aboutsummaryrefslogtreecommitdiff
path: root/contrib/gcc/reg-stack.c
diff options
context:
space:
mode:
authorPeter Wemm <peter@FreeBSD.org>1996-09-18 05:35:50 +0000
committerPeter Wemm <peter@FreeBSD.org>1996-09-18 05:35:50 +0000
commita4cd5630b060871c42e59f7b95cf1e823c417db6 (patch)
tree5b7ea73fc49c8998d9dc87d3eeff5b96439e6856 /contrib/gcc/reg-stack.c
downloadsrc-a4cd5630b060871c42e59f7b95cf1e823c417db6.tar.gz
src-a4cd5630b060871c42e59f7b95cf1e823c417db6.zip
Import of unmodified (but trimmed) gcc-2.7.2. The bigger parts of the
non-i386, non-unix, and generatable files have been trimmed, but can easily be added in later if needed. gcc-2.7.2.1 will follow shortly, it's a very small delta to this and it's handy to have both available for reference for such little cost. The freebsd-specific changes will then be committed, and once the dust has settled, the bmakefiles will be committed to use this code.
Notes
Notes: svn path=/vendor/gcc/dist/; revision=18334
Diffstat (limited to 'contrib/gcc/reg-stack.c')
-rw-r--r--contrib/gcc/reg-stack.c3134
1 files changed, 3134 insertions, 0 deletions
diff --git a/contrib/gcc/reg-stack.c b/contrib/gcc/reg-stack.c
new file mode 100644
index 000000000000..c099c61a0165
--- /dev/null
+++ b/contrib/gcc/reg-stack.c
@@ -0,0 +1,3134 @@
+/* Register to Stack convert for GNU compiler.
+ Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+/* This pass converts stack-like registers from the "flat register
+ file" model that gcc uses, to a stack convention that the 387 uses.
+
+ * The form of the input:
+
+ On input, the function consists of insn that have had their
+ registers fully allocated to a set of "virtual" registers. Note that
+ the word "virtual" is used differently here than elsewhere in gcc: for
+ each virtual stack reg, there is a hard reg, but the mapping between
+ them is not known until this pass is run. On output, hard register
+ numbers have been substituted, and various pop and exchange insns have
+ been emitted. The hard register numbers and the virtual register
+ numbers completely overlap - before this pass, all stack register
+ numbers are virtual, and afterward they are all hard.
+
+ The virtual registers can be manipulated normally by gcc, and their
+ semantics are the same as for normal registers. After the hard
+ register numbers are substituted, the semantics of an insn containing
+ stack-like regs are not the same as for an insn with normal regs: for
+ instance, it is not safe to delete an insn that appears to be a no-op
+ move. In general, no insn containing hard regs should be changed
+ after this pass is done.
+
+ * The form of the output:
+
+ After this pass, hard register numbers represent the distance from
+ the current top of stack to the desired register. A reference to
+ FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
+ represents the register just below that, and so forth. Also, REG_DEAD
+ notes indicate whether or not a stack register should be popped.
+
+ A "swap" insn looks like a parallel of two patterns, where each
+ pattern is a SET: one sets A to B, the other B to A.
+
+ A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
+ and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
+ will replace the existing stack top, not push a new value.
+
+ A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
+ SET_SRC is REG or MEM.
+
+ The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
+ appears ambiguous. As a special case, the presence of a REG_DEAD note
+ for FIRST_STACK_REG differentiates between a load insn and a pop.
+
+ If a REG_DEAD is present, the insn represents a "pop" that discards
+ the top of the register stack. If there is no REG_DEAD note, then the
+ insn represents a "dup" or a push of the current top of stack onto the
+ stack.
+
+ * Methodology:
+
+ Existing REG_DEAD and REG_UNUSED notes for stack registers are
+ deleted and recreated from scratch. REG_DEAD is never created for a
+ SET_DEST, only REG_UNUSED.
+
+ Before life analysis, the mode of each insn is set based on whether
+ or not any stack registers are mentioned within that insn. VOIDmode
+ means that no regs are mentioned anyway, and QImode means that at
+ least one pattern within the insn mentions stack registers. This
+ information is valid until after reg_to_stack returns, and is used
+ from jump_optimize.
+
+ * asm_operands:
+
+ There are several rules on the usage of stack-like regs in
+ asm_operands insns. These rules apply only to the operands that are
+ stack-like regs:
+
+ 1. Given a set of input regs that die in an asm_operands, it is
+ necessary to know which are implicitly popped by the asm, and
+ which must be explicitly popped by gcc.
