diff options
author | Alexander Kabaev <kan@FreeBSD.org> | 2007-05-19 01:19:51 +0000 |
---|---|---|
committer | Alexander Kabaev <kan@FreeBSD.org> | 2007-05-19 01:19:51 +0000 |
commit | 6b834ef156bcf24dcf0e281f57ee5bde03ca07cf (patch) | |
tree | 0cb530c9c38af219e6dda2994c078b6b2b9ad853 /contrib/gcc/optabs.c | |
parent | 9ba78bf6b1135ae200742b2a97ae5bc71c9fd265 (diff) | |
download | src-6b834ef156bcf24dcf0e281f57ee5bde03ca07cf.tar.gz src-6b834ef156bcf24dcf0e281f57ee5bde03ca07cf.zip |
GCC 4.2.0 release.
Notes
Notes:
svn path=/vendor/gcc/dist/; revision=169689
Diffstat (limited to 'contrib/gcc/optabs.c')
-rw-r--r-- | contrib/gcc/optabs.c | 4394 |
1 files changed, 2602 insertions, 1792 deletions
diff --git a/contrib/gcc/optabs.c b/contrib/gcc/optabs.c index 536b1da307eb..539b3adaf282 100644 --- a/contrib/gcc/optabs.c +++ b/contrib/gcc/optabs.c @@ -1,6 +1,7 @@ /* Expand the basic unary and binary arithmetic operations, for GNU compiler. Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, - 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. + 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 + Free Software Foundation, Inc. This file is part of GCC. @@ -16,8 +17,8 @@ for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free -Software Foundation, 59 Temple Place - Suite 330, Boston, MA -02111-1307, USA. */ +Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA +02110-1301, USA. */ #include "config.h" @@ -59,7 +60,7 @@ optab optab_table[OTI_MAX]; rtx libfunc_table[LTI_MAX]; /* Tables of patterns for converting one mode to another. */ -convert_optab convert_optab_table[CTI_MAX]; +convert_optab convert_optab_table[COI_MAX]; /* Contains the optab used for each rtx code. */ optab code_to_optab[NUM_RTX_CODE + 1]; @@ -84,6 +85,12 @@ enum insn_code setcc_gen_code[NUM_RTX_CODE]; enum insn_code movcc_gen_code[NUM_MACHINE_MODES]; #endif +/* Indexed by the machine mode, gives the insn code for vector conditional + operation. */ + +enum insn_code vcond_gen_code[NUM_MACHINE_MODES]; +enum insn_code vcondu_gen_code[NUM_MACHINE_MODES]; + /* The insn generating function can not take an rtx_code argument. TRAP_RTX is used as an rtx argument. Its code is replaced with the code to be used in the trap insn and all other fields are ignored. */ @@ -92,20 +99,12 @@ static GTY(()) rtx trap_rtx; static int add_equal_note (rtx, rtx, enum rtx_code, rtx, rtx); static rtx widen_operand (rtx, enum machine_mode, enum machine_mode, int, int); -static int expand_cmplxdiv_straight (rtx, rtx, rtx, rtx, rtx, rtx, - enum machine_mode, int, - enum optab_methods, enum mode_class, - optab); -static int expand_cmplxdiv_wide (rtx, rtx, rtx, rtx, rtx, rtx, - enum machine_mode, int, enum optab_methods, - enum mode_class, optab); static void prepare_cmp_insn (rtx *, rtx *, enum rtx_code *, rtx, enum machine_mode *, int *, enum can_compare_purpose); static enum insn_code can_fix_p (enum machine_mode, enum machine_mode, int, int *); static enum insn_code can_float_p (enum machine_mode, enum machine_mode, int); -static rtx ftruncify (rtx); static optab new_optab (void); static convert_optab new_convert_optab (void); static inline optab init_optab (enum rtx_code); @@ -122,15 +121,14 @@ static void emit_cmp_and_jump_insn_1 (rtx, rtx, enum machine_mode, enum rtx_code, int, rtx); static void prepare_float_lib_cmp (rtx *, rtx *, enum rtx_code *, enum machine_mode *, int *); -static rtx expand_vector_binop (enum machine_mode, optab, rtx, rtx, rtx, int, - enum optab_methods); -static rtx expand_vector_unop (enum machine_mode, optab, rtx, rtx, int); static rtx widen_clz (enum machine_mode, rtx, rtx); static rtx expand_parity (enum machine_mode, rtx, rtx); +static enum rtx_code get_rtx_code (enum tree_code, bool); +static rtx vector_compare_rtx (tree, bool, enum insn_code); #ifndef HAVE_conditional_trap #define HAVE_conditional_trap 0 -#define gen_conditional_trap(a,b) (abort (), NULL_RTX) +#define gen_conditional_trap(a,b) (gcc_unreachable (), NULL_RTX) #endif /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to @@ -149,13 +147,13 @@ add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1) rtx last_insn, insn, set; rtx note; - if (! insns - || ! INSN_P (insns) - || NEXT_INSN (insns) == NULL_RTX) - abort (); + gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns)); - if (GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2' - && GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<') + if (GET_RTX_CLASS (code) != RTX_COMM_ARITH + && GET_RTX_CLASS (code) != RTX_BIN_ARITH + && GET_RTX_CLASS (code) != RTX_COMM_COMPARE + && GET_RTX_CLASS (code) != RTX_COMPARE + && GET_RTX_CLASS (code) != RTX_UNARY) return 1; if (GET_CODE (target) == ZERO_EXTRACT) @@ -191,7 +189,7 @@ add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1) } } - if (GET_RTX_CLASS (code) == '1') + if (GET_RTX_CLASS (code) == RTX_UNARY) note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0)); else note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1)); @@ -239,391 +237,913 @@ widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode, return result; } -/* Generate code to perform a straightforward complex divide. */ - -static int -expand_cmplxdiv_straight (rtx real0, rtx real1, rtx imag0, rtx imag1, - rtx realr, rtx imagr, enum machine_mode submode, - int unsignedp, enum optab_methods methods, - enum mode_class class, optab binoptab) +/* Return the optab used for computing the operation given by + the tree code, CODE. This function is not always usable (for + example, it cannot give complete results for multiplication + or division) but probably ought to be relied on more widely + throughout the expander. */ +optab +optab_for_tree_code (enum tree_code code, tree type) { - rtx divisor; - rtx real_t, imag_t; - rtx temp1, temp2; - rtx res; - optab this_add_optab = add_optab; - optab this_sub_optab = sub_optab; - optab this_neg_optab = neg_optab; - optab this_mul_optab = smul_optab; - - if (binoptab == sdivv_optab) + bool trapv; + switch (code) { - this_add_optab = addv_optab; - this_sub_optab = subv_optab; - this_neg_optab = negv_optab; - this_mul_optab = smulv_optab; - } + case BIT_AND_EXPR: + return and_optab; - /* Don't fetch these from memory more than once. */ - real0 = force_reg (submode, real0); - real1 = force_reg (submode, real1); + case BIT_IOR_EXPR: + return ior_optab; - if (imag0 != 0) - imag0 = force_reg (submode, imag0); + case BIT_NOT_EXPR: + return one_cmpl_optab; - imag1 = force_reg (submode, imag1); + case BIT_XOR_EXPR: + return xor_optab; - /* Divisor: c*c + d*d. */ - temp1 = expand_binop (submode, this_mul_optab, real1, real1, - NULL_RTX, unsignedp, methods); + case TRUNC_MOD_EXPR: + case CEIL_MOD_EXPR: + case FLOOR_MOD_EXPR: + case ROUND_MOD_EXPR: + return TYPE_UNSIGNED (type) ? umod_optab : smod_optab; - temp2 = expand_binop (submode, this_mul_optab, imag1, imag1, - NULL_RTX, unsignedp, methods); + case RDIV_EXPR: + case TRUNC_DIV_EXPR: + case CEIL_DIV_EXPR: + case FLOOR_DIV_EXPR: + case ROUND_DIV_EXPR: + case EXACT_DIV_EXPR: + return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab; - if (temp1 == 0 || temp2 == 0) - return 0; + case LSHIFT_EXPR: + return ashl_optab; - divisor = expand_binop (submode, this_add_optab, temp1, temp2, - NULL_RTX, unsignedp, methods); - if (divisor == 0) - return 0; + case RSHIFT_EXPR: + return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab; - if (imag0 == 0) - { - /* Mathematically, ((a)(c-id))/divisor. */ - /* Computationally, (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)). */ + case LROTATE_EXPR: + return rotl_optab; - /* Calculate the dividend. */ - real_t = expand_binop (submode, this_mul_optab, real0, real1, - NULL_RTX, unsignedp, methods); + case RROTATE_EXPR: + return rotr_optab; - imag_t = expand_binop (submode, this_mul_optab, real0, imag1, - NULL_RTX, unsignedp, methods); + case MAX_EXPR: + return TYPE_UNSIGNED (type) ? umax_optab : smax_optab; - if (real_t == 0 || imag_t == 0) - return 0; + case MIN_EXPR: + return TYPE_UNSIGNED (type) ? umin_optab : smin_optab; - imag_t = expand_unop (submode, this_neg_optab, imag_t, - NULL_RTX, unsignedp); - } - else - { - /* Mathematically, ((a+ib)(c-id))/divider. */ - /* Calculate the dividend. */ - temp1 = expand_binop (submode, this_mul_optab, real0, real1, - NULL_RTX, unsignedp, methods); + case REALIGN_LOAD_EXPR: + return vec_realign_load_optab; - temp2 = expand_binop (submode, this_mul_optab, imag0, imag1, - NULL_RTX, unsignedp, methods); + case WIDEN_SUM_EXPR: + return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab; - if (temp1 == 0 || temp2 == 0) - return 0; + case DOT_PROD_EXPR: + return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab; - real_t = expand_binop (submode, this_add_optab, temp1, temp2, - NULL_RTX, unsignedp, methods); + case REDUC_MAX_EXPR: + return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab; - temp1 = expand_binop (submode, this_mul_optab, imag0, real1, - NULL_RTX, unsignedp, methods); + case REDUC_MIN_EXPR: + return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab; - temp2 = expand_binop (submode, this_mul_optab, real0, imag1, - NULL_RTX, unsignedp, methods); + case REDUC_PLUS_EXPR: + return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab; - if (temp1 == 0 || temp2 == 0) - return 0; + case VEC_LSHIFT_EXPR: + return vec_shl_optab; - imag_t = expand_binop (submode, this_sub_optab, temp1, temp2, - NULL_RTX, unsignedp, methods); + case VEC_RSHIFT_EXPR: + return vec_shr_optab; - if (real_t == 0 || imag_t == 0) - return 0; + default: + break; } - if (class == MODE_COMPLEX_FLOAT) - res = expand_binop (submode, binoptab, real_t, divisor, - realr, unsignedp, methods); - else - res = expand_divmod (0, TRUNC_DIV_EXPR, submode, - real_t, divisor, realr, unsignedp); + trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type); + switch (code) + { + case PLUS_EXPR: + return trapv ? addv_optab : add_optab; - if (res == 0) - return 0; + case MINUS_EXPR: + return trapv ? subv_optab : sub_optab; - if (res != realr) - emit_move_insn (realr, res); + case MULT_EXPR: + return trapv ? smulv_optab : smul_optab; - if (class == MODE_COMPLEX_FLOAT) - res = expand_binop (submode, binoptab, imag_t, divisor, - imagr, unsignedp, methods); - else - res = expand_divmod (0, TRUNC_DIV_EXPR, submode, - imag_t, divisor, imagr, unsignedp); + case NEGATE_EXPR: + return trapv ? negv_optab : neg_optab; - if (res == 0) - return 0; - - if (res != imagr) - emit_move_insn (imagr, res); + case ABS_EXPR: + return trapv ? absv_optab : abs_optab; - return 1; + default: + return NULL; + } } -/* Generate code to perform a wide-input-range-acceptable complex divide. */ -static int -expand_cmplxdiv_wide (rtx real0, rtx real1, rtx imag0, rtx imag1, rtx realr, - rtx imagr, enum machine_mode submode, int unsignedp, - enum optab_methods methods, enum mode_class class, - optab binoptab) -{ - rtx ratio, divisor; - rtx real_t, imag_t; - rtx temp1, temp2, lab1, lab2; - enum machine_mode mode; - rtx res; - optab this_add_optab = add_optab; - optab this_sub_optab = sub_optab; - optab this_neg_optab = neg_optab; - optab this_mul_optab = smul_optab; +/* Expand vector widening operations. + + There are two different classes of operations handled here: + 1) Operations whose result is wider than all the arguments to the operation. + Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR + In this case OP0 and optionally OP1 would be initialized, + but WIDE_OP wouldn't (not relevant for this case). + 2) Operations whose result is of the same size as the last argument to the + operation, but wider than all the other arguments to the operation. + Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR. + In the case WIDE_OP, OP0 and optionally OP1 would be initialized. + + E.g, when called to expand the following operations, this is how + the arguments will be initialized: + nops OP0 OP1 WIDE_OP + widening-sum 2 oprnd0 - oprnd1 + widening-dot-product 3 oprnd0 oprnd1 oprnd2 + widening-mult 2 oprnd0 oprnd1 - + type-promotion (vec-unpack) 1 oprnd0 - - */ - if (binoptab == sdivv_optab) +rtx +expand_widen_pattern_expr (tree exp, rtx op0, rtx op1, rtx wide_op, rtx target, + int unsignedp) +{ + tree oprnd0, oprnd1, oprnd2; + enum machine_mode wmode = 0, tmode0, tmode1 = 0; + optab widen_pattern_optab; + int icode; + enum machine_mode xmode0, xmode1 = 0, wxmode = 0; + rtx temp; + rtx pat; + rtx xop0, xop1, wxop; + int nops = TREE_CODE_LENGTH (TREE_CODE (exp)); + + oprnd0 = TREE_OPERAND (exp, 0); + tmode0 = TYPE_MODE (TREE_TYPE (oprnd0)); + widen_pattern_optab = + optab_for_tree_code (TREE_CODE (exp), TREE_TYPE (oprnd0)); + icode = (int) widen_pattern_optab->handlers[(int) tmode0].insn_code; + gcc_assert (icode != CODE_FOR_nothing); + xmode0 = insn_data[icode].operand[1].mode; + + if (nops >= 2) { - this_add_optab = addv_optab; - this_sub_optab = subv_optab; - this_neg_optab = negv_optab; - this_mul_optab = smulv_optab; + oprnd1 = TREE_OPERAND (exp, 1); + tmode1 = TYPE_MODE (TREE_TYPE (oprnd1)); + xmode1 = insn_data[icode].operand[2].mode; } - /* Don't fetch these from memory more than once. */ - real0 = force_reg (submode, real0); - real1 = force_reg (submode, real1); - - if (imag0 != 0) - imag0 = force_reg (submode, imag0); + /* The last operand is of a wider mode than the rest of the operands. */ + if (nops == 2) + { + wmode = tmode1; + wxmode = xmode1; + } + else if (nops == 3) + { + gcc_assert (tmode1 == tmode0); + gcc_assert (op1); + oprnd2 = TREE_OPERAND (exp, 2); + wmode = TYPE_MODE (TREE_TYPE (oprnd2)); + wxmode = insn_data[icode].operand[3].mode; + } - imag1 = force_reg (submode, imag1); + if (!wide_op) + wmode = wxmode = insn_data[icode].operand[0].mode; - /* XXX What's an "unsigned" complex number? */ - if (unsignedp) + if (!target + || ! (*insn_data[icode].operand[0].predicate) (target, wmode)) + temp = gen_reg_rtx (wmode); + else + temp = target; + + xop0 = op0; + xop1 = op1; + wxop = wide_op; + + /* In case the insn wants input operands in modes different from + those of the actual operands, convert the operands. It would + seem that we don't need to convert CONST_INTs, but we do, so + that they're properly zero-extended, sign-extended or truncated + for their mode. */ + + if (GET_MODE (op0) != xmode0 && xmode0 != VOIDmode) + xop0 = convert_modes (xmode0, + GET_MODE (op0) != VOIDmode + ? GET_MODE (op0) + : tmode0, + xop0, unsignedp); + + if (op1) + if (GET_MODE (op1) != xmode1 && xmode1 != VOIDmode) + xop1 = convert_modes (xmode1, + GET_MODE (op1) != VOIDmode + ? GET_MODE (op1) + : tmode1, + xop1, unsignedp); + + if (wide_op) + if (GET_MODE (wide_op) != wxmode && wxmode != VOIDmode) + wxop = convert_modes (wxmode, + GET_MODE (wide_op) != VOIDmode + ? GET_MODE (wide_op) + : wmode, + wxop, unsignedp); + + /* Now, if insn's predicates don't allow our operands, put them into + pseudo regs. */ + + if (! (*insn_data[icode].operand[1].predicate) (xop0, xmode0) + && xmode0 != VOIDmode) + xop0 = copy_to_mode_reg (xmode0, xop0); + + if (op1) { - temp1 = real1; - temp2 = imag1; + if (! (*insn_data[icode].operand[2].predicate) (xop1, xmode1) + && xmode1 != VOIDmode) + xop1 = copy_to_mode_reg (xmode1, xop1); + + if (wide_op) + { + if (! (*insn_data[icode].operand[3].predicate) (wxop, wxmode) + && wxmode != VOIDmode) + wxop = copy_to_mode_reg (wxmode, wxop); + + pat = GEN_FCN (icode) (temp, xop0, xop1, wxop); + } + else + pat = GEN_FCN (icode) (temp, xop0, xop1); } else { - temp1 = expand_abs (submode, real1, NULL_RTX, unsignedp, 1); - temp2 = expand_abs (submode, imag1, NULL_RTX, unsignedp, 1); - } + if (wide_op) + { + if (! (*insn_data[icode].operand[2].predicate) (wxop, wxmode) + && wxmode != VOIDmode) + wxop = copy_to_mode_reg (wxmode, wxop); - if (temp1 == 0 || temp2 == 0) - return 0; + pat = GEN_FCN (icode) (temp, xop0, wxop); + } + else + pat = GEN_FCN (icode) (temp, xop0); + } - mode = GET_MODE (temp1); - lab1 = gen_label_rtx (); - emit_cmp_and_jump_insns (temp1, temp2, LT, NULL_RTX, - mode, unsignedp, lab1); + emit_insn (pat); + return temp; +} - /* |c| >= |d|; use ratio d/c to scale dividend and divisor. */ +/* Generate code to perform an operation specified by TERNARY_OPTAB + on operands OP0, OP1 and OP2, with result having machine-mode MODE. - if (class == MODE_COMPLEX_FLOAT) - ratio = expand_binop (submode, binoptab, imag1, real1, - NULL_RTX, unsignedp, methods); - else - ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode, - imag1, real1, NULL_RTX, unsignedp); + UNSIGNEDP is for the case where we have to widen the operands + to perform the operation. It says to use zero-extension. - if (ratio == 0) - return 0; + If TARGET is nonzero, the value + is generated there, if it is convenient to do so. + In all cases an rtx is returned for the locus of the value; + this may or may not be TARGET. */ - /* Calculate divisor. */ +rtx +expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0, + rtx op1, rtx op2, rtx target, int unsignedp) +{ + int icode = (int) ternary_optab->handlers[(int) mode].insn_code; + enum machine_mode mode0 = insn_data[icode].operand[1].mode; + enum machine_mode mode1 = insn_data[icode].operand[2].mode; + enum machine_mode mode2 = insn_data[icode].operand[3].mode; + rtx temp; + rtx pat; + rtx xop0 = op0, xop1 = op1, xop2 = op2; - temp1 = expand_binop (submode, this_mul_optab, imag1, ratio, - NULL_RTX, unsignedp, methods); + gcc_assert (ternary_optab->handlers[(int) mode].insn_code + != CODE_FOR_nothing); - if (temp1 == 0) - return 0; + if (!target || !insn_data[icode].operand[0].predicate (target, mode)) + temp = gen_reg_rtx (mode); + else + temp = target; + + /* In case the insn wants input operands in modes different from + those of the actual operands, convert the operands. It would + seem that we don't need to convert CONST_INTs, but we do, so + that they're properly zero-extended, sign-extended or truncated + for their mode. */ + + if (GET_MODE (op0) != mode0 && mode0 != VOIDmode) + xop0 = convert_modes (mode0, + GET_MODE (op0) != VOIDmode + ? GET_MODE (op0) + : mode, + xop0, unsignedp); + + if (GET_MODE (op1) != mode1 && mode1 != VOIDmode) + xop1 = convert_modes (mode1, + GET_MODE (op1) != VOIDmode + ? GET_MODE (op1) + : mode, + xop1, unsignedp); + + if (GET_MODE (op2) != mode2 && mode2 != VOIDmode) + xop2 = convert_modes (mode2, + GET_MODE (op2) != VOIDmode + ? GET_MODE (op2) + : mode, + xop2, unsignedp); + + /* Now, if insn's predicates don't allow our operands, put them into + pseudo regs. */ + + if (!insn_data[icode].operand[1].predicate (xop0, mode0) + && mode0 != VOIDmode) + xop0 = copy_to_mode_reg (mode0, xop0); + + if (!insn_data[icode].operand[2].predicate (xop1, mode1) + && mode1 != VOIDmode) + xop1 = copy_to_mode_reg (mode1, xop1); + + if (!insn_data[icode].operand[3].predicate (xop2, mode2) + && mode2 != VOIDmode) + xop2 = copy_to_mode_reg (mode2, xop2); + + pat = GEN_FCN (icode) (temp, xop0, xop1, xop2); - divisor = expand_binop (submode, this_add_optab, temp1, real1, - NULL_RTX, unsignedp, methods); + emit_insn (pat); + return temp; +} - if (divisor == 0) - return 0; - /* Calculate dividend. */ +/* Like expand_binop, but return a constant rtx if the result can be + calculated at compile time. The arguments and return value are + otherwise the same as for expand_binop. */ - if (imag0 == 0) +static rtx +simplify_expand_binop (enum machine_mode mode, optab binoptab, + rtx op0, rtx op1, rtx target, int unsignedp, + enum optab_methods methods) +{ + if (CONSTANT_P (op0) && CONSTANT_P (op1)) { - real_t = real0; + rtx x = simplify_binary_operation (binoptab->code, mode, op0, op1); - /* Compute a / (c+id) as a / (c+d(d/c)) + i (-a(d/c)) / (c+d(d/c)). */ + if (x) + return x; + } - imag_t = expand_binop (submode, this_mul_optab, real0, ratio, - NULL_RTX, unsignedp, methods); + return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods); +} - if (imag_t == 0) - return 0; +/* Like simplify_expand_binop, but always put the result in TARGET. + Return true if the expansion succeeded. */ - imag_t = expand_unop (submode, this_neg_optab, imag_t, - NULL_RTX, unsignedp); +bool +force_expand_binop (enum machine_mode mode, optab binoptab, + rtx op0, rtx op1, rtx target, int unsignedp, + enum optab_methods methods) +{ + rtx x = simplify_expand_binop (mode, binoptab, op0, op1, + target, unsignedp, methods); + if (x == 0) + return false; + if (x != target) + emit_move_insn (target, x); + return true; +} - if (real_t == 0 || imag_t == 0) - return 0; - } - else +/* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */ + +rtx +expand_vec_shift_expr (tree vec_shift_expr, rtx target) +{ + enum insn_code icode; + rtx rtx_op1, rtx_op2; + enum machine_mode mode1; + enum machine_mode mode2; + enum machine_mode mode = TYPE_MODE (TREE_TYPE (vec_shift_expr)); + tree vec_oprnd = TREE_OPERAND (vec_shift_expr, 0); + tree shift_oprnd = TREE_OPERAND (vec_shift_expr, 1); + optab shift_optab; + rtx pat; + + switch (TREE_CODE (vec_shift_expr)) { - /* Compute (a+ib)/(c+id) as - (a+b(d/c))/(c+d(d/c) + i(b-a(d/c))/(c+d(d/c)). */ + case VEC_RSHIFT_EXPR: + shift_optab = vec_shr_optab; + break; + case VEC_LSHIFT_EXPR: + shift_optab = vec_shl_optab; + break; + default: + gcc_unreachable (); + } - temp1 = expand_binop (submode, this_mul_optab, imag0, ratio, - NULL_RTX, unsignedp, methods); + icode = (int) shift_optab->handlers[(int) mode].insn_code; + gcc_assert (icode != CODE_FOR_nothing); - if (temp1 == 0) - return 0; + mode1 = insn_data[icode].operand[1].mode; + mode2 = insn_data[icode].operand[2].mode; - real_t = expand_binop (submode, this_add_optab, temp1, real0, - NULL_RTX, unsignedp, methods); + rtx_op1 = expand_expr (vec_oprnd, NULL_RTX, VOIDmode, EXPAND_NORMAL); + if (!