; insn = NEXT_INSN (insn))
+ if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
+ || GET_CODE (insn) == CALL_INSN)
+ {
+ instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
+ instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
+ }
+
+ /* Now instantiate the remaining register equivalences for debugging info.
+ These will not be valid addresses. */
+ instantiate_decls (fndecl, 0);
+
+ /* Indicate that, from now on, assign_stack_local should use
+ frame_pointer_rtx. */
+ virtuals_instantiated = 1;
+}
+
+/* Scan all decls in FNDECL (both variables and parameters) and instantiate
+ all virtual registers in their DECL_RTL's.
+
+ If VALID_ONLY, do this only if the resulting address is still valid.
+ Otherwise, always do it. */
+
+static void
+instantiate_decls (fndecl, valid_only)
+ tree fndecl;
+ int valid_only;
+{
+ tree decl;
+
+ if (DECL_INLINE (fndecl) || DECL_DEFER_OUTPUT (fndecl))
+ /* When compiling an inline function, the obstack used for
+ rtl allocation is the maybepermanent_obstack. Calling
+ `resume_temporary_allocation' switches us back to that
+ obstack while we process this function's parameters. */
+ resume_temporary_allocation ();
+
+ /* Process all parameters of the function. */
+ for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
+ {
+ instantiate_decl (DECL_RTL (decl), int_size_in_bytes (TREE_TYPE (decl)),
+ valid_only);
+ instantiate_decl (DECL_INCOMING_RTL (decl),
+ int_size_in_bytes (TREE_TYPE (decl)), valid_only);
+ }
+
+ /* Now process all variables defined in the function or its subblocks. */
+ instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
+
+ if (DECL_INLINE (fndecl) || DECL_DEFER_OUTPUT (fndecl))
+ {
+ /* Save all rtl allocated for this function by raising the
+ high-water mark on the maybepermanent_obstack. */
+ preserve_data ();
+ /* All further rtl allocation is now done in the current_obstack. */
+ rtl_in_current_obstack ();
+ }
+}
+
+/* Subroutine of instantiate_decls: Process all decls in the given
+ BLOCK node and all its subblocks. */
+
+static void
+instantiate_decls_1 (let, valid_only)
+ tree let;
+ int valid_only;
+{
+ tree t;
+
+ for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
+ instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)),
+ valid_only);
+
+ /* Process all subblocks. */
+ for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
+ instantiate_decls_1 (t, valid_only);
+}
+
+/* Subroutine of the preceding procedures: Given RTL representing a
+ decl and the size of the object, do any instantiation required.
+
+ If VALID_ONLY is non-zero, it means that the RTL should only be
+ changed if the new address is valid. */
+
+static void
+instantiate_decl (x, size, valid_only)
+ rtx x;
+ int size;
+ int valid_only;
+{
+ enum machine_mode mode;
+ rtx addr;
+
+ /* If this is not a MEM, no need to do anything. Similarly if the
+ address is a constant or a register that is not a virtual register. */
+
+ if (x == 0 || GET_CODE (x) != MEM)
+ return;
+
+ addr = XEXP (x, 0);
+ if (CONSTANT_P (addr)
+ || (GET_CODE (addr) == REG
+ && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
+ || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
+ return;
+
+ /* If we should only do this if the address is valid, copy the address.
+ We need to do this so we can undo any changes that might make the
+ address invalid. This copy is unfortunate, but probably can't be
+ avoided. */
+
+ if (valid_only)
+ addr = copy_rtx (addr);
+
+ instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
+
+ if (! valid_only)
+ return;
+
+ /* Now verify that the resulting address is valid for every integer or
+ floating-point mode up to and including SIZE bytes long. We do this
+ since the object might be accessed in any mode and frame addresses
+ are shared. */
+
+ for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
+ mode != VOIDmode && GET_MODE_SIZE (mode) <= size;
+ mode = GET_MODE_WIDER_MODE (mode))
+ if (! memory_address_p (mode, addr))
+ return;
+
+ for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
+ mode != VOIDmode && GET_MODE_SIZE (mode) <= size;
+ mode = GET_MODE_WIDER_MODE (mode))
+ if (! memory_address_p (mode, addr))
+ return;
+
+ /* Otherwise, put back the address, now that we have updated it and we
+ know it is valid. */
+
+ XEXP (x, 0) = addr;
+}
+
+/* Given a pointer to a piece of rtx and an optional pointer to the
+ containing object, instantiate any virtual registers present in it.
+
+ If EXTRA_INSNS, we always do the replacement and generate
+ any extra insns before OBJECT. If it zero, we do nothing if replacement
+ is not valid.
+
+ Return 1 if we either had nothing to do or if we were able to do the
+ needed replacement. Return 0 otherwise; we only return zero if
+ EXTRA_INSNS is zero.
+
+ We first try some simple transformations to avoid the creation of extra
+ pseudos. */
+
+static int
+instantiate_virtual_regs_1 (loc, object, extra_insns)
+ rtx *loc;
+ rtx object;
+ int extra_insns;
+{
+ rtx x;
+ RTX_CODE code;
+ rtx new = 0;
+ int offset;
+ rtx temp;
+ rtx seq;
+ int i, j;
+ char *fmt;
+
+ /* Re-start here to avoid recursion in common cases. */
+ restart:
+
+ x = *loc;
+ if (x == 0)
+ return 1;
+
+ code = GET_CODE (x);
+
+ /* Check for some special cases. */
+ switch (code)
+ {
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case CONST:
+ case SYMBOL_REF:
+ case CODE_LABEL:
+ case PC:
+ case CC0:
+ case ASM_INPUT:
+ case ADDR_VEC:
+ case ADDR_DIFF_VEC:
+ case RETURN:
+ return 1;
+
+ case SET:
+ /* We are allowed to set the virtual registers. This means that
+ that the actual register should receive the source minus the
+ appropriate offset. This is used, for example, in the handling
+ of non-local gotos. */
+ if (SET_DEST (x) == virtual_incoming_args_rtx)
+ new = arg_pointer_rtx, offset = - in_arg_offset;
+ else if (SET_DEST (x) == virtual_stack_vars_rtx)
+ new = frame_pointer_rtx, offset = - var_offset;
+ else if (SET_DEST (x) == virtual_stack_dynamic_rtx)
+ new = stack_pointer_rtx, offset = - dynamic_offset;
+ else if (SET_DEST (x) == virtual_outgoing_args_rtx)
+ new = stack_pointer_rtx, offset = - out_arg_offset;
+
+ if (new)
+ {
+ /* The only valid sources here are PLUS or REG. Just do
+ the simplest possible thing to handle them. */
+ if (GET_CODE (SET_SRC (x)) != REG
+ && GET_CODE (SET_SRC (x)) != PLUS)
+ abort ();
+
+ start_sequence ();
+ if (GET_CODE (SET_SRC (x)) != REG)
+ temp = force_operand (SET_SRC (x), NULL_RTX);
+ else
+ temp = SET_SRC (x);
+ temp = force_operand (plus_constant (temp, offset), NULL_RTX);
+ seq = get_insns ();
+ end_sequence ();
+
+ emit_insns_before (seq, object);
+ SET_DEST (x) = new;
+
+ if (!validate_change (object, &SET_SRC (x), temp, 0)
+ || ! extra_insns)
+ abort ();
+
+ return 1;
+ }
+
+ instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
+ loc = &SET_SRC (x);
+ goto restart;
+
+ case PLUS:
+ /* Handle special case of virtual register plus constant. */
+ if (CONSTANT_P (XEXP (x, 1)))
+ {
+ rtx old, new_offset;
+
+ /* Check for (plus (plus VIRT foo) (const_int)) first. */
+ if (GET_CODE (XEXP (x, 0)) == PLUS)
+ {
+ rtx inner = XEXP (XEXP (x, 0), 0);
+
+ if (inner == virtual_incoming_args_rtx)
+ new = arg_pointer_rtx, offset = in_arg_offset;
+ else if (inner == virtual_stack_vars_rtx)
+ new = frame_pointer_rtx, offset = var_offset;
+ else if (inner == virtual_stack_dynamic_rtx)
+ new = stack_pointer_rtx, offset = dynamic_offset;
+ else if (inner == virtual_outgoing_args_rtx)
+ new = stack_pointer_rtx, offset = out_arg_offset;
+ else
+ {
+ loc = &XEXP (x, 0);
+ goto restart;
+ }
+
+ instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
+ extra_insns);
+ new = gen_rtx (PLUS, Pmode, new, XEXP (XEXP (x, 0), 1));
+ }
+
+ else if (XEXP (x, 0) == virtual_incoming_args_rtx)
+ new = arg_pointer_rtx, offset = in_arg_offset;
+ else if (XEXP (x, 0) == virtual_stack_vars_rtx)
+ new = frame_pointer_rtx, offset = var_offset;
+ else if (XEXP (x, 0) == virtual_stack_dynamic_rtx)
+ new = stack_pointer_rtx, offset = dynamic_offset;
+ else if (XEXP (x, 0) == virtual_outgoing_args_rtx)
+ new = stack_pointer_rtx, offset = out_arg_offset;
+ else
+ {
+ /* We know the second operand is a constant. Unless the
+ first operand is a REG (which has been already checked),
+ it needs to be checked. */
+ if (GET_CODE (XEXP (x, 0)) != REG)
+ {
+ loc = &XEXP (x, 0);
+ goto restart;
+ }
+ return 1;
+ }
+
+ new_offset = plus_constant (XEXP (x, 1), offset);
+
+ /* If the new constant is zero, try to replace the sum with just
+ the register. */
+ if (new_offset == const0_rtx
+ && validate_change (object, loc, new, 0))
+ return 1;
+
+ /* Next try to replace the register and new offset.
+ There are two changes to validate here and we can't assume that
+ in the case of old offset equals new just changing the register
+ will yield a valid insn. In the interests of a little efficiency,
+ however, we only call validate change once (we don't queue up the
+ changes and then call apply_change_group). */
+
+ old = XEXP (x, 0);
+ if (offset == 0
+ ? ! validate_change (object, &XEXP (x, 0), new, 0)
+ : (XEXP (x, 0) = new,
+ ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
+ {
+ if (! extra_insns)
+ {
+ XEXP (x, 0) = old;
+ return 0;
+ }
+
+ /* Otherwise copy the new constant into a register and replace
+ constant with that register. */
+ temp = gen_reg_rtx (Pmode);
+ XEXP (x, 0) = new;
+ if (validate_change (object, &XEXP (x, 1), temp, 0))
+ emit_insn_before (gen_move_insn (temp, new_offset), object);
+ else
+ {
+ /* If that didn't work, replace this expression with a
+ register containing the sum. */
+
+ XEXP (x, 0) = old;
+ new = gen_rtx (PLUS, Pmode, new, new_offset);
+
+ start_sequence ();
+ temp = force_operand (new, NULL_RTX);
+ seq = get_insns ();
+ end_sequence ();
+
+ emit_insns_before (seq, object);
+ if (! validate_change (object, loc, temp, 0)
+ && ! validate_replace_rtx (x, temp, object))
+ abort ();
+ }
+ }
+
+ return 1;
+ }
+
+ /* Fall through to generic two-operand expression case. */
+ case EXPR_LIST:
+ case CALL:
+ case COMPARE:
+ case MINUS:
+ case MULT:
+ case DIV: case UDIV:
+ case MOD: case UMOD:
+ case AND: case IOR: case XOR:
+ case ROTATERT: case ROTATE:
+ case ASHIFTRT: case LSHIFTRT: case ASHIFT:
+ case NE: case EQ:
+ case GE: case GT: case GEU: case GTU:
+ case LE: case LT: case LEU: case LTU:
+ if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
+ instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
+ loc = &XEXP (x, 0);
+ goto restart;
+
+ case MEM:
+ /* Most cases of MEM that convert to valid addresses have already been
+ handled by our scan of regno_reg_rtx. The only special handling we
+ need here is to make a copy of the rtx to ensure it isn't being
+ shared if we have to change it to a pseudo.
+
+ If the rtx is a simple reference to an address via a virtual register,
+ it can potentially be shared. In such cases, first try to make it
+ a valid address, which can also be shared. Otherwise, copy it and
+ proceed normally.
+
+ First check for common cases that need no processing. These are
+ usually due to instantiation already being done on a previous instance
+ of a shared rtx. */
+
+ temp = XEXP (x, 0);
+ if (CONSTANT_ADDRESS_P (temp)
+#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
+ || temp == arg_pointer_rtx
+#endif
+#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
+ || temp == hard_frame_pointer_rtx
+#endif
+ || temp == frame_pointer_rtx)
+ return 1;
+
+ if (GET_CODE (temp) == PLUS
+ && CONSTANT_ADDRESS_P (XEXP (temp, 1))
+ && (XEXP (temp, 0) == frame_pointer_rtx
+#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
+ || XEXP (temp, 0) == hard_frame_pointer_rtx
+#endif
+#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
+ || XEXP (temp, 0) == arg_pointer_rtx
+#endif
+ ))
+ return 1;
+
+ if (temp == virtual_stack_vars_rtx
+ || temp == virtual_incoming_args_rtx
+ || (GET_CODE (temp) == PLUS
+ && CONSTANT_ADDRESS_P (XEXP (temp, 1))
+ && (XEXP (temp, 0) == virtual_stack_vars_rtx
+ || XEXP (temp, 0) == virtual_incoming_args_rtx)))
+ {
+ /* This MEM may be shared. If the substitution can be done without
+ the need to generate new pseudos, we want to do it in place
+ so all copies of the shared rtx benefit. The call below will
+ only make substitutions if the resulting address is still
+ valid.