+
+ An input reg that is implicitly popped by the asm must be
+ explicitly clobbered, unless it is constrained to match an
+ output operand.
+
+ 2. For any input reg that is implicitly popped by an asm, it is
+ necessary to know how to adjust the stack to compensate for the pop.
+ If any non-popped input is closer to the top of the reg-stack than
+ the implicitly popped reg, it would not be possible to know what the
+ stack looked like - it's not clear how the rest of the stack "slides
+ up".
+
+ All implicitly popped input regs must be closer to the top of
+ the reg-stack than any input that is not implicitly popped.
+
+ 3. It is possible that if an input dies in an insn, reload might
+ use the input reg for an output reload. Consider this example:
+
+ asm ("foo" : "=t" (a) : "f" (b));
+
+ This asm says that input B is not popped by the asm, and that
+ the asm pushes a result onto the reg-stack, ie, the stack is one
+ deeper after the asm than it was before. But, it is possible that
+ reload will think that it can use the same reg for both the input and
+ the output, if input B dies in this insn.
+
+ If any input operand uses the "f" constraint, all output reg
+ constraints must use the "&" earlyclobber.
+
+ The asm above would be written as
+
+ asm ("foo" : "=&t" (a) : "f" (b));
+
+ 4. Some operands need to be in particular places on the stack. All
+ output operands fall in this category - there is no other way to
+ know which regs the outputs appear in unless the user indicates
+ this in the constraints.
+
+ Output operands must specifically indicate which reg an output
+ appears in after an asm. "=f" is not allowed: the operand
+ constraints must select a class with a single reg.
+
+ 5. Output operands may not be "inserted" between existing stack regs.
+ Since no 387 opcode uses a read/write operand, all output operands
+ are dead before the asm_operands, and are pushed by the asm_operands.
+ It makes no sense to push anywhere but the top of the reg-stack.
+
+ Output operands must start at the top of the reg-stack: output
+ operands may not "skip" a reg.
+
+ 6. Some asm statements may need extra stack space for internal
+ calculations. This can be guaranteed by clobbering stack registers
+ unrelated to the inputs and outputs.
+
+ Here are a couple of reasonable asms to want to write. This asm
+ takes one input, which is internally popped, and produces two outputs.
+
+ asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
+
+ This asm takes two inputs, which are popped by the fyl2xp1 opcode,
+ and replaces them with one output. The user must code the "st(1)"
+ clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
+
+ asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
+
+ */
+
+#include <stdio.h>
+#include "config.h"
+#include "tree.h"
+#include "rtl.h"
+#include "insn-config.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "flags.h"
+
+#ifdef STACK_REGS
+
+#define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
+
+/* This is the basic stack record. TOP is an index into REG[] such
+ that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
+
+ If TOP is -2, REG[] is not yet initialized. Stack initialization
+ consists of placing each live reg in array `reg' and setting `top'
+ appropriately.
+
+ REG_SET indicates which registers are live. */
+
+typedef struct stack_def
+{
+ int top; /* index to top stack element */
+ HARD_REG_SET reg_set; /* set of live registers */
+ char reg[REG_STACK_SIZE]; /* register - stack mapping */
+} *stack;
+
+/* highest instruction uid */
+static int max_uid = 0;
+
+/* Number of basic blocks in the current function. */
+static int blocks;
+
+/* Element N is first insn in basic block N.
+ This info lasts until we finish compiling the function. */
+static rtx *block_begin;
+
+/* Element N is last insn in basic block N.