(*insn_data[icode].operand[1].predicate) (rtx_op1, mode1) + && mode1 != VOIDmode) + rtx_op1 = force_reg (mode1, rtx_op1); - temp1 = expand_binop (submode, this_mul_optab, real0, ratio, - NULL_RTX, unsignedp, methods); + rtx_op2 = expand_expr (shift_oprnd, NULL_RTX, VOIDmode, EXPAND_NORMAL); + if (!(*insn_data[icode].operand[2].predicate) (rtx_op2, mode2) + && mode2 != VOIDmode) + rtx_op2 = force_reg (mode2, rtx_op2); - if (temp1 == 0) - return 0; + if (!target + || ! (*insn_data[icode].operand[0].predicate) (target, mode)) + target = gen_reg_rtx (mode); - imag_t = expand_binop (submode, this_sub_optab, imag0, temp1, - NULL_RTX, unsignedp, methods); + /* Emit instruction */ + pat = GEN_FCN (icode) (target, rtx_op1, rtx_op2); + gcc_assert (pat); + emit_insn (pat); - if (real_t == 0 || imag_t == 0) - return 0; + return target; +} + +/* This subroutine of expand_doubleword_shift handles the cases in which + the effective shift value is >= BITS_PER_WORD. The arguments and return + value are the same as for the parent routine, except that SUPERWORD_OP1 + is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET. + INTO_TARGET may be null if the caller has decided to calculate it. */ + +static bool +expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1, + rtx outof_target, rtx into_target, + int unsignedp, enum optab_methods methods) +{ + if (into_target != 0) + if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1, + into_target, unsignedp, methods)) + return false; + + if (outof_target != 0) + { + /* For a signed right shift, we must fill OUTOF_TARGET with copies + of the sign bit, otherwise we must fill it with zeros. */ + if (binoptab != ashr_optab) + emit_move_insn (outof_target, CONST0_RTX (word_mode)); + else + if (!force_expand_binop (word_mode, binoptab, + outof_input, GEN_INT (BITS_PER_WORD - 1), + outof_target, unsignedp, methods)) + return false; } + return true; +} - if (class == MODE_COMPLEX_FLOAT) - res = expand_binop (submode, binoptab, real_t, divisor, - realr, unsignedp, methods); - else - res = expand_divmod (0, TRUNC_DIV_EXPR, submode, - real_t, divisor, realr, unsignedp); +/* This subroutine of expand_doubleword_shift handles the cases in which + the effective shift value is < BITS_PER_WORD. The arguments and return + value are the same as for the parent routine. */ - if (res == 0) - return 0; +static bool +expand_subword_shift (enum machine_mode op1_mode, optab binoptab, + rtx outof_input, rtx into_input, rtx op1, + rtx outof_target, rtx into_target, + int unsignedp, enum optab_methods methods, + unsigned HOST_WIDE_INT shift_mask) +{ + optab reverse_unsigned_shift, unsigned_shift; + rtx tmp, carries; - if (res != realr) - emit_move_insn (realr, res); + reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab); + unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab); - if (class == MODE_COMPLEX_FLOAT) - res = expand_binop (submode, binoptab, imag_t, divisor, - imagr, unsignedp, methods); + /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT. + We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in + the opposite direction to BINOPTAB. */ + if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD) + { + carries = outof_input; + tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode); + tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1, + 0, true, methods); + } else - res = expand_divmod (0, TRUNC_DIV_EXPR, submode, - imag_t, divisor, imagr, unsignedp); + { + /* We must avoid shifting by BITS_PER_WORD bits since that is either + the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or + has unknown behavior. Do a single shift first, then shift by the + remainder. It's OK to use ~OP1 as the remainder if shift counts + are truncated to the mode size. */ + carries = expand_binop (word_mode, reverse_unsigned_shift, + outof_input, const1_rtx, 0, unsignedp, methods); + if (shift_mask == BITS_PER_WORD - 1) + { + tmp = immed_double_const (-1, -1, op1_mode); + tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp, + 0, true, methods); + } + else + { + tmp = immed_double_const (BITS_PER_WORD - 1, 0, op1_mode); + tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1, + 0, true, methods); + } + } + if (tmp == 0 || carries == 0) + return false; + carries = expand_binop (word_mode, reverse_unsigned_shift, + carries, tmp, 0, unsignedp, methods); + if (carries == 0) + return false; + + /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT + so the result can go directly into INTO_TARGET if convenient. */ + tmp = expand_binop (word_mode, unsigned_shift, into_input, op1, + into_target, unsignedp, methods); + if (tmp == 0) + return false; + + /* Now OR in the bits carried over from OUTOF_INPUT. */ + if (!force_expand_binop (word_mode, ior_optab, tmp, carries, + into_target, unsignedp, methods)) + return false; + + /* Use a standard word_mode shift for the out-of half. */ + if (outof_target != 0) + if (!force_expand_binop (word_mode, binoptab, outof_input, op1, + outof_target, unsignedp, methods)) + return false; + + return true; +} - if (res == 0) - return 0; - if (res != imagr) - emit_move_insn (imagr, res); +#ifdef HAVE_conditional_move +/* Try implementing expand_doubleword_shift using conditional moves. + The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true, + otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1 + are the shift counts to use in the former and latter case. All other + arguments are the same as the parent routine. */ + +static bool +expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab, + enum rtx_code cmp_code, rtx cmp1, rtx cmp2, + rtx outof_input, rtx into_input, + rtx subword_op1, rtx superword_op1, + rtx outof_target, rtx into_target, + int unsignedp, enum optab_methods methods, + unsigned HOST_WIDE_INT shift_mask) +{ + rtx outof_superword, into_superword; - lab2 = gen_label_rtx (); - emit_jump_insn (gen_jump (lab2)); - emit_barrier (); + /* Put the superword version of the output into OUTOF_SUPERWORD and + INTO_SUPERWORD. */ + outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0; + if (outof_target != 0 && subword_op1 == superword_op1) + { + /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in + OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */ + into_superword = outof_target; + if (!expand_superword_shift (binoptab, outof_input, superword_op1, + outof_superword, 0, unsignedp, methods)) + return false; + } + else + { + into_superword = gen_reg_rtx (word_mode); + if (!expand_superword_shift (binoptab, outof_input, superword_op1, + outof_superword, into_superword, + unsignedp, methods)) + return false; + } - emit_label (lab1); + /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */ + if (!expand_subword_shift (op1_mode, binoptab, + outof_input, into_input, subword_op1, + outof_target, into_target, + unsignedp, methods, shift_mask)) + return false; + + /* Select between them. Do the INTO half first because INTO_SUPERWORD + might be the current value of OUTOF_TARGET. */ + if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode, + into_target, into_superword, word_mode, false)) + return false; + + if (outof_target != 0) + if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode, + outof_target, outof_superword, + word_mode, false)) + return false; + + return true; +} +#endif - /* |d| > |c|; use ratio c/d to scale dividend and divisor. */ +/* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts. + OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first + input operand; the shift moves bits in the direction OUTOF_INPUT-> + INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words + of the target. OP1 is the shift count and OP1_MODE is its mode. + If OP1 is constant, it will have been truncated as appropriate + and is known to be nonzero. + + If SHIFT_MASK is zero, the result of word shifts is undefined when the + shift count is outside the range [0, BITS_PER_WORD). This routine must + avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2). + + If SHIFT_MASK is nonzero, all word-mode shift counts are effectively + masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will + fill with zeros or sign bits as appropriate. + + If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize + a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1. + Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED. + In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2) + are undefined. + + BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function + may not use INTO_INPUT after modifying INTO_TARGET, and similarly for + OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent + function wants to calculate it itself. + + Return true if the shift could be successfully synthesized. */ + +static bool +expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab, + rtx outof_input, rtx into_input, rtx op1, + rtx outof_target, rtx into_target, + int unsignedp, enum optab_methods methods, + unsigned HOST_WIDE_INT shift_mask) +{ + rtx superword_op1, tmp, cmp1, cmp2; + rtx subword_label, done_label; + enum rtx_code cmp_code; + + /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will + fill the result with sign or zero bits as appropriate. If so, the value + of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call + this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT + and INTO_INPUT), then emit code to set up OUTOF_TARGET. + + This isn't worthwhile for constant shifts since the optimizers will + cope better with in-range shift counts. */ + if (shift_mask >= BITS_PER_WORD + && outof_target != 0 + && !CONSTANT_P (op1)) + { + if (!expand_doubleword_shift (op1_mode, binoptab, + outof_input, into_input, op1, + 0, into_target, + unsignedp, methods, shift_mask)) + return false; + if (!force_expand_binop (word_mode, binoptab, outof_input, op1, + outof_target, unsignedp, methods)) + return false; + return true; + } - if (class == MODE_COMPLEX_FLOAT) - ratio = expand_binop (submode, binoptab, real1, imag1, - NULL_RTX, unsignedp, methods); + /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2) + is true when the effective shift value is less than BITS_PER_WORD. + Set SUPERWORD_OP1 to the shift count that should be used to shift + OUTOF_INPUT into INTO_TARGET when the condition is false. */ + tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode); + if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1) + { + /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1 + is a subword shift count. */ + cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp, + 0, true, methods); + cmp2 = CONST0_RTX (op1_mode); + cmp_code = EQ; + superword_op1 = op1; + } else - ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode, - real1, imag1, NULL_RTX, unsignedp); - - if (ratio == 0) - return 0; + { + /* Set CMP1 to OP1 - BITS_PER_WORD. */ + cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp, + 0, true, methods); + cmp2 = CONST0_RTX (op1_mode); + cmp_code = LT; + superword_op1 = cmp1; + } + if (cmp1 == 0) + return false; - /* Calculate divisor. */ + /* If we can compute the condition at compile time, pick the + appropriate subroutine. */ + tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2); + if (tmp != 0 && GET_CODE (tmp) == CONST_INT) + { + if (tmp == const0_rtx) + return expand_superword_shift (binoptab, outof_input, superword_op1, + outof_target, into_target, + unsignedp, methods); + else + return expand_subword_shift (op1_mode, binoptab, + outof_input, into_input, op1, + outof_target, into_target, + unsignedp, methods, shift_mask); + } - temp1 = expand_binop (submode, this_mul_optab, real1, ratio, - NULL_RTX, unsignedp, methods); +#ifdef HAVE_conditional_move + /* Try using conditional moves to generate straight-line code. */ + { + rtx start = get_last_insn (); + if (expand_doubleword_shift_condmove (op1_mode, binoptab, + cmp_code, cmp1, cmp2, + outof_input, into_input, + op1, superword_op1, + outof_target, into_target, + unsignedp, methods, shift_mask)) + return true; + delete_insns_since (start); + } +#endif - if (temp1 == 0) - return 0; + /* As a last resort, use branches to select the correct alternative. */ + subword_label = gen_label_rtx (); + done_label = gen_label_rtx (); - divisor = expand_binop (submode, this_add_optab, temp1, imag1, - NULL_RTX, unsignedp, methods); + NO_DEFER_POP; + do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode, + 0, 0, subword_label); + OK_DEFER_POP; - if (divisor == 0) - return 0; + if (!expand_superword_shift (binoptab, outof_input, superword_op1, + outof_target, into_target, + unsignedp, methods)) + return false; - /* Calculate dividend. */ + emit_jump_insn (gen_jump (done_label)); + emit_barrier (); + emit_label (subword_label); - if (imag0 == 0) - { - /* Compute a / (c+id) as a(c/d) / (c(c/d)+d) + i (-a) / (c(c/d)+d). */ + if (!expand_subword_shift (op1_mode, binoptab, + outof_input, into_input, op1, + outof_target, into_target, + unsignedp, methods, shift_mask)) + return false; - real_t = expand_binop (submode, this_mul_optab, real0, ratio, - NULL_RTX, unsignedp, methods); + emit_label (done_label); + return true; +} + +/* Subroutine of expand_binop. Perform a double word multiplication of + operands OP0 and OP1 both of mode MODE, which is exactly twice as wide + as the target's word_mode. This function return NULL_RTX if anything + goes wrong, in which case it may have already emitted instructions + which need to be deleted. + + If we want to multiply two two-word values and have normal and widening + multiplies of single-word values, we can do this with three smaller + multiplications. Note that we do not make a REG_NO_CONFLICT block here + because we are not operating on one word at a time. + + The multiplication proceeds as follows: + _______________________ + [__op0_high_|__op0_low__] + _______________________ + * [__op1_high_|__op1_low__] + _______________________________________________ + _______________________ + (1) [__op0_low__*__op1_low__] + _______________________ + (2a) [__op0_low__*__op1_high_] + _______________________ + (2b) [__op0_high_*__op1_low__] + _______________________ + (3) [__op0_high_*__op1_high_] - imag_t = expand_unop (submode, this_neg_optab, real0, - NULL_RTX, unsignedp); - if (real_t == 0 || imag_t == 0) - return 0; - } - else - { - /* Compute (a+ib)/(c+id) as - (a(c/d)+b)/(c(c/d)+d) + i (b(c/d)-a)/(c(c/d)+d). */ + This gives a 4-word result. Since we are only interested in the + lower 2 words, partial result (3) and the upper words of (2a) and + (2b) don't need to be calculated. Hence (2a) and (2b) can be + calculated using non-widening multiplication. - temp1 = expand_binop (submode, this_mul_optab, real0, ratio, - NULL_RTX, unsignedp, methods); + (1), however, needs to be calculated with an unsigned widening + multiplication. If this operation is not directly supported we + try using a signed widening multiplication and adjust the result. + This adjustment works as follows: - if (temp1 == 0) - return 0; + If both operands are positive then no adjustment is needed. - real_t = expand_binop (submode, this_add_optab, temp1, imag0, - NULL_RTX, unsignedp, methods); + If the operands have different signs, for example op0_low < 0 and + op1_low >= 0, the instruction treats the most significant bit of + op0_low as a sign bit instead of a bit with significance + 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low + with 2**BITS_PER_WORD - op0_low, and two's complements the + result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to + the result. - temp1 = expand_binop (submode, this_mul_optab, imag0, ratio, - NULL_RTX, unsignedp, methods); + Similarly, if both operands are negative, we need to add + (op0_low + op1_low) * 2**BITS_PER_WORD. - if (temp1 == 0) - return 0; + We use a trick to adjust quickly. We logically shift op0_low right + (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to + op0_high (op1_high) before it is used to calculate 2b (2a). If no + logical shift exists, we do an arithmetic right shift and subtract + the 0 or -1. */ - imag_t = expand_binop (submode, this_sub_optab, temp1, real0, - NULL_RTX, unsignedp, methods); +static rtx +expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target, + bool umulp, enum optab_methods methods) +{ + int low = (WORDS_BIG_ENDIAN ? 1 : 0); + int high = (WORDS_BIG_ENDIAN ? 0 : 1); + rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1); + rtx product, adjust, product_high, temp; + + rtx op0_high = operand_subword_force (op0, high, mode); + rtx op0_low = operand_subword_force (op0, low, mode); + rtx op1_high = operand_subword_force (op1, high, mode); + rtx op1_low = operand_subword_force (op1, low, mode); + + /* If we're using an unsigned multiply to directly compute the product + of the low-order words of the operands and perform any required + adjustments of the operands, we begin by trying two more multiplications + and then computing the appropriate sum. + + We have checked above that the required addition is provided. + Full-word addition will normally always succeed, especially if + it is provided at all, so we don't worry about its failure. The + multiplication may well fail, however, so we do handle that. */ + + if (!umulp) + { + /* ??? This could be done with emit_store_flag where available. */ + temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1, + NULL_RTX, 1, methods); + if (temp) + op0_high = expand_binop (word_mode, add_optab, op0_high, temp, + NULL_RTX, 0, OPTAB_DIRECT); + else + { + temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1, + NULL_RTX, 0, methods); + if (!temp) + return NULL_RTX; + op0_high = expand_binop (word_mode, sub_optab, op0_high, temp, + NULL_RTX, 0, OPTAB_DIRECT); + } - if (real_t == 0 || imag_t == 0) - return 0; + if (!op0_high) + return NULL_RTX; } - if (class == MODE_COMPLEX_FLOAT) - res = expand_binop (submode, binoptab, real_t, divisor, - realr, unsignedp, methods); - else - res = expand_divmod (0, TRUNC_DIV_EXPR, submode, - real_t, divisor, realr, unsignedp); + adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low, + NULL_RTX, 0, OPTAB_DIRECT); + if (!adjust) + return NULL_RTX; - if (res == 0) - return 0; + /* OP0_HIGH should now be dead. */ - if (res != realr) - emit_move_insn (realr, res); + if (!umulp) + { + /* ??? This could be done with emit_store_flag where available. */ + temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1, + NULL_RTX, 1, methods); + if (temp) + op1_high = expand_binop (word_mode, add_optab, op1_high, temp, + NULL_RTX, 0, OPTAB_DIRECT); + else + { + temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1, + NULL_RTX, 0, methods); + if (!temp) + return NULL_RTX; + op1_high = expand_binop (word_mode, sub_optab, op1_high, temp, + NULL_RTX, 0, OPTAB_DIRECT); + } - if (class == MODE_COMPLEX_FLOAT) - res = expand_binop (submode, binoptab, imag_t, divisor, - imagr, unsignedp, methods); - else - res = expand_divmod (0, TRUNC_DIV_EXPR, submode, - imag_t, divisor, imagr, unsignedp); + if (!op1_high) + return NULL_RTX; + } - if (res == 0) - return 0; + temp = expand_binop (word_mode, smul_optab, op1_high, op0_low, + NULL_RTX, 0, OPTAB_DIRECT); + if (!temp) + return NULL_RTX; - if (res != imagr) - emit_move_insn (imagr, res); + /* OP1_HIGH should now be dead. */ - emit_label (lab2); + adjust = expand_binop (word_mode, add_optab, adjust, temp, + adjust, 0, OPTAB_DIRECT); - return 1; + if (target && !REG_P (target)) + target = NULL_RTX; + + if (umulp) + product = expand_binop (mode, umul_widen_optab, op0_low, op1_low, + target, 1, OPTAB_DIRECT); + else + product = expand_binop (mode, smul_widen_optab, op0_low, op1_low, + target, 1, OPTAB_DIRECT); + + if (!product) + return NULL_RTX; + + product_high = operand_subword (product, high, 1, mode); + adjust = expand_binop (word_mode, add_optab, product_high, adjust, + REG_P (product_high) ? product_high : adjust, + 0, OPTAB_DIRECT); + emit_move_insn (product_high, adjust); + return product; } /* Wrapper around expand_binop which takes an rtx code to specify @@ -635,12 +1155,35 @@ expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0, enum optab_methods methods) { optab binop = code_to_optab[(int) code]; - if (binop == 0) - abort (); + gcc_assert (binop); return expand_binop (mode, binop, op0, op1, target, unsignedp, methods); } +/* Return whether OP0 and OP1 should be swapped when expanding a commutative + binop. Order them according to commutative_operand_precedence and, if + possible, try to put TARGET or a pseudo first. */ +static bool +swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1) +{ + int op0_prec = commutative_operand_precedence (op0); + int op1_prec = commutative_operand_precedence (op1); + + if (op0_prec < op1_prec) + return true; + + if (op0_prec > op1_prec) + return false; + + /* With equal precedence, both orders are ok, but it is better if the + first operand is TARGET, or if both TARGET and OP0 are pseudos. */ + if (target == 0 || REG_P (target)) + return (REG_P (op1) && !REG_P (op0)) || target == op1; + else + return rtx_equal_p (op1, target); +} + + /* Generate code to perform an operation specified by BINOPTAB on operands OP0 and OP1, with result having machine-mode MODE. @@ -670,29 +1213,10 @@ expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1, || binoptab->code == ROTATERT); rtx entry_last = get_last_insn (); rtx last; + bool first_pass_p = true; class = GET_MODE_CLASS (mode); - op0 = protect_from_queue (op0, 0); - op1 = protect_from_queue (op1, 0); - if (target) - target = protect_from_queue (target, 1); - - if (flag_force_mem) - { - /* Load duplicate non-volatile operands once. */ - if (rtx_equal_p (op0, op1) && ! volatile_refs_p (op0)) - { - op0 = force_not_mem (op0); - op1 = op0; - } - else - { - op0 = force_not_mem (op0); - op1 = force_not_mem (op1); - } - } - /* If subtracting an integer constant, convert this into an addition of the negated constant. */ @@ -702,15 +1226,23 @@ expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1, binoptab = add_optab; } - /* If we are inside an appropriately-short loop and one operand is an - expensive constant, force it into a register. */ - if (CONSTANT_P (op0) && preserve_subexpressions_p () + /* If we are inside an appropriately-short loop and we are optimizing, + force expensive constants into a register. */ + if (CONSTANT_P (op0) && optimize && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1)) - op0 = force_reg (mode, op0); + { + if (GET_MODE (op0) != VOIDmode) + op0 = convert_modes (mode, VOIDmode, op0, unsignedp); + op0 = force_reg (mode, op0); + } - if (CONSTANT_P (op1) && preserve_subexpressions_p () + if (CONSTANT_P (op1) && optimize && ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1)) - op1 = force_reg (mode, op1); + { + if (GET_MODE (op1) != VOIDmode) + op1 = convert_modes (mode, VOIDmode, op1, unsignedp); + op1 = force_reg (mode, op1); + } /* Record where to delete back to if we backtrack. */ last = get_last_insn (); @@ -719,7 +1251,7 @@ expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1, try to make the first operand a register. Even better, try to make it the same as the target. Also try to make the last operand a constant. */ - if (GET_RTX_CLASS (binoptab->code) == 'c' + if (GET_RTX_CLASS (binoptab->code) == RTX_COMM_ARITH || binoptab == smul_widen_optab || binoptab == umul_widen_optab || binoptab == smul_highpart_optab @@ -727,12 +1259,7 @@ expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1, { commutative_op = 1; - if (((target == 0 || GET_CODE (target) == REG) - ? ((GET_CODE (op1) == REG - && GET_CODE (op0) != REG) - || target == op1) - : rtx_equal_p (op1, target)) - || GET_CODE (op0) == CONST_INT) + if (swap_commutative_operands_with_target (target, op0, op1)) { temp = op1; op1 = op0; @@ -740,6 +1267,8 @@ expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1, } } + retry: + /* If we can do it with a three-operand insn, do so. */ if (methods != OPTAB_MUST_WIDEN @@ -793,15 +1322,15 @@ expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1, /* Now, if insn's predicates don't allow our operands, put them into pseudo regs. */ - if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0) + if (!insn_data[icode].operand[1].predicate (xop0, mode0) && mode0 != VOIDmode) xop0 = copy_to_mode_reg (mode0, xop0); - if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1) + if (!insn_data[icode].operand[2].predicate (xop1, mode1) && mode1 != VOIDmode) xop1 = copy_to_mode_reg (mode1, xop1); - if (! (*insn_data[icode].operand[0].predicate) (temp, mode)) + if (!insn_data[icode].operand[0].predicate (temp, mode)) temp = gen_reg_rtx (mode); pat = GEN_FCN (icode) (temp, xop0, xop1); @@ -825,10 +1354,27 @@ expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1, delete_insns_since (last); } + /* If we were trying to rotate by a constant value, and that didn't + work, try rotating the other direction before falling back to + shifts and bitwise-or. */ + if (first_pass_p + && (binoptab == rotl_optab || binoptab == rotr_optab) + && class == MODE_INT + && GET_CODE (op1) == CONST_INT + && INTVAL (op1) > 0 + && (unsigned int) INTVAL (op1) < GET_MODE_BITSIZE (mode)) + { + first_pass_p = false; + op1 = GEN_INT (GET_MODE_BITSIZE (mode) - INTVAL (op1)); + binoptab = binoptab == rotl_optab ? rotr_optab : rotl_optab; + goto retry; + } + /* If this is a multiply, see if we can do a widening operation that takes operands of this mode and makes a wider mode. */ - if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode + if (binoptab == smul_optab + && GET_MODE_WIDER_MODE (mode) != VOIDmode && (((unsignedp ? umul_widen_optab : smul_widen_optab) ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code) != CODE_FOR_nothing)) @@ -839,7 +1385,9 @@ expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1, if (temp != 0) { - if (GET_MODE_CLASS (mode) == MODE_INT) + if (GET_MODE_CLASS (mode) == MODE_INT + && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode), + GET_MODE_BITSIZE (GET_MODE (temp)))) return gen_lowpart (mode, temp); else return convert_to_mode (mode, temp, unsignedp); @@ -850,9 +1398,10 @@ expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1, can open-code the operation. Check for a widening multiply at the wider mode as well. */ - if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) + if (CLASS_HAS_WIDER_MODES_P (class) && methods != OPTAB_DIRECT && methods != OPTAB_LIB) - for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; + for (wider_mode = GET_MODE_WIDER_MODE (mode); + wider_mode != VOIDmode; wider_mode = GET_MODE_WIDER_MODE (wider_mode)) { if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing @@ -886,7 +1435,9 @@ expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1, unsignedp, OPTAB_DIRECT); if (temp) { - if (class != MODE_INT) + if (class != MODE_INT + || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode), + GET_MODE_BITSIZE (wider_mode))) { if (target == 0) target = gen_reg_rtx (mode); @@ -955,118 +1506,71 @@ expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1, if ((binoptab == lshr_optab || binoptab == ashl_optab || binoptab == ashr_optab) && class == MODE_INT - && GET_CODE (op1) == CONST_INT + && (GET_CODE (op1) == CONST_INT || !optimize_size) && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing) { - rtx insns, inter, equiv_value; - rtx into_target, outof_target; - rtx into_input, outof_input; - int shift_count, left_shift, outof_word; + unsigned HOST_WIDE_INT shift_mask, double_shift_mask; + enum machine_mode op1_mode; - /* If TARGET is the same as one of the operands, the REG_EQUAL note - won't be accurate, so use a new target. */ - if (target == 0 || target == op0 || target == op1) - target = gen_reg_rtx (mode); + double_shift_mask = targetm.shift_truncation_mask (mode); + shift_mask = targetm.shift_truncation_mask (word_mode); + op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode; - start_sequence (); - - shift_count = INTVAL (op1); + /* Apply the truncation to constant shifts. */ + if (double_shift_mask > 0 && GET_CODE (op1) == CONST_INT) + op1 = GEN_INT (INTVAL (op1) & double_shift_mask); - /* OUTOF_* is the word we are shifting bits away from, and - INTO_* is the word that we are shifting bits towards, thus - they differ depending on the direction of the shift and - WORDS_BIG_ENDIAN. */ - - left_shift = binoptab == ashl_optab; - outof_word = left_shift ^ ! WORDS_BIG_ENDIAN; - - outof_target = operand_subword (target, outof_word, 1, mode); - into_target = operand_subword (target, 1 - outof_word, 1, mode); - - outof_input = operand_subword_force (op0, outof_word, mode); - into_input = operand_subword_force (op0, 1 - outof_word, mode); + if (op1 == CONST0_RTX (op1_mode)) + return op0; - if (shift_count >= BITS_PER_WORD) + /* Make sure that this is a combination that expand_doubleword_shift + can handle. See the comments there for details. */ + if (double_shift_mask == 0 + || (shift_mask == BITS_PER_WORD - 1 + && double_shift_mask == BITS_PER_WORD * 2 - 1)) { - inter = expand_binop (word_mode, binoptab, - outof_input, - GEN_INT (shift_count - BITS_PER_WORD), - into_target, unsignedp, next_methods); + rtx insns, equiv_value; + rtx into_target, outof_target; + rtx into_input, outof_input; + int left_shift, outof_word; - if (inter != 0 && inter != into_target) - emit_move_insn (into_target, inter); - - /* For a signed right shift, we must fill the word we are shifting - out of with copies of the sign bit. Otherwise it is zeroed. */ - if (inter != 0 && binoptab != ashr_optab) - inter = CONST0_RTX (word_mode); - else if (inter != 0) - inter = expand_binop (word_mode, binoptab, - outof_input, - GEN_INT (BITS_PER_WORD - 1), - outof_target, unsignedp, next_methods); - - if (inter != 0 && inter != outof_target) - emit_move_insn (outof_target, inter); - } - else - { - rtx carries; - optab reverse_unsigned_shift, unsigned_shift; + /* If TARGET is the same as one of the operands, the REG_EQUAL note + won't be accurate, so use a new target. */ + if (target == 0 || target == op0 || target == op1) + target = gen_reg_rtx (mode); - /* For a shift of less then BITS_PER_WORD, to compute the carry, - we must do a logical shift in the opposite direction of the - desired shift. */ + start_sequence (); - reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab); - - /* For a shift of less than BITS_PER_WORD, to compute the word - shifted towards, we need to unsigned shift the orig value of - that word. */ - - unsigned_shift = (left_shift ? ashl_optab : lshr_optab); - - carries = expand_binop (word_mode, reverse_unsigned_shift, - outof_input, - GEN_INT (BITS_PER_WORD - shift_count), - 0, unsignedp, next_methods); - - if (carries == 0) - inter = 0; - else - inter = expand_binop (word_mode, unsigned_shift, into_input, - op1, 0, unsignedp, next_methods); - - if (inter != 0) - inter = expand_binop (word_mode, ior_optab, carries, inter, - into_target, unsignedp, next_methods); - - if (inter != 0 && inter != into_target) - emit_move_insn (into_target, inter); + /* OUTOF_* is the word we are shifting bits away from, and + INTO_* is the word that we are shifting bits towards, thus + they differ depending on the direction of the shift and + WORDS_BIG_ENDIAN. */ - if (inter != 0) - inter = expand_binop (word_mode, binoptab, outof_input, - op1, outof_target, unsignedp, next_methods); + left_shift = binoptab == ashl_optab; + outof_word = left_shift ^ ! WORDS_BIG_ENDIAN; - if (inter != 0 && inter != outof_target) - emit_move_insn (outof_target, inter); - } + outof_target = operand_subword (target, outof_word, 1, mode); + into_target = operand_subword (target, 1 - outof_word, 1, mode); - insns = get_insns (); - end_sequence (); + outof_input = operand_subword_force (op0, outof_word, mode); + into_input = operand_subword_force (op0, 1 - outof_word, mode); - if (inter != 0) - { - if (binoptab->code != UNKNOWN) - equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1); - else - equiv_value = 0; + if (expand_doubleword_shift (op1_mode, binoptab, + outof_input, into_input, op1, + outof_target, into_target, + unsignedp, next_methods, shift_mask)) + { + insns = get_insns (); + end_sequence (); - emit_no_conflict_block (insns, target, op0, op1, equiv_value); - return target; + equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1); + emit_no_conflict_block (insns, target, op0, op1, equiv_value); + return target; + } + end_sequence (); } } @@ -1085,8 +1589,12 @@ expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1, int shift_count, left_shift, outof_word; /* If TARGET is the same as one of the operands, the REG_EQUAL note - won't be accurate, so use a new target. */ - if (target == 0 || target == op0 || target == op1) + won't be accurate, so use a new target. Do this also if target is not + a REG, first because having a register instead may open optimization + opportunities, and second because if target and op0 happen to be MEMs + designating the same location, we would risk clobbering it too early + in the code sequence we generate below. */ + if (target == 0 || target == op0 || target == op1 || ! REG_P (target)) target = gen_reg_rtx (mode); start_sequence (); @@ -1174,6 +1682,11 @@ expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1, if (inter != 0) { + /* One may be tempted to wrap the insns in a REG_NO_CONFLICT + block to help the register allocator a bit. But a multi-word + rotate will need all the input bits when setting the output + bits, so there clearly is a conflict between the input and + output registers. So we can't use a no-conflict block here. */ emit_insn (insns); return target; } @@ -1206,11 +1719,11 @@ expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1, xtarget = gen_reg_rtx (mode); - if (target == 0 || GET_CODE (target) != REG) + if (target == 0 || !REG_P (target)) target = xtarget; /* Indicate for flow that the entire target reg is being set. */ - if (GET_CODE (target) == REG) + if (REG_P (target)) emit_insn (gen_rtx_CLOBBER (VOIDmode, xtarget)); /* Do the actual arithmetic. */ @@ -1269,6 +1782,11 @@ expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1, } emit_move_insn (target_piece, newx); } + else + { + if (x != target_piece) + emit_move_insn (target_piece, x); + } carry_in = carry_out; } @@ -1296,447 +1814,50 @@ expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1, delete_insns_since (last); } - /* If we want to multiply two two-word values and have normal and widening - multiplies of single-word values, we can do this with three smaller - multiplications. Note that we do not make a REG_NO_CONFLICT block here - because we are not operating on one word at a time. - - The multiplication proceeds as follows: - _______________________ - [__op0_high_|__op0_low__] - _______________________ - * [__op1_high_|__op1_low__] - _______________________________________________ - _______________________ - (1) [__op0_low__*__op1_low__] - _______________________ - (2a) [__op0_low__*__op1_high_] - _______________________ - (2b) [__op0_high_*__op1_low__] - _______________________ - (3) [__op0_high_*__op1_high_] - - - This gives a 4-word result. Since we are only interested in the - lower 2 words, partial result (3) and the upper words of (2a) and - (2b) don't need to be calculated. Hence (2a) and (2b) can be - calculated using non-widening multiplication. - - (1), however, needs to be calculated with an unsigned widening - multiplication. If this operation is not directly supported we - try using a signed widening multiplication and adjust the result. - This adjustment works as follows: - - If both operands are positive then no adjustment is needed. - - If the operands have different signs, for example op0_low < 0 and - op1_low >= 0, the instruction treats the most significant bit of - op0_low as a sign bit instead of a bit with significance - 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low - with 2**BITS_PER_WORD - op0_low, and two's complements the - result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to - the result. - - Similarly, if both operands are negative, we need to add - (op0_low + op1_low) * 2**BITS_PER_WORD. - - We use a trick to adjust quickly. We logically shift op0_low right - (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to - op0_high (op1_high) before it is used to calculate 2b (2a). If no - logical shift exists, we do an arithmetic right shift and subtract - the 0 or -1. */ + /* Attempt to synthesize double word multiplies using a sequence of word + mode multiplications. We first attempt to generate a sequence using a + more efficient unsigned widening multiply, and if that fails we then + try using a signed widening multiply. */ if (binoptab == smul_optab && class == MODE_INT && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing - && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing - && ((umul_widen_optab->handlers[(int) mode].insn_code - != CODE_FOR_nothing) - || (smul_widen_optab->handlers[(int) mode].insn_code - != CODE_FOR_nothing))) + && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing) { - int low = (WORDS_BIG_ENDIAN ? 1 : 0); - int high = (WORDS_BIG_ENDIAN ? 0 : 1); - rtx op0_high = operand_subword_force (op0, high, mode); - rtx op0_low = operand_subword_force (op0, low, mode); - rtx op1_high = operand_subword_force (op1, high, mode); - rtx op1_low = operand_subword_force (op1, low, mode); - rtx product = 0; - rtx op0_xhigh = NULL_RTX; - rtx op1_xhigh = NULL_RTX; - - /* If the target is the same as one of the inputs, don't use it. This - prevents problems with the REG_EQUAL note. */ - if (target == op0 || target == op1 - || (target != 0 && GET_CODE (target) != REG)) - target = 0; - - /* Multiply the two lower words to get a double-word product. - If unsigned widening multiplication is available, use that; - otherwise use the signed form and compensate. */ - - if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) - { - product = expand_binop (mode, umul_widen_optab, op0_low, op1_low, - target, 1, OPTAB_DIRECT); + rtx product = NULL_RTX; - /* If we didn't succeed, delete everything we did so far. */ - if (product == 0) + if (umul_widen_optab->handlers[(int) mode].insn_code + != CODE_FOR_nothing) + { + product = expand_doubleword_mult (mode, op0, op1, target, + true, methods); + if (!product) delete_insns_since (last); - else - op0_xhigh = op0_high, op1_xhigh = op1_high; } - if (product == 0 + if (product == NULL_RTX && smul_widen_optab->handlers[(int) mode].insn_code - != CODE_FOR_nothing) + != CODE_FOR_nothing) { - rtx wordm1 = GEN_INT (BITS_PER_WORD - 1); - product = expand_binop (mode, smul_widen_optab, op0_low, op1_low, - target, 1, OPTAB_DIRECT); - op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1, - NULL_RTX, 1, next_methods); - if (op0_xhigh) - op0_xhigh = expand_binop (word_mode, add_optab, op0_high, - op0_xhigh, op0_xhigh, 0, next_methods); - else - { - op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1, - NULL_RTX, 0, next_methods); - if (op0_xhigh) - op0_xhigh = expand_binop (word_mode, sub_optab, op0_high, - op0_xhigh, op0_xhigh, 0, - next_methods); - } - - op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1, - NULL_RTX, 1, next_methods); - if (op1_xhigh) - op1_xhigh = expand_binop (word_mode, add_optab, op1_high, - op1_xhigh, op1_xhigh, 0, next_methods); - else - { - op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1, - NULL_RTX, 0, next_methods); - if (op1_xhigh) - op1_xhigh = expand_binop (word_mode, sub_optab, op1_high, - op1_xhigh, op1_xhigh, 0, - next_methods); - } - } - - /* If we have been able to directly compute the product of the - low-order words of the operands and perform any required adjustments - of the operands, we proceed by trying two more multiplications - and then computing the appropriate sum. - - We have checked above that the required addition is provided. - Full-word addition will normally always succeed, especially if - it is provided at all, so we don't worry about its failure. The - multiplication may well fail, however, so we do handle that. */ - - if (product && op0_xhigh && op1_xhigh) - { - rtx product_high = operand_subword (product, high, 1, mode); - rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh, - NULL_RTX, 0, OPTAB_DIRECT); - - if (!REG_P (product_high)) - product_high = force_reg (word_mode, product_high); - - if (temp != 0) - temp = expand_binop (word_mode, add_optab, temp, product_high, - product_high, 0, next_methods); - - if (temp != 0 && temp != product_high) - emit_move_insn (product_high, temp); - - if (temp != 0) - temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh, - NULL_RTX, 0, OPTAB_DIRECT); - - if (temp != 0) - temp = expand_binop (word_mode, add_optab, temp, - product_high, product_high, - 0, next_methods); - - if (temp != 0 && temp != product_high) - emit_move_insn (product_high, temp); - - emit_move_insn (operand_subword (product, high, 1, mode), product_high); - - if (temp != 0) - { - if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) - { - temp = emit_move_insn (product, product); - set_unique_reg_note (temp, - REG_EQUAL, - gen_rtx_fmt_ee (MULT, mode, - copy_rtx (op0), - copy_rtx (op1))); - } - - return product; - } - } - - /* If we get here, we couldn't do it for some reason even though we - originally thought we could. Delete anything we've emitted in - trying to do it. */ - - delete_insns_since (last); - } - - /* Open-code the vector operations if we have no hardware support - for them. */ - if (class == MODE_VECTOR_INT || class == MODE_VECTOR_FLOAT) - return expand_vector_binop (mode, binoptab, op0, op1, target, - unsignedp, methods); - - /* We need to open-code the complex type operations: '+, -, * and /' */ - - /* At this point we allow operations between two similar complex - numbers, and also if one of the operands is not a complex number - but rather of MODE_FLOAT or MODE_INT. However, the caller - must make sure that the MODE of the non-complex operand matches - the SUBMODE of the complex operand. */ - - if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT) - { - rtx real0 = 0, imag0 = 0; - rtx real1 = 0, imag1 = 0; - rtx realr, imagr, res; - rtx seq, result; - int ok = 0; - - /* Find the correct mode for the real and imaginary parts. */ - enum machine_mode