+
+ Note that we cannot pass X as the object in the recursive call
+ since the insn being processed may not allow all valid
+ addresses. However, if we were not passed on object, we can
+ only modify X without copying it if X will have a valid
+ address.
+
+ ??? Also note that this can still lose if OBJECT is an insn that
+ has less restrictions on an address that some other insn.
+ In that case, we will modify the shared address. This case
+ doesn't seem very likely, though. */
+
+ if (instantiate_virtual_regs_1 (&XEXP (x, 0),
+ object ? object : x, 0))
+ return 1;
+
+ /* Otherwise make a copy and process that copy. We copy the entire
+ RTL expression since it might be a PLUS which could also be
+ shared. */
+ *loc = x = copy_rtx (x);
+ }
+
+ /* Fall through to generic unary operation case. */
+ case USE:
+ case CLOBBER:
+ case SUBREG:
+ case STRICT_LOW_PART:
+ case NEG: case NOT:
+ case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
+ case SIGN_EXTEND: case ZERO_EXTEND:
+ case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
+ case FLOAT: case FIX:
+ case UNSIGNED_FIX: case UNSIGNED_FLOAT:
+ case ABS:
+ case SQRT:
+ case FFS:
+ /* These case either have just one operand or we know that we need not
+ check the rest of the operands. */
+ loc = &XEXP (x, 0);
+ goto restart;
+
+ case REG:
+ /* Try to replace with a PLUS. If that doesn't work, compute the sum
+ in front of this insn and substitute the temporary. */
+ if (x == virtual_incoming_args_rtx)
+ new = arg_pointer_rtx, offset = in_arg_offset;
+ else if (x == virtual_stack_vars_rtx)
+ new = frame_pointer_rtx, offset = var_offset;
+ else if (x == virtual_stack_dynamic_rtx)
+ new = stack_pointer_rtx, offset = dynamic_offset;
+ else if (x == virtual_outgoing_args_rtx)
+ new = stack_pointer_rtx, offset = out_arg_offset;
+
+ if (new)
+ {
+ temp = plus_constant (new, offset);
+ if (!validate_change (object, loc, temp, 0))
+ {
+ if (! extra_insns)
+ return 0;
+
+ start_sequence ();
+ temp = force_operand (temp, NULL_RTX);
+ seq = get_insns ();
+ end_sequence ();
+
+ emit_insns_before (seq, object);
+ if (! validate_change (object, loc, temp, 0)
+ && ! validate_replace_rtx (x, temp, object))
+ abort ();
+ }
+ }
+
+ return 1;
+ }
+
+ /* Scan all subexpressions. */
+ fmt = GET_RTX_FORMAT (code);
+ for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
+ if (*fmt == 'e')
+ {
+ if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
+ return 0;
+ }
+ else if (*fmt == 'E')
+ for (j = 0; j < XVECLEN (x, i); j++)
+ if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
+ extra_insns))
+ return 0;
+
+ return 1;
+}
+
+/* Optimization: assuming this function does not receive nonlocal gotos,
+ delete the handlers for such, as well as the insns to establish
+ and disestablish them. */
+
+static void
+delete_handlers ()
+{
+ rtx insn;
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ {
+ /* Delete the handler by turning off the flag that would
+ prevent jump_optimize from deleting it.
+ Also permit deletion of the nonlocal labels themselves
+ if nothing local refers to them. */
+ if (GET_CODE (insn) == CODE_LABEL)
+ {
+ tree t, last_t;
+
+ LABEL_PRESERVE_P (insn) = 0;
+
+ /* Remove it from the nonlocal_label list, to avoid confusing
+ flow. */
+ for (t = nonlocal_labels, last_t = 0; t;
+ last_t = t, t = TREE_CHAIN (t))
+ if (DECL_RTL (TREE_VALUE (t)) == insn)
+ break;
+ if (t)
+ {
+ if (! last_t)
+ nonlocal_labels = TREE_CHAIN (nonlocal_labels);
+ else
+ TREE_CHAIN (last_t) = TREE_CHAIN (t);
+ }
+ }
+ if (GET_CODE (insn) == INSN
+ && ((nonlocal_goto_handler_slot != 0
+ && reg_mentioned_p (nonlocal_goto_handler_slot, PATTERN (insn)))
+ || (nonlocal_goto_stack_level != 0
+ && reg_mentioned_p (nonlocal_goto_stack_level,
+ PATTERN (insn)))))
+ delete_insn (insn);
+ }
+}
+
+/* Return a list (chain of EXPR_LIST nodes) for the nonlocal labels
+ of the current function. */
+
+rtx
+nonlocal_label_rtx_list ()
+{
+ tree t;
+ rtx x = 0;
+
+ for (t = nonlocal_labels; t; t = TREE_CHAIN (t))
+ x = gen_rtx (EXPR_LIST, VOIDmode, label_rtx (TREE_VALUE (t)), x);
+
+ return x;
+}
+
+/* Output a USE for any register use in RTL.
+ This is used with -noreg to mark the extent of lifespan
+ of any registers used in a user-visible variable's DECL_RTL. */
+
+void
+use_variable (rtl)
+ rtx rtl;
+{
+ if (GET_CODE (rtl) == REG)
+ /* This is a register variable. */
+ emit_insn (gen_rtx (USE, VOIDmode, rtl));
+ else if (GET_CODE (rtl) == MEM
+ && GET_CODE (XEXP (rtl, 0)) == REG
+ && (REGNO (XEXP (rtl, 0)) < FIRST_VIRTUAL_REGISTER
+ || REGNO (XEXP (rtl, 0)) > LAST_VIRTUAL_REGISTER)
+ && XEXP (rtl, 0) != current_function_internal_arg_pointer)
+ /* This is a variable-sized structure. */
+ emit_insn (gen_rtx (USE, VOIDmode, XEXP (rtl, 0)));
+}
+
+/* Like use_variable except that it outputs the USEs after INSN
+ instead of at the end of the insn-chain. */
+
+void
+use_variable_after (rtl, insn)
+ rtx rtl, insn;
+{
+ if (GET_CODE (rtl) == REG)
+ /* This is a register variable. */
+ emit_insn_after (gen_rtx (USE, VOIDmode, rtl), insn);
+ else if (GET_CODE (rtl) == MEM
+ && GET_CODE (XEXP (rtl, 0)) == REG
+ && (REGNO (XEXP (rtl, 0)) < FIRST_VIRTUAL_REGISTER
+ || REGNO (XEXP (rtl, 0)) > LAST_VIRTUAL_REGISTER)
+ && XEXP (rtl, 0) != current_function_internal_arg_pointer)
+ /* This is a variable-sized structure. */
+ emit_insn_after (gen_rtx (USE, VOIDmode, XEXP (rtl, 0)), insn);
+}
+
+int
+max_parm_reg_num ()
+{
+ return max_parm_reg;
+}
+
+/* Return the first insn following those generated by `assign_parms'. */
+
+rtx
+get_first_nonparm_insn ()
+{
+ if (last_parm_insn)
+ return NEXT_INSN (last_parm_insn);
+ return get_insns ();
+}
+
+/* Return the first NOTE_INSN_BLOCK_BEG note in the function.
+ Crash if there is none. */
+
+rtx
+get_first_block_beg ()
+{
+ register rtx searcher;
+ register rtx insn = get_first_nonparm_insn ();
+
+ for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
+ if (GET_CODE (searcher) == NOTE
+ && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
+ return searcher;
+
+ abort (); /* Invalid call to this function. (See comments above.) */
+ return NULL_RTX;
+}
+
+/* Return 1 if EXP is an aggregate type (or a value with aggregate type).
+ This means a type for which function calls must pass an address to the
+ function or get an address back from the function.
+ EXP may be a type node or an expression (whose type is tested). */
+
+int
+aggregate_value_p (exp)
+ tree exp;
+{
+ int i, regno, nregs;
+ rtx reg;
+ tree type;
+ if (TREE_CODE_CLASS (TREE_CODE (exp)) == 't')
+ type = exp;
+ else
+ type = TREE_TYPE (exp);
+
+ if (RETURN_IN_MEMORY (type))
+ return 1;
+ if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
+ return 1;
+ /* Make sure we have suitable call-clobbered regs to return
+ the value in; if not, we must return it in memory. */
+ reg = hard_function_value (type, 0);
+ regno = REGNO (reg);
+ nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
+ for (i = 0; i < nregs; i++)
+ if (! call_used_regs[regno + i])
+ return 1;
+ return 0;
+}
+
+/* Assign RTL expressions to the function's parameters.
+ This may involve copying them into registers and using
+ those registers as the RTL for them.
+
+ If SECOND_TIME is non-zero it means that this function is being
+ called a second time. This is done by integrate.c when a function's
+ compilation is deferred. We need to come back here in case the
+ FUNCTION_ARG macro computes items needed for the rest of the compilation
+ (such as changing which registers are fixed or caller-saved). But suppress
+ writing any insns or setting DECL_RTL of anything in this case. */
+
+void
+assign_parms (fndecl, second_time)
+ tree fndecl;
+ int second_time;
+{
+ register tree parm;
+ register rtx entry_parm = 0;
+ register rtx stack_parm = 0;
+ CUMULATIVE_ARGS args_so_far;
+ enum machine_mode promoted_mode, passed_mode;
+ enum machine_mode nominal_mode, promoted_nominal_mode;
+ int unsignedp;
+ /* Total space needed so far for args on the stack,
+ given as a constant and a tree-expression. */
+ struct args_size stack_args_size;
+ tree fntype = TREE_TYPE (fndecl);
+ tree fnargs = DECL_ARGUMENTS (fndecl);
+ /* This is used for the arg pointer when referring to stack args. */
+ rtx internal_arg_pointer;
+ /* This is a dummy PARM_DECL that we used for the function result if
+ the function returns a structure. */
+ tree function_result_decl = 0;
+ int nparmregs = list_length (fnargs) + LAST_VIRTUAL_REGISTER + 1;
+ int varargs_setup = 0;
+ rtx conversion_insns = 0;
+ /* FUNCTION_ARG may look at this variable. Since this is not
+ expanding a call it will always be zero in this function. */
+ int current_call_is_indirect = 0;
+
+ /* Nonzero if the last arg is named `__builtin_va_alist',
+ which is used on some machines for old-fashioned non-ANSI varargs.h;
+ this should be stuck onto the stack as if it had arrived there. */
+ int hide_last_arg
+ = (current_function_varargs
+ && fnargs
+ && (parm = tree_last (fnargs)) != 0
+ && DECL_NAME (parm)
+ && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
+ "__builtin_va_alist")));
+
+ /* Nonzero if function takes extra anonymous args.
+ This means the last named arg must be on the stack
+ right before the anonymous ones. */
+ int stdarg
+ = (TYPE_ARG_TYPES (fntype) != 0
+ && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
+ != void_type_node));
+
+ current_function_stdarg = stdarg;
+
+ /* If the reg that the virtual arg pointer will be translated into is
+ not a fixed reg or is the stack pointer, make a copy of the virtual
+ arg pointer, and address parms via the copy. The frame pointer is
+ considered fixed even though it is not marked as such.