+ This info lasts until we finish compiling the function. */
+static rtx *block_end;
+
+/* Element N is nonzero if control can drop into basic block N */
+static char *block_drops_in;
+
+/* Element N says all about the stack at entry block N */
+static stack block_stack_in;
+
+/* Element N says all about the stack life at the end of block N */
+static HARD_REG_SET *block_out_reg_set;
+
+/* This is where the BLOCK_NUM values are really stored. This is set
+ up by find_blocks and used there and in life_analysis. It can be used
+ later, but only to look up an insn that is the head or tail of some
+ block. life_analysis and the stack register conversion process can
+ add insns within a block. */
+static int *block_number;
+
+/* This is the register file for all register after conversion */
+static rtx
+ FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
+
+#define FP_MODE_REG(regno,mode) \
+ (FP_mode_reg[(regno)-FIRST_STACK_REG][(int)(mode)])
+
+/* Get the basic block number of an insn. See note at block_number
+ definition are validity of this information. */
+
+#define BLOCK_NUM(INSN) \
+ ((INSN_UID (INSN) > max_uid) \
+ ? (abort() , -1) : block_number[INSN_UID (INSN)])
+
+extern rtx forced_labels;
+extern rtx gen_jump ();
+extern rtx gen_movdf (), gen_movxf ();
+extern rtx find_regno_note ();
+extern rtx emit_jump_insn_before ();
+extern rtx emit_label_after ();
+
+/* Forward declarations */
+
+static void find_blocks ();
+static uses_reg_or_mem ();
+static void stack_reg_life_analysis ();
+static void record_reg_life_pat ();
+static void change_stack ();
+static void convert_regs ();
+static void dump_stack_info ();
+
+/* Mark all registers needed for this pattern. */
+
+static void
+mark_regs_pat (pat, set)
+ rtx pat;
+ HARD_REG_SET *set;
+{
+ enum machine_mode mode;
+ register int regno;
+ register int count;
+
+ if (GET_CODE (pat) == SUBREG)
+ {
+ mode = GET_MODE (pat);
+ regno = SUBREG_WORD (pat);
+ regno += REGNO (SUBREG_REG (pat));
+ }
+ else
+ regno = REGNO (pat), mode = GET_MODE (pat);
+
+ for (count = HARD_REGNO_NREGS (regno, mode);
+ count; count--, regno++)
+ SET_HARD_REG_BIT (*set, regno);
+}
+
+/* Reorganise the stack into ascending numbers,
+ after this insn. */
+
+static void
+straighten_stack (insn, regstack)
+ rtx insn;
+ stack regstack;
+{
+ struct stack_def temp_stack;
+ int top;
+
+ temp_stack.reg_set = regstack->reg_set;
+
+ for (top = temp_stack.top = regstack->top; top >= 0; top--)
+ temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
+
+ change_stack (insn, regstack, &temp_stack, emit_insn_after);
+}
+
+/* Return non-zero if any stack register is mentioned somewhere within PAT. */
+
+int
+stack_regs_mentioned_p (pat)
+ rtx pat;
+{
+ register char *fmt;
+ register int i;
+
+ if (STACK_REG_P (pat))
+ return 1;
+
+ fmt = GET_RTX_FORMAT (GET_CODE (pat));
+ for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'E')
+ {
+ register int j;
+
+ for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
+ if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
+ return 1;
+ }
+ else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
+ return 1;
+ }
+
+ return 0;
+}
+
+/* Convert register usage from "flat" register file usage to a "stack
+ register file. FIRST is the first insn in the function, FILE is the
+ dump file, if used.
+
+ First compute the beginning and end of each basic block. Do a
+ register life analysis on the stack registers, recording the result
+ for the head and tail of each basic block. The convert each insn one
+ by one. Run a last jump_optimize() pass, if optimizing, to eliminate
+ any cross-jumping created when the converter inserts pop insns.*/
+
+void
+reg_to_stack (first, file)
+ rtx first;
+ FILE *file;
+{
+ register rtx insn;
+ register int i;
+ int stack_reg_seen = 0;
+ enum machine_mode mode;
+ HARD_REG_SET stackentry;
+
+ CLEAR_HARD_REG_SET (stackentry);
+
+ {
+ static initialised;
+ if (!initialised)
+ {
+#if 0
+ initialised = 1; /* This array can not have been previously
+ initialised, because the rtx's are
+ thrown away between compilations of
+ functions. */
+#endif
+ for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
+ {
+ for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
+ mode = GET_MODE_WIDER_MODE (mode))
+ FP_MODE_REG (i, mode) = gen_rtx (REG, mode, i);
+ for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT); mode != VOIDmode;
+ mode = GET_MODE_WIDER_MODE (mode))
+ FP_MODE_REG (i, mode) = gen_rtx (REG, mode, i);
+ }
+ }
+ }
+
+ /* Count the basic blocks. Also find maximum insn uid. */
+ {
+ register RTX_CODE prev_code = BARRIER;
+ register RTX_CODE code;
+ register before_function_beg = 1;
+
+ max_uid = 0;
+ blocks = 0;
+ for (insn = first; insn; insn = NEXT_INSN (insn))
+ {
+ /* Note that this loop must select the same block boundaries
+ as code in find_blocks. Also note that this code is not the
+ same as that used in flow.c. */
+
+ if (INSN_UID (insn) > max_uid)
+ max_uid = INSN_UID (insn);
+
+ code = GET_CODE (insn);
+
+ if (code == CODE_LABEL
+ || (prev_code != INSN
+ && prev_code != CALL_INSN
+ && prev_code != CODE_LABEL
+ && GET_RTX_CLASS (code) == 'i'))
+ blocks++;
+
+ if (code == NOTE && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
+ before_function_beg = 0;
+
+ /* Remember whether or not this insn mentions an FP regs.