submode = GET_MODE_INNER (mode); - - if (submode == BLKmode) - abort (); - - start_sequence (); - - if (GET_MODE (op0) == mode) - { - real0 = gen_realpart (submode, op0); - imag0 = gen_imagpart (submode, op0); - } - else - real0 = op0; - - if (GET_MODE (op1) == mode) - { - real1 = gen_realpart (submode, op1); - imag1 = gen_imagpart (submode, op1); + product = expand_doubleword_mult (mode, op0, op1, target, + false, methods); + if (!product) + delete_insns_since (last); } - else - real1 = op1; - - if (real0 == 0 || real1 == 0 || ! (imag0 != 0 || imag1 != 0)) - abort (); - result = gen_reg_rtx (mode); - realr = gen_realpart (submode, result); - imagr = gen_imagpart (submode, result); - - switch (binoptab->code) + if (product != NULL_RTX) { - case PLUS: - /* (a+ib) + (c+id) = (a+c) + i(b+d) */ - case MINUS: - /* (a+ib) - (c+id) = (a-c) + i(b-d) */ - res = expand_binop (submode, binoptab, real0, real1, - realr, unsignedp, methods); - - if (res == 0) - break; - else if (res != realr) - emit_move_insn (realr, res); - - if (imag0 != 0 && imag1 != 0) - res = expand_binop (submode, binoptab, imag0, imag1, - imagr, unsignedp, methods); - else if (imag0 != 0) - res = imag0; - else if (binoptab->code == MINUS) - res = expand_unop (submode, - binoptab == subv_optab ? negv_optab : neg_optab, - imag1, imagr, unsignedp); - else - res = imag1; - - if (res == 0) - break; - else if (res != imagr) - emit_move_insn (imagr, res); - - ok = 1; - break; - - case MULT: - /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */ - - if (imag0 != 0 && imag1 != 0) - { - rtx temp1, temp2; - - /* Don't fetch these from memory more than once. */ - real0 = force_reg (submode, real0); - real1 = force_reg (submode, real1); - imag0 = force_reg (submode, imag0); - imag1 = force_reg (submode, imag1); - - temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX, - unsignedp, methods); - - temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX, - unsignedp, methods); - - if (temp1 == 0 || temp2 == 0) - break; - - res = (expand_binop - (submode, - binoptab == smulv_optab ? subv_optab : sub_optab, - temp1, temp2, realr, unsignedp, methods)); - - if (res == 0) - break; - else if (res != realr) - emit_move_insn (realr, res); - - temp1 = expand_binop (submode, binoptab, real0, imag1, - NULL_RTX, unsignedp, methods); - - /* Avoid expanding redundant multiplication for the common - case of squaring a complex number. */ - if (rtx_equal_p (real0, real1) && rtx_equal_p (imag0, imag1)) - temp2 = temp1; - else - temp2 = expand_binop (submode, binoptab, real1, imag0, - NULL_RTX, unsignedp, methods); - - if (temp1 == 0 || temp2 == 0) - break; - - res = (expand_binop - (submode, - binoptab == smulv_optab ? addv_optab : add_optab, - temp1, temp2, imagr, unsignedp, methods)); - - if (res == 0) - break; - else if (res != imagr) - emit_move_insn (imagr, res); - - ok = 1; - } - else + if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) { - /* Don't fetch these from memory more than once. */ - real0 = force_reg (submode, real0); - real1 = force_reg (submode, real1); - - res = expand_binop (submode, binoptab, real0, real1, - realr, unsignedp, methods); - if (res == 0) - break; - else if (res != realr) - emit_move_insn (realr, res); - - if (imag0 != 0) - res = expand_binop (submode, binoptab, - real1, imag0, imagr, unsignedp, methods); - else - res = expand_binop (submode, binoptab, - real0, imag1, imagr, unsignedp, methods); - - if (res == 0) - break; - else if (res != imagr) - emit_move_insn (imagr, res); - - ok = 1; - } - break; - - case DIV: - /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */ - - if (imag1 == 0) - { - /* (a+ib) / (c+i0) = (a/c) + i(b/c) */ - - /* Don't fetch these from memory more than once. */ - real1 = force_reg (submode, real1); - - /* Simply divide the real and imaginary parts by `c' */ - if (class == MODE_COMPLEX_FLOAT) - res = expand_binop (submode, binoptab, real0, real1, - realr, unsignedp, methods); - else - res = expand_divmod (0, TRUNC_DIV_EXPR, submode, - real0, real1, realr, unsignedp); - - if (res == 0) - break; - else if (res != realr) - emit_move_insn (realr, res); - - if (class == MODE_COMPLEX_FLOAT) - res = expand_binop (submode, binoptab, imag0, real1, - imagr, unsignedp, methods); - else - res = expand_divmod (0, TRUNC_DIV_EXPR, submode, - imag0, real1, imagr, unsignedp); - - if (res == 0) - break; - else if (res != imagr) - emit_move_insn (imagr, res); - - ok = 1; - } - else - { - switch (flag_complex_divide_method) - { - case 0: - ok = expand_cmplxdiv_straight (real0, real1, imag0, imag1, - realr, imagr, submode, - unsignedp, methods, - class, binoptab); - break; - - case 1: - ok = expand_cmplxdiv_wide (real0, real1, imag0, imag1, - realr, imagr, submode, - unsignedp, methods, - class, binoptab); - break; - - default: - abort (); - } + temp = emit_move_insn (target ? target : product, product); + set_unique_reg_note (temp, + REG_EQUAL, + gen_rtx_fmt_ee (MULT, mode, + copy_rtx (op0), + copy_rtx (op1))); } - break; - - default: - abort (); - } - - seq = get_insns (); - end_sequence (); - - if (ok) - { - rtx equiv = gen_rtx_fmt_ee (binoptab->code, mode, - copy_rtx (op0), copy_rtx (op1)); - emit_no_conflict_block (seq, result, op0, op1, equiv); - return result; + return product; } } @@ -1801,9 +1922,10 @@ expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1, /* Look for a wider mode of the same class for which it appears we can do the operation. */ - if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) + if (CLASS_HAS_WIDER_MODES_P (class)) { - for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; + for (wider_mode = GET_MODE_WIDER_MODE (mode); + wider_mode != VOIDmode; wider_mode = GET_MODE_WIDER_MODE (wider_mode)) { if ((binoptab->handlers[(int) wider_mode].insn_code @@ -1836,7 +1958,9 @@ expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1, unsignedp, methods); if (temp) { - if (class != MODE_INT) + if (class != MODE_INT + || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode), + GET_MODE_BITSIZE (wider_mode))) { if (target == 0) target = gen_reg_rtx (mode); @@ -1855,224 +1979,6 @@ expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1, delete_insns_since (entry_last); return 0; } - -/* Like expand_binop, but for open-coding vectors binops. */ - -static rtx -expand_vector_binop (enum machine_mode mode, optab binoptab, rtx op0, - rtx op1, rtx target, int unsignedp, - enum optab_methods methods) -{ - enum machine_mode submode, tmode; - int size, elts, subsize, subbitsize, i; - rtx t, a, b, res, seq; - enum mode_class class; - - class = GET_MODE_CLASS (mode); - - size = GET_MODE_SIZE (mode); - submode = GET_MODE_INNER (mode); - - /* Search for the widest vector mode with the same inner mode that is - still narrower than MODE and that allows to open-code this operator. - Note, if we find such a mode and the handler later decides it can't - do the expansion, we'll be called recursively with the narrower mode. */ - for (tmode = GET_CLASS_NARROWEST_MODE (class); - GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode); - tmode = GET_MODE_WIDER_MODE (tmode)) - { - if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode) - && binoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing) - submode = tmode; - } - - switch (binoptab->code) - { - case AND: - case IOR: - case XOR: - tmode = int_mode_for_mode (mode); - if (tmode != BLKmode) - submode = tmode; - case PLUS: - case MINUS: - case MULT: - case DIV: - subsize = GET_MODE_SIZE (submode); - subbitsize = GET_MODE_BITSIZE (submode); - elts = size / subsize; - - /* If METHODS is OPTAB_DIRECT, we don't insist on the exact mode, - but that we operate on more than one element at a time. */ - if (subsize == GET_MODE_UNIT_SIZE (mode) && methods == OPTAB_DIRECT) - return 0; - - start_sequence (); - - /* Errors can leave us with a const0_rtx as operand. */ - if (GET_MODE (op0) != mode) - op0 = copy_to_mode_reg (mode, op0); - if (GET_MODE (op1) != mode) - op1 = copy_to_mode_reg (mode, op1); - - if (!target) - target = gen_reg_rtx (mode); - - for (i = 0; i < elts; ++i) - { - /* If this is part of a register, and not the first item in the - word, we can't store using a SUBREG - that would clobber - previous results. - And storing with a SUBREG is only possible for the least - significant part, hence we can't do it for big endian - (unless we want to permute the evaluation order. */ - if (GET_CODE (target) == REG - && (BYTES_BIG_ENDIAN - ? subsize < UNITS_PER_WORD - : ((i * subsize) % UNITS_PER_WORD) != 0)) - t = NULL_RTX; - else - t = simplify_gen_subreg (submode, target, mode, i * subsize); - if (CONSTANT_P (op0)) - a = simplify_gen_subreg (submode, op0, mode, i * subsize); - else - a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp, - NULL_RTX, submode, submode, size); - if (CONSTANT_P (op1)) - b = simplify_gen_subreg (submode, op1, mode, i * subsize); - else - b = extract_bit_field (op1, subbitsize, i * subbitsize, unsignedp, - NULL_RTX, submode, submode, size); - - if (binoptab->code == DIV) - { - if (class == MODE_VECTOR_FLOAT) - res = expand_binop (submode, binoptab, a, b, t, - unsignedp, methods); - else - res = expand_divmod (0, TRUNC_DIV_EXPR, submode, - a, b, t, unsignedp); - } - else - res = expand_binop (submode, binoptab, a, b, t, - unsignedp, methods); - - if (res == 0) - break; - - if (t) - emit_move_insn (t, res); - else - store_bit_field (target, subbitsize, i * subbitsize, submode, res, - size); - } - break; - - default: - abort (); - } - - seq = get_insns (); - end_sequence (); - emit_insn (seq); - - return target; -} - -/* Like expand_unop but for open-coding vector unops. */ - -static rtx -expand_vector_unop (enum machine_mode mode, optab unoptab, rtx op0, - rtx target, int unsignedp) -{ - enum machine_mode submode, tmode; - int size, elts, subsize, subbitsize, i; - rtx t, a, res, seq; - - size = GET_MODE_SIZE (mode); - submode = GET_MODE_INNER (mode); - - /* Search for the widest vector mode with the same inner mode that is - still narrower than MODE and that allows to open-code this operator. - Note, if we find such a mode and the handler later decides it can't - do the expansion, we'll be called recursively with the narrower mode. */ - for (tmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (mode)); - GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode); - tmode = GET_MODE_WIDER_MODE (tmode)) - { - if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode) - && unoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing) - submode = tmode; - } - /* If there is no negate operation, try doing a subtract from zero. */ - if (unoptab == neg_optab && GET_MODE_CLASS (submode) == MODE_INT - /* Avoid infinite recursion when an - error has left us with the wrong mode. */ - && GET_MODE (op0) == mode) - { - rtx temp; - temp = expand_binop (mode, sub_optab, CONST0_RTX (mode), op0, - target, unsignedp, OPTAB_DIRECT); - if (temp) - return temp; - } - - if (unoptab == one_cmpl_optab) - { - tmode = int_mode_for_mode (mode); - if (tmode != BLKmode) - submode = tmode; - } - - subsize = GET_MODE_SIZE (submode); - subbitsize = GET_MODE_BITSIZE (submode); - elts = size / subsize; - - /* Errors can leave us with a const0_rtx as operand. */ - if (GET_MODE (op0) != mode) - op0 = copy_to_mode_reg (mode, op0); - - if (!target) - target = gen_reg_rtx (mode); - - start_sequence (); - - for (i = 0; i < elts; ++i) - { - /* If this is part of a register, and not the first item in the - word, we can't store using a SUBREG - that would clobber - previous results. - And storing with a SUBREG is only possible for the least - significant part, hence we can't do it for big endian - (unless we want to permute the evaluation order. */ - if (GET_CODE (target) == REG - && (BYTES_BIG_ENDIAN - ? subsize < UNITS_PER_WORD - : ((i * subsize) % UNITS_PER_WORD) != 0)) - t = NULL_RTX; - else - t = simplify_gen_subreg (submode, target, mode, i * subsize); - if (CONSTANT_P (op0)) - a = simplify_gen_subreg (submode, op0, mode, i * subsize); - else - a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp, - t, submode, submode, size); - - res = expand_unop (submode, unoptab, a, t, unsignedp); - - if (t) - emit_move_insn (t, res); - else - store_bit_field (target, subbitsize, i * subbitsize, submode, res, - size); - } - - seq = get_insns (); - end_sequence (); - emit_insn (seq); - - return target; -} /* Expand a binary operator which has both signed and unsigned forms. UOPTAB is the optab for unsigned operations, and SOPTAB is for @@ -2128,6 +2034,98 @@ sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab, return 0; } +/* Generate code to perform an operation specified by UNOPPTAB + on operand OP0, with two results to TARG0 and TARG1. + We assume that the order of the operands for the instruction + is TARG0, TARG1, OP0. + + Either TARG0 or TARG1 may be zero, but what that means is that + the result is not actually wanted. We will generate it into + a dummy pseudo-reg and discard it. They may not both be zero. + + Returns 1 if this operation can be performed; 0 if not. */ + +int +expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1, + int unsignedp) +{ + enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1); + enum mode_class class; + enum machine_mode wider_mode; + rtx entry_last = get_last_insn (); + rtx last; + + class = GET_MODE_CLASS (mode); + + if (!targ0) + targ0 = gen_reg_rtx (mode); + if (!targ1) + targ1 = gen_reg_rtx (mode); + + /* Record where to go back to if we fail. */ + last = get_last_insn (); + + if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing) + { + int icode = (int) unoptab->handlers[(int) mode].insn_code; + enum machine_mode mode0 = insn_data[icode].operand[2].mode; + rtx pat; + rtx xop0 = op0; + + if (GET_MODE (xop0) != VOIDmode + && GET_MODE (xop0) != mode0) + xop0 = convert_to_mode (mode0, xop0, unsignedp); + + /* Now, if insn doesn't accept these operands, put them into pseudos. */ + if (!insn_data[icode].operand[2].predicate (xop0, mode0)) + xop0 = copy_to_mode_reg (mode0, xop0); + + /* We could handle this, but we should always be called with a pseudo + for our targets and all insns should take them as outputs. */ + gcc_assert (insn_data[icode].operand[0].predicate (targ0, mode)); + gcc_assert (insn_data[icode].operand[1].predicate (targ1, mode)); + + pat = GEN_FCN (icode) (targ0, targ1, xop0); + if (pat) + { + emit_insn (pat); + return 1; + } + else + delete_insns_since (last); + } + + /* It can't be done in this mode. Can we do it in a wider mode? */ + + if (CLASS_HAS_WIDER_MODES_P (class)) + { + for (wider_mode = GET_MODE_WIDER_MODE (mode); + wider_mode != VOIDmode; + wider_mode = GET_MODE_WIDER_MODE (wider_mode)) + { + if (unoptab->handlers[(int) wider_mode].insn_code + != CODE_FOR_nothing) + { + rtx t0 = gen_reg_rtx (wider_mode); + rtx t1 = gen_reg_rtx (wider_mode); + rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp); + + if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp)) + { + convert_move (targ0, t0, unsignedp); + convert_move (targ1, t1, unsignedp); + return 1; + } + else + delete_insns_since (last); + } + } + } + + delete_insns_since (entry_last); + return 0; +} + /* Generate code to perform an operation specified by BINOPTAB on operands OP0 and OP1, with two results to TARG1 and TARG2. We assume that the order of the operands for the instruction @@ -2152,32 +2150,19 @@ expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1, class = GET_MODE_CLASS (mode); - op0 = protect_from_queue (op0, 0); - op1 = protect_from_queue (op1, 0); - - if (flag_force_mem) - { - op0 = force_not_mem (op0); - op1 = force_not_mem (op1); - } - - /* If we are inside an appropriately-short loop and one operand is an - expensive constant, force it into a register. */ - if (CONSTANT_P (op0) && preserve_subexpressions_p () + /* If we are inside an appropriately-short loop and we are optimizing, + force expensive constants into a register. */ + if (CONSTANT_P (op0) && optimize && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1)) op0 = force_reg (mode, op0); - if (CONSTANT_P (op1) && preserve_subexpressions_p () + if (CONSTANT_P (op1) && optimize && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1)) op1 = force_reg (mode, op1); - if (targ0) - targ0 = protect_from_queue (targ0, 1); - else + if (!targ0) targ0 = gen_reg_rtx (mode); - if (targ1) - targ1 = protect_from_queue (targ1, 1); - else + if (!targ1) targ1 = gen_reg_rtx (mode); /* Record where to go back to if we fail. */ @@ -2212,17 +2197,16 @@ expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1, xop1, unsignedp); /* Now, if insn doesn't accept these operands, put them into pseudos. */ - if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)) + if (!insn_data[icode].operand[1].predicate (xop0, mode0)) xop0 = copy_to_mode_reg (mode0, xop0); - if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1)) + if (!insn_data[icode].operand[2].predicate (xop1, mode1)) xop1 = copy_to_mode_reg (mode1, xop1); /* We could handle this, but we should always be called with a pseudo for our targets and all insns should take them as outputs. */ - if (! (*insn_data[icode].operand[0].predicate) (targ0, mode) - || ! (*insn_data[icode].operand[3].predicate) (targ1, mode)) - abort (); + gcc_assert (insn_data[icode].operand[0].predicate (targ0, mode)); + gcc_assert (insn_data[icode].operand[3].predicate (targ1, mode)); pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1); if (pat) @@ -2236,9 +2220,10 @@ expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1, /* It can't be done in this mode. Can we do it in a wider mode? */ - if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) + if (CLASS_HAS_WIDER_MODES_P (class)) { - for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; + for (wider_mode = GET_MODE_WIDER_MODE (mode); + wider_mode != VOIDmode; wider_mode = GET_MODE_WIDER_MODE (wider_mode)) { if (binoptab->handlers[(int) wider_mode].insn_code @@ -2265,6 +2250,54 @@ expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1, delete_insns_since (entry_last); return 0; } + +/* Expand the two-valued library call indicated by BINOPTAB, but + preserve only one of the values. If TARG0 is non-NULL, the first + value is placed into TARG0; otherwise the second value is placed + into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The + value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1). + This routine assumes that the value returned by the library call is + as if the return value was of an integral mode twice as wide as the + mode of OP0. Returns 1 if the call was successful. */ + +bool +expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1, + rtx targ0, rtx targ1, enum rtx_code code) +{ + enum machine_mode mode; + enum machine_mode libval_mode; + rtx libval; + rtx insns; + + /* Exactly one of TARG0 or TARG1 should be non-NULL. */ + gcc_assert (!targ0 != !targ1); + + mode = GET_MODE (op0); + if (!binoptab->handlers[(int) mode].libfunc) + return false; + + /* The value returned by the library function will have twice as + many bits as the nominal MODE. */ + libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode), + MODE_INT); + start_sequence (); + libval = emit_library_call_value (binoptab->handlers[(int) mode].libfunc, + NULL_RTX, LCT_CONST, + libval_mode, 2, + op0, mode, + op1, mode); + /* Get the part of VAL containing the value that we want. */ + libval = simplify_gen_subreg (mode, libval, libval_mode, + targ0 ? 