+
+ The second time through, simply use ap to avoid generating rtx. */
+
+ if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
+ || ! (fixed_regs[ARG_POINTER_REGNUM]
+ || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM))
+ && ! second_time)
+ internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
+ else
+ internal_arg_pointer = virtual_incoming_args_rtx;
+ current_function_internal_arg_pointer = internal_arg_pointer;
+
+ stack_args_size.constant = 0;
+ stack_args_size.var = 0;
+
+ /* If struct value address is treated as the first argument, make it so. */
+ if (aggregate_value_p (DECL_RESULT (fndecl))
+ && ! current_function_returns_pcc_struct
+ && struct_value_incoming_rtx == 0)
+ {
+ tree type = build_pointer_type (fntype);
+
+ function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
+
+ DECL_ARG_TYPE (function_result_decl) = type;
+ TREE_CHAIN (function_result_decl) = fnargs;
+ fnargs = function_result_decl;
+ }
+
+ parm_reg_stack_loc = (rtx *) oballoc (nparmregs * sizeof (rtx));
+ bzero ((char *) parm_reg_stack_loc, nparmregs * sizeof (rtx));
+
+#ifdef INIT_CUMULATIVE_INCOMING_ARGS
+ INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
+#else
+ INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX);
+#endif
+
+ /* We haven't yet found an argument that we must push and pretend the
+ caller did. */
+ current_function_pretend_args_size = 0;
+
+ for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
+ {
+ int aggregate = AGGREGATE_TYPE_P (TREE_TYPE (parm));
+ struct args_size stack_offset;
+ struct args_size arg_size;
+ int passed_pointer = 0;
+ int did_conversion = 0;
+ tree passed_type = DECL_ARG_TYPE (parm);
+ tree nominal_type = TREE_TYPE (parm);
+
+ /* Set LAST_NAMED if this is last named arg before some
+ anonymous args. We treat it as if it were anonymous too. */
+ int last_named = ((TREE_CHAIN (parm) == 0
+ || DECL_NAME (TREE_CHAIN (parm)) == 0)
+ && (stdarg || current_function_varargs));
+
+ if (TREE_TYPE (parm) == error_mark_node
+ /* This can happen after weird syntax errors
+ or if an enum type is defined among the parms. */
+ || TREE_CODE (parm) != PARM_DECL
+ || passed_type == NULL)
+ {
+ DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = gen_rtx (MEM, BLKmode,
+ const0_rtx);
+ TREE_USED (parm) = 1;
+ continue;
+ }
+
+ /* For varargs.h function, save info about regs and stack space
+ used by the individual args, not including the va_alist arg. */
+ if (hide_last_arg && last_named)
+ current_function_args_info = args_so_far;
+
+ /* Find mode of arg as it is passed, and mode of arg
+ as it should be during execution of this function. */
+ passed_mode = TYPE_MODE (passed_type);
+ nominal_mode = TYPE_MODE (nominal_type);
+
+ /* If the parm's mode is VOID, its value doesn't matter,
+ and avoid the usual things like emit_move_insn that could crash. */
+ if (nominal_mode == VOIDmode)
+ {
+ DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx;
+ continue;
+ }
+
+ /* If the parm is to be passed as a transparent union, use the
+ type of the first field for the tests below. We have already
+ verified that the modes are the same. */
+ if (DECL_TRANSPARENT_UNION (parm)
+ || TYPE_TRANSPARENT_UNION (passed_type))
+ passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
+
+ /* See if this arg was passed by invisible reference. It is if
+ it is an object whose size depends on the contents of the
+ object itself or if the machine requires these objects be passed
+ that way. */
+
+ if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
+ && contains_placeholder_p (TYPE_SIZE (passed_type)))
+ || TREE_ADDRESSABLE (passed_type)
+#ifdef FUNCTION_ARG_PASS_BY_REFERENCE
+ || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
+ passed_type, ! last_named)
+#endif
+ )
+ {
+ passed_type = nominal_type = build_pointer_type (passed_type);
+ passed_pointer = 1;
+ passed_mode = nominal_mode = Pmode;
+ }
+
+ promoted_mode = passed_mode;
+
+#ifdef PROMOTE_FUNCTION_ARGS
+ /* Compute the mode in which the arg is actually extended to. */
+ promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
+#endif
+
+ /* Let machine desc say which reg (if any) the parm arrives in.
+ 0 means it arrives on the stack. */
+#ifdef FUNCTION_INCOMING_ARG
+ entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
+ passed_type, ! last_named);
+#else
+ entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
+ passed_type, ! last_named);
+#endif
+
+ if (entry_parm == 0)
+ promoted_mode = passed_mode;
+
+#ifdef SETUP_INCOMING_VARARGS
+ /* If this is the last named parameter, do any required setup for
+ varargs or stdargs. We need to know about the case of this being an
+ addressable type, in which case we skip the registers it
+ would have arrived in.
+
+ For stdargs, LAST_NAMED will be set for two parameters, the one that
+ is actually the last named, and the dummy parameter. We only
+ want to do this action once.
+
+ Also, indicate when RTL generation is to be suppressed. */
+ if (last_named && !varargs_setup)
+ {
+ SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
+ current_function_pretend_args_size,
+ second_time);
+ varargs_setup = 1;
+ }
+#endif
+
+ /* Determine parm's home in the stack,
+ in case it arrives in the stack or we should pretend it did.
+
+ Compute the stack position and rtx where the argument arrives
+ and its size.
+
+ There is one complexity here: If this was a parameter that would
+ have been passed in registers, but wasn't only because it is
+ __builtin_va_alist, we want locate_and_pad_parm to treat it as if
+ it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
+ In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
+ 0 as it was the previous time. */
+
+ locate_and_pad_parm (promoted_mode, passed_type,
+#ifdef STACK_PARMS_IN_REG_PARM_AREA
+ 1,
+#else
+#ifdef FUNCTION_INCOMING_ARG
+ FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
+ passed_type,
+ (! last_named
+ || varargs_setup)) != 0,
+#else
+ FUNCTION_ARG (args_so_far, promoted_mode,
+ passed_type,
+ ! last_named || varargs_setup) != 0,
+#endif
+#endif
+ fndecl, &stack_args_size, &stack_offset, &arg_size);
+
+ if (! second_time)
+ {
+ rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
+
+ if (offset_rtx == const0_rtx)
+ stack_parm = gen_rtx (MEM, promoted_mode, internal_arg_pointer);
+ else
+ stack_parm = gen_rtx (MEM, promoted_mode,
+ gen_rtx (PLUS, Pmode,
+ internal_arg_pointer, offset_rtx));
+
+ /* If this is a memory ref that contains aggregate components,
+ mark it as such for cse and loop optimize. */
+ MEM_IN_STRUCT_P (stack_parm) = aggregate;
+ }
+
+ /* If this parameter was passed both in registers and in the stack,
+ use the copy on the stack. */
+ if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
+ entry_parm = 0;
+
+#ifdef FUNCTION_ARG_PARTIAL_NREGS
+ /* If this parm was passed part in regs and part in memory,
+ pretend it arrived entirely in memory
+ by pushing the register-part onto the stack.
+
+ In the special case of a DImode or DFmode that is split,
+ we could put it together in a pseudoreg directly,
+ but for now that's not worth bothering with. */
+
+ if (entry_parm)
+ {
+ int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
+ passed_type, ! last_named);
+
+ if (nregs > 0)
+ {
+ current_function_pretend_args_size
+ = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
+ / (PARM_BOUNDARY / BITS_PER_UNIT)
+ * (PARM_BOUNDARY / BITS_PER_UNIT));
+
+ if (! second_time)
+ move_block_from_reg (REGNO (entry_parm),
+ validize_mem (stack_parm), nregs,
+ int_size_in_bytes (TREE_TYPE (parm)));
+ entry_parm = stack_parm;
+ }
+ }
+#endif
+
+ /* If we didn't decide this parm came in a register,
+ by default it came on the stack. */
+ if (entry_parm == 0)
+ entry_parm = stack_parm;
+
+ /* Record permanently how this parm was passed. */
+ if (! second_time)
+ DECL_INCOMING_RTL (parm) = entry_parm;
+
+ /* If there is actually space on the stack for this parm,
+ count it in stack_args_size; otherwise set stack_parm to 0
+ to indicate there is no preallocated stack slot for the parm. */
+
+ if (entry_parm == stack_parm
+#if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
+ /* On some machines, even if a parm value arrives in a register
+ there is still an (uninitialized) stack slot allocated for it.
+
+ ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
+ whether this parameter already has a stack slot allocated,
+ because an arg block exists only if current_function_args_size
+ is larger than some threshold, and we haven't calculated that
+ yet. So, for now, we just assume that stack slots never exist
+ in this case. */
+ || REG_PARM_STACK_SPACE (fndecl) > 0
+#endif
+ )
+ {
+ stack_args_size.constant += arg_size.constant;
+ if (arg_size.var)
+ ADD_PARM_SIZE (stack_args_size, arg_size.var);
+ }
+ else
+ /* No stack slot was pushed for this parm. */
+ stack_parm = 0;
+
+ /* Update info on where next arg arrives in registers. */
+
+ FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
+ passed_type, ! last_named);
+
+ /* If this is our second time through, we are done with this parm. */
+ if (second_time)
+ continue;
+
+ /* If we can't trust the parm stack slot to be aligned enough
+ for its ultimate type, don't use that slot after entry.
+ We'll make another stack slot, if we need one. */
+ {
+ int thisparm_boundary
+ = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
+
+ if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
+ stack_parm = 0;
+ }
+
+ /* If parm was passed in memory, and we need to convert it on entry,
+ don't store it back in that same slot. */
+ if (entry_parm != 0
+ && nominal_mode != BLKmode && nominal_mode != passed_mode)
+ stack_parm = 0;
+
+#if 0
+ /* Now adjust STACK_PARM to the mode and precise location
+ where this parameter should live during execution,
+ if we discover that it must live in the stack during execution.
+ To make debuggers happier on big-endian machines, we store
+ the value in the last bytes of the space available. */
+
+ if (nominal_mode != BLKmode && nominal_mode != passed_mode
+ && stack_parm != 0)
+ {
+ rtx offset_rtx;
+
+ if (BYTES_BIG_ENDIAN
+ && GET_MODE_SIZE (nominal_mode) < UNITS_PER_WORD)
+ stack_offset.constant += (GET_MODE_SIZE (passed_mode)
+ - GET_MODE_SIZE (nominal_mode));
+
+ offset_rtx = ARGS_SIZE_RTX (stack_offset);
+ if (offset_rtx == const0_rtx)
+ stack_parm = gen_rtx (MEM, nominal_mode, internal_arg_pointer);
+ else
+ stack_parm = gen_rtx (MEM, nominal_mode,
+ gen_rtx (PLUS, Pmode,
+ internal_arg_pointer, offset_rtx));
+
+ /* If this is a memory ref that contains aggregate components,
+ mark it as such for cse and loop optimize. */
+ MEM_IN_STRUCT_P (stack_parm) = aggregate;
+ }
+#endif /* 0 */
+
+#ifdef STACK_REGS
+ /* We need this "use" info, because the gcc-register->stack-register
+ converter in reg-stack.c needs to know which registers are active
+ at the start of the function call. The actual parameter loading
+ instructions are not always available then anymore, since they might
+ have been optimised away. */
+
+ if (GET_CODE (entry_parm) == REG && !(hide_last_arg && last_named))
+ emit_insn (gen_rtx (USE, GET_MODE (entry_parm), entry_parm));
+#endif
+
+ /* ENTRY_PARM is an RTX for the parameter as it arrives,
+ in the mode in which it arrives.
+ STACK_PARM is an RTX for a stack slot where the parameter can live
+ during the function (in case we want to put it there).
+ STACK_PARM is 0 if no stack slot was pushed for it.
+
+ Now output code if necessary to convert ENTRY_PARM to
+ the type in which this function declares it,
+ and store that result in an appropriate place,
+ which may be a pseudo reg, may be STACK_PARM,
+ or may be a local stack slot if STACK_PARM is 0.
+
+ Set DECL_RTL to that place. */
+
+ if (nominal_mode == BLKmode)
+ {
+ /* If a BLKmode arrives in registers, copy it to a stack slot. */
+ if (GET_CODE (entry_parm) == REG)
+ {
+ int size_stored
+ = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
+ UNITS_PER_WORD);
+
+ /* Note that we will be storing an integral number of words.
+ So we have to be careful to ensure that we allocate an
+ integral number of words. We do this below in the
+ assign_stack_local if space was not allocated in the argument
+ list. If it was, this will not work if PARM_BOUNDARY is not
+ a multiple of BITS_PER_WORD. It isn't clear how to fix this
+ if it becomes a problem. */
+
+ if (stack_parm == 0)
+ {
+ stack_parm
+ = assign_stack_local (GET_MODE (entry_parm),
+ size_stored, 0);
+
+ /* If this is a memory ref that contains aggregate
+ components, mark it as such for cse and loop optimize. */
+ MEM_IN_STRUCT_P (stack_parm) = aggregate;
+ }
+
+ else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
+ abort ();
+
+ if (TREE_READONLY (parm))
+ RTX_UNCHANGING_P (stack_parm) = 1;
+
+ move_block_from_reg (REGNO (entry_parm),
+ validize_mem (stack_parm),
+ size_stored / UNITS_PER_WORD,
+ int_size_in_bytes (TREE_TYPE (parm)));
+ }
+ DECL_RTL (parm) = stack_parm;
+ }
+ else if (! ((obey_regdecls && ! DECL_REGISTER (parm)
+ && ! DECL_INLINE (fndecl))
+ /* layout_decl may set this. */
+ || TREE_ADDRESSABLE (parm)
+ || TREE_SIDE_EFFECTS (parm)
+ /* If -ffloat-store specified, don't put explicit
+ float variables into registers. */
+ || (flag_float_store
+ && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
+ /* Always assign pseudo to structure return or item passed
+ by invisible reference. */
+ || passed_pointer || parm == function_result_decl)
+ {
+ /* Store the parm in a pseudoregister during the function, but we
+ may need to do it in a wider mode. */
+
+ register rtx parmreg;
+ int regno, regnoi, regnor;
+
+ unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
+
+ promoted_nominal_mode
+ = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
+
+ parmreg = gen_reg_rtx (promoted_nominal_mode);
+ REG_USERVAR_P (parmreg) = 1;
+
+ /* If this was an item that we received a pointer to, set DECL_RTL
+ appropriately. */
+ if (passed_pointer)
+ {
+ DECL_RTL (parm)
+ = gen_rtx (MEM, TYPE_MODE (TREE_TYPE (passed_type)), parmreg);
+ MEM_IN_STRUCT_P (DECL_RTL (parm)) = aggregate;
+ }
+ else
+ DECL_RTL (parm) = parmreg;
+
+ /* Copy the value into the register. */
+ if (nominal_mode != passed_mode
+ || promoted_nominal_mode != promoted_mode)
+ {
+ /* ENTRY_PARM has been converted to PROMOTED_MODE, its
+ mode, by the caller. We now have to convert it to
+ NOMINAL_MODE, if different. However, PARMREG may be in
+ a diffent mode than NOMINAL_MODE if it is being stored
+ promoted.