+ Check JUMP_INSNs too, in case someone creates a funny PARALLEL. */
+
+ if (GET_RTX_CLASS (code) == 'i'
+ && stack_regs_mentioned_p (PATTERN (insn)))
+ {
+ stack_reg_seen = 1;
+ PUT_MODE (insn, QImode);
+
+ /* Note any register passing parameters. */
+
+ if (before_function_beg && code == INSN
+ && GET_CODE (PATTERN (insn)) == USE)
+ record_reg_life_pat (PATTERN (insn), (HARD_REG_SET*) 0,
+ &stackentry, 1);
+ }
+ else
+ PUT_MODE (insn, VOIDmode);
+
+ if (code == CODE_LABEL)
+ LABEL_REFS (insn) = insn; /* delete old chain */
+
+ if (code != NOTE)
+ prev_code = code;
+ }
+ }
+
+ /* If no stack register reference exists in this insn, there isn't
+ anything to convert. */
+
+ if (! stack_reg_seen)
+ return;
+
+ /* If there are stack registers, there must be at least one block. */
+
+ if (! blocks)
+ abort ();
+
+ /* Allocate some tables that last till end of compiling this function
+ and some needed only in find_blocks and life_analysis. */
+
+ block_begin = (rtx *) alloca (blocks * sizeof (rtx));
+ block_end = (rtx *) alloca (blocks * sizeof (rtx));
+ block_drops_in = (char *) alloca (blocks);
+
+ block_stack_in = (stack) alloca (blocks * sizeof (struct stack_def));
+ block_out_reg_set = (HARD_REG_SET *) alloca (blocks * sizeof (HARD_REG_SET));
+ bzero ((char *) block_stack_in, blocks * sizeof (struct stack_def));
+ bzero ((char *) block_out_reg_set, blocks * sizeof (HARD_REG_SET));
+
+ block_number = (int *) alloca ((max_uid + 1) * sizeof (int));
+
+ find_blocks (first);
+ stack_reg_life_analysis (first, &stackentry);
+
+ /* Dump the life analysis debug information before jump
+ optimization, as that will destroy the LABEL_REFS we keep the
+ information in. */
+
+ if (file)
+ dump_stack_info (file);
+
+ convert_regs ();
+
+ if (optimize)
+ jump_optimize (first, 2, 0, 0);
+}
+
+/* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
+ label's chain of references, and note which insn contains each
+ reference. */
+
+static void
+record_label_references (insn, pat)
+ rtx insn, pat;
+{
+ register enum rtx_code code = GET_CODE (pat);
+ register int i;
+ register char *fmt;
+
+ if (code == LABEL_REF)
+ {
+ register rtx label = XEXP (pat, 0);
+ register rtx ref;
+
+ if (GET_CODE (label) != CODE_LABEL)
+ abort ();
+
+ /* Don't make a duplicate in the code_label's chain. */
+
+ for (ref = LABEL_REFS (label);
+ ref && ref != label;
+ ref = LABEL_NEXTREF (ref))
+ if (CONTAINING_INSN (ref) == insn)
+ return;
+
+ CONTAINING_INSN (pat) = insn;
+ LABEL_NEXTREF (pat) = LABEL_REFS (label);
+ LABEL_REFS (label) = pat;
+
+ return;
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ record_label_references (insn, XEXP (pat, i));
+ if (fmt[i] == 'E')
+ {
+ register int j;
+ for (j = 0; j < XVECLEN (pat, i); j++)
+ record_label_references (insn, XVECEXP (pat, i, j));
+ }
+ }
+}
+
+/* Return a pointer to the REG expression within PAT. If PAT is not a
+ REG, possible enclosed by a conversion rtx, return the inner part of
+ PAT that stopped the search. */
+
+static rtx *
+get_true_reg (pat)
+ rtx *pat;
+{
+ for (;;)
+ switch (GET_CODE (*pat))
+ {
+ case SUBREG:
+ /* eliminate FP subregister accesses in favour of the
+ actual FP register in use. */
+ {
+ rtx subreg;
+ if (FP_REG_P (subreg = SUBREG_REG (*pat)))
+ {
+ *pat = FP_MODE_REG (REGNO (subreg) + SUBREG_WORD (*pat),
+ GET_MODE (subreg));
+ default:
+ return pat;
+ }
+ }
+ case FLOAT:
+ case FIX:
+ case FLOAT_EXTEND:
+ pat = & XEXP (*pat, 0);
+ }
+}
+
+/* Scan the OPERANDS and OPERAND_CONSTRAINTS of an asm_operands.