0 : GET_MODE_SIZE (mode)); + insns = get_insns (); + end_sequence (); + /* Move the into the desired location. */ + emit_libcall_block (insns, targ0 ? targ0 : targ1, libval, + gen_rtx_fmt_ee (code, mode, op0, op1)); + + return true; +} + /* Wrapper around expand_unop which takes an rtx code to specify the operation to perform, not an optab pointer. All other @@ -2274,8 +2307,7 @@ expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0, rtx target, int unsignedp) { optab unop = code_to_optab[(int) code]; - if (unop == 0) - abort (); + gcc_assert (unop); return expand_unop (mode, unop, op0, target, unsignedp); } @@ -2288,10 +2320,11 @@ static rtx widen_clz (enum machine_mode mode, rtx op0, rtx target) { enum mode_class class = GET_MODE_CLASS (mode); - if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) + if (CLASS_HAS_WIDER_MODES_P (class)) { enum machine_mode wider_mode; - for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; + for (wider_mode = GET_MODE_WIDER_MODE (mode); + wider_mode != VOIDmode; wider_mode = GET_MODE_WIDER_MODE (wider_mode)) { if (clz_optab->handlers[(int) wider_mode].insn_code @@ -2326,7 +2359,7 @@ static rtx expand_parity (enum machine_mode mode, rtx op0, rtx target) { enum mode_class class = GET_MODE_CLASS (mode); - if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) + if (CLASS_HAS_WIDER_MODES_P (class)) { enum machine_mode wider_mode; for (wider_mode = mode; wider_mode != VOIDmode; @@ -2345,7 +2378,7 @@ expand_parity (enum machine_mode mode, rtx op0, rtx target) temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX, true); if (temp != 0) - temp = expand_binop (wider_mode, and_optab, temp, GEN_INT (1), + temp = expand_binop (wider_mode, and_optab, temp, const1_rtx, target, true, OPTAB_DIRECT); if (temp == 0) delete_insns_since (last); @@ -2357,6 +2390,131 @@ expand_parity (enum machine_mode mode, rtx op0, rtx target) return 0; } +/* Extract the OMODE lowpart from VAL, which has IMODE. Under certain + conditions, VAL may already be a SUBREG against which we cannot generate + a further SUBREG. In this case, we expect forcing the value into a + register will work around the situation. */ + +static rtx +lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val, + enum machine_mode imode) +{ + rtx ret; + ret = lowpart_subreg (omode, val, imode); + if (ret == NULL) + { + val = force_reg (imode, val); + ret = lowpart_subreg (omode, val, imode); + gcc_assert (ret != NULL); + } + return ret; +} + +/* Expand a floating point absolute value or negation operation via a + logical operation on the sign bit. */ + +static rtx +expand_absneg_bit (enum rtx_code code, enum machine_mode mode, + rtx op0, rtx target) +{ + const struct real_format *fmt; + int bitpos, word, nwords, i; + enum machine_mode imode; + HOST_WIDE_INT hi, lo; + rtx temp, insns; + + /* The format has to have a simple sign bit. */ + fmt = REAL_MODE_FORMAT (mode); + if (fmt == NULL) + return NULL_RTX; + + bitpos = fmt->signbit_rw; + if (bitpos < 0) + return NULL_RTX; + + /* Don't create negative zeros if the format doesn't support them. */ + if (code == NEG && !fmt->has_signed_zero) + return NULL_RTX; + + if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD) + { + imode = int_mode_for_mode (mode); + if (imode == BLKmode) + return NULL_RTX; + word = 0; + nwords = 1; + } + else + { + imode = word_mode; + + if (FLOAT_WORDS_BIG_ENDIAN) + word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD; + else + word = bitpos / BITS_PER_WORD; + bitpos = bitpos % BITS_PER_WORD; + nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD; + } + + if (bitpos < HOST_BITS_PER_WIDE_INT) + { + hi = 0; + lo = (HOST_WIDE_INT) 1 << bitpos; + } + else + { + hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT); + lo = 0; + } + if (code == ABS) + lo = ~lo, hi = ~hi; + + if (target == 0 || target == op0) + target = gen_reg_rtx (mode); + + if (nwords > 1) + { + start_sequence (); + + for (i = 0; i < nwords; ++i) + { + rtx targ_piece = operand_subword (target, i, 1, mode); + rtx op0_piece = operand_subword_force (op0, i, mode); + + if (i == word) + { + temp = expand_binop (imode, code == ABS ? and_optab : xor_optab, + op0_piece, + immed_double_const (lo, hi, imode), + targ_piece, 1, OPTAB_LIB_WIDEN); + if (temp != targ_piece) + emit_move_insn (targ_piece, temp); + } + else + emit_move_insn (targ_piece, op0_piece); + } + + insns = get_insns (); + end_sequence (); + + temp = gen_rtx_fmt_e (code, mode, copy_rtx (op0)); + emit_no_conflict_block (insns, target, op0, NULL_RTX, temp); + } + else + { + temp = expand_binop (imode, code == ABS ? and_optab : xor_optab, + gen_lowpart (imode, op0), + immed_double_const (lo, hi, imode), + gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN); + target = lowpart_subreg_maybe_copy (mode, temp, imode); + + set_unique_reg_note (get_last_insn (), REG_EQUAL, + gen_rtx_fmt_e (code, mode, copy_rtx (op0))); + } + + return target; +} + /* Generate code to perform an operation specified by UNOPTAB on operand OP0, with result having machine-mode MODE. @@ -2380,16 +2538,6 @@ expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target, class = GET_MODE_CLASS (mode); - op0 = protect_from_queue (op0, 0); - - if (flag_force_mem) - { - op0 = force_not_mem (op0); - } - - if (target) - target = protect_from_queue (target, 1); - if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing) { int icode = (int) unoptab->handlers[(int) mode].insn_code; @@ -2407,10 +2555,10 @@ expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target, /* Now, if insn doesn't accept our operand, put it into a pseudo. */ - if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)) + if (!insn_data[icode].operand[1].predicate (xop0, mode0)) xop0 = copy_to_mode_reg (mode0, xop0); - if (! (*insn_data[icode].operand[0].predicate) (temp, mode)) + if (!insn_data[icode].operand[0].predicate (temp, mode)) temp = gen_reg_rtx (mode); pat = GEN_FCN (icode) (temp, xop0); @@ -2443,8 +2591,9 @@ expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target, goto try_libcall; } - if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) - for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; + if (CLASS_HAS_WIDER_MODES_P (class)) + for (wider_mode = GET_MODE_WIDER_MODE (mode); + wider_mode != VOIDmode; wider_mode = GET_MODE_WIDER_MODE (wider_mode)) { if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing) @@ -2465,7 +2614,9 @@ expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target, if (temp) { - if (class != MODE_INT) + if (class != MODE_INT + || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode), + GET_MODE_BITSIZE (wider_mode))) { if (target == 0) target = gen_reg_rtx (mode); @@ -2515,96 +2666,27 @@ expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target, return target; } - /* Open-code the complex negation operation. */ - else if (unoptab->code == NEG - && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)) - { - rtx target_piece; - rtx x; - rtx seq; - - /* Find the correct mode for the real and imaginary parts. */ - enum machine_mode submode = GET_MODE_INNER (mode); - - if (submode == BLKmode) - abort (); - - if (target == 0) - target = gen_reg_rtx (mode); - - start_sequence (); - - target_piece = gen_imagpart (submode, target); - x = expand_unop (submode, unoptab, - gen_imagpart (submode, op0), - target_piece, unsignedp); - if (target_piece != x) - emit_move_insn (target_piece, x); - - target_piece = gen_realpart (submode, target); - x = expand_unop (submode, unoptab, - gen_realpart (submode, op0), - target_piece, unsignedp); - if (target_piece != x) - emit_move_insn (target_piece, x); - - seq = get_insns (); - end_sequence (); - - emit_no_conflict_block (seq, target, op0, 0, - gen_rtx_fmt_e (unoptab->code, mode, - copy_rtx (op0))); - return target; - } - - /* Try negating floating point values by flipping the sign bit. */ - if (unoptab->code == NEG && class == MODE_FLOAT - && GET_MODE_BITSIZE (mode) <= 2 * HOST_BITS_PER_WIDE_INT) + if (unoptab->code == NEG) { - const struct real_format *fmt = REAL_MODE_FORMAT (mode); - enum machine_mode imode = int_mode_for_mode (mode); - int bitpos = (fmt != 0) ? fmt->signbit : -1; - - if (imode != BLKmode && bitpos >= 0 && fmt->has_signed_zero) + /* Try negating floating point values by flipping the sign bit. */ + if (SCALAR_FLOAT_MODE_P (mode)) { - HOST_WIDE_INT hi, lo; - rtx last = get_last_insn (); - - /* Handle targets with different FP word orders. */ - if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN) - { - int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD; - int word = nwords - (bitpos / BITS_PER_WORD) - 1; - bitpos = word * BITS_PER_WORD + bitpos % BITS_PER_WORD; - } + temp = expand_absneg_bit (NEG, mode, op0, target); + if (temp) + return temp; + } - if (bitpos < HOST_BITS_PER_WIDE_INT) - { - hi = 0; - lo = (HOST_WIDE_INT) 1 << bitpos; - } - else - { - hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT); - lo = 0; - } - temp = expand_binop (imode, xor_optab, - gen_lowpart (imode, op0), - immed_double_const (lo, hi, imode), - NULL_RTX, 1, OPTAB_LIB_WIDEN); - if (temp != 0) - { - rtx insn; - if (target == 0) - target = gen_reg_rtx (mode); - insn = emit_move_insn (target, gen_lowpart (mode, temp)); - set_unique_reg_note (insn, REG_EQUAL, - gen_rtx_fmt_e (NEG, mode, - copy_rtx (op0))); - return target; - } - delete_insns_since (last); - } + /* If there is no negation pattern, and we have no negative zero, + try subtracting from zero. */ + if (!HONOR_SIGNED_ZEROS (mode)) + { + temp = expand_binop (mode, (unoptab == negv_optab + ? subv_optab : sub_optab), + CONST0_RTX (mode), op0, target, + unsignedp, OPTAB_DIRECT); + if (temp) + return temp; + } } /* Try calculating parity (x) as popcount (x) % 2. */ @@ -2642,19 +2724,17 @@ expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target, target = gen_reg_rtx (outmode); emit_libcall_block (insns, target, value, - gen_rtx_fmt_e (unoptab->code, mode, op0)); + gen_rtx_fmt_e (unoptab->code, outmode, op0)); return target; } - if (class == MODE_VECTOR_FLOAT || class == MODE_VECTOR_INT) - return expand_vector_unop (mode, unoptab, op0, target, unsignedp); - /* It can't be done in this mode. Can we do it in a wider mode? */ - if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) + if (CLASS_HAS_WIDER_MODES_P (class)) { - for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; + for (wider_mode = GET_MODE_WIDER_MODE (mode); + wider_mode != VOIDmode; wider_mode = GET_MODE_WIDER_MODE (wider_mode)) { if ((unoptab->handlers[(int) wider_mode].insn_code @@ -2701,9 +2781,9 @@ expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target, } } - /* If there is no negate operation, try doing a subtract from zero. - The US Software GOFAST library needs this. */ - if (unoptab->code == NEG) + /* One final attempt at implementing negation via subtraction, + this time allowing widening of the operand. */ + if (unoptab->code == NEG && !HONOR_SIGNED_ZEROS (mode)) { rtx temp; temp = expand_binop (mode, @@ -2711,7 +2791,7 @@ expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target, CONST0_RTX (mode), op0, target, unsignedp, OPTAB_LIB_WIDEN); if (temp) - return temp; + return temp; } return 0; @@ -2742,57 +2822,16 @@ expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target, return temp; /* For floating point modes, try clearing the sign bit. */ - if (GET_MODE_CLASS (mode) == MODE_FLOAT - && GET_MODE_BITSIZE (mode) <= 2 * HOST_BITS_PER_WIDE_INT) + if (SCALAR_FLOAT_MODE_P (mode)) { - const struct real_format *fmt = REAL_MODE_FORMAT (mode); - enum machine_mode imode = int_mode_for_mode (mode); - int bitpos = (fmt != 0) ? fmt->signbit : -1; - - if (imode != BLKmode && bitpos >= 0) - { - HOST_WIDE_INT hi, lo; - rtx last = get_last_insn (); - - /* Handle targets with different FP word orders. */ - if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN) - { - int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD; - int word = nwords - (bitpos / BITS_PER_WORD) - 1; - bitpos = word * BITS_PER_WORD + bitpos % BITS_PER_WORD; - } - - if (bitpos < HOST_BITS_PER_WIDE_INT) - { - hi = 0; - lo = (HOST_WIDE_INT) 1 << bitpos; - } - else - { - hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT); - lo = 0; - } - temp = expand_binop (imode, and_optab, - gen_lowpart (imode, op0), - immed_double_const (~lo, ~hi, imode), - NULL_RTX, 1, OPTAB_LIB_WIDEN); - if (temp != 0) - { - rtx insn; - if (target == 0) - target = gen_reg_rtx (mode); - insn = emit_move_insn (target, gen_lowpart (mode, temp)); - set_unique_reg_note (insn, REG_EQUAL, - gen_rtx_fmt_e (ABS, mode, - copy_rtx (op0))); - return target; - } - delete_insns_since (last); - } + temp = expand_absneg_bit (ABS, mode, op0, target); + if (temp) + return temp; } /* If we have a MAX insn, we can do this as MAX (x, -x). */ - if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) + if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing + && !HONOR_SIGNED_ZEROS (mode)) { rtx last = get_last_insn (); @@ -2847,30 +2886,23 @@ expand_abs (enum machine_mode mode, rtx op0, rtx target, /* It is safe to use the target if it is the same as the source if this is also a pseudo register */ - if (op0 == target && GET_CODE (op0) == REG + if (op0 == target && REG_P (op0) && REGNO (op0) >= FIRST_PSEUDO_REGISTER) safe = 1; op1 = gen_label_rtx (); if (target == 0 || ! safe || GET_MODE (target) != mode - || (GET_CODE (target) == MEM && MEM_VOLATILE_P (target)) - || (GET_CODE (target) == REG + || (MEM_P (target) && MEM_VOLATILE_P (target)) + || (REG_P (target) && REGNO (target) < FIRST_PSEUDO_REGISTER)) target = gen_reg_rtx (mode); emit_move_insn (target, op0); NO_DEFER_POP; - /* If this mode is an integer too wide to compare properly, - compare word by word. Rely on CSE to optimize constant cases. */ - if (GET_MODE_CLASS (mode) == MODE_INT - && ! can_compare_p (GE, mode, ccp_jump)) - do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx, - NULL_RTX, op1); - else - do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode, - NULL_RTX, NULL_RTX, op1); + do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode, + NULL_RTX, NULL_RTX, op1); op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab, target, target, 0); @@ -2880,205 +2912,238 @@ expand_abs (enum machine_mode mode, rtx op0, rtx target, OK_DEFER_POP; return target; } - -/* Emit code to compute the absolute value of OP0, with result to - TARGET if convenient. (TARGET may be 0.) The return value says - where the result actually is to be found. - MODE is the mode of the operand; the mode of the result is - different but can be deduced from MODE. - - UNSIGNEDP is relevant for complex integer modes. */ +/* A subroutine of expand_copysign, perform the copysign operation using the + abs and neg primitives advertised to exist on the target. The assumption + is that we have a split register file, and leaving op0 in fp registers, + and not playing with subregs so much, will help the register allocator. */ -rtx -expand_complex_abs (enum machine_mode mode, rtx op0, rtx target, - int unsignedp) +static rtx +expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target, + int bitpos, bool op0_is_abs) { - enum mode_class class = GET_MODE_CLASS (mode); - enum machine_mode wider_mode; - rtx temp; - rtx entry_last = get_last_insn (); - rtx last; - rtx pat; - optab this_abs_optab; - - /* Find the correct mode for the real and imaginary parts. */ - enum machine_mode submode = GET_MODE_INNER (mode); - - if (submode == BLKmode) - abort (); + enum machine_mode imode; + HOST_WIDE_INT hi, lo; + int word; + rtx label; - op0 = protect_from_queue (op0, 0); + if (target == op1) + target = NULL_RTX; - if (flag_force_mem) + if (!op0_is_abs) { - op0 = force_not_mem (op0); + op0 = expand_unop (mode, abs_optab, op0, target, 0); + if (op0 == NULL) + return NULL_RTX; + target = op0; + } + else + { + if (target == NULL_RTX) + target = copy_to_reg (op0); + else + emit_move_insn (target, op0); } - last = get_last_insn (); + if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD) + { + imode = int_mode_for_mode (mode); + if (imode == BLKmode) + return NULL_RTX; + op1 = gen_lowpart (imode, op1); + } + else + { + imode = word_mode; + if (FLOAT_WORDS_BIG_ENDIAN) + word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD; + else + word = bitpos / BITS_PER_WORD; + bitpos = bitpos % BITS_PER_WORD; + op1 = operand_subword_force (op1, word, mode); + } - if (target) - target = protect_from_queue (target, 1); + if (bitpos < HOST_BITS_PER_WIDE_INT) + { + hi = 0; + lo = (HOST_WIDE_INT) 1 << bitpos; + } + else + { + hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT); + lo = 0; + } - this_abs_optab = ! unsignedp && flag_trapv - && (GET_MODE_CLASS(mode) == MODE_INT) - ? absv_optab : abs_optab; + op1 = expand_binop (imode, and_optab, op1, + immed_double_const (lo, hi, imode), + NULL_RTX, 1, OPTAB_LIB_WIDEN); - if (this_abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) - { - int icode = (int) this_abs_optab->handlers[(int) mode].insn_code; - enum machine_mode mode0 = insn_data[icode].operand[1].mode; - rtx xop0 = op0; + label = gen_label_rtx (); + emit_cmp_and_jump_insns (op1, const0_rtx, EQ, NULL_RTX, imode, 1, label); - if (target) - temp = target; - else - temp = gen_reg_rtx (submode); + if (GET_CODE (op0) == CONST_DOUBLE) + op0 = simplify_unary_operation (NEG, mode, op0, mode); + else + op0 = expand_unop (mode, neg_optab, op0, target, 0); + if (op0 != target) + emit_move_insn (target, op0); - if (GET_MODE (xop0) != VOIDmode - && GET_MODE (xop0) != mode0) - xop0 = convert_to_mode (mode0, xop0, unsignedp); + emit_label (label); - /* Now, if insn doesn't accept our operand, put it into a pseudo. */ + return target; +} - if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)) - xop0 = copy_to_mode_reg (mode0, xop0); - if (! (*insn_data[icode].operand[0].predicate) (temp, submode)) - temp = gen_reg_rtx (submode); +/* A subroutine of expand_copysign, perform the entire copysign operation + with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS + is true if op0 is known to have its sign bit clear. */ - pat = GEN_FCN (icode) (temp, xop0); - if (pat) - { - if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX - && ! add_equal_note (pat, temp, this_abs_optab->code, xop0, - NULL_RTX)) - { - delete_insns_since (last); - return expand_unop (mode, this_abs_optab, op0, NULL_RTX, - unsignedp); - } +static rtx +expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target, + int bitpos, bool op0_is_abs) +{ + enum machine_mode imode; + HOST_WIDE_INT hi, lo; + int word, nwords, i; + rtx temp, insns; - emit_insn (pat); + if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD) + { + imode = int_mode_for_mode (mode); + if (imode == BLKmode) + return NULL_RTX; + word = 0; + nwords = 1; + } + else + { + imode = word_mode; - return temp; - } + if (FLOAT_WORDS_BIG_ENDIAN) + word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD; else - delete_insns_since (last); + word = bitpos / BITS_PER_WORD; + bitpos = bitpos % BITS_PER_WORD; + nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD; } - /* It can't be done in this mode. Can we open-code it in a wider mode? */ + if (bitpos < HOST_BITS_PER_WIDE_INT) + { + hi = 0; + lo = (HOST_WIDE_INT) 1 << bitpos; + } + else + { + hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT); + lo = 0; + } + + if (target == 0 || target == op0 || target == op1) + target = gen_reg_rtx (mode); - for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; - wider_mode = GET_MODE_WIDER_MODE (wider_mode)) + if (nwords > 1) { - if (this_abs_optab->handlers[(int) wider_mode].insn_code - != CODE_FOR_nothing) - { - rtx xop0 = op0; + start_sequence (); - xop0 = convert_modes (wider_mode, mode, xop0, unsignedp); - temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp); + for (i = 0; i < nwords; ++i) + { + rtx targ_piece = operand_subword (target, i, 1, mode); + rtx op0_piece = operand_subword_force (op0, i, mode); - if (temp) + if (i == word) { - if (class != MODE_COMPLEX_INT) - { - if (target == 0) - target = gen_reg_rtx (submode); - convert_move (target, temp, 0); - return target; - } - else - return gen_lowpart (submode, temp); + if (!op0_is_abs) + op0_piece = expand_binop (imode, and_optab, op0_piece, + immed_double_const (~lo, ~hi, imode), + NULL_RTX, 1, OPTAB_LIB_WIDEN); + + op1 = expand_binop (imode, and_optab, + operand_subword_force (op1, i, mode), + immed_double_const (lo, hi, imode), + NULL_RTX, 1, OPTAB_LIB_WIDEN); + + temp = expand_binop (imode, ior_optab, op0_piece, op1, + targ_piece, 1, OPTAB_LIB_WIDEN); + if (temp != targ_piece) + emit_move_insn (targ_piece, temp); } else - delete_insns_since (last); + emit_move_insn (targ_piece, op0_piece); } - } - - /* Open-code the complex absolute-value operation - if we can open-code sqrt. Otherwise it's not worth while. */ - if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing - && ! flag_trapv) - { - rtx real, imag, total; - - real = gen_realpart (submode, op0); - imag = gen_imagpart (submode, op0); - /* Square both parts. */ - real = expand_mult (submode, real, real, NULL_RTX, 0); - imag = expand_mult (submode, imag, imag, NULL_RTX, 0); - - /* Sum the parts. */ - total = expand_binop (submode, add_optab, real, imag, NULL_RTX, - 0, OPTAB_LIB_WIDEN); + insns = get_insns (); + end_sequence (); - /* Get sqrt in TARGET. Set TARGET to where the result is. */ - target = expand_unop (submode, sqrt_optab, total, target, 0); - if (target == 0) - delete_insns_since (last); - else - return target; + emit_no_conflict_block (insns, target, op0, op1, NULL_RTX); } - - /* Now try a library call in this mode. */ - if (this_abs_optab->handlers[(int) mode].libfunc) + else { - rtx insns; - rtx value; - - start_sequence (); + op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1), + immed_double_const (lo, hi, imode), + NULL_RTX, 1, OPTAB_LIB_WIDEN); + + op0 = gen_lowpart (imode, op0); + if (!op0_is_abs) + op0 = expand_binop (imode, and_optab, op0, + immed_double_const (~lo, ~hi, imode), + NULL_RTX, 1, OPTAB_LIB_WIDEN); + + temp = expand_binop (imode, ior_optab, op0, op1, + gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN); + target = lowpart_subreg_maybe_copy (mode, temp, imode); + } - /* Pass 1 for NO_QUEUE so we don't lose any increments - if the libcall is cse'd or moved. */ - value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc, - NULL_RTX, LCT_CONST, submode, 1, op0, mode); - insns = get_insns (); - end_sequence (); + return target; +} - target = gen_reg_rtx (submode); - emit_libcall_block (insns, target, value, - gen_rtx_fmt_e (this_abs_optab->code, mode, op0)); +/* Expand the C99 copysign operation. OP0 and OP1 must be the same + scalar floating point mode. Return NULL if we do not know how to + expand the operation inline. */ - return target; - } +rtx +expand_copysign (rtx op0, rtx op1, rtx target) +{ + enum machine_mode mode = GET_MODE (op0); + const struct real_format *fmt; + bool op0_is_abs; + rtx temp; - /* It can't be done in this mode. Can we do it in a wider mode? */ + gcc_assert (SCALAR_FLOAT_MODE_P (mode)); + gcc_assert (GET_MODE (op1) == mode); - for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; - wider_mode = GET_MODE_WIDER_MODE (wider_mode)) - { - if ((this_abs_optab->handlers[(int) wider_mode].insn_code - != CODE_FOR_nothing) - || this_abs_optab->handlers[(int) wider_mode].libfunc) - { - rtx xop0 = op0; + /* First try to do it with a special instruction. */ + temp = expand_binop (mode, copysign_optab, op0, op1, + target, 0, OPTAB_DIRECT); + if (temp) + return temp; - xop0 = convert_modes (wider_mode, mode, xop0, unsignedp); + fmt = REAL_MODE_FORMAT (mode); + if (fmt == NULL || !fmt->has_signed_zero) + return NULL_RTX; - temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp); + op0_is_abs = false; + if (GET_CODE (op0) == CONST_DOUBLE) + { + if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0))) + op0 = simplify_unary_operation (ABS, mode, op0, mode); + op0_is_abs = true; + } - if (temp) - { - if (class != MODE_COMPLEX_INT) - { - if (target == 0) - target = gen_reg_rtx (submode); - convert_move (target, temp, 0); - return target; - } - else - return gen_lowpart (submode, temp); - } - else - delete_insns_since (last); - } + if (fmt->signbit_ro >= 0 + && (GET_CODE (op0) == CONST_DOUBLE + || (neg_optab->handlers[mode].insn_code != CODE_FOR_nothing + && abs_optab->handlers[mode].insn_code != CODE_FOR_nothing))) + { + temp = expand_copysign_absneg (mode, op0, op1, target, + fmt->signbit_ro, op0_is_abs); + if (temp) + return temp; } - delete_insns_since (entry_last); - return 0; + if (fmt->signbit_rw < 0) + return NULL_RTX; + return expand_copysign_bit (mode, op0, op1, target, + fmt->signbit_rw, op0_is_abs); } /* Generate an instruction whose insn-code is INSN_CODE, @@ -3094,23 +3159,14 @@ emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code) enum machine_mode mode0 = insn_data[icode].operand[1].mode; rtx pat; - temp = target = protect_from_queue (target, 1); - - op0 = protect_from_queue (op0, 0); - - /* Sign and zero extension from memory is often done specially on - RISC machines, so forcing into a register here can pessimize - code. */ - if (flag_force_mem && code != SIGN_EXTEND && code != ZERO_EXTEND) - op0 = force_not_mem (op0); + temp = target; /* Now, if insn does not accept our operands, put them into pseudos. */ - if (! (*insn_data[icode].operand[1].predicate) (op0, mode0)) + if (!insn_data[icode].operand[1].predicate (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); - if (! (*insn_data[icode].operand[0].predicate) (temp, GET_MODE (temp)) - || (flag_force_mem && GET_CODE (temp) == MEM)) + if (!insn_data[icode].operand[0].predicate (temp, GET_MODE (temp))) temp = gen_reg_rtx (GET_MODE (temp)); pat = GEN_FCN (icode) (temp, op0); @@ -3124,6 +3180,79 @@ emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code) emit_move_insn (target, temp); } +struct no_conflict_data +{ + rtx target, first, insn; + bool must_stay; +}; + +/* Called via note_stores by emit_no_conflict_block and emit_libcall_block. + Set P->must_stay if the currently examined clobber / store has to stay + in the list of insns that constitute the actual no_conflict block / + libcall block. */ +static void +no_conflict_move_test (rtx dest, rtx set, void *p0) +{ + struct no_conflict_data *p= p0; + + /* If this inns directly contributes to setting the target, it must stay. */ + if (reg_overlap_mentioned_p (p->target, dest)) + p->must_stay = true; + /* If we haven't committed to keeping any other insns in the list yet, + there is nothing more to check. */ + else if (p->insn == p->first) + return; + /* If this insn sets / clobbers a register that feeds one of the insns + already in the list, this insn has to stay too. */ + else if (reg_overlap_mentioned_p (dest, PATTERN (p->first)) + || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest))) + || reg_used_between_p (dest, p->first, p->insn) + /* Likewise if this insn depends on a register set by a previous + insn in the list, or if it sets a result (presumably a hard + register) that is set or clobbered by a previous insn. + N.B. the modified_*_p (SET_DEST...) tests applied to a MEM + SET_DEST perform the former check on the address, and the latter + check on the MEM. */ + || (GET_CODE (set) == SET + && (modified_in_p (SET_SRC (set), p->first) + || modified_in_p (SET_DEST (set), p->first) + || modified_between_p (SET_SRC (set), p->first, p->insn) + || modified_between_p (SET_DEST (set), p->first, p->insn)))) + p->must_stay = true; +} + +/* Encapsulate the block starting at FIRST and ending with LAST, which is + logically equivalent to EQUIV, so it gets manipulated as a unit if it + is possible to do so. */ + +static void +maybe_encapsulate_block (rtx first, rtx last, rtx equiv) +{ + if (!flag_non_call_exceptions || !may_trap_p (equiv)) + { + /* We can't attach the REG_LIBCALL and REG_RETVAL notes when the + encapsulated region would not be in one basic block, i.e. when + there is a control_flow_insn_p insn between FIRST and LAST. */ + bool attach_libcall_retval_notes = true; + rtx insn, next = NEXT_INSN (last); + + for (insn = first; insn != next; insn = NEXT_INSN (insn)) + if (control_flow_insn_p (insn)) + { + attach_libcall_retval_notes = false; + break; + } + + if (attach_libcall_retval_notes) + { + REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last, + REG_NOTES (first)); + REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, + REG_NOTES (last)); + } + } +} + /* Emit code to perform a series of operations on a multi-word quantity, one word at a time. @@ -3157,11 +3286,11 @@ emit_no_conflict_block (rtx insns, rtx target, rtx op0, rtx op1, rtx equiv) { rtx prev, next, first, last, insn; - if (GET_CODE (target) != REG || reload_in_progress) + if (!REG_P (target) || reload_in_progress) return emit_insn (insns); else for (insn = insns; insn; insn = NEXT_INSN (insn)) - if (GET_CODE (insn) != INSN + if (!NONJUMP_INSN_P (insn) || find_reg_note (insn, REG_LIBCALL, NULL_RTX)) return emit_insn (insns); @@ -3169,8 +3298,8 @@ emit_no_conflict_block (rtx insns, rtx target, rtx op0, rtx op1, rtx equiv) these from the list. */ for (insn = insns; insn; insn = next) { - rtx set = 0, note; - int i; + rtx note; + struct no_conflict_data data; next = NEXT_INSN (insn); @@ -3181,23 +3310,12 @@ emit_no_conflict_block (rtx insns, rtx target, rtx op0, rtx op1, rtx equiv) if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL) remove_note (insn, note); - if (GET_CODE (PATTERN (insn)) == SET || GET_CODE (PATTERN (insn)) == USE - || GET_CODE (PATTERN (insn)) == CLOBBER) - set = PATTERN (insn); - else if (GET_CODE (PATTERN (insn)) == PARALLEL) - { - for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++) - if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET) - { - set = XVECEXP (PATTERN (insn), 0, i); - break; - } - } - - if (set == 0) - abort (); - - if (! reg_overlap_mentioned_p (target, SET_DEST (set))) + data.target = target; + data.first = insns; + data.insn = insn; + data.must_stay = 0; + note_stores (PATTERN (insn), no_conflict_move_test, &data); + if (! data.must_stay) { if (PREV_INSN (insn)) NEXT_INSN (PREV_INSN (insn)) = next; @@ -3223,11 +3341,11 @@ emit_no_conflict_block (rtx insns, rtx target, rtx op0, rtx op1, rtx equiv) next = NEXT_INSN (insn); add_insn (insn); - if (op1 && GET_CODE (op1) == REG) + if (op1 && REG_P (op1)) REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1, REG_NOTES (insn)); - if (op0 && GET_CODE (op0) == REG) + if (op0 && REG_P (op0)) REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0, REG_NOTES (insn)); } @@ -3256,10 +3374,7 @@ emit_no_conflict_block (rtx insns, rtx target, rtx op0, rtx op1, rtx equiv) else first = NEXT_INSN (prev); - /* Encapsulate the block so it gets manipulated as a unit. */ - REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last, - REG_NOTES (first)); - REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last)); + maybe_encapsulate_block (first, last, equiv); return last; } @@ -3305,7 +3420,7 @@ emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv) if (flag_non_call_exceptions && may_trap_p (equiv)) { for (insn = insns; insn; insn = NEXT_INSN (insn)) - if (GET_CODE (insn) == CALL_INSN) + if (CALL_P (insn)) { rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX); @@ -3319,14 +3434,14 @@ emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv) goto (unless there is already a REG_EH_REGION note, in which case we update it). */ for (insn = insns; insn; insn = NEXT_INSN (insn)) - if (GET_CODE (insn) == CALL_INSN) + if (CALL_P (insn)) { rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX); if (note != 0) - XEXP (note, 0) = GEN_INT (-1); + XEXP (note, 0) = constm1_rtx; else - REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (-1), + REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, constm1_rtx, REG_NOTES (insn)); } @@ -3350,29 +3465,33 @@ emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv) next = NEXT_INSN (insn); - if (set != 0 && GET_CODE (SET_DEST (set)) == REG - && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER - && (insn == insns - || ((! INSN_P(insns) - || ! reg_mentioned_p (SET_DEST (set), PATTERN (insns))) - && ! reg_used_between_p (SET_DEST (set), insns, insn) - && ! modified_in_p (SET_SRC (set), insns) - && ! modified_between_p (SET_SRC (set), insns, insn)))) + if (set != 0 && REG_P (SET_DEST (set)) + && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER) { - if (PREV_INSN (insn)) - NEXT_INSN (PREV_INSN (insn)) = next; - else - insns = next; + struct no_conflict_data data; + + data.target = const0_rtx; + data.first = insns; + data.insn = insn; + data.must_stay = 0; + note_stores (PATTERN (insn), no_conflict_move_test, &data); + if (! data.must_stay) + { + if (PREV_INSN (insn)) + NEXT_INSN (PREV_INSN (insn)) = next; + else + insns = next; - if (next) - PREV_INSN (next) = PREV_INSN (insn); + if (next) + PREV_INSN (next) = PREV_INSN (insn); - add_insn (insn); + add_insn (insn); + } } /* Some ports use a loop to copy large arguments onto the stack. Don't move anything outside such a loop. */ - if (GET_CODE (insn) == CODE_LABEL) + if (LABEL_P (insn)) break; } @@ -3409,49 +3528,9 @@ emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv) else first = NEXT_INSN (prev); - /* Encapsulate the block so it gets manipulated as a unit. */ - if (!flag_non_call_exceptions || !may_trap_p (equiv)) - { - /* We can't attach the REG_LIBCALL and REG_RETVAL notes - when the encapsulated region would not be in one basic block, - i.e. when there is a control_flow_insn_p insn between FIRST and LAST. - */ - bool attach_libcall_retval_notes = true; - next = NEXT_INSN (last); - for (insn = first; insn != next; insn = NEXT_INSN (insn)) - if (control_flow_insn_p (insn)) - { - attach_libcall_retval_notes = false; - break; - } - - if (attach_libcall_retval_notes) - { - REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last, - REG_NOTES (first)); - REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, - REG_NOTES (last)); - } - } + maybe_encapsulate_block (first, last, equiv); } -/* Generate code to store zero in X. */ - -void -emit_clr_insn (rtx x) -{ - emit_move_insn (x, const0_rtx); -} - -/* Generate code to store 1 in X - assuming it contains zero beforehand. */ - -void -emit_0_to_1_insn (rtx x) -{ - emit_move_insn (x, const1_rtx); -} - /* Nonzero if we can perform a comparison of mode MODE straightforwardly. PURPOSE describes how this comparison will be used. CODE is the rtx comparison code we will be using. @@ -3485,7 +3564,6 @@ can_compare_p (enum rtx_code code, enum machine_mode mode, if (purpose == ccp_store_flag && cstore_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) return 1; - mode = GET_MODE_WIDER_MODE (mode); } while (mode != VOIDmode); @@ -3507,7 +3585,8 @@ can_compare_p (enum rtx_code code, enum machine_mode mode, comparison or emitting a library call to perform the comparison if no insn is available to handle it. The values which are passed in through pointers can be modified; the caller - should perform the comparison on the modified values. */ + should perform the comparison on the modified values. Constant + comparisons must have already been folded. */ static void prepare_cmp_insn (rtx *px, rtx *py, enum rtx_code *pcomparison, rtx size, @@ -3517,46 +3596,22 @@ prepare_cmp_insn (rtx *px, rtx *py, enum rtx_code *pcomparison, rtx size, enum machine_mode mode = *pmode; rtx x = *px, y = *py; int unsignedp = *punsignedp; - enum mode_class class; - - class = GET_MODE_CLASS (mode); - - /* They could both be VOIDmode if both args are immediate constants, - but we should fold that at an earlier stage. - With no special code here, this will call abort, - reminding the programmer to implement such folding. */ - - if (mode != BLKmode && flag_force_mem) - { - /* Load duplicate non-volatile operands once. */ - if (rtx_equal_p (x, y) && ! volatile_refs_p (x)) - { - x = force_not_mem (x); - y = x; - } - else - { - x = force_not_mem (x); - y = force_not_mem (y); - } - } - /* If we are inside an appropriately-short loop and one operand is an - expensive constant, force it into a register. */ - if (CONSTANT_P (x) && preserve_subexpressions_p () + /* If we are inside an appropriately-short loop and we are optimizing, + force expensive constants into a register. */ + if (CONSTANT_P (x) && optimize && rtx_cost (x, COMPARE) > COSTS_N_INSNS (1)) x = force_reg (mode, x); - if (CONSTANT_P (y) && preserve_subexpressions_p () + if (CONSTANT_P (y) && optimize && rtx_cost (y, COMPARE) > COSTS_N_INSNS (1)) y = force_reg (mode, y); #ifdef HAVE_cc0 - /* Abort if we have a non-canonical comparison. The RTL documentation - states that canonical comparisons are required only for targets which - have cc0. */ - if (CONSTANT_P (x) && ! CONSTANT_P (y)) - abort (); + /* Make sure if we have a canonical comparison. The RTL + documentation states that canonical comparisons are required only + for targets which have cc0. */ + gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y)); #endif /* Don't let both operands fail to indicate the mode. */ @@ -3575,13 +3630,7 @@ prepare_cmp_insn (rtx *px, rtx *py, enum rtx_code *pcomparison, rtx size, rtx opalign = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT); - if (size == 0) - abort (); - - emit_queue (); - x = protect_from_queue (x, 0); - y = protect_from_queue (y, 0); - size = protect_from_queue (size, 0); + gcc_assert (size); /* Try to use a memory block compare insn - either cmpstr or cmpmem will do. */ @@ -3593,6 +3642,8 @@ prepare_cmp_insn (rtx *px, rtx *py, enum rtx_code *pcomparison, rtx size, if (cmp_code == CODE_FOR_nothing) cmp_code = cmpstr_optab[cmp_mode]; if (cmp_code == CODE_FOR_nothing) + cmp_code = cmpstrn_optab[cmp_mode]; + if (cmp_code == CODE_FOR_nothing) continue; /* Must make sure the size fits the insn's mode. */ @@ -3613,19 +3664,13 @@ prepare_cmp_insn (rtx *px, rtx *py, enum rtx_code *pcomparison, rtx size, return; } - /* Otherwise call a library function, memcmp if we've got it, - bcmp otherwise. */ -#ifdef TARGET_MEM_FUNCTIONS + /* Otherwise call a library function, memcmp. */ libfunc = memcmp_libfunc; length_type = sizetype; -#else - libfunc = bcmp_libfunc; - length_type = integer_type_node; -#endif result_mode = TYPE_MODE (integer_type_node); cmp_mode = TYPE_MODE (length_type); size = convert_to_mode (TYPE_MODE (length_type), size, - TREE_UNSIGNED (length_type)); + TYPE_UNSIGNED (length_type)); result = emit_library_call_value (libfunc, 0, LCT_PURE_MAKE_BLOCK, result_mode, 3, @@ -3655,7 +3700,7 @@ prepare_cmp_insn (rtx *px, rtx *py, enum rtx_code *pcomparison, rtx size, /* Handle a lib call just for the mode we are using. */ - if (cmp_optab->handlers[(int) mode].libfunc && class != MODE_FLOAT) + if (cmp_optab->handlers[(int) mode].libfunc && !SCALAR_FLOAT_MODE_P (mode)) { rtx libfunc = cmp_optab->handlers[(int) mode].libfunc; rtx result; @@ -3668,20 +3713,30 @@ prepare_cmp_insn (rtx *px, rtx *py, enum rtx_code *pcomparison, rtx size, result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST_MAKE_BLOCK, word_mode, 2, x, mode, y, mode); - /* Integer comparison returns a result that must be compared against 1, - so that even if we do an unsigned compare afterward, - there is still a value that can represent the result "less than". */ + /* There are two kinds of comparison routines. Biased routines + return 0/1/2, and unbiased routines return -1/0/1. Other parts + of gcc expect that the comparison operation is equivalent + to the modified comparison. For signed comparisons compare the + result against 1 in the biased case, and zero in the unbiased + case. For unsigned comparisons always compare against 1 after + biasing the unbiased result by adding 1. This gives us a way to + represent LTU. */ *px = result; - *py = const1_rtx; *pmode = word_mode; + *py = const1_rtx; + + if (!TARGET_LIB_INT_CMP_BIASED) + { + if (*punsignedp) + *px = plus_constant (result, 1); + else + *py = const0_rtx; + } return; } - if (class == MODE_FLOAT) - prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp); - - else - abort (); + gcc_assert (SCALAR_FLOAT_MODE_P (mode)); + prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp); } /* Before emitting an insn with code ICODE, make sure that X, which is going @@ -3689,16 +3744,14 @@ prepare_cmp_insn (rtx *px, rtx *py, enum rtx_code *pcomparison, rtx size, WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and that it is accepted by the operand predicate. Return the new value. */ -rtx +static rtx prepare_operand (int icode, rtx x, int opnum, enum machine_mode mode, enum machine_mode wider_mode, int unsignedp) { - x = protect_from_queue (x, 0); - if (mode != wider_mode) x = convert_modes (wider_mode, mode, x, unsignedp); - if (! (*insn_data[icode].operand[opnum].predicate) + if (!insn_data[icode].operand[opnum].predicate (x, insn_data[icode].operand[opnum].mode)) { if (no_new_pseudos) @@ -3733,7 +3786,7 @@ emit_cmp_and_jump_insn_1 (rtx x, rtx y, enum machine_mode mode, icode = cbranch_optab->handlers[(int) wider_mode].insn_code; if (icode != CODE_FOR_nothing - && (*insn_data[icode].operand[0].predicate) (test, wider_mode)) + && insn_data[icode].operand[0].predicate (test, wider_mode)) { x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp); y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp); @@ -3749,7 +3802,7 @@ emit_cmp_and_jump_insn_1 (rtx x, rtx y, enum machine_mode mode, x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp); emit_insn (GEN_FCN (icode) (x)); if (label) - emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label)); + emit_jump_insn (bcc_gen_fctn[(int) comparison] (label)); return; } @@ -3762,19 +3815,18 @@ emit_cmp_and_jump_insn_1 (rtx x, rtx y, enum machine_mode mode, y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp); emit_insn (GEN_FCN (icode) (x, y)); if (label) - emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label)); + emit_jump_insn (bcc_gen_fctn[(int) comparison] (label)); return; } - if (class != MODE_INT && class != MODE_FLOAT - && class != MODE_COMPLEX_FLOAT) + if (!CLASS_HAS_WIDER_MODES_P (class)) break; wider_mode = GET_MODE_WIDER_MODE (wider_mode); } while (wider_mode != VOIDmode); - abort (); + gcc_unreachable (); } /* Generate code to compare X with Y so that the condition codes are @@ -3805,22 +3857,19 @@ emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size, { /* If we're not emitting a branch, this means some caller is out of sync. */ - if (! label) - abort (); + gcc_assert (label); op0 = y, op1 = x; comparison = swap_condition (comparison); } #ifdef HAVE_cc0 - /* If OP0 is still a constant, then both X and Y must be constants. Force - X into a register to avoid aborting in emit_cmp_insn due to non-canonical - RTL. */ + /* If OP0 is still a constant, then both X and Y must be constants. + Force X into a register to create canonical RTL. */ if (CONSTANT_P (op0)) op0 = force_reg (mode, op0); #endif - emit_queue (); if (unsignedp) comparison = unsigned_condition (comparison); @@ -3847,14 +3896,18 @@ prepare_float_lib_cmp (rtx *px, rtx *py, enum rtx_code *pcomparison, { enum rtx_code comparison = *pcomparison; enum rtx_code swapped = swap_condition (comparison); - rtx x = protect_from_queue (*px, 0); - rtx y = protect_from_queue (*py, 0); + enum rtx_code reversed = reverse_condition_maybe_unordered (comparison); + rtx x = *px; + rtx y = *py; enum machine_mode orig_mode = GET_MODE (x); enum machine_mode mode; rtx value, target, insns, equiv; rtx libfunc = 0; + bool reversed_p = false; - for (mode = orig_mode; mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode)) + for (mode = orig_mode; + mode != VOIDmode; + mode = GET_MODE_WIDER_MODE (mode)) { if ((libfunc = code_to_optab[comparison]->handlers[mode].libfunc)) break; @@ -3866,10 +3919,17 @@ prepare_float_lib_cmp (rtx *px, rtx *py, enum rtx_code *pcomparison, comparison = swapped; break; } + + if ((libfunc = code_to_optab[reversed]->handlers[mode].libfunc) + && FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, reversed)) + { + comparison = reversed; + reversed_p = true; + break; + } } - if (mode == VOIDmode) - abort (); + gcc_assert (mode != VOIDmode); if (mode != orig_mode) { @@ -3927,7 +3987,7 @@ prepare_float_lib_cmp (rtx *px, rtx *py, enum rtx_code *pcomparison, break; default: - abort (); + gcc_unreachable (); } equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode, equiv, true_rtx, false_rtx); @@ -3943,10 +4003,9 @@ prepare_float_lib_cmp (rtx *px, rtx *py, enum rtx_code *pcomparison, target = gen_reg_rtx (word_mode); emit_libcall_block (insns, target, value, equiv); - if (comparison == UNORDERED || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)) - comparison = NE; + comparison = reversed_p ? EQ : NE; *px = target; *py = const0_rtx; @@ -3960,8 +4019,8 @@ prepare_float_lib_cmp (rtx *px, rtx *py, enum rtx_code *pcomparison, void emit_indirect_jump (rtx loc) { - if (! ((*insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate) - (loc, Pmode))) + if (!insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate + (loc, Pmode)) loc = copy_to_mode_reg (Pmode, loc); emit_jump_insn (gen_indirect_jump (loc)); @@ -4033,35 +4092,22 @@ emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1, if (icode == CODE_FOR_nothing) return 0; - if (flag_force_mem) - { - op2 = force_not_mem (op2); - op3 = force_not_mem (op3); - } - - if (target) - target = protect_from_queue (target, 1); - else + if (!target) target = gen_reg_rtx (mode); subtarget = target; - emit_queue (); - - op2 = protect_from_queue (op2, 0); - op3 = protect_from_queue (op3, 0); - /* If the insn doesn't accept these operands, put them in pseudos. */ - if (! (*insn_data[icode].operand[0].predicate) + if (!insn_data[icode].operand[0].predicate (subtarget, insn_data[icode].operand[0].mode)) subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode); - if (! (*insn_data[icode].operand[2].predicate) + if (!insn_data[icode].operand[2].predicate (op2, insn_data[icode].operand[2].mode)) op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2); - if (! (*insn_data[icode].operand[3].predicate) + if (!insn_data[icode].operand[3].predicate (op3, insn_data[icode].operand[3].mode)) op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3); @@ -4174,35 +4220,22 @@ emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1, if (icode == CODE_FOR_nothing) return 0; - if (flag_force_mem) - { - op2 = force_not_mem (op2); - op3 = force_not_mem (op3); - } - - if (target) - target = protect_from_queue (target, 1); - else + if (!target) target = gen_reg_rtx (mode); - subtarget = target; - - emit_queue (); - - op2 = protect_from_queue (op2, 0); - op3 = protect_from_queue (op3, 0); - /* If the insn doesn't accept these operands, put them in pseudos. */ - if (! (*insn_data[icode].operand[0].predicate) - (subtarget, insn_data[icode].operand[0].mode)) + if (!insn_data[icode].operand[0].predicate + (target, insn_data[icode].operand[0].mode)) subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode); + else + subtarget = target; - if (! (*insn_data[icode].operand[2].predicate) + if (!insn_data[icode].operand[2].predicate (op2, insn_data[icode].operand[2].mode)) op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2); - if (! (*insn_data[icode].operand[3].predicate) + if (!insn_data[icode].operand[3].predicate (op3, insn_data[icode].operand[3].mode)) op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3); @@ -4235,11 +4268,7 @@ emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1, /* These functions attempt to generate an insn body, rather than emitting the insn, but if the gen function already emits them, we - make no attempt to turn them back into naked patterns. - - They do not protect from queued increments, - because they may be used 1) in protect_from_queue itself - and 2) in other passes where there is no queue. */ + make no attempt to turn them back into naked patterns. */ /* Generate and return an insn body to add Y to X. */ @@ -4248,15 +4277,14 @@ gen_add2_insn (rtx x, rtx y) { int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code; - if (! ((*insn_data[icode].operand[0].predicate) - (x, insn_data[icode].operand[0].mode)) - || ! ((*insn_data[icode].operand[1].predicate) - (x, insn_data[icode].operand[1].mode)) - || ! ((*insn_data[icode].operand[2].predicate) - (y, insn_data[icode].operand[2].mode))) - abort (); + gcc_assert (insn_data[icode].operand[0].predicate + (x, insn_data[icode].operand[0].mode)); + gcc_assert (insn_data[icode].operand[1].predicate + (x, insn_data[icode].operand[1].mode)); + gcc_assert (insn_data[icode].operand[2].predicate + (y, insn_data[icode].operand[2].mode)); - return (GEN_FCN (icode) (x, x, y)); + return GEN_FCN (icode) (x, x, y); } /* Generate and return an insn body to add r1 and c, @@ -4267,15 +4295,15 @@ gen_add3_insn (rtx r0, rtx r1, rtx c) int icode = (int) add_optab->handlers[(int) GET_MODE (r0)].insn_code; if (icode == CODE_FOR_nothing - || ! ((*insn_data[icode].operand[0].predicate) - (r0, insn_data[icode].operand[0].mode)) - || ! ((*insn_data[icode].operand[1].predicate) - (r1, insn_data[icode].operand[1].mode)) - || ! ((*insn_data[icode].operand[2].predicate) - (c, insn_data[icode].operand[2].mode))) + || !(insn_data[icode].operand[0].predicate + (r0, insn_data[icode].operand[0].mode)) + || !(insn_data[icode].operand[1].predicate + (r1, insn_data[icode].operand[1].mode)) + || !(insn_data[icode].operand[2].predicate + (c, insn_data[icode].operand[2].mode))) return NULL_RTX; - return (GEN_FCN (icode) (r0, r1, c)); + return GEN_FCN (icode) (r0, r1, c); } int @@ -4283,20 +4311,19 @@ have_add2_insn (rtx x, rtx y) { int icode; - if (GET_MODE (x) == VOIDmode) - abort (); + gcc_assert (GET_MODE (x) != VOIDmode); icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code; if (icode == CODE_FOR_nothing) return 0; - if (! ((*insn_data[icode].operand[0].predicate) - (x, insn_data[icode].operand[0].mode)) - || ! ((*insn_data[icode].operand[1].predicate) - (x, insn_data[icode].operand[1].mode)) - || ! ((*insn_data[icode].operand[2].predicate) - (y, insn_data[icode].operand[2].mode))) + if (!(insn_data[icode].operand[0].predicate + (x, insn_data[icode].operand[0].mode)) + || !(insn_data[icode].operand[1].predicate + (x, insn_data[icode].operand[1].mode)) + || !(insn_data[icode].operand[2].predicate + (y, insn_data[icode].operand[2].mode))) return 0; return 1; @@ -4309,15 +4336,14 @@ gen_sub2_insn (rtx x, rtx y) { int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code; - if (! ((*insn_data[icode].operand[0].predicate) - (x, insn_data[icode].operand[0].mode)) - || ! ((*insn_data[icode].operand[1].predicate) - (x, insn_data[icode].operand[1].mode)) - || ! ((*insn_data[icode].operand[2].predicate) - (y, insn_data[icode].operand[2].mode))) - abort (); + gcc_assert (insn_data[icode].operand[0].predicate + (x, insn_data[icode].operand[0].mode)); + gcc_assert (insn_data[icode].operand[1].predicate + (x, insn_data[icode].operand[1].mode)); + gcc_assert (insn_data[icode].operand[2].predicate + (y, insn_data[icode].operand[2].mode)); - return (GEN_FCN (icode) (x, x, y)); + return GEN_FCN (icode) (x, x, y); } /* Generate and return an insn body to subtract r1 and c, @@ -4328,15 +4354,15 @@ gen_sub3_insn (rtx r0, rtx r1, rtx c) int icode = (int) sub_optab->handlers[(int) GET_MODE (r0)].insn_code; if (icode == CODE_FOR_nothing - || ! ((*insn_data[icode].operand[0].predicate) - (r0, insn_data[icode].operand[0].mode)) - || ! ((*insn_data[icode].operand[1].predicate) - (r1, insn_data[icode].operand[1].mode)) - || ! ((*insn_data[icode].operand[2].predicate) - (c, insn_data[icode].operand[2].mode))) + || !(insn_data[icode].operand[0].predicate + (r0, insn_data[icode].operand[0].mode)) + || !(insn_data[icode].operand[1].predicate + (r1, insn_data[icode].operand[1].mode)) + || !(insn_data[icode].operand[2].predicate + (c, insn_data[icode].operand[2].mode))) return NULL_RTX; - return (GEN_FCN (icode) (r0, r1, c)); + return GEN_FCN (icode) (r0, r1, c); } int @@ -4344,20 +4370,19 @@ have_sub2_insn (rtx x, rtx y) { int icode; - if (GET_MODE (x) == VOIDmode) - abort (); + gcc_assert (GET_MODE (x) != VOIDmode); icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code; if (icode == CODE_FOR_nothing) return 0; - if (! ((*insn_data[icode].operand[0].predicate) - (x, insn_data[icode].operand[0].mode)) - || ! ((*insn_data[icode].operand[1].predicate) - (x, insn_data[icode].operand[1].mode)) - || ! ((*insn_data[icode].operand[2].predicate) - (y, insn_data[icode].operand[2].mode))) + if (!(insn_data[icode].operand[0].predicate + (x, insn_data[icode].operand[0].mode)) + || !(insn_data[icode].operand[1].predicate + (x, insn_data[icode].operand[1].mode)) + || !(insn_data[icode].operand[2].predicate + (y, insn_data[icode].operand[2].mode))) return 0; return 1; @@ -4431,6 +4456,9 @@ can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode, return icode; } + /* FIXME: This requires a port to define both FIX and FTRUNC pattern + for this to work. We need to rework the fix* and ftrunc* patterns + and documentation. */ tab = unsignedp ? ufix_optab : sfix_optab; icode = tab->handlers[fixmode][fltmode].insn_code; if (icode != CODE_FOR_nothing @@ -4466,10 +4494,10 @@ expand_float (rtx to, rtx from, int unsignedp) enum insn_code icode; rtx target = to; enum machine_mode fmode, imode; + bool can_do_signed = false; /* Crash now, because we won't be able to decide which mode to use. */ - if (GET_MODE (from) == VOIDmode) - abort (); + gcc_assert (GET_MODE (from) != VOIDmode); /* Look for an insn to do the conversion. Do it in the specified modes if possible; otherwise convert either input, output or both to @@ -4488,14 +4516,17 @@ expand_float (rtx to, rtx from, int unsignedp) continue; icode = can_float_p (fmode, imode, unsignedp); - if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp) - icode = can_float_p (fmode, imode, 0), doing_unsigned = 0; + if (icode == CODE_FOR_nothing && unsignedp) + { + enum insn_code scode = can_float_p (fmode, imode, 0); + if (scode != CODE_FOR_nothing) + can_do_signed = true; + if (imode != GET_MODE (from)) + icode = scode, doing_unsigned = 0; + } if (icode != CODE_FOR_nothing) { - to = protect_from_queue (to, 1); - from = protect_from_queue (from, 0); - if (imode != GET_MODE (from)) from = convert_to_mode (imode, from, unsignedp); @@ -4511,22 +4542,15 @@ expand_float (rtx to, rtx from, int unsignedp) } } - /* Unsigned integer, and no way to convert directly. - Convert as signed, then conditionally adjust the result. */ - if (unsignedp) + /* Unsigned integer, and no way to convert directly. For binary + floating point modes, convert as signed, then conditionally adjust + the result. */ + if (unsignedp && can_do_signed && !DECIMAL_FLOAT_MODE_P (GET_MODE (to))) { rtx label = gen_label_rtx (); rtx temp; REAL_VALUE_TYPE offset; - emit_queue (); - - to = protect_from_queue (to, 1); - from = protect_from_queue (from, 0); - - if (flag_force_mem) - from = force_not_mem (from); - /* Look for a usable floating mode FMODE wider than the source and at least as wide as the target. Using FMODE will avoid rounding woes with unsigned values greater than the signed maximum value. */ @@ -4551,7 +4575,7 @@ expand_float (rtx to, rtx from, int unsignedp) /* Don't use TARGET if it isn't a register, is a hard register, or is the wrong mode. */ - if (GET_CODE (target) != REG + if (!REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER || GET_MODE (target) != fmode) target = gen_reg_rtx (fmode); @@ -4598,7 +4622,7 @@ expand_float (rtx to, rtx from, int unsignedp) unsigned operand, do it in a pseudo-register. */ if (GET_MODE (to) != fmode - || GET_CODE (to) != REG || REGNO (to) < FIRST_PSEUDO_REGISTER) + || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER) target = gen_reg_rtx (fmode); /* Convert as signed integer to floating. */ @@ -4631,18 +4655,11 @@ expand_float (rtx to, rtx from, int unsignedp) rtx value; convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab; - to = protect_from_queue (to, 1); - from = protect_from_queue (from, 0); - if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode)) from = convert_to_mode (SImode, from, unsignedp); - if (flag_force_mem) - from = force_not_mem (from); - libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc; - if (!libfunc) - abort (); + gcc_assert (libfunc); start_sequence (); @@ -4670,15 +4687,8 @@ expand_float (rtx to, rtx from, int unsignedp) } } -/* expand_fix: generate code to convert FROM to fixed point - and store in TO. FROM must be floating point. */ - -static rtx -ftruncify (rtx x) -{ - rtx temp = gen_reg_rtx (GET_MODE (x)); - return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0); -} +/* Generate code to convert FROM to fixed point and store in TO. FROM + must be floating point. */ void expand_fix (rtx to, rtx from, int unsignedp) @@ -4706,14 +4716,15 @@ expand_fix (rtx to, rtx from, int unsignedp) if (icode != CODE_FOR_nothing) { - to = protect_from_queue (to, 1); - from = protect_from_queue (from, 0); - if (fmode != GET_MODE (from)) from = convert_to_mode (fmode, from, 0); if (must_trunc) - from = ftruncify (from); + { + rtx temp = gen_reg_rtx (GET_MODE (from)); + from = expand_unop (GET_MODE (from), ftrunc_optab, from, + temp, 0); + } if (imode != GET_MODE (to)) target = gen_reg_rtx (imode); @@ -4739,7 +4750,7 @@ expand_fix (rtx to, rtx from, int unsignedp) This is not needed. Consider, for instance conversion from SFmode into DImode. - The hot path trought the code is dealing with inputs smaller than 2^63 + The hot path through the code is dealing with inputs smaller than 2^63 and doing just the conversion, so there is no bits to lose. In the other path we know the value is positive in the range 2^63..2^64-1 @@ -4764,13 +4775,6 @@ expand_fix (rtx to, rtx from, int unsignedp) lab1 = gen_label_rtx (); lab2 = gen_label_rtx (); - emit_queue (); - to = protect_from_queue (to, 1); - from = protect_from_queue (from, 0); - - if (flag_force_mem) - from = force_not_mem (from); - if (fmode != GET_MODE (from)) from = convert_to_mode (fmode, from, 0); @@ -4832,17 +4836,10 @@ expand_fix (rtx to, rtx from, int unsignedp) rtx insns; rtx value; rtx libfunc; - + convert_optab tab = unsignedp ? ufix_optab : sfix_optab; libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc; - if (!libfunc) - abort (); - - to = protect_from_queue (to, 1); - from = protect_from_queue (from, 0); - - if (flag_force_mem) - from = force_not_mem (from); + gcc_assert (libfunc); start_sequence (); @@ -5008,6 +5005,8 @@ static void init_floating_libfuncs (optab optable, const char *opname, int suffix) { init_libfuncs (optable, MIN_MODE_FLOAT, MAX_MODE_FLOAT, opname, suffix); + init_libfuncs (optable, MIN_MODE_DECIMAL_FLOAT, MAX_MODE_DECIMAL_FLOAT, + opname, suffix); } /* Initialize the libfunc fields of an entire group of entries of an @@ -5142,7 +5141,7 @@ init_one_libfunc (const char *name) /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with are the flags assigned by targetm.encode_section_info. */ - SYMBOL_REF_DECL (symbol) = 0; + SET_SYMBOL_REF_DECL (symbol, 0); return symbol; } @@ -5189,6 +5188,12 @@ init_optabs (void) movcc_gen_code[i] = CODE_FOR_nothing; #endif + for (i = 0; i < NUM_MACHINE_MODES; i++) + { + vcond_gen_code[i] = CODE_FOR_nothing; + vcondu_gen_code[i] = CODE_FOR_nothing; + } + add_optab = init_optab (PLUS); addv_optab = init_optabv (PLUS); sub_optab = init_optab (MINUS); @@ -5199,6 +5204,7 @@ init_optabs (void) umul_highpart_optab = init_optab (UNKNOWN); smul_widen_optab = init_optab (UNKNOWN); umul_widen_optab = init_optab (UNKNOWN); + usmul_widen_optab = init_optab (UNKNOWN); sdiv_optab = init_optab (DIV); sdivv_optab = init_optabv (DIV); sdivmod_optab = init_optab (UNKNOWN); @@ -5206,6 +5212,8 @@ init_optabs (void) udivmod_optab = init_optab (UNKNOWN); smod_optab = init_optab (MOD); umod_optab = init_optab (UMOD); + fmod_optab = init_optab (UNKNOWN); + drem_optab = init_optab (UNKNOWN); ftrunc_optab = init_optab (UNKNOWN); and_optab = init_optab (AND); ior_optab = init_optab (IOR); @@ -5252,25 +5260,62 @@ init_optabs (void) parity_optab = init_optab (PARITY); sqrt_optab = init_optab (SQRT); floor_optab = init_optab (UNKNOWN); + lfloor_optab = init_optab (UNKNOWN); ceil_optab = init_optab (UNKNOWN); + lceil_optab = init_optab (UNKNOWN); round_optab = init_optab (UNKNOWN); btrunc_optab = init_optab (UNKNOWN); nearbyint_optab = init_optab (UNKNOWN); + rint_optab = init_optab (UNKNOWN); + lrint_optab = init_optab (UNKNOWN); + sincos_optab = init_optab (UNKNOWN); sin_optab = init_optab (UNKNOWN); + asin_optab = init_optab (UNKNOWN); cos_optab = init_optab (UNKNOWN); + acos_optab = init_optab (UNKNOWN); exp_optab = init_optab (UNKNOWN); + exp10_optab = init_optab (UNKNOWN); + exp2_optab = init_optab (UNKNOWN); + expm1_optab = init_optab (UNKNOWN); + ldexp_optab = init_optab (UNKNOWN); + logb_optab = init_optab (UNKNOWN); + ilogb_optab = init_optab (UNKNOWN); log_optab = init_optab (UNKNOWN); + log10_optab = init_optab (UNKNOWN); + log2_optab = init_optab (UNKNOWN); + log1p_optab = init_optab (UNKNOWN); tan_optab = init_optab (UNKNOWN); atan_optab = init_optab (UNKNOWN); + copysign_optab = init_optab (UNKNOWN); + strlen_optab = init_optab (UNKNOWN); cbranch_optab = init_optab (UNKNOWN); cmov_optab = init_optab (UNKNOWN); cstore_optab = init_optab (UNKNOWN); push_optab = init_optab (UNKNOWN); + reduc_smax_optab = init_optab (UNKNOWN); + reduc_umax_optab = init_optab (UNKNOWN); + reduc_smin_optab = init_optab (UNKNOWN); + reduc_umin_optab = init_optab (UNKNOWN); + reduc_splus_optab = init_optab (UNKNOWN); + reduc_uplus_optab = init_optab (UNKNOWN); + + ssum_widen_optab = init_optab (UNKNOWN); + usum_widen_optab = init_optab (UNKNOWN); + sdot_prod_optab = init_optab (UNKNOWN); + udot_prod_optab = init_optab (UNKNOWN); + vec_extract_optab = init_optab (UNKNOWN); vec_set_optab = init_optab (UNKNOWN); vec_init_optab = init_optab (UNKNOWN); + vec_shl_optab = init_optab (UNKNOWN); + vec_shr_optab = init_optab (UNKNOWN); + vec_realign_load_optab = init_optab (UNKNOWN); + movmisalign_optab = init_optab (UNKNOWN); + + powi_optab = init_optab (UNKNOWN); + /* Conversions. */ sext_optab = init_convert_optab (SIGN_EXTEND); zext_optab = init_convert_optab (ZERO_EXTEND); @@ -5284,14 +5329,36 @@ init_optabs (void) for (i = 0; i < NUM_MACHINE_MODES; i++) { - movstr_optab[i] = CODE_FOR_nothing; - clrstr_optab[i] = CODE_FOR_nothing; + movmem_optab[i] = CODE_FOR_nothing; cmpstr_optab[i] = CODE_FOR_nothing; + cmpstrn_optab[i] = CODE_FOR_nothing; cmpmem_optab[i] = CODE_FOR_nothing; + setmem_optab[i] = CODE_FOR_nothing; + + sync_add_optab[i] = CODE_FOR_nothing; + sync_sub_optab[i] = CODE_FOR_nothing; + sync_ior_optab[i] = CODE_FOR_nothing; + sync_and_optab[i] = CODE_FOR_nothing; + sync_xor_optab[i] = CODE_FOR_nothing; + sync_nand_optab[i] = CODE_FOR_nothing; + sync_old_add_optab[i] = CODE_FOR_nothing; + sync_old_sub_optab[i] = CODE_FOR_nothing; + sync_old_ior_optab[i] = CODE_FOR_nothing; + sync_old_and_optab[i] = CODE_FOR_nothing; + sync_old_xor_optab[i] = CODE_FOR_nothing; + sync_old_nand_optab[i] = CODE_FOR_nothing; + sync_new_add_optab[i] = CODE_FOR_nothing; + sync_new_sub_optab[i] = CODE_FOR_nothing; + sync_new_ior_optab[i] = CODE_FOR_nothing; + sync_new_and_optab[i] = CODE_FOR_nothing; + sync_new_xor_optab[i] = CODE_FOR_nothing; + sync_new_nand_optab[i] = CODE_FOR_nothing; + sync_compare_and_swap[i] = CODE_FOR_nothing; + sync_compare_and_swap_cc[i] = CODE_FOR_nothing; + sync_lock_test_and_set[i] = CODE_FOR_nothing; + sync_lock_release[i] = CODE_FOR_nothing; -#ifdef HAVE_SECONDARY_RELOADS reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing; -#endif } /* Fill in the optabs with the insns we support. */ @@ -5342,7 +5409,8 @@ init_optabs (void) init_integral_libfuncs (popcount_optab, "popcount", '2'); init_integral_libfuncs (parity_optab, "parity", '2'); - /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */ + /* Comparison libcalls for integers MUST come in pairs, + signed/unsigned. */ init_integral_libfuncs (cmp_optab, "cmp", '2'); init_integral_libfuncs (ucmp_optab, "ucmp", '2'); init_floating_libfuncs (cmp_optab, "cmp", '2'); @@ -5356,14 +5424,37 @@ init_optabs (void) init_floating_libfuncs (le_optab, "le", '2'); init_floating_libfuncs (unord_optab, "unord", '2'); + init_floating_libfuncs (powi_optab, "powi", '2'); + /* Conversions. */ - init_interclass_conv_libfuncs (sfloat_optab, "float", MODE_INT, MODE_FLOAT); - init_interclass_conv_libfuncs (sfix_optab, "fix", MODE_FLOAT, MODE_INT); - init_interclass_conv_libfuncs (ufix_optab, "fixuns", MODE_FLOAT, MODE_INT); + init_interclass_conv_libfuncs (sfloat_optab, "float", + MODE_INT, MODE_FLOAT); + init_interclass_conv_libfuncs (sfloat_optab, "float", + MODE_INT, MODE_DECIMAL_FLOAT); + init_interclass_conv_libfuncs (ufloat_optab, "floatun", + MODE_INT, MODE_FLOAT); + init_interclass_conv_libfuncs (ufloat_optab, "floatun", + MODE_INT, MODE_DECIMAL_FLOAT); + init_interclass_conv_libfuncs (sfix_optab, "fix", + MODE_FLOAT, MODE_INT); + init_interclass_conv_libfuncs (sfix_optab, "fix", + MODE_DECIMAL_FLOAT, MODE_INT); + init_interclass_conv_libfuncs (ufix_optab, "fixuns", + MODE_FLOAT, MODE_INT); + init_interclass_conv_libfuncs (ufix_optab, "fixuns", + MODE_DECIMAL_FLOAT, MODE_INT); + init_interclass_conv_libfuncs (ufloat_optab, "floatuns", + MODE_INT, MODE_DECIMAL_FLOAT); /* sext_optab is also used for FLOAT_EXTEND. */ init_intraclass_conv_libfuncs (sext_optab, "extend", MODE_FLOAT, true); + init_intraclass_conv_libfuncs (sext_optab, "extend", MODE_DECIMAL_FLOAT, true); + init_interclass_conv_libfuncs (sext_optab, "extend", MODE_FLOAT, MODE_DECIMAL_FLOAT); + init_interclass_conv_libfuncs (sext_optab, "extend", MODE_DECIMAL_FLOAT, MODE_FLOAT); init_intraclass_conv_libfuncs (trunc_optab, "trunc", MODE_FLOAT, false); + init_intraclass_conv_libfuncs (trunc_optab, "trunc", MODE_DECIMAL_FLOAT, false); + init_interclass_conv_libfuncs (trunc_optab, "trunc", MODE_FLOAT, MODE_DECIMAL_FLOAT); + init_interclass_conv_libfuncs (trunc_optab, "trunc", MODE_DECIMAL_FLOAT, MODE_FLOAT); /* Use cabs for double complex abs, since systems generally have cabs. Don't define any libcall for float complex, so that cabs will be used. */ @@ -5378,16 +5469,10 @@ init_optabs (void) abort_libfunc = init_one_libfunc ("abort"); memcpy_libfunc = init_one_libfunc ("memcpy"); memmove_libfunc = init_one_libfunc ("memmove"); - bcopy_libfunc = init_one_libfunc ("bcopy"); memcmp_libfunc = init_one_libfunc ("memcmp"); - bcmp_libfunc = init_one_libfunc ("__gcc_bcmp"); memset_libfunc = init_one_libfunc ("memset"); - bzero_libfunc = init_one_libfunc ("bzero"); setbits_libfunc = init_one_libfunc ("__setbits"); - unwind_resume_libfunc = init_one_libfunc (USING_SJLJ_EXCEPTIONS - ? "_Unwind_SjLj_Resume" - : "_Unwind_Resume"); #ifndef DONT_USE_BUILTIN_SETJMP setjmp_libfunc = init_one_libfunc ("__builtin_setjmp"); longjmp_libfunc = init_one_libfunc ("__builtin_longjmp"); @@ -5406,7 +5491,6 @@ init_optabs (void) = init_one_libfunc ("__cyg_profile_func_exit"); gcov_flush_libfunc = init_one_libfunc ("__gcov_flush"); - gcov_init_libfunc = init_one_libfunc ("__gcov_init"); if (HAVE_conditional_trap) trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX); @@ -5414,6 +5498,62 @@ init_optabs (void) /* Allow the target to add more libcalls or rename some, etc. */ targetm.init_libfuncs (); } + +#ifdef DEBUG + +/* Print information about the current contents of the optabs on + STDERR. */ + +static void +debug_optab_libfuncs (void) +{ + int i; + int j; + int k; + + /* Dump the arithmetic optabs. */ + for (i = 0; i != (int) OTI_MAX; i++) + for (j = 0; j < NUM_MACHINE_MODES; ++j) + { + optab o; + struct optab_handlers *h; + + o = optab_table[i]; + h = &o->handlers[j]; + if (h->libfunc) + { + gcc_assert (GET_CODE (h->libfunc) = SYMBOL_REF); + fprintf (stderr, "%s\t%s:\t%s\n", + GET_RTX_NAME (o->code), + GET_MODE_NAME (j), + XSTR (h->libfunc, 0)); + } + } + + /* Dump the conversion optabs. */ + for (i = 0; i < (int) COI_MAX; ++i) + for (j = 0; j < NUM_MACHINE_MODES; ++j) + for (k = 0; k < NUM_MACHINE_MODES; ++k) + { + convert_optab o; + struct optab_handlers *h; + + o = &convert_optab_table[i]; + h = &o->handlers[j][k]; + if (h->libfunc) + { + gcc_assert (GET_CODE (h->libfunc) = SYMBOL_REF); + fprintf (stderr, "%s\t%s\t%s:\t%s\n", + GET_RTX_NAME (o->code), + GET_MODE_NAME (j), + GET_MODE_NAME (k), + XSTR (h->libfunc, 0)); + } + } +} + +#endif /* DEBUG */ + /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition CODE. Return 0 on failure. */ @@ -5447,6 +5587,7 @@ gen_cond_trap (enum rtx_code code ATTRIBUTE_UNUSED, rtx op1, emit_insn (GEN_FCN (icode) (op1, op2)); PUT_CODE (trap_rtx, code); + gcc_assert (HAVE_conditional_trap); insn = gen_conditional_trap (trap_rtx, tcode); if (insn) { @@ -5458,4 +5599,673 @@ gen_cond_trap (enum rtx_code code ATTRIBUTE_UNUSED, rtx op1, return insn; } +/* Return rtx code for TCODE. Use UNSIGNEDP to select signed + or unsigned operation code. */ + +static enum rtx_code +get_rtx_code (enum tree_code tcode, bool unsignedp) +{ + enum rtx_code code; + switch (tcode) + { + case EQ_EXPR: + code = EQ; + break; + case NE_EXPR: + code = NE; + break; + case LT_EXPR: + code = unsignedp ? LTU : LT; + break; + case LE_EXPR: + code = unsignedp ? LEU : LE; + break; + case GT_EXPR: + code = unsignedp ? GTU : GT; + break; + case GE_EXPR: + code = unsignedp ? GEU : GE; + break; + + case UNORDERED_EXPR: + code = UNORDERED; + break; + case ORDERED_EXPR: + code = ORDERED; + break; + case UNLT_EXPR: + code = UNLT; + break; + case UNLE_EXPR: + code = UNLE; + break; + case UNGT_EXPR: + code = UNGT; + break; + case UNGE_EXPR: + code = UNGE; + break; + case UNEQ_EXPR: + code = UNEQ; + break; + case LTGT_EXPR: + code = LTGT; + break; + + default: + gcc_unreachable (); + } + return code; +} + +/* Return comparison rtx for COND. Use UNSIGNEDP to select signed or + unsigned operators. Do not generate compare instruction. */ + +static rtx +vector_compare_rtx (tree cond, bool unsignedp, enum insn_code icode) +{ + enum rtx_code rcode; + tree t_op0, t_op1; + rtx rtx_op0, rtx_op1; + + /* This is unlikely. While generating VEC_COND_EXPR, auto vectorizer + ensures that condition is a relational operation. */ + gcc_assert (COMPARISON_CLASS_P (cond)); + + rcode = get_rtx_code (TREE_CODE (cond), unsignedp); + t_op0 = TREE_OPERAND (cond, 0); + t_op1 = TREE_OPERAND (cond, 1); + + /* Expand operands. */ + rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)), 1); + rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)), 1); + + if (!insn_data[icode].operand[4].predicate (rtx_op0, GET_MODE (rtx_op0)) + && GET_MODE (rtx_op0) != VOIDmode) + rtx_op0 = force_reg (GET_MODE (rtx_op0), rtx_op0); + + if (!insn_data[icode].operand[5].predicate (rtx_op1, GET_MODE (rtx_op1)) + && GET_MODE (rtx_op1) != VOIDmode) + rtx_op1 = force_reg (GET_MODE (rtx_op1), rtx_op1); + + return gen_rtx_fmt_ee (rcode, VOIDmode, rtx_op0, rtx_op1); +} + +/* Return insn code for VEC_COND_EXPR EXPR. */ + +static inline enum insn_code +get_vcond_icode (tree expr, enum machine_mode mode) +{ + enum insn_code icode = CODE_FOR_nothing; + + if (TYPE_UNSIGNED (TREE_TYPE (expr))) + icode = vcondu_gen_code[mode]; + else + icode = vcond_gen_code[mode]; + return icode; +} + +/* Return TRUE iff, appropriate vector insns are available + for vector cond expr expr in VMODE mode. */ + +bool +expand_vec_cond_expr_p (tree expr, enum machine_mode vmode) +{ + if (get_vcond_icode (expr, vmode) == CODE_FOR_nothing) + return false; + return true; +} + +/* Generate insns for VEC_COND_EXPR. */ + +rtx +expand_vec_cond_expr (tree vec_cond_expr, rtx target) +{ + enum insn_code icode; + rtx comparison, rtx_op1, rtx_op2, cc_op0, cc_op1; + enum machine_mode mode = TYPE_MODE (TREE_TYPE (vec_cond_expr)); + bool unsignedp = TYPE_UNSIGNED (TREE_TYPE (vec_cond_expr)); + + icode = get_vcond_icode (vec_cond_expr, mode); + if (icode == CODE_FOR_nothing) + return 0; + + if (!target || !insn_data[icode].operand[0].predicate (target, mode)) + target = gen_reg_rtx (mode); + + /* Get comparison rtx. First expand both cond expr operands. */ + comparison = vector_compare_rtx (TREE_OPERAND (vec_cond_expr, 0), + unsignedp, icode); + cc_op0 = XEXP (comparison, 0); + cc_op1 = XEXP (comparison, 1); + /* Expand both operands and force them in reg, if required. */ + rtx_op1 = expand_expr (TREE_OPERAND (vec_cond_expr, 1), + NULL_RTX, VOIDmode, EXPAND_NORMAL); + if (!insn_data[icode].operand[1].predicate (rtx_op1, mode) + && mode != VOIDmode) + rtx_op1 = force_reg (mode, rtx_op1); + + rtx_op2 = expand_expr (TREE_OPERAND (vec_cond_expr, 2), + NULL_RTX, VOIDmode, EXPAND_NORMAL); + if (!insn_data[icode].operand[2].predicate (rtx_op2, mode) + && mode != VOIDmode) + rtx_op2 = force_reg (mode, rtx_op2); + + /* Emit instruction! */ + emit_insn (GEN_FCN (icode) (target, rtx_op1, rtx_op2, + comparison, cc_op0, cc_op1)); + + return target; +} + + +/* This is an internal subroutine of the other compare_and_swap expanders. + MEM, OLD_VAL and NEW_VAL are as you'd expect for a compare-and-swap + operation. TARGET is an optional place to store the value result of + the operation. ICODE is the particular instruction to expand. Return + the result of the operation. */ + +static rtx +expand_val_compare_and_swap_1 (rtx mem, rtx old_val, rtx new_val, + rtx target, enum insn_code icode) +{ + enum machine_mode mode = GET_MODE (mem); + rtx insn; + + if (!target || !insn_data[icode].operand[0].predicate (target, mode)) + target = gen_reg_rtx (mode); + + if (GET_MODE (old_val) != VOIDmode && GET_MODE (old_val) != mode) + old_val = convert_modes (mode, GET_MODE (old_val), old_val, 1); + if (!insn_data[icode].operand[2].predicate (old_val, mode)) + old_val = force_reg (mode, old_val); + + if (GET_MODE (new_val) != VOIDmode && GET_MODE (new_val) != mode) + new_val = convert_modes (mode, GET_MODE (new_val), new_val, 1); + if (!insn_data[icode].operand[3].predicate (new_val, mode)) + new_val = force_reg (mode, new_val); + + insn = GEN_FCN (icode) (target, mem, old_val, new_val); + if (insn == NULL_RTX) + return NULL_RTX; + emit_insn (insn); + + return target; +} + +/* Expand a compare-and-swap operation and return its value. */ + +rtx +expand_val_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target) +{ + enum machine_mode mode = GET_MODE (mem); + enum insn_code icode = sync_compare_and_swap[mode]; + + if (icode == CODE_FOR_nothing) + return NULL_RTX; + + return expand_val_compare_and_swap_1 (mem, old_val, new_val, target, icode); +} + +/* Expand a compare-and-swap operation and store true into the result if + the operation was successful and false otherwise. Return the result. + Unlike other routines, TARGET is not optional. */ + +rtx +expand_bool_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target) +{ + enum machine_mode mode = GET_MODE (mem); + enum insn_code icode; + rtx subtarget, label0, label1; + + /* If the target supports a compare-and-swap pattern that simultaneously + sets some flag for success, then use it. Otherwise use the regular + compare-and-swap and follow that immediately with a compare insn. */ + icode = sync_compare_and_swap_cc[mode]; + switch (icode) + { + default: + subtarget = expand_val_compare_and_swap_1 (mem, old_val, new_val, + NULL_RTX, icode); + if (subtarget != NULL_RTX) + break; + + /* FALLTHRU */ + case CODE_FOR_nothing: + icode = sync_compare_and_swap[mode]; + if (icode == CODE_FOR_nothing) + return NULL_RTX; + + /* Ensure that if old_val == mem, that we're not comparing + against an old value. */ + if (MEM_P (old_val)) + old_val = force_reg (mode, old_val); + + subtarget = expand_val_compare_and_swap_1 (mem, old_val, new_val, + NULL_RTX, icode); + if (subtarget == NULL_RTX) + return NULL_RTX; + + emit_cmp_insn (subtarget, old_val, EQ, const0_rtx, mode, true); + } + + /* If the target has a sane STORE_FLAG_VALUE, then go ahead and use a + setcc instruction from the beginning. We don't work too hard here, + but it's nice to not be stupid about initial code gen either. */ + if (STORE_FLAG_VALUE == 1) + { + icode = setcc_gen_code[EQ]; + if (icode != CODE_FOR_nothing) + { + enum machine_mode cmode = insn_data[icode].operand[0].mode; + rtx insn; + + subtarget = target; + if (!insn_data[icode].operand[0].predicate (target, cmode)) + subtarget = gen_reg_rtx (cmode); + + insn = GEN_FCN (icode) (subtarget); + if (insn) + { + emit_insn (insn); + if (GET_MODE (target) != GET_MODE (subtarget)) + { + convert_move (target, subtarget, 1); + subtarget = target; + } + return subtarget; + } + } + } + + /* Without an appropriate setcc instruction, use a set of branches to + get 1 and 0 stored into target. Presumably if the target has a + STORE_FLAG_VALUE that isn't 1, then this will get cleaned up by ifcvt. */ + + label0 = gen_label_rtx (); + label1 = gen_label_rtx (); + + emit_jump_insn (bcc_gen_fctn[EQ] (label0)); + emit_move_insn (target, const0_rtx); + emit_jump_insn (gen_jump (label1)); + emit_barrier (); + emit_label (label0); + emit_move_insn (target, const1_rtx); + emit_label (label1); + + return target; +} + +/* This is a helper function for the other atomic operations. This function + emits a loop that contains SEQ that iterates until a compare-and-swap + operation at the end succeeds. MEM is the memory to be modified. SEQ is + a set of instructions that takes a value from OLD_REG as an input and + produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be + set to the current contents of MEM. After SEQ, a compare-and-swap will + attempt to update MEM with NEW_REG. The function returns true when the + loop was generated successfully. */ + +static bool +expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq) +{ + enum machine_mode mode = GET_MODE (mem); + enum insn_code icode; + rtx label, cmp_reg, subtarget; + + /* The loop we want to generate looks like + + cmp_reg = mem; + label: + old_reg = cmp_reg; + seq; + cmp_reg = compare-and-swap(mem, old_reg, new_reg) + if (cmp_reg != old_reg) + goto label; + + Note that we only do the plain load from memory once. Subsequent + iterations use the value loaded by the compare-and-swap pattern. */ + + label = gen_label_rtx (); + cmp_reg = gen_reg_rtx (mode); + + emit_move_insn (cmp_reg, mem); + emit_label (label); + emit_move_insn (old_reg, cmp_reg); + if (seq) + emit_insn (seq); + + /* If the target supports a compare-and-swap pattern that simultaneously + sets some flag for success, then use it. Otherwise use the regular + compare-and-swap and follow that immediately with a compare insn. */ + icode = sync_compare_and_swap_cc[mode]; + switch (icode) + { + default: + subtarget = expand_val_compare_and_swap_1 (mem, old_reg, new_reg, + cmp_reg, icode); + if (subtarget != NULL_RTX) + { + gcc_assert (subtarget == cmp_reg); + break; + } + + /* FALLTHRU */ + case CODE_FOR_nothing: + icode = sync_compare_and_swap[mode]; + if (icode == CODE_FOR_nothing) + return false; + + subtarget = expand_val_compare_and_swap_1 (mem, old_reg, new_reg, + cmp_reg, icode); + if (subtarget == NULL_RTX) + return false; + if (subtarget != cmp_reg) + emit_move_insn (cmp_reg, subtarget); + + emit_cmp_insn (cmp_reg, old_reg, EQ, const0_rtx, mode, true); + } + + /* ??? Mark this jump predicted not taken? */ + emit_jump_insn (bcc_gen_fctn[NE] (label)); + + return true; +} + +/* This function generates the atomic operation MEM CODE= VAL. In this + case, we do not care about any resulting value. Returns NULL if we + cannot generate the operation. */ + +rtx +expand_sync_operation (rtx mem, rtx val, enum rtx_code code) +{ + enum machine_mode mode = GET_MODE (mem); + enum insn_code icode; + rtx insn; + + /* Look to see if the target supports the operation directly. */ + switch (code) + { + case PLUS: + icode = sync_add_optab[mode]; + break; + case IOR: + icode = sync_ior_optab[mode]; + break; + case XOR: + icode = sync_xor_optab[mode]; + break; + case AND: + icode = sync_and_optab[mode]; + break; + case NOT: + icode = sync_nand_optab[mode]; + break; + + case MINUS: + icode = sync_sub_optab[mode]; + if (icode == CODE_FOR_nothing) + { + icode = sync_add_optab[mode]; + if (icode != CODE_FOR_nothing) + { + val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1); + code = PLUS; + } + } + break; + + default: + gcc_unreachable (); + } + + /* Generate the direct operation, if present. */ + if (icode != CODE_FOR_nothing) + { + if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode) + val = convert_modes (mode, GET_MODE (val), val, 1); + if (!insn_data[icode].operand[1].predicate (val, mode)) + val = force_reg (mode, val); + + insn = GEN_FCN (icode) (mem, val); + if (insn) + { + emit_insn (insn); + return const0_rtx; + } + } + + /* Failing that, generate a compare-and-swap loop in which we perform the + operation with normal arithmetic instructions. */ + if (sync_compare_and_swap[mode] != CODE_FOR_nothing) + { + rtx t0 = gen_reg_rtx (mode), t1; + + start_sequence (); + + t1 = t0; + if (code == NOT) + { + t1 = expand_simple_unop (mode, NOT, t1, NULL_RTX, true); + code = AND; + } + t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, + true, OPTAB_LIB_WIDEN); + + insn = get_insns (); + end_sequence (); + + if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn)) + return const0_rtx; + } + + return NULL_RTX; +} + +/* This function generates the atomic operation MEM CODE= VAL. In this + case, we do care about the resulting value: if AFTER is true then + return the value MEM holds after the operation, if AFTER is false + then return the value MEM holds before the operation. TARGET is an + optional place for the result value to be stored. */ + +rtx +expand_sync_fetch_operation (rtx mem, rtx val, enum rtx_code code, + bool after, rtx target) +{ + enum machine_mode mode = GET_MODE (mem); + enum insn_code old_code, new_code, icode; + bool compensate; + rtx insn; + + /* Look to see if the target supports the operation directly. */ + switch (code) + { + case PLUS: + old_code = sync_old_add_optab[mode]; + new_code = sync_new_add_optab[mode]; + break; + case IOR: + old_code = sync_old_ior_optab[mode]; + new_code = sync_new_ior_optab[mode]; + break; + case XOR: + old_code = sync_old_xor_optab[mode]; + new_code = sync_new_xor_optab[mode]; + break; + case AND: + old_code = sync_old_and_optab[mode]; + new_code = sync_new_and_optab[mode]; + break; + case NOT: + old_code = sync_old_nand_optab[mode]; + new_code = sync_new_nand_optab[mode]; + break; + + case MINUS: + old_code = sync_old_sub_optab[mode]; + new_code = sync_new_sub_optab[mode]; + if (old_code == CODE_FOR_nothing && new_code == CODE_FOR_nothing) + { + old_code = sync_old_add_optab[mode]; + new_code = sync_new_add_optab[mode]; + if (old_code != CODE_FOR_nothing || new_code != CODE_FOR_nothing) + { + val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1); + code = PLUS; + } + } + break; + + default: + gcc_unreachable (); + } + + /* If the target does supports the proper new/old operation, great. But + if we only support the opposite old/new operation, check to see if we + can compensate. In the case in which the old value is supported, then + we can always perform the operation again with normal arithmetic. In + the case in which the new value is supported, then we can only handle + this in the case the operation is reversible. */ + compensate = false; + if (after) + { + icode = new_code; + if (icode == CODE_FOR_nothing) + { + icode = old_code; + if (icode != CODE_FOR_nothing) + compensate = true; + } + } + else + { + icode = old_code; + if (icode == CODE_FOR_nothing + && (code == PLUS || code == MINUS || code == XOR)) + { + icode = new_code; + if (icode != CODE_FOR_nothing) + compensate = true; + } + } + + /* If we found something supported, great. */ + if (icode != CODE_FOR_nothing) + { + if (!target || !insn_data[icode].operand[0].predicate (target, mode)) + target = gen_reg_rtx (mode); + + if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode) + val = convert_modes (mode, GET_MODE (val), val, 1); + if (!insn_data[icode].operand[2].predicate (val, mode)) + val = force_reg (mode, val); + + insn = GEN_FCN (icode) (target, mem, val); + if (insn) + { + emit_insn (insn); + + /* If we need to compensate for using an operation with the + wrong return value, do so now. */ + if (compensate) + { + if (!after) + { + if (code == PLUS) + code = MINUS; + else if (code == MINUS) + code = PLUS; + } + + if (code == NOT) + target = expand_simple_unop (mode, NOT, target, NULL_RTX, true); + target = expand_simple_binop (mode, code, target, val, NULL_RTX, + true, OPTAB_LIB_WIDEN); + } + + return target; + } + } + + /* Failing that, generate a compare-and-swap loop in which we perform the + operation with normal arithmetic instructions. */ + if (sync_compare_and_swap[mode] != CODE_FOR_nothing) + { + rtx t0 = gen_reg_rtx (mode), t1; + + if (!target || !register_operand (target, mode)) + target = gen_reg_rtx (mode); + + start_sequence (); + + if (!after) + emit_move_insn (target, t0); + t1 = t0; + if (code == NOT) + { + t1 = expand_simple_unop (mode, NOT, t1, NULL_RTX, true); + code = AND; + } + t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, + true, OPTAB_LIB_WIDEN); + if (after) + emit_move_insn (target, t1); + + insn = get_insns (); + end_sequence (); + + if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn)) + return target; + } + + return NULL_RTX; +} + +/* This function expands a test-and-set operation. Ideally we atomically + store VAL in MEM and return the previous value in MEM. Some targets + may not support this operation and only support VAL with the constant 1; + in this case while the return value will be 0/1, but the exact value + stored in MEM is target defined. TARGET is an option place to stick + the return value. */ + +rtx +expand_sync_lock_test_and_set (rtx mem, rtx val, rtx target) +{ + enum machine_mode mode = GET_MODE (mem); + enum insn_code icode; + rtx insn; + + /* If the target supports the test-and-set directly, great. */ + icode = sync_lock_test_and_set[mode]; + if (icode != CODE_FOR_nothing) + { + if (!target || !insn_data[icode].operand[0].predicate (target, mode)) + target = gen_reg_rtx (mode); + + if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode) + val = convert_modes (mode, GET_MODE (val), val, 1); + if (!insn_data[icode].operand[2].predicate (val, mode)) + val = force_reg (mode, val); + + insn = GEN_FCN (icode) (target, mem, val); + if (insn) + { + emit_insn (insn); + return target; + } + } + + /* Otherwise, use a compare-and-swap loop for the exchange. */ + if (sync_compare_and_swap[mode] != CODE_FOR_nothing) + { + if (!target || !register_operand (target, mode)) + target = gen_reg_rtx (mode); + if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode) + val = convert_modes (mode, GET_MODE (val), val, 1); + if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX)) + return target; + } + + return NULL_RTX; +} + #include "gt-optabs.h" |