+
+ If ENTRY_PARM is a hard register, it might be in a register
+ not valid for operating in its mode (e.g., an odd-numbered
+ register for a DFmode). In that case, moves are the only
+ thing valid, so we can't do a convert from there. This
+ occurs when the calling sequence allow such misaligned
+ usages.
+
+ In addition, the conversion may involve a call, which could
+ clobber parameters which haven't been copied to pseudo
+ registers yet. Therefore, we must first copy the parm to
+ a pseudo reg here, and save the conversion until after all
+ parameters have been moved. */
+
+ rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
+
+ emit_move_insn (tempreg, validize_mem (entry_parm));
+
+ push_to_sequence (conversion_insns);
+ tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
+
+ expand_assignment (parm,
+ make_tree (nominal_type, tempreg), 0, 0);
+ conversion_insns = get_insns ();
+ did_conversion = 1;
+ end_sequence ();
+ }
+ else
+ emit_move_insn (parmreg, validize_mem (entry_parm));
+
+ /* If we were passed a pointer but the actual value
+ can safely live in a register, put it in one. */
+ if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
+ && ! ((obey_regdecls && ! DECL_REGISTER (parm)
+ && ! DECL_INLINE (fndecl))
+ /* layout_decl may set this. */
+ || TREE_ADDRESSABLE (parm)
+ || TREE_SIDE_EFFECTS (parm)
+ /* If -ffloat-store specified, don't put explicit
+ float variables into registers. */
+ || (flag_float_store
+ && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
+ {
+ /* We can't use nominal_mode, because it will have been set to
+ Pmode above. We must use the actual mode of the parm. */
+ parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
+ REG_USERVAR_P (parmreg) = 1;
+ emit_move_insn (parmreg, DECL_RTL (parm));
+ DECL_RTL (parm) = parmreg;
+ /* STACK_PARM is the pointer, not the parm, and PARMREG is
+ now the parm. */
+ stack_parm = 0;
+ }
+#ifdef FUNCTION_ARG_CALLEE_COPIES
+ /* If we are passed an arg by reference and it is our responsibility
+ to make a copy, do it now.
+ PASSED_TYPE and PASSED mode now refer to the pointer, not the
+ original argument, so we must recreate them in the call to
+ FUNCTION_ARG_CALLEE_COPIES. */
+ /* ??? Later add code to handle the case that if the argument isn't
+ modified, don't do the copy. */
+
+ else if (passed_pointer
+ && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
+ TYPE_MODE (DECL_ARG_TYPE (parm)),
+ DECL_ARG_TYPE (parm),
+ ! last_named)
+ && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
+ {
+ rtx copy;
+ tree type = DECL_ARG_TYPE (parm);
+
+ /* This sequence may involve a library call perhaps clobbering
+ registers that haven't been copied to pseudos yet. */
+
+ push_to_sequence (conversion_insns);
+
+ if (TYPE_SIZE (type) == 0
+ || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
+ /* This is a variable sized object. */
+ copy = gen_rtx (MEM, BLKmode,
+ allocate_dynamic_stack_space
+ (expr_size (parm), NULL_RTX,
+ TYPE_ALIGN (type)));
+ else
+ copy = assign_stack_temp (TYPE_MODE (type),
+ int_size_in_bytes (type), 1);
+ MEM_IN_STRUCT_P (copy) = AGGREGATE_TYPE_P (type);
+
+ store_expr (parm, copy, 0);
+ emit_move_insn (parmreg, XEXP (copy, 0));
+ conversion_insns = get_insns ();
+ did_conversion = 1;
+ end_sequence ();
+ }
+#endif /* FUNCTION_ARG_CALLEE_COPIES */
+
+ /* In any case, record the parm's desired stack location
+ in case we later discover it must live in the stack.
+
+ If it is a COMPLEX value, store the stack location for both
+ halves. */
+
+ if (GET_CODE (parmreg) == CONCAT)
+ regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
+ else
+ regno = REGNO (parmreg);
+
+ if (regno >= nparmregs)
+ {
+ rtx *new;
+ int old_nparmregs = nparmregs;
+
+ nparmregs = regno + 5;
+ new = (rtx *) oballoc (nparmregs * sizeof (rtx));
+ bcopy ((char *) parm_reg_stack_loc, (char *) new,
+ old_nparmregs * sizeof (rtx));
+ bzero ((char *) (new + old_nparmregs),
+ (nparmregs - old_nparmregs) * sizeof (rtx));
+ parm_reg_stack_loc = new;
+ }
+
+ if (GET_CODE (parmreg) == CONCAT)
+ {
+ enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
+
+ regnor = REGNO (gen_realpart (submode, parmreg));
+ regnoi = REGNO (gen_imagpart (submode, parmreg));
+
+ if (stack_parm != 0)
+ {
+ parm_reg_stack_loc[regnor]
+ = gen_realpart (submode, stack_parm);
+ parm_reg_stack_loc[regnoi]
+ = gen_imagpart (submode, stack_parm);
+ }
+ else
+ {
+ parm_reg_stack_loc[regnor] = 0;
+ parm_reg_stack_loc[regnoi] = 0;
+ }
+ }
+ else
+ parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
+
+ /* Mark the register as eliminable if we did no conversion
+ and it was copied from memory at a fixed offset,
+ and the arg pointer was not copied to a pseudo-reg.
+ If the arg pointer is a pseudo reg or the offset formed
+ an invalid address, such memory-equivalences
+ as we make here would screw up life analysis for it. */
+ if (nominal_mode == passed_mode
+ && ! did_conversion
+ && GET_CODE (entry_parm) == MEM
+ && entry_parm == stack_parm
+ && stack_offset.var == 0
+ && reg_mentioned_p (virtual_incoming_args_rtx,
+ XEXP (entry_parm, 0)))
+ {
+ rtx linsn = get_last_insn ();
+
+ /* Mark complex types separately. */
+ if (GET_CODE (parmreg) == CONCAT)
+ {
+ REG_NOTES (linsn)
+ = gen_rtx (EXPR_LIST, REG_EQUIV,
+ parm_reg_stack_loc[regnoi], REG_NOTES (linsn));
+
+ /* Now search backward for where we set the real part. */
+ for (; linsn != 0
+ && ! reg_referenced_p (parm_reg_stack_loc[regnor],
+ PATTERN (linsn));
+ linsn = prev_nonnote_insn (linsn))
+ ;
+
+ REG_NOTES (linsn)
+ = gen_rtx (EXPR_LIST, REG_EQUIV,
+ parm_reg_stack_loc[regnor], REG_NOTES (linsn));
+ }
+ else
+ REG_NOTES (linsn)
+ = gen_rtx (EXPR_LIST, REG_EQUIV,
+ entry_parm, REG_NOTES (linsn));
+ }
+
+ /* For pointer data type, suggest pointer register. */
+ if (TREE_CODE (TREE_TYPE (parm)) == POINTER_TYPE)
+ mark_reg_pointer (parmreg);
+ }
+ else
+ {
+ /* Value must be stored in the stack slot STACK_PARM
+ during function execution. */
+
+ if (promoted_mode != nominal_mode)
+ {
+ /* Conversion is required. */
+ rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
+
+ emit_move_insn (tempreg, validize_mem (entry_parm));
+
+ push_to_sequence (conversion_insns);
+ entry_parm = convert_to_mode (nominal_mode, tempreg,
+ TREE_UNSIGNED (TREE_TYPE (parm)));
+ conversion_insns = get_insns ();
+ did_conversion = 1;
+ end_sequence ();
+ }
+
+ if (entry_parm != stack_parm)
+ {
+ if (stack_parm == 0)
+ {
+ stack_parm
+ = assign_stack_local (GET_MODE (entry_parm),
+ GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
+ /* If this is a memory ref that contains aggregate components,
+ mark it as such for cse and loop optimize. */
+ MEM_IN_STRUCT_P (stack_parm) = aggregate;
+ }
+
+ if (promoted_mode != nominal_mode)
+ {
+ push_to_sequence (conversion_insns);
+ emit_move_insn (validize_mem (stack_parm),
+ validize_mem (entry_parm));
+ conversion_insns = get_insns ();
+ end_sequence ();
+ }
+ else
+ emit_move_insn (validize_mem (stack_parm),
+ validize_mem (entry_parm));
+ }
+
+ DECL_RTL (parm) = stack_parm;
+ }
+
+ /* If this "parameter" was the place where we are receiving the
+ function's incoming structure pointer, set up the result. */
+ if (parm == function_result_decl)
+ {
+ tree result = DECL_RESULT (fndecl);
+ tree restype = TREE_TYPE (result);
+
+ DECL_RTL (result)
+ = gen_rtx (MEM, DECL_MODE (result), DECL_RTL (parm));
+
+ MEM_IN_STRUCT_P (DECL_RTL (result)) = AGGREGATE_TYPE_P (restype);
+ }
+
+ if (TREE_THIS_VOLATILE (parm))
+ MEM_VOLATILE_P (DECL_RTL (parm)) = 1;
+ if (TREE_READONLY (parm))
+ RTX_UNCHANGING_P (DECL_RTL (parm)) = 1;
+ }
+
+ /* Output all parameter conversion instructions (possibly including calls)
+ now that all parameters have been copied out of hard registers. */
+ emit_insns (conversion_insns);
+
+ max_parm_reg = max_reg_num ();
+ last_parm_insn = get_last_insn ();
+
+ current_function_args_size = stack_args_size.constant;
+
+ /* Adjust function incoming argument size for alignment and
+ minimum length. */
+
+#ifdef REG_PARM_STACK_SPACE
+#ifndef MAYBE_REG_PARM_STACK_SPACE
+ current_function_args_size = MAX (current_function_args_size,
+ REG_PARM_STACK_SPACE (fndecl));
+#endif
+#endif
+
+#ifdef STACK_BOUNDARY
+#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
+
+ current_function_args_size
+ = ((current_function_args_size + STACK_BYTES - 1)
+ / STACK_BYTES) * STACK_BYTES;
+#endif
+
+#ifdef ARGS_GROW_DOWNWARD
+ current_function_arg_offset_rtx
+ = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
+ : expand_expr (size_binop (MINUS_EXPR, stack_args_size.var,
+ size_int (-stack_args_size.constant)),
+ NULL_RTX, VOIDmode, 0));
+#else
+ current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
+#endif
+
+ /* See how many bytes, if any, of its args a function should try to pop
+ on return. */
+
+ current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
+ current_function_args_size);
+
+ /* For stdarg.h function, save info about
+ regs and stack space used by the named args. */
+
+ if (!hide_last_arg)
+ current_function_args_info = args_so_far;
+
+ /* Set the rtx used for the function return value. Put this in its
+ own variable so any optimizers that need this information don't have
+ to include tree.h. Do this here so it gets done when an inlined
+ function gets output. */
+
+ current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl));
+}
+
+/* Indicate whether REGNO is an incoming argument to the current function
+ that was promoted to a wider mode. If so, return the RTX for the
+ register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
+ that REGNO is promoted from and whether the promotion was signed or
+ unsigned. */
+
+#ifdef PROMOTE_FUNCTION_ARGS
+
+rtx
+promoted_input_arg (regno, pmode, punsignedp)
+ int regno;
+ enum machine_mode *pmode;
+ int *punsignedp;
+{
+ tree arg;
+
+ for (arg = DECL_ARGUMENTS (current_function_decl); arg;
+ arg = TREE_CHAIN (arg))
+ if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
+ && REGNO (DECL_INCOMING_RTL (arg)) == regno
+ && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
+ {
+ enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
+ int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
+
+ mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
+ if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
+ && mode != DECL_MODE (arg))
+ {
+ *pmode = DECL_MODE (arg);
+ *punsignedp = unsignedp;
+ return DECL_INCOMING_RTL (arg);
+ }
+ }
+
+ return 0;
+}
+
+#endif
+
+/* Compute the size and offset from the start of the stacked arguments for a
+ parm passed in mode PASSED_MODE and with type TYPE.
+
+ INITIAL_OFFSET_PTR points to the current offset into the stacked
+ arguments.
+
+ The starting offset and size for this parm are returned in *OFFSET_PTR
+ and *ARG_SIZE_PTR, respectively.
+
+ IN_REGS is non-zero if the argument will be passed in registers. It will
+ never be set if REG_PARM_STACK_SPACE is not defined.
+
+ FNDECL is the function in which the argument was defined.
+
+ There are two types of rounding that are done. The first, controlled by
+ FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
+ list to be aligned to the specific boundary (in bits). This rounding
+ affects the initial and starting offsets, but not the argument size.