+ N_OPERANDS is the total number of operands. Return which alternative
+ matched, or -1 is no alternative matches.
+
+ OPERAND_MATCHES is an array which indicates which operand this
+ operand matches due to the constraints, or -1 if no match is required.
+ If two operands match by coincidence, but are not required to match by
+ the constraints, -1 is returned.
+
+ OPERAND_CLASS is an array which indicates the smallest class
+ required by the constraints. If the alternative that matches calls
+ for some class `class', and the operand matches a subclass of `class',
+ OPERAND_CLASS is set to `class' as required by the constraints, not to
+ the subclass. If an alternative allows more than one class,
+ OPERAND_CLASS is set to the smallest class that is a union of the
+ allowed classes. */
+
+static int
+constrain_asm_operands (n_operands, operands, operand_constraints,
+ operand_matches, operand_class)
+ int n_operands;
+ rtx *operands;
+ char **operand_constraints;
+ int *operand_matches;
+ enum reg_class *operand_class;
+{
+ char **constraints = (char **) alloca (n_operands * sizeof (char *));
+ char *q;
+ int this_alternative, this_operand;
+ int n_alternatives;
+ int j;
+
+ for (j = 0; j < n_operands; j++)
+ constraints[j] = operand_constraints[j];
+
+ /* Compute the number of alternatives in the operands. reload has
+ already guaranteed that all operands have the same number of
+ alternatives. */
+
+ n_alternatives = 1;
+ for (q = constraints[0]; *q; q++)
+ n_alternatives += (*q == ',');
+
+ this_alternative = 0;
+ while (this_alternative < n_alternatives)
+ {
+ int lose = 0;
+ int i;
+
+ /* No operands match, no narrow class requirements yet. */
+ for (i = 0; i < n_operands; i++)
+ {
+ operand_matches[i] = -1;
+ operand_class[i] = NO_REGS;
+ }
+
+ for (this_operand = 0; this_operand < n_operands; this_operand++)
+ {
+ rtx op = operands[this_operand];
+ enum machine_mode mode = GET_MODE (op);
+ char *p = constraints[this_operand];
+ int offset = 0;
+ int win = 0;
+ int c;
+
+ if (GET_CODE (op) == SUBREG)
+ {
+ if (GET_CODE (SUBREG_REG (op)) == REG
+ && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
+ offset = SUBREG_WORD (op);
+ op = SUBREG_REG (op);
+ }
+
+ /* An empty constraint or empty alternative
+ allows anything which matched the pattern. */
+ if (*p == 0 || *p == ',')
+ win = 1;
+
+ while (*p && (c = *p++) != ',')
+ switch (c)
+ {
+ case '=':
+ case '+':
+ case '?':
+ case '&':
+ case '!':
+ case '*':
+ case '%':
+ /* Ignore these. */
+ break;
+
+ case '#':
+ /* Ignore rest of this alternative. */
+ while (*p && *p != ',') p++;
+ break;
+
+ case '0':
+ case '1':
+ case '2':
+ case '3':
+ case '4':
+ case '5':
+ /* This operand must be the same as a previous one.
+ This kind of constraint is used for instructions such
+ as add when they take only two operands.