+
+ The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
+ optionally rounds the size of the parm to PARM_BOUNDARY. The
+ initial offset is not affected by this rounding, while the size always
+ is and the starting offset may be. */
+
+/* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
+ initial_offset_ptr is positive because locate_and_pad_parm's
+ callers pass in the total size of args so far as
+ initial_offset_ptr. arg_size_ptr is always positive.*/
+
+void
+locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
+ initial_offset_ptr, offset_ptr, arg_size_ptr)
+ enum machine_mode passed_mode;
+ tree type;
+ int in_regs;
+ tree fndecl;
+ struct args_size *initial_offset_ptr;
+ struct args_size *offset_ptr;
+ struct args_size *arg_size_ptr;
+{
+ tree sizetree
+ = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
+ enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
+ int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
+ int boundary_in_bytes = boundary / BITS_PER_UNIT;
+ int reg_parm_stack_space = 0;
+
+#ifdef REG_PARM_STACK_SPACE
+ /* If we have found a stack parm before we reach the end of the
+ area reserved for registers, skip that area. */
+ if (! in_regs)
+ {
+#ifdef MAYBE_REG_PARM_STACK_SPACE
+ reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
+#else
+ reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
+#endif
+ if (reg_parm_stack_space > 0)
+ {
+ if (initial_offset_ptr->var)
+ {
+ initial_offset_ptr->var
+ = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
+ size_int (reg_parm_stack_space));
+ initial_offset_ptr->constant = 0;
+ }
+ else if (initial_offset_ptr->constant < reg_parm_stack_space)
+ initial_offset_ptr->constant = reg_parm_stack_space;
+ }
+ }
+#endif /* REG_PARM_STACK_SPACE */
+
+ arg_size_ptr->var = 0;
+ arg_size_ptr->constant = 0;
+
+#ifdef ARGS_GROW_DOWNWARD
+ if (initial_offset_ptr->var)
+ {
+ offset_ptr->constant = 0;
+ offset_ptr->var = size_binop (MINUS_EXPR, integer_zero_node,
+ initial_offset_ptr->var);
+ }
+ else
+ {
+ offset_ptr->constant = - initial_offset_ptr->constant;
+ offset_ptr->var = 0;
+ }
+ if (where_pad != none
+ && (TREE_CODE (sizetree) != INTEGER_CST
+ || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
+ sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
+ SUB_PARM_SIZE (*offset_ptr, sizetree);
+ if (where_pad != downward)
+ pad_to_arg_alignment (offset_ptr, boundary);
+ if (initial_offset_ptr->var)
+ {
+ arg_size_ptr->var = size_binop (MINUS_EXPR,
+ size_binop (MINUS_EXPR,
+ integer_zero_node,
+ initial_offset_ptr->var),
+ offset_ptr->var);
+ }
+ else
+ {
+ arg_size_ptr->constant = (- initial_offset_ptr->constant -
+ offset_ptr->constant);
+ }
+#else /* !ARGS_GROW_DOWNWARD */
+ pad_to_arg_alignment (initial_offset_ptr, boundary);
+ *offset_ptr = *initial_offset_ptr;
+
+#ifdef PUSH_ROUNDING
+ if (passed_mode != BLKmode)
+ sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
+#endif
+
+ /* Pad_below needs the pre-rounded size to know how much to pad below
+ so this must be done before rounding up. */
+ if (where_pad == downward
+ /* However, BLKmode args passed in regs have their padding done elsewhere.
+ The stack slot must be able to hold the entire register. */
+ && !(in_regs && passed_mode == BLKmode))
+ pad_below (offset_ptr, passed_mode, sizetree);
+
+ if (where_pad != none
+ && (TREE_CODE (sizetree) != INTEGER_CST
+ || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
+ sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
+
+ ADD_PARM_SIZE (*arg_size_ptr, sizetree);
+#endif /* ARGS_GROW_DOWNWARD */
+}
+
+/* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
+ BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
+
+static void
+pad_to_arg_alignment (offset_ptr, boundary)
+ struct args_size *offset_ptr;
+ int boundary;
+{
+ int boundary_in_bytes = boundary / BITS_PER_UNIT;
+
+ if (boundary > BITS_PER_UNIT)
+ {
+ if (offset_ptr->var)
+ {
+ offset_ptr->var =
+#ifdef ARGS_GROW_DOWNWARD
+ round_down
+#else
+ round_up
+#endif
+ (ARGS_SIZE_TREE (*offset_ptr),
+ boundary / BITS_PER_UNIT);
+ offset_ptr->constant = 0; /*?*/
+ }
+ else
+ offset_ptr->constant =
+#ifdef ARGS_GROW_DOWNWARD
+ FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
+#else
+ CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
+#endif
+ }
+}
+
+static void
+pad_below (offset_ptr, passed_mode, sizetree)
+ struct args_size *offset_ptr;
+ enum machine_mode passed_mode;
+ tree sizetree;
+{
+ if (passed_mode != BLKmode)
+ {
+ if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
+ offset_ptr->constant
+ += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
+ / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
+ - GET_MODE_SIZE (passed_mode));
+ }
+ else
+ {
+ if (TREE_CODE (sizetree) != INTEGER_CST
+ || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
+ {
+ /* Round the size up to multiple of PARM_BOUNDARY bits. */
+ tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
+ /* Add it in. */
+ ADD_PARM_SIZE (*offset_ptr, s2);
+ SUB_PARM_SIZE (*offset_ptr, sizetree);
+ }
+ }
+}
+
+static tree
+round_down (value, divisor)
+ tree value;
+ int divisor;
+{
+ return size_binop (MULT_EXPR,
+ size_binop (FLOOR_DIV_EXPR, value, size_int (divisor)),
+ size_int (divisor));
+}
+
+/* Walk the tree of blocks describing the binding levels within a function
+ and warn about uninitialized variables.
+ This is done after calling flow_analysis and before global_alloc
+ clobbers the pseudo-regs to hard regs. */
+
+void
+uninitialized_vars_warning (block)
+ tree block;
+{
+ register tree decl, sub;
+ for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
+ {
+ if (TREE_CODE (decl) == VAR_DECL
+ /* These warnings are unreliable for and aggregates
+ because assigning the fields one by one can fail to convince
+ flow.c that the entire aggregate was initialized.
+ Unions are troublesome because members may be shorter. */
+ && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
+ && DECL_RTL (decl) != 0
+ && GET_CODE (DECL_RTL (decl)) == REG
+ && regno_uninitialized (REGNO (DECL_RTL (decl))))
+ warning_with_decl (decl,
+ "`%s' might be used uninitialized in this function");
+ if (TREE_CODE (decl) == VAR_DECL
+ && DECL_RTL (decl) != 0
+ && GET_CODE (DECL_RTL (decl)) == REG
+ && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
+ warning_with_decl (decl,
+ "variable `%s' might be clobbered by `longjmp' or `vfork'");
+ }
+ for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
+ uninitialized_vars_warning (sub);
+}
+
+/* Do the appropriate part of uninitialized_vars_warning
+ but for arguments instead of local variables. */
+
+void
+setjmp_args_warning ()
+{
+ register tree decl;
+ for (decl = DECL_ARGUMENTS (current_function_decl);
+ decl; decl = TREE_CHAIN (decl))
+ if (DECL_RTL (decl) != 0
+ && GET_CODE (DECL_RTL (decl)) == REG
+ && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
+ warning_with_decl (decl, "argument `%s' might be clobbered by `longjmp' or `vfork'");
+}
+
+/* If this function call setjmp, put all vars into the stack
+ unless they were declared `register'. */
+
+void
+setjmp_protect (block)
+ tree block;
+{
+ register tree decl, sub;
+ for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
+ if ((TREE_CODE (decl) == VAR_DECL
+ || TREE_CODE (decl) == PARM_DECL)
+ && DECL_RTL (decl) != 0
+ && GET_CODE (DECL_RTL (decl)) == REG
+ /* If this variable came from an inline function, it must be
+ that it's life doesn't overlap the setjmp. If there was a
+ setjmp in the function, it would already be in memory. We
+ must exclude such variable because their DECL_RTL might be
+ set to strange things such as virtual_stack_vars_rtx. */
+ && ! DECL_FROM_INLINE (decl)
+ && (
+#ifdef NON_SAVING_SETJMP
+ /* If longjmp doesn't restore the registers,
+ don't put anything in them. */
+ NON_SAVING_SETJMP
+ ||
+#endif
+ ! DECL_REGISTER (decl)))
+ put_var_into_stack (decl);
+ for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
+ setjmp_protect (sub);
+}
+
+/* Like the previous function, but for args instead of local variables. */
+
+void
+setjmp_protect_args ()
+{
+ register tree decl, sub;
+ for (decl = DECL_ARGUMENTS (current_function_decl);
+ decl; decl = TREE_CHAIN (decl))
+ if ((TREE_CODE (decl) == VAR_DECL
+ || TREE_CODE (decl) == PARM_DECL)
+ && DECL_RTL (decl) != 0
+ && GET_CODE (DECL_RTL (decl)) == REG
+ && (
+ /* If longjmp doesn't restore the registers,
+ don't put anything in them. */
+#ifdef NON_SAVING_SETJMP
+ NON_SAVING_SETJMP
+ ||
+#endif
+ ! DECL_REGISTER (decl)))
+ put_var_into_stack (decl);
+}
+
+/* Return the context-pointer register corresponding to DECL,
+ or 0 if it does not need one. */
+
+rtx
+lookup_static_chain (decl)
+ tree decl;
+{
+ tree context = decl_function_context (decl);
+ tree link;
+
+ if (context == 0)
+ return 0;
+
+ /* We treat inline_function_decl as an alias for the current function
+ because that is the inline function whose vars, types, etc.
+ are being merged into the current function.
+ See expand_inline_function. */
+ if (context == current_function_decl || context == inline_function_decl)
+ return virtual_stack_vars_rtx;
+
+ for (link = context_display; link; link = TREE_CHAIN (link))
+ if (TREE_PURPOSE (link) == context)
+ return RTL_EXPR_RTL (TREE_VALUE (link));
+
+ abort ();
+}
+
+/* Convert a stack slot address ADDR for variable VAR
+ (from a containing function)
+ into an address valid in this function (using a static chain). */
+
+rtx
+fix_lexical_addr (addr, var)
+ rtx addr;
+ tree var;
+{
+ rtx basereg;
+ int displacement;
+ tree context = decl_function_context (var);
+ struct function *fp;
+ rtx base = 0;
+
+ /* If this is the present function, we need not do anything. */
+ if (context == current_function_decl || context == inline_function_decl)
+ return addr;
+
+ for (fp = outer_function_chain; fp; fp = fp->next)
+ if (fp->decl == context)
+ break;
+
+ if (fp == 0)
+ abort ();
+
+ /* Decode given address as base reg plus displacement. */
+ if (GET_CODE (addr) == REG)
+ basereg = addr, displacement = 0;
+ else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
+ basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
+ else
+ abort ();
+
+ /* We accept vars reached via the containing function's
+ incoming arg pointer and via its stack variables pointer. */
+ if (basereg == fp->internal_arg_pointer)
+ {
+ /* If reached via arg pointer, get the arg pointer value
+ out of that function's stack frame.
+
+ There are two cases: If a separate ap is needed, allocate a
+ slot in the outer function for it and dereference it that way.
+ This is correct even if the real ap is actually a pseudo.
+ Otherwise, just adjust the offset from the frame pointer to
+ compensate. */
+
+#ifdef NEED_SEPARATE_AP
+ rtx addr;
+
+ if (fp->arg_pointer_save_area == 0)
+ fp->arg_pointer_save_area
+ = assign_outer_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
+
+ addr = fix_lexical_addr (XEXP (fp->arg_pointer_save_area, 0), var);
+ addr = memory_address (Pmode, addr);
+
+ base = copy_to_reg (gen_rtx (MEM, Pmode, addr));
+#else
+ displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
+ base = lookup_static_chain (var);
+#endif
+ }
+
+ else if (basereg == virtual_stack_vars_rtx)
+ {
+ /* This is the same code as lookup_static_chain, duplicated here to
+ avoid an extra call to decl_function_context. */
+ tree link;
+
+ for (link = context_display; link; link = TREE_CHAIN (link))
+ if (TREE_PURPOSE (link) == context)
+ {
+ base = RTL_EXPR_RTL (TREE_VALUE (link));
+ break;
+ }
+ }
+
+ if (base == 0)
+ abort ();
+
+ /* Use same offset, relative to appropriate static chain or argument
+ pointer. */
+ return plus_constant (base, displacement);
+}
+
+/* Return the address of the trampoline for entering nested fn FUNCTION.