+
+ Note that the lower-numbered operand is passed first. */
+
+ if (operands_match_p (operands[c - '0'],
+ operands[this_operand]))
+ {
+ operand_matches[this_operand] = c - '0';
+ win = 1;
+ }
+ break;
+
+ case 'p':
+ /* p is used for address_operands. Since this is an asm,
+ just to make sure that the operand is valid for Pmode. */
+
+ if (strict_memory_address_p (Pmode, op))
+ win = 1;
+ break;
+
+ case 'g':
+ /* Anything goes unless it is a REG and really has a hard reg
+ but the hard reg is not in the class GENERAL_REGS. */
+ if (GENERAL_REGS == ALL_REGS
+ || GET_CODE (op) != REG
+ || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
+ {
+ if (GET_CODE (op) == REG)
+ operand_class[this_operand]
+ = reg_class_subunion[(int) operand_class[this_operand]][(int) GENERAL_REGS];
+ win = 1;
+ }
+ break;
+
+ case 'r':
+ if (GET_CODE (op) == REG
+ && (GENERAL_REGS == ALL_REGS
+ || reg_fits_class_p (op, GENERAL_REGS, offset, mode)))
+ {
+ operand_class[this_operand]
+ = reg_class_subunion[(int) operand_class[this_operand]][(int) GENERAL_REGS];
+ win = 1;
+ }
+ break;
+
+ case 'X':
+ /* This is used for a MATCH_SCRATCH in the cases when we
+ don't actually need anything. So anything goes any time. */
+ win = 1;
+ break;
+
+ case 'm':
+ if (GET_CODE (op) == MEM)
+ win = 1;
+ break;
+
+ case '<':
+ if (GET_CODE (op) == MEM
+ && (GET_CODE (XEXP (op, 0)) == PRE_DEC
+ || GET_CODE (XEXP (op, 0)) == POST_DEC))
+ win = 1;
+ break;
+
+ case '>':
+ if (GET_CODE (op) == MEM
+ && (GET_CODE (XEXP (op, 0)) == PRE_INC
+ || GET_CODE (XEXP (op, 0)) == POST_INC))
+ win = 1;
+ break;
+
+ case 'E':
+ /* Match any CONST_DOUBLE, but only if
+ we can examine the bits of it reliably. */
+ if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
+ || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
+ && GET_CODE (op) != VOIDmode && ! flag_pretend_float)
+ break;
+ if (GET_CODE (op) == CONST_DOUBLE)
+ win = 1;
+ break;
+
+ case 'F':
+ if (GET_CODE (op) == CONST_DOUBLE)
+ win = 1;
+ break;
+
+ case 'G':
+ case 'H':
+ if (GET_CODE (op) == CONST_DOUBLE
+ && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
+ win = 1;
+ break;
+
+ case 's':
+ if (GET_CODE (op) == CONST_INT
+ || (GET_CODE (op) == CONST_DOUBLE
+ && GET_MODE (op) == VOIDmode))
+ break;
+ /* Fall through */
+ case 'i':
+ if (CONSTANT_P (op))
+ win = 1;
+ break;
+
+ case 'n':
+ if (GET_CODE (op) == CONST_INT
+ || (GET_CODE (op) == CONST_DOUBLE
+ && GET_MODE (op) == VOIDmode))
+ win = 1;
+ break;
+
+ case 'I':
+ case 'J':
+ case 'K':
+ case 'L':
+ case 'M':
+ case 'N':
+ case 'O':
+ case 'P':
+ if (GET_CODE (op) == CONST_INT
+ && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
+ win = 1;
+ break;
+
+#ifdef EXTRA_CONSTRAINT
+ case 'Q':
+ case 'R':
+ case 'S':
+ case 'T':
+ case 'U':
+ if (EXTRA_CONSTRAINT (op, c))
+ win = 1;
+ break;
+#endif
+
+ case 'V':
+ if (GET_CODE (op) == MEM && ! offsettable_memref_p (op))
+ win = 1;
+ break;
+
+ case 'o':
+ if (offsettable_memref_p (op))
+ win = 1;
+ break;
+
+ default:
+ if (GET_CODE (op) == REG
+ && reg_fits_class_p (op, REG_CLASS_FROM_LETTER (c),
+ offset, mode))
+ {
+ operand_class[this_operand]
+ = reg_class_subunion[(int)operand_class[this_operand]][(int) REG_CLASS_FROM_LETTER (c)];
+ win = 1;
+ }
+ }
+
+ constraints[this_operand] = p;
+ /* If this operand did not win somehow,
+ this alternative loses. */
+ if (! win)
+ lose = 1;
+ }
+ /* This alternative won; the operands are ok.
+ Change whichever operands this alternative says to change. */
+ if (! lose)
+ break;
+
+ this_alternative++;
+ }
+
+ /* For operands constrained to match another operand, copy the other
+ operand's class to this operand's class. */
+ for (j = 0; j < n_operands; j++)
+ if (operand_matches[j] >= 0)
+ operand_class[j] = operand_class[operand_matches[j]];
+
+ return this_alternative == n_alternatives ? -1 : this_alternative;
+}
+
+/* Record the life info of each stack reg in INSN, updating REGSTACK.
+ N_INPUTS is the number of inputs; N_OUTPUTS the outputs. CONSTRAINTS
+ is an array of the constraint strings used in the asm statement.
+ OPERANDS is an array of all operands for the insn, and is assumed to
+ contain all output operands, then all inputs operands.