+ If necessary, allocate a trampoline (in the stack frame)
+ and emit rtl to initialize its contents (at entry to this function). */
+
+rtx
+trampoline_address (function)
+ tree function;
+{
+ tree link;
+ tree rtlexp;
+ rtx tramp;
+ struct function *fp;
+ tree fn_context;
+
+ /* Find an existing trampoline and return it. */
+ for (link = trampoline_list; link; link = TREE_CHAIN (link))
+ if (TREE_PURPOSE (link) == function)
+ return
+ round_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
+
+ for (fp = outer_function_chain; fp; fp = fp->next)
+ for (link = fp->trampoline_list; link; link = TREE_CHAIN (link))
+ if (TREE_PURPOSE (link) == function)
+ {
+ tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
+ function);
+ return round_trampoline_addr (tramp);
+ }
+
+ /* None exists; we must make one. */
+
+ /* Find the `struct function' for the function containing FUNCTION. */
+ fp = 0;
+ fn_context = decl_function_context (function);
+ if (fn_context != current_function_decl)
+ for (fp = outer_function_chain; fp; fp = fp->next)
+ if (fp->decl == fn_context)
+ break;
+
+ /* Allocate run-time space for this trampoline
+ (usually in the defining function's stack frame). */
+#ifdef ALLOCATE_TRAMPOLINE
+ tramp = ALLOCATE_TRAMPOLINE (fp);
+#else
+ /* If rounding needed, allocate extra space
+ to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
+#ifdef TRAMPOLINE_ALIGNMENT
+#define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE + TRAMPOLINE_ALIGNMENT - 1)
+#else
+#define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
+#endif
+ if (fp != 0)
+ tramp = assign_outer_stack_local (BLKmode, TRAMPOLINE_REAL_SIZE, 0, fp);
+ else
+ tramp = assign_stack_local (BLKmode, TRAMPOLINE_REAL_SIZE, 0);
+#endif
+
+ /* Record the trampoline for reuse and note it for later initialization
+ by expand_function_end. */
+ if (fp != 0)
+ {
+ push_obstacks (fp->function_maybepermanent_obstack,
+ fp->function_maybepermanent_obstack);
+ rtlexp = make_node (RTL_EXPR);
+ RTL_EXPR_RTL (rtlexp) = tramp;
+ fp->trampoline_list = tree_cons (function, rtlexp, fp->trampoline_list);
+ pop_obstacks ();
+ }
+ else
+ {
+ /* Make the RTL_EXPR node temporary, not momentary, so that the
+ trampoline_list doesn't become garbage. */
+ int momentary = suspend_momentary ();
+ rtlexp = make_node (RTL_EXPR);
+ resume_momentary (momentary);
+
+ RTL_EXPR_RTL (rtlexp) = tramp;
+ trampoline_list = tree_cons (function, rtlexp, trampoline_list);
+ }
+
+ tramp = fix_lexical_addr (XEXP (tramp, 0), function);
+ return round_trampoline_addr (tramp);
+}
+
+/* Given a trampoline address,
+ round it to multiple of TRAMPOLINE_ALIGNMENT. */
+
+static rtx
+round_trampoline_addr (tramp)
+ rtx tramp;
+{
+#ifdef TRAMPOLINE_ALIGNMENT
+ /* Round address up to desired boundary. */
+ rtx temp = gen_reg_rtx (Pmode);
+ temp = expand_binop (Pmode, add_optab, tramp,
+ GEN_INT (TRAMPOLINE_ALIGNMENT - 1),
+ temp, 0, OPTAB_LIB_WIDEN);
+ tramp = expand_binop (Pmode, and_optab, temp,
+ GEN_INT (- TRAMPOLINE_ALIGNMENT),
+ temp, 0, OPTAB_LIB_WIDEN);
+#endif
+ return tramp;
+}
+
+/* The functions identify_blocks and reorder_blocks provide a way to
+ reorder the tree of BLOCK nodes, for optimizers that reshuffle or
+ duplicate portions of the RTL code. Call identify_blocks before
+ changing the RTL, and call reorder_blocks after. */
+
+/* Put all this function's BLOCK nodes into a vector, and return it.
+ Also store in each NOTE for the beginning or end of a block
+ the index of that block in the vector.
+ The arguments are TOP_BLOCK, the top-level block of the function,
+ and INSNS, the insn chain of the function. */
+
+tree *
+identify_blocks (top_block, insns)
+ tree top_block;
+ rtx insns;
+{
+ int n_blocks;
+ tree *block_vector;
+ int *block_stack;
+ int depth = 0;
+ int next_block_number = 0;
+ int current_block_number = 0;
+ rtx insn;
+
+ if (top_block == 0)
+ return 0;
+
+ n_blocks = all_blocks (top_block, 0);
+ block_vector = (tree *) xmalloc (n_blocks * sizeof (tree));
+ block_stack = (int *) alloca (n_blocks * sizeof (int));
+
+ all_blocks (top_block, block_vector);
+
+ for (insn = insns; insn; insn = NEXT_INSN (insn))
+ if (GET_CODE (insn) == NOTE)
+ {
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
+ {
+ block_stack[depth++] = current_block_number;
+ current_block_number = next_block_number;
+ NOTE_BLOCK_NUMBER (insn) = next_block_number++;
+ }
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
+ {
+ current_block_number = block_stack[--depth];
+ NOTE_BLOCK_NUMBER (insn) = current_block_number;
+ }
+ }
+
+ return block_vector;
+}
+
+/* Given BLOCK_VECTOR which was returned by identify_blocks,
+ and a revised instruction chain, rebuild the tree structure
+ of BLOCK nodes to correspond to the new order of RTL.
+ The new block tree is inserted below TOP_BLOCK.
+ Returns the current top-level block. */
+
+tree
+reorder_blocks (block_vector, top_block, insns)
+ tree *block_vector;
+ tree top_block;
+ rtx insns;
+{
+ tree current_block = top_block;
+ rtx insn;
+
+ if (block_vector == 0)
+ return top_block;
+
+ /* Prune the old tree away, so that it doesn't get in the way. */
+ BLOCK_SUBBLOCKS (current_block) = 0;
+
+ for (insn = insns; insn; insn = NEXT_INSN (insn))
+ if (GET_CODE (insn) == NOTE)
+ {
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
+ {
+ tree block = block_vector[NOTE_BLOCK_NUMBER (insn)];
+ /* If we have seen this block before, copy it. */
+ if (TREE_ASM_WRITTEN (block))
+ block = copy_node (block);
+ BLOCK_SUBBLOCKS (block) = 0;
+ TREE_ASM_WRITTEN (block) = 1;
+ BLOCK_SUPERCONTEXT (block) = current_block;
+ BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
+ BLOCK_SUBBLOCKS (current_block) = block;
+ current_block = block;
+ NOTE_SOURCE_FILE (insn) = 0;
+ }
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
+ {
+ BLOCK_SUBBLOCKS (current_block)
+ = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
+ current_block = BLOCK_SUPERCONTEXT (current_block);
+ NOTE_SOURCE_FILE (insn) = 0;
+ }
+ }
+
+ return current_block;
+}
+
+/* Reverse the order of elements in the chain T of blocks,
+ and return the new head of the chain (old last element). */
+
+static tree
+blocks_nreverse (t)
+ tree t;
+{
+ register tree prev = 0, decl, next;
+ for (decl = t; decl; decl = next)
+ {
+ next = BLOCK_CHAIN (decl);
+ BLOCK_CHAIN (decl) = prev;
+ prev = decl;
+ }
+ return prev;
+}
+
+/* Count the subblocks of BLOCK, and list them all into the vector VECTOR.
+ Also clear TREE_ASM_WRITTEN in all blocks. */
+
+static int
+all_blocks (block, vector)
+ tree block;
+ tree *vector;
+{
+ int n_blocks = 1;
+ tree subblocks;
+
+ TREE_ASM_WRITTEN (block) = 0;
+ /* Record this block. */
+ if (vector)
+ vector[0] = block;
+
+ /* Record the subblocks, and their subblocks. */
+ for (subblocks = BLOCK_SUBBLOCKS (block);
+ subblocks; subblocks = BLOCK_CHAIN (subblocks))
+ n_blocks += all_blocks (subblocks, vector ? vector + n_blocks : 0);
+
+ return n_blocks;
+}
+
+/* Build bytecode call descriptor for function SUBR. */
+
+rtx
+bc_build_calldesc (subr)
+ tree subr;
+{
+ tree calldesc = 0, arg;
+ int nargs = 0;
+
+ /* Build the argument description vector in reverse order. */
+ DECL_ARGUMENTS (subr) = nreverse (DECL_ARGUMENTS (subr));
+ nargs = 0;
+
+ for (arg = DECL_ARGUMENTS (subr); arg; arg = TREE_CHAIN (arg))
+ {
+ ++nargs;
+
+ calldesc = tree_cons ((tree) 0, size_in_bytes (TREE_TYPE (arg)), calldesc);
+ calldesc = tree_cons ((tree) 0, bc_runtime_type_code (TREE_TYPE (arg)), calldesc);
+ }
+
+ DECL_ARGUMENTS (subr) = nreverse (DECL_ARGUMENTS (subr));
+
+ /* Prepend the function's return type. */
+ calldesc = tree_cons ((tree) 0,
+ size_in_bytes (TREE_TYPE (TREE_TYPE (subr))),
+ calldesc);
+
+ calldesc = tree_cons ((tree) 0,
+ bc_runtime_type_code (TREE_TYPE (TREE_TYPE (subr))),
+ calldesc);
+
+ /* Prepend the arg count. */
+ calldesc = tree_cons ((tree) 0, build_int_2 (nargs, 0), calldesc);
+
+ /* Output the call description vector and get its address. */
+ calldesc = build_nt (CONSTRUCTOR, (tree) 0, calldesc);
+ TREE_TYPE (calldesc) = build_array_type (integer_type_node,
+ build_index_type (build_int_2 (nargs * 2, 0)));
+
+ return output_constant_def (calldesc);
+}
+
+
+/* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
+ and initialize static variables for generating RTL for the statements
+ of the function. */
+
+void
+init_function_start (subr, filename, line)
+ tree subr;
+ char *filename;
+ int line;
+{
+ char *junk;
+
+ if (output_bytecode)
+ {
+ this_function_decl = subr;
+ this_function_calldesc = bc_build_calldesc (subr);
+ local_vars_size = 0;
+ stack_depth = 0;
+ max_stack_depth = 0;
+ stmt_expr_depth = 0;
+ return;
+ }
+
+ init_stmt_for_function ();
+
+ cse_not_expected = ! optimize;
+
+ /* Caller save not needed yet. */
+ caller_save_needed = 0;
+
+ /* No stack slots have been made yet. */
+ stack_slot_list = 0;
+
+ /* There is no stack slot for handling nonlocal gotos. */
+ nonlocal_goto_handler_slot = 0;
+ nonlocal_goto_stack_level = 0;
+
+ /* No labels have been declared for nonlocal use. */
+ nonlocal_labels = 0;
+
+ /* No function calls so far in this function. */
+ function_call_count = 0;
+
+ /* No parm regs have been allocated.
+ (This is important for output_inline_function.) */
+ max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
+
+ /* Initialize the RTL mechanism. */
+ init_emit ();
+
+ /* Initialize the queue of pending postincrement and postdecrements,
+ and some other info in expr.c. */
+ init_expr ();
+
+ /* We haven't done register allocation yet. */
+ reg_renumber = 0;
+
+ init_const_rtx_hash_table ();
+
+ current_function_name = (*decl_printable_name) (subr, &junk);
+
+ /* Nonzero if this is a nested function that uses a static chain. */
+
+ current_function_needs_context
+ = (decl_function_context (current_function_decl) != 0);
+
+ /* Set if a call to setjmp is seen. */
+ current_function_calls_setjmp = 0;
+
+ /* Set if a call to longjmp is seen. */
+ current_function_calls_longjmp = 0;
+
+ current_function_calls_alloca = 0;
+ current_function_has_nonlocal_label = 0;
+ current_function_has_nonlocal_goto = 0;
+ current_function_contains_functions = 0;
+
+ current_function_returns_pcc_struct = 0;
+ current_function_returns_struct = 0;
+ current_function_epilogue_delay_list = 0;
+ current_function_uses_const_pool = 0;
+ current_function_uses_pic_offset_table = 0;
+
+ /* We have not yet needed to make a label to jump to for tail-recursion. */
+ tail_recursion_label = 0;
+
+ /* We haven't had a need to make a save area for ap yet. */
+
+ arg_pointer_save_area = 0;
+
+ /* No stack slots allocated yet. */
+ frame_offset = 0;
+
+ /* No SAVE_EXPRs in this function yet. */
+ save_expr_regs = 0;
+
+ /* No RTL_EXPRs in this function yet. */
+ rtl_expr_chain = 0;
+
+ /* We have not allocated any temporaries yet. */
+ temp_slots = 0;
+ temp_slot_level = 0;
+ target_temp_slot_level = 0;
+
+ /* Within function body, compute a type's size as soon it is laid out. */
+ immediate_size_expand++;
+
+ /* We haven't made any trampolines for this function yet. */
+ trampoline_list = 0;
+
+ init_pending_stack_adjust ();
+ inhibit_defer_pop = 0;
+
+ current_function_outgoing_args_size = 0;
+
+ /* Prevent ever trying to delete the first instruction of a function.
+ Also tell final how to output a linenum before the function prologue. */
+ emit_line_note (filename, line);
+
+ /* Make sure first insn is a note even if we don't want linenums.
+ This makes sure the first insn will never be deleted.
+ Also, final expects a note to appear there. */
+ emit_note (NULL_PTR, NOTE_INSN_DELETED);
+
+ /* Set flags used by final.c. */
+ if (aggregate_value_p (DECL_RESULT (subr)))
+ {
+#ifdef PCC_STATIC_STRUCT_RETURN
+ current_function_returns_pcc_struct = 1;
+#endif
+ current_function_returns_struct = 1;
+ }
+
+ /* Warn if this value is an aggregate type,
+ regardless of which calling convention we are using for it. */
+ if (warn_aggregate_return
+ && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
+ warning ("function returns an aggregate");
+
+ current_function_returns_pointer
+ = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
+
+ /* Indicate that we need to distinguish between the return value of the
+ present function and the return value of a function being called. */
+ rtx_equal_function_value_matters = 1;
+
+ /* Indicate that we have not instantiated virtual registers yet. */
+ virtuals_instantiated = 0;
+
+ /* Indicate we have no need of a frame pointer yet. */
+ frame_pointer_needed = 0;
+
+ /* By default assume not varargs or stdarg. */
+ current_function_varargs = 0;
+ current_function_stdarg = 0;
+}
+
+/* Indicate that the current function uses extra args
+ not explicitly mentioned in the argument list in any fashion. */
+
+void
+mark_varargs ()
+{
+ current_function_varargs = 1;
+}
+
+/* Expand a call to __main at the beginning of a possible main function. */
+
+#if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
+#undef HAS_INIT_SECTION
+#define HAS_INIT_SECTION
+#endif
+
+void
+expand_main_function ()
+{
+ if (!output_bytecode)
+ {
+ /* The zero below avoids a possible parse error */
+ 0;
+#if !defined (HAS_INIT_SECTION)
+ emit_library_call (gen_rtx (SYMBOL_REF, Pmode, NAME__MAIN), 0,
+ VOIDmode, 0);
+#endif /* not HAS_INIT_SECTION */
+ }
+}
+
+extern struct obstack permanent_obstack;
+
+/* Expand start of bytecode function. See comment at
+ expand_function_start below for details. */
+
+void
+bc_expand_function_start (subr, parms_have_cleanups)
+ tree subr;
+ int parms_have_cleanups;
+{
+ char label[20], *name;
+ static int nlab;
+ tree thisarg;
+ int argsz;
+
+ if (TREE_PUBLIC (subr))
+ bc_globalize_label (IDENTIFIER_POINTER (DECL_NAME (subr)));
+
+#ifdef DEBUG_PRINT_CODE
+ fprintf (stderr, "\n<func %s>\n", IDENTIFIER_POINTER (DECL_NAME (subr)));
+#endif
+
+ for (argsz = 0, thisarg = DECL_ARGUMENTS (subr); thisarg; thisarg = TREE_CHAIN (thisarg))
+ {
+ if (DECL_RTL (thisarg))
+ abort (); /* Should be NULL here I think. */
+ else if (TREE_CONSTANT (DECL_SIZE (thisarg)))
+ {
+ DECL_RTL (thisarg) = bc_gen_rtx ((char *) 0, argsz, (struct bc_label *) 0);
+ argsz += TREE_INT_CST_LOW (DECL_SIZE (thisarg));
+ }
+ else
+ {
+ /* Variable-sized objects are pointers to their storage. */
+ DECL_RTL (thisarg) = bc_gen_rtx ((char *) 0, argsz, (struct bc_label *) 0);
+ argsz += POINTER_SIZE;
+ }
+ }
+
+ bc_begin_function (bc_xstrdup (IDENTIFIER_POINTER (DECL_NAME (subr))));
+
+ ASM_GENERATE_INTERNAL_LABEL (label, "LX", nlab);
+
+ ++nlab;
+ name = (char *) obstack_copy0 (&permanent_obstack, label, strlen (label));
+ this_function_callinfo = bc_gen_rtx (name, 0, (struct bc_label *) 0);
+ this_function_bytecode =
+ bc_emit_trampoline (BYTECODE_LABEL (this_function_callinfo));
+}
+
+
+/* Expand end of bytecode function. See details the comment of
+ expand_function_end(), below. */
+
+void
+bc_expand_function_end ()
+{
+ char *ptrconsts;
+
+ expand_null_return ();
+
+ /* Emit any fixup code. This must be done before the call to
+ to BC_END_FUNCTION (), since that will cause the bytecode
+ segment to be finished off and closed. */
+
+ expand_fixups (NULL_RTX);
+
+ ptrconsts = bc_end_function ();
+
+ bc_align_const (2 /* INT_ALIGN */);
+
+ /* If this changes also make sure to change bc-interp.h! */
+
+ bc_emit_const_labeldef (BYTECODE_LABEL (this_function_callinfo));
+ bc_emit_const ((char *) &max_stack_depth, sizeof max_stack_depth);
+ bc_emit_const ((char *) &local_vars_size, sizeof local_vars_size);
+ bc_emit_const_labelref (this_function_bytecode, 0);
+ bc_emit_const_labelref (ptrconsts, 0);
+ bc_emit_const_labelref (BYTECODE_LABEL (this_function_calldesc), 0);
+}
+
+
+/* Start the RTL for a new function, and set variables used for
+ emitting RTL.
+ SUBR is the FUNCTION_DECL node.
+ PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
+ the function's parameters, which must be run at any return statement. */
+
+void
+expand_function_start (subr, parms_have_cleanups)
+ tree subr;
+ int parms_have_cleanups;
+{
+ register int i;
+ tree tem;
+ rtx last_ptr;
+
+ if (output_bytecode)
+ {
+ bc_expand_function_start (subr, parms_have_cleanups);
+ return;
+ }
+
+ /* Make sure volatile mem refs aren't considered
+ valid operands of arithmetic insns. */
+ init_recog_no_volatile ();
+
+ /* If function gets a static chain arg, store it in the stack frame.
+ Do this first, so it gets the first stack slot offset. */
+ if (current_function_needs_context)
+ {
+ last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
+
+#ifdef SMALL_REGISTER_CLASSES
+ /* Delay copying static chain if it is not a register to avoid
+ conflicts with regs used for parameters. */
+ if (GET_CODE (static_chain_incoming_rtx) == REG)
+#endif
+ emit_move_insn (last_ptr, static_chain_incoming_rtx);
+ }
+
+ /* If the parameters of this function need cleaning up, get a label
+ for the beginning of the code which executes those cleanups. This must
+ be done before doing anything with return_label. */
+ if (parms_have_cleanups)
+ cleanup_label = gen_label_rtx ();
+ else
+ cleanup_label = 0;
+
+ /* Make the label for return statements to jump to, if this machine
+ does not have a one-instruction return and uses an epilogue,
+ or if it returns a structure, or if it has parm cleanups. */
+#ifdef HAVE_return
+ if (cleanup_label == 0 && HAVE_return
+ && ! current_function_returns_pcc_struct
+ && ! (current_function_returns_struct && ! optimize))
+ return_label = 0;
+ else
+ return_label = gen_label_rtx ();
+#else
+ return_label = gen_label_rtx ();
+#endif
+
+ /* Initialize rtx used to return the value. */
+ /* Do this before assign_parms so that we copy the struct value address
+ before any library calls that assign parms might generate. */
+
+ /* Decide whether to return the value in memory or in a register. */
+ if (aggregate_value_p (DECL_RESULT (subr)))
+ {
+ /* Returning something that won't go in a register. */
+ register rtx value_address = 0;
+
+#ifdef PCC_STATIC_STRUCT_RETURN
+ if (current_function_returns_pcc_struct)
+ {
+ int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
+ value_address = assemble_static_space (size);
+ }
+ else
+#endif
+ {
+ /* Expect to be passed the address of a place to store the value.
+ If it is passed as an argument, assign_parms will take care of
+ it. */
+ if (struct_value_incoming_rtx)
+ {
+ value_address = gen_reg_rtx (Pmode);
+ emit_move_insn (value_address, struct_value_incoming_rtx);
+ }
+ }
+ if (value_address)
+ {
+ DECL_RTL (DECL_RESULT (subr))
+ = gen_rtx (MEM, DECL_MODE (DECL_RESULT (subr)), value_address);
+ MEM_IN_STRUCT_P (DECL_RTL (DECL_RESULT (subr)))
+ = AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
+ }
+ }
+ else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
+ /* If return mode is void, this decl rtl should not be used. */
+ DECL_RTL (DECL_RESULT (subr)) = 0;
+ else if (parms_have_cleanups)
+ {
+ /* If function will end with cleanup code for parms,
+ compute the return values into a pseudo reg,
+ which we will copy into the true return register
+ after the cleanups are done. */
+
+ enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
+
+#ifdef PROMOTE_FUNCTION_RETURN
+ tree type = TREE_TYPE (DECL_RESULT (subr));
+ int unsignedp = TREE_UNSIGNED (type);
+
+ mode = promote_mode (type, mode, &unsignedp, 1);
+#endif
+
+ DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode);
+ }
+ else
+ /* Scalar, returned in a register. */
+ {
+#ifdef FUNCTION_OUTGOING_VALUE
+ DECL_RTL (DECL_RESULT (subr))
+ = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
+#else
+ DECL_RTL (DECL_RESULT (subr))
+ = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
+#endif
+
+ /* Mark this reg as the function's return value. */
+ if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
+ {
+ REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
+ /* Needed because we may need to move this to memory
+ in case it's a named return value whose address is taken. */
+ DECL_REGISTER (DECL_RESULT (subr)) = 1;
+ }
+ }
+
+ /* Initialize rtx for parameters and local variables.
+ In some cases this requires emitting insns. */
+
+ assign_parms (subr, 0);
+
+#ifdef SMALL_REGISTER_CLASSES
+ /* Copy the static chain now if it wasn't a register. The delay is to
+ avoid conflicts with the parameter passing registers. */
+
+ if (current_function_needs_context)
+ if (GET_CODE (static_chain_incoming_rtx) != REG)
+ emit_move_insn (last_ptr, static_chain_incoming_rtx);
+#endif
+
+ /* The following was moved from init_function_start.
+ The move is supposed to make sdb output more accurate. */
+ /* Indicate the beginning of the function body,
+ as opposed to parm setup. */
+ emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
+
+ /* If doing stupid allocation, mark parms as born here. */
+
+ if (GET_CODE (get_last_insn ()) != NOTE)
+ emit_note (NULL_PTR, NOTE_INSN_DELETED);
+ parm_birth_insn = get_last_insn ();
+
+ if (obey_regdecls)
+ {
+ for (i = LAST_VIRTUAL_REGISTER + 1; i < max_parm_reg; i++)
+ use_variable (regno_reg_rtx[i]);
+
+ if (current_function_internal_arg_pointer != virtual_incoming_args_rtx)
+ use_variable (current_function_internal_arg_pointer);
+ }
+
+ /* Fetch static chain values for containing functions. */
+ tem = decl_function_context (current_function_decl);
+ /* If not doing stupid register allocation copy the static chain
+ pointer into a pseudo. If we have small register classes, copy the
+ value from memory if static_chain_incoming_rtx is a REG. If we do
+ stupid register allocation, we use the stack address generated above. */
+ if (tem && ! obey_regdecls)
+ {
+#ifdef SMALL_REGISTER_CLASSES
+ /* If the static chain originally came in a register, put it back
+ there, then move it out in the next insn. The reason for
+ this peculiar code is to satisfy function integration. */
+ if (GET_CODE (static_chain_incoming_rtx) == REG)
+ emit_move_insn (static_chain_incoming_rtx, last_ptr);
+#endif
+
+ last_ptr = copy_to_reg (static_chain_incoming_rtx);
+ }
+
+ context_display = 0;
+ while (tem)
+ {
+ tree rtlexp = make_node (RTL_EXPR);
+
+ RTL_EXPR_RTL (rtlexp) = last_ptr;
+ context_display = tree_cons (tem, rtlexp, context_display);
+ tem = decl_function_context (tem);
+ if (tem == 0)
+ break;
+ /* Chain thru stack frames, assuming pointer to next lexical frame
+ is found at the place we always store it. */
+#ifdef FRAME_GROWS_DOWNWARD
+ last_ptr = plus_constant (last_ptr, - GET_MODE_SIZE (Pmode));
+#endif
+ last_ptr = copy_to_reg (gen_rtx (MEM, Pmode,
+ memory_address (Pmode, last_ptr)));
+
+ /* If we are not optimizing, ensure that we know that this
+ piece of context is live over the entire function. */
+ if (! optimize)
+ save_expr_regs = gen_rtx (EXPR_LIST, VOIDmode, last_ptr,
+ save_expr_regs);
+ }
+
+ /* After the display initializations is where the tail-recursion label
+ should go, if we end up needing one. Ensure we have a NOTE here
+ since some things (like trampolines) get placed before this. */
+ tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
+
+ /* Evaluate now the sizes of any types declared among the arguments. */
+ for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
+ expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
+
+ /* Make sure there is a line number after the function entry setup code. */
+ force_next_line_note ();
+}
+
+/* Generate RTL for the end of the current function.
+ FILENAME and LINE are the current position in the source file.