+
+ There are many rules that an asm statement for stack-like regs must
+ follow. Those rules are explained at the top of this file: the rule
+ numbers below refer to that explanation. */
+
+static void
+record_asm_reg_life (insn, regstack, operands, constraints,
+ n_inputs, n_outputs)
+ rtx insn;
+ stack regstack;
+ rtx *operands;
+ char **constraints;
+ int n_inputs, n_outputs;
+{
+ int i;
+ int n_operands = n_inputs + n_outputs;
+ int first_input = n_outputs;
+ int n_clobbers;
+ int malformed_asm = 0;
+ rtx body = PATTERN (insn);
+
+ int *operand_matches = (int *) alloca (n_operands * sizeof (int *));
+
+ enum reg_class *operand_class
+ = (enum reg_class *) alloca (n_operands * sizeof (enum reg_class *));
+
+ int reg_used_as_output[FIRST_PSEUDO_REGISTER];
+ int implicitly_dies[FIRST_PSEUDO_REGISTER];
+
+ rtx *clobber_reg;
+
+ /* Find out what the constraints require. If no constraint
+ alternative matches, this asm is malformed. */
+ i = constrain_asm_operands (n_operands, operands, constraints,
+ operand_matches, operand_class);
+ if (i < 0)
+ malformed_asm = 1;
+
+ /* Strip SUBREGs here to make the following code simpler. */
+ for (i = 0; i < n_operands; i++)
+ if (GET_CODE (operands[i]) == SUBREG
+ && GET_CODE (SUBREG_REG (operands[i])) == REG)
+ operands[i] = SUBREG_REG (operands[i]);
+
+ /* Set up CLOBBER_REG. */
+
+ n_clobbers = 0;
+
+ if (GET_CODE (body) == PARALLEL)
+ {
+ clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx *));
+
+ for (i = 0; i < XVECLEN (body, 0); i++)
+ if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
+ {
+ rtx clobber = XVECEXP (body, 0, i);
+ rtx reg = XEXP (clobber, 0);
+
+ if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
+ reg = SUBREG_REG (reg);
+
+ if (STACK_REG_P (reg))
+ {
+ clobber_reg[n_clobbers] = reg;
+ n_clobbers++;
+ }
+ }
+ }
+
+ /* Enforce rule #4: Output operands must specifically indicate which
+ reg an output appears in after an asm. "=f" is not allowed: the
+ operand constraints must select a class with a single reg.
+
+ Also enforce rule #5: Output operands must start at the top of
+ the reg-stack: output operands may not "skip" a reg. */
+
+ bzero ((char *) reg_used_as_output, sizeof (reg_used_as_output));
+ for (i = 0; i < n_outputs; i++)
+ if (STACK_REG_P (operands[i]))
+ if (reg_class_size[(int) operand_class[i]] != 1)
+ {
+ error_for_asm
+ (insn, "Output constraint %d must specify a single register", i);
+ malformed_asm = 1;
+ }
+ else
+ reg_used_as_output[REGNO (operands[i])] = 1;
+
+
+ /* Search for first non-popped reg. */
+ for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
+ if (! reg_used_as_output[i])
+ break;
+
+ /* If there are any other popped regs, that's an error. */
+ for (; i < LAST_STACK_REG + 1; i++)
+ if (reg_used_as_output[i])
+ break;
+
+ if (i != LAST_STACK_REG + 1)
+ {
+ error_for_asm (insn, "Output regs must be grouped at top of stack");
+ malformed_asm = 1;
+ }
+
+ /* Enforce rule #2: All implicitly popped input regs must be closer
+ to the top of the reg-stack than any input that is not implicitly
+ popped. */
+
+ bzero ((char *) implicitly_dies, sizeof (implicitly_dies));
+ for (i = first_input; i < first_input + n_inputs; i++)
+ if (STACK_REG_P (operands[i]))
+ {
+ /* An input reg is implicitly popped if it is tied to an
+ output, or if there is a CLOBBER for it. */
+ int j;
+
+ for (j = 0; j < n_clobbers; j++)
+ if (operands_match_p (clobber_reg[j], operands[i]))
+ break;
+
+ if (j < n_clobbers || operand_matches[i] >= 0)
+ implicitly_dies[REGNO (operands[i])] = 1;
+ }
+
+ /* Search for first non-popped reg. */
+ for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
+ if (! implicitly_dies[i])
+ break;
+
+ /* If there are any other popped regs, that's an error. */
+ for (; i < LAST_STACK_REG + 1; i++)
+ if (implicitly_dies[i])
+ break;
+
+ if (i != LAST_STACK_REG + 1)
+ {
+ error_for_asm (insn,
+ "Implicitly popped regs must be grouped at top of stack");
+ malformed_asm = 1;
+ }
+
+ /* Enfore rule #3: If any input operand uses the "f" constraint, all
+ output constraints must use the "&" earlyclobber.