+
+ It is up to language-specific callers to do cleanups for parameters--
+ or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
+
+void
+expand_function_end (filename, line, end_bindings)
+ char *filename;
+ int line;
+ int end_bindings;
+{
+ register int i;
+ tree link;
+
+ static rtx initial_trampoline;
+
+ if (output_bytecode)
+ {
+ bc_expand_function_end ();
+ return;
+ }
+
+#ifdef NON_SAVING_SETJMP
+ /* Don't put any variables in registers if we call setjmp
+ on a machine that fails to restore the registers. */
+ if (NON_SAVING_SETJMP && current_function_calls_setjmp)
+ {
+ if (DECL_INITIAL (current_function_decl) != error_mark_node)
+ setjmp_protect (DECL_INITIAL (current_function_decl));
+
+ setjmp_protect_args ();
+ }
+#endif
+
+ /* Save the argument pointer if a save area was made for it. */
+ if (arg_pointer_save_area)
+ {
+ rtx x = gen_move_insn (arg_pointer_save_area, virtual_incoming_args_rtx);
+ emit_insn_before (x, tail_recursion_reentry);
+ }
+
+ /* Initialize any trampolines required by this function. */
+ for (link = trampoline_list; link; link = TREE_CHAIN (link))
+ {
+ tree function = TREE_PURPOSE (link);
+ rtx context = lookup_static_chain (function);
+ rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
+ rtx seq;
+
+ /* First make sure this compilation has a template for
+ initializing trampolines. */
+ if (initial_trampoline == 0)
+ {
+ end_temporary_allocation ();
+ initial_trampoline
+ = gen_rtx (MEM, BLKmode, assemble_trampoline_template ());
+ resume_temporary_allocation ();
+ }
+
+ /* Generate insns to initialize the trampoline. */
+ start_sequence ();
+ tramp = change_address (initial_trampoline, BLKmode,
+ round_trampoline_addr (XEXP (tramp, 0)));
+ emit_block_move (tramp, initial_trampoline, GEN_INT (TRAMPOLINE_SIZE),
+ FUNCTION_BOUNDARY / BITS_PER_UNIT);
+ INITIALIZE_TRAMPOLINE (XEXP (tramp, 0),
+ XEXP (DECL_RTL (function), 0), context);
+ seq = get_insns ();
+ end_sequence ();
+
+ /* Put those insns at entry to the containing function (this one). */
+ emit_insns_before (seq, tail_recursion_reentry);
+ }
+
+ /* Warn about unused parms if extra warnings were specified. */
+ if (warn_unused && extra_warnings)
+ {
+ tree decl;
+
+ for (decl = DECL_ARGUMENTS (current_function_decl);
+ decl; decl = TREE_CHAIN (decl))
+ if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
+ && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
+ warning_with_decl (decl, "unused parameter `%s'");
+ }
+
+ /* Delete handlers for nonlocal gotos if nothing uses them. */
+ if (nonlocal_goto_handler_slot != 0 && !current_function_has_nonlocal_label)
+ delete_handlers ();
+
+ /* End any sequences that failed to be closed due to syntax errors. */
+ while (in_sequence_p ())
+ end_sequence ();
+
+ /* Outside function body, can't compute type's actual size
+ until next function's body starts. */
+ immediate_size_expand--;
+
+ /* If doing stupid register allocation,
+ mark register parms as dying here. */
+
+ if (obey_regdecls)
+ {
+ rtx tem;
+ for (i = LAST_VIRTUAL_REGISTER + 1; i < max_parm_reg; i++)
+ use_variable (regno_reg_rtx[i]);
+
+ /* Likewise for the regs of all the SAVE_EXPRs in the function. */
+
+ for (tem = save_expr_regs; tem; tem = XEXP (tem, 1))
+ {
+ use_variable (XEXP (tem, 0));
+ use_variable_after (XEXP (tem, 0), parm_birth_insn);
+ }
+
+ if (current_function_internal_arg_pointer != virtual_incoming_args_rtx)
+ use_variable (current_function_internal_arg_pointer);
+ }
+
+ clear_pending_stack_adjust ();
+ do_pending_stack_adjust ();
+
+ /* Mark the end of the function body.
+ If control reaches this insn, the function can drop through
+ without returning a value. */
+ emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
+
+ /* Output a linenumber for the end of the function.
+ SDB depends on this. */
+ emit_line_note_force (filename, line);
+
+ /* Output the label for the actual return from the function,
+ if one is expected. This happens either because a function epilogue
+ is used instead of a return instruction, or because a return was done
+ with a goto in order to run local cleanups, or because of pcc-style
+ structure returning. */
+
+ if (return_label)
+ emit_label (return_label);
+
+ /* C++ uses this. */
+ if (end_bindings)
+ expand_end_bindings (0, 0, 0);
+
+ /* If we had calls to alloca, and this machine needs
+ an accurate stack pointer to exit the function,
+ insert some code to save and restore the stack pointer. */
+#ifdef EXIT_IGNORE_STACK
+ if (! EXIT_IGNORE_STACK)
+#endif
+ if (current_function_calls_alloca)
+ {
+ rtx tem = 0;
+
+ emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
+ emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
+ }
+
+ /* If scalar return value was computed in a pseudo-reg,
+ copy that to the hard return register. */
+ if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0
+ && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG
+ && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl)))
+ >= FIRST_PSEUDO_REGISTER))
+ {
+ rtx real_decl_result;
+
+#ifdef FUNCTION_OUTGOING_VALUE
+ real_decl_result
+ = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
+ current_function_decl);
+#else
+ real_decl_result
+ = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
+ current_function_decl);
+#endif
+ REG_FUNCTION_VALUE_P (real_decl_result) = 1;
+ emit_move_insn (real_decl_result,
+ DECL_RTL (DECL_RESULT (current_function_decl)));
+ emit_insn (gen_rtx (USE, VOIDmode, real_decl_result));
+ }
+
+ /* If returning a structure, arrange to return the address of the value
+ in a place where debuggers expect to find it.
+
+ If returning a structure PCC style,
+ the caller also depends on this value.
+ And current_function_returns_pcc_struct is not necessarily set. */
+ if (current_function_returns_struct
+ || current_function_returns_pcc_struct)
+ {
+ rtx value_address = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
+ tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
+#ifdef FUNCTION_OUTGOING_VALUE
+ rtx outgoing
+ = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
+ current_function_decl);
+#else
+ rtx outgoing
+ = FUNCTION_VALUE (build_pointer_type (type),
+ current_function_decl);
+#endif
+
+ /* Mark this as a function return value so integrate will delete the
+ assignment and USE below when inlining this function. */
+ REG_FUNCTION_VALUE_P (outgoing) = 1;
+
+ emit_move_insn (outgoing, value_address);
+ use_variable (outgoing);
+ }
+
+ /* Output a return insn if we are using one.
+ Otherwise, let the rtl chain end here, to drop through
+ into the epilogue. */
+
+#ifdef HAVE_return
+ if (HAVE_return)
+ {
+ emit_jump_insn (gen_return ());
+ emit_barrier ();
+ }
+#endif
+
+ /* Fix up any gotos that jumped out to the outermost
+ binding level of the function.
+ Must follow emitting RETURN_LABEL. */
+
+ /* If you have any cleanups to do at this point,
+ and they need to create temporary variables,
+ then you will lose. */
+ expand_fixups (get_insns ());
+}
+
+/* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
+
+static int *prologue;
+static int *epilogue;
+
+/* Create an array that records the INSN_UIDs of INSNS (either a sequence
+ or a single insn). */
+
+static int *
+record_insns (insns)
+ rtx insns;
+{
+ int *vec;
+
+ if (GET_CODE (insns) == SEQUENCE)
+ {
+ int len = XVECLEN (insns, 0);
+ vec = (int *) oballoc ((len + 1) * sizeof (int));
+ vec[len] = 0;
+ while (--len >= 0)
+ vec[len] = INSN_UID (XVECEXP (insns, 0, len));
+ }
+ else
+ {
+ vec = (int *) oballoc (2 * sizeof (int));
+ vec[0] = INSN_UID (insns);
+ vec[1] = 0;
+ }
+ return vec;
+}
+
+/* Determine how many INSN_UIDs in VEC are part of INSN. */
+
+static int
+contains (insn, vec)
+ rtx insn;
+ int *vec;
+{
+ register int i, j;
+
+ if (GET_CODE (insn) == INSN
+ && GET_CODE (PATTERN (insn)) == SEQUENCE)
+ {
+ int count = 0;
+ for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
+ for (j = 0; vec[j]; j++)
+ if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == vec[j])
+ count++;
+ return count;
+ }
+ else
+ {
+ for (j = 0; vec[j]; j++)
+ if (INSN_UID (insn) == vec[j])
+ return 1;
+ }
+ return 0;
+}
+
+/* Generate the prologue and epilogue RTL if the machine supports it. Thread
+ this into place with notes indicating where the prologue ends and where
+ the epilogue begins. Update the basic block information when possible. */
+
+void
+thread_prologue_and_epilogue_insns (f)
+ rtx f;
+{
+#ifdef HAVE_prologue
+ if (HAVE_prologue)
+ {
+ rtx head, seq, insn;
+
+ /* The first insn (a NOTE_INSN_DELETED) is followed by zero or more
+ prologue insns and a NOTE_INSN_PROLOGUE_END. */
+ emit_note_after (NOTE_INSN_PROLOGUE_END, f);
+ seq = gen_prologue ();
+ head = emit_insn_after (seq, f);
+
+ /* Include the new prologue insns in the first block. Ignore them
+ if they form a basic block unto themselves. */
+ if (basic_block_head && n_basic_blocks
+ && GET_CODE (basic_block_head[0]) != CODE_LABEL)
+ basic_block_head[0] = NEXT_INSN (f);
+
+ /* Retain a map of the prologue insns. */
+ prologue = record_insns (GET_CODE (seq) == SEQUENCE ? seq : head);
+ }
+ else
+#endif
+ prologue = 0;
+
+#ifdef HAVE_epilogue
+ if (HAVE_epilogue)
+ {
+ rtx insn = get_last_insn ();
+ rtx prev = prev_nonnote_insn (insn);
+
+ /* If we end with a BARRIER, we don't need an epilogue. */
+ if (! (prev && GET_CODE (prev) == BARRIER))
+ {
+ rtx tail, seq, tem;
+ rtx first_use = 0;
+ rtx last_use = 0;
+
+ /* The last basic block ends with a NOTE_INSN_EPILOGUE_BEG, the
+ epilogue insns, the USE insns at the end of a function,
+ the jump insn that returns, and then a BARRIER. */
+
+ /* Move the USE insns at the end of a function onto a list. */
+ while (prev
+ && GET_CODE (prev) == INSN
+ && GET_CODE (PATTERN (prev)) == USE)
+ {
+ tem = prev;
+ prev = prev_nonnote_insn (prev);
+
+ NEXT_INSN (PREV_INSN (tem)) = NEXT_INSN (tem);
+ PREV_INSN (NEXT_INSN (tem)) = PREV_INSN (tem);
+ if (first_use)
+ {
+ NEXT_INSN (tem) = first_use;
+ PREV_INSN (first_use) = tem;
+ }
+ first_use = tem;
+ if (!last_use)
+ last_use = tem;
+ }
+
+ emit_barrier_after (insn);
+
+ seq = gen_epilogue ();
+ tail = emit_jump_insn_after (seq, insn);
+
+ /* Insert the USE insns immediately before the return insn, which
+ must be the first instruction before the final barrier. */
+ if (first_use)
+ {
+ tem = prev_nonnote_insn (get_last_insn ());
+ NEXT_INSN (PREV_INSN (tem)) = first_use;
+ PREV_INSN (first_use) = PREV_INSN (tem);
+ PREV_INSN (tem) = last_use;
+ NEXT_INSN (last_use) = tem;
+ }
+
+ emit_note_after (NOTE_INSN_EPILOGUE_BEG, insn);
+
+ /* Include the new epilogue insns in the last block. Ignore
+ them if they form a basic block unto themselves. */
+ if (basic_block_end && n_basic_blocks
+ && GET_CODE (basic_block_end[n_basic_blocks - 1]) != JUMP_INSN)
+ basic_block_end[n_basic_blocks - 1] = tail;
+
+ /* Retain a map of the epilogue insns. */
+ epilogue = record_insns (GET_CODE (seq) == SEQUENCE ? seq : tail);
+ return;
+ }
+ }
+#endif
+ epilogue = 0;
+}
+
+/* Reposition the prologue-end and epilogue-begin notes after instruction
+ scheduling and delayed branch scheduling. */
+
+void
+reposition_prologue_and_epilogue_notes (f)
+ rtx f;
+{
+#if defined (HAVE_prologue) || defined (HAVE_epilogue)
+ /* Reposition the prologue and epilogue notes. */
+ if (n_basic_blocks)
+ {
+ rtx next, prev;
+ int len;
+
+ if (prologue)
+ {
+ register rtx insn, note = 0;
+
+ /* Scan from the beginning until we reach the last prologue insn.
+ We apparently can't depend on basic_block_{head,end} after
+ reorg has run. */
+ for (len = 0; prologue[len]; len++)
+ ;
+ for (insn = f; len && insn; insn = NEXT_INSN (insn))
+ {
+ if (GET_CODE (insn) == NOTE)
+ {
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
+ note = insn;
+ }
+ else if ((len -= contains (insn, prologue)) == 0)
+ {
+ /* Find the prologue-end note if we haven't already, and
+ move it to just after the last prologue insn. */
+ if (note == 0)
+ {
+ for (note = insn; note = NEXT_INSN (note);)
+ if (GET_CODE (note) == NOTE
+ && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
+ break;
+ }
+ next = NEXT_INSN (note);
+ prev = PREV_INSN (note);
+ if (prev)
+ NEXT_INSN (prev) = next;
+ if (next)
+ PREV_INSN (next) = prev;
+ add_insn_after (note, insn);
+ }
+ }
+ }
+
+ if (epilogue)
+ {
+ register rtx insn, note = 0;
+
+ /* Scan from the end until we reach the first epilogue insn.
+ We apparently can't depend on basic_block_{head,end} after
+ reorg has run. */
+ for (len = 0; epilogue[len]; len++)
+ ;
+ for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
+ {
+ if (GET_CODE (insn) == NOTE)
+ {
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
+ note = insn;
+ }
+ else if ((len -= contains (insn, epilogue)) == 0)
+ {
+ /* Find the epilogue-begin note if we haven't already, and
+ move it to just before the first epilogue insn. */
+ if (note == 0)
+ {
+ for (note = insn; note = PREV_INSN (note);)
+ if (GET_CODE (note) == NOTE
+ && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
+ break;
+ }
+ next = NEXT_INSN (note);
+ prev = PREV_INSN (note);
+ if (prev)
+ NEXT_INSN (prev) = next;
+ if (next)
+ PREV_INSN (next) = prev;
+ add_insn_after (note, PREV_INSN (insn));
+ }
+ }
+ }
+ }
+#endif /* HAVE_prologue or HAVE_epilogue */
+}