+
+ ??? Detect this more deterministically by having constraint_asm_operands
+ record any earlyclobber. */
+
+ for (i = first_input; i < first_input + n_inputs; i++)
+ if (operand_matches[i] == -1)
+ {
+ int j;
+
+ for (j = 0; j < n_outputs; j++)
+ if (operands_match_p (operands[j], operands[i]))
+ {
+ error_for_asm (insn,
+ "Output operand %d must use `&' constraint", j);
+ malformed_asm = 1;
+ }
+ }
+
+ if (malformed_asm)
+ {
+ /* Avoid further trouble with this insn. */
+ PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
+ PUT_MODE (insn, VOIDmode);
+ return;
+ }
+
+ /* Process all outputs */
+ for (i = 0; i < n_outputs; i++)
+ {
+ rtx op = operands[i];
+
+ if (! STACK_REG_P (op))
+ if (stack_regs_mentioned_p (op))
+ abort ();
+ else
+ continue;
+
+ /* Each destination is dead before this insn. If the
+ destination is not used after this insn, record this with
+ REG_UNUSED. */
+
+ if (! TEST_HARD_REG_BIT (regstack->reg_set, REGNO (op)))
+ REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_UNUSED, op,
+ REG_NOTES (insn));
+
+ CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (op));
+ }
+
+ /* Process all inputs */
+ for (i = first_input; i < first_input + n_inputs; i++)
+ {
+ if (! STACK_REG_P (operands[i]))
+ if (stack_regs_mentioned_p (operands[i]))
+ abort ();
+ else
+ continue;
+
+ /* If an input is dead after the insn, record a death note.
+ But don't record a death note if there is already a death note,
+ or if the input is also an output. */
+
+ if (! TEST_HARD_REG_BIT (regstack->reg_set, REGNO (operands[i]))
+ && operand_matches[i] == -1
+ && find_regno_note (insn, REG_DEAD, REGNO (operands[i])) == NULL_RTX)
+ REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_DEAD, operands[i],
+ REG_NOTES (insn));
+
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (operands[i]));
+ }
+}
+
+/* Scan PAT, which is part of INSN, and record registers appearing in
+ a SET_DEST in DEST, and other registers in SRC.
+
+ This function does not know about SET_DESTs that are both input and
+ output (such as ZERO_EXTRACT) - this cannot happen on a 387. */
+
+static void
+record_reg_life_pat (pat, src, dest, douse)
+ rtx pat;
+ HARD_REG_SET *src, *dest;
+ int douse;
+{
+ register char *fmt;
+ register int i;
+
+ if (STACK_REG_P (pat)
+ || GET_CODE (pat) == SUBREG && STACK_REG_P (SUBREG_REG (pat)))
+ {
+ if (src)
+ mark_regs_pat (pat, src);
+
+ if (dest)
+ mark_regs_pat (pat, dest);
+
+ return;
+ }
+
+ if (GET_CODE (pat) == SET)
+ {
+ record_reg_life_pat (XEXP (pat, 0), NULL_PTR, dest, 0);
+ record_reg_life_pat (XEXP (pat, 1), src, NULL_PTR, 0);
+ return;
+ }
+
+ /* We don't need to consider either of these cases. */
+ if (GET_CODE (pat) == USE && !douse || GET_CODE (pat) == CLOBBER)
+ return;
+
+ fmt = GET_RTX_FORMAT (GET_CODE (pat));
+ for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'E')
+ {
+ register int j;
+
+ for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
+ record_reg_life_pat (XVECEXP (pat, i, j), src, dest, 0);
+ }
+ else if (fmt[i] == 'e')
+ record_reg_life_pat (XEXP (pat, i), src, dest, 0);
+ }
+}
+
+/* Calculate the number of inputs and outputs in BODY, an
+ asm_operands. N_OPERANDS is the total number of operands, and
+ N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
+ placed. */
+
+static void
+get_asm_operand_lengths (body, n_operands, n_inputs, n_outputs)
+ rtx body;
+ int n_operands;
+ int *n_inputs, *n_outputs;
+{
+ if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
+ *n_inputs = ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
+
+ else if (GET_CODE (body) == ASM_OPERANDS)
+ *n_inputs = ASM_OPERANDS_INPUT_LENGTH (body);
+
+ else if (GET_CODE (body) == PARALLEL
+ && GET_CODE (XVECEXP (body, 0, 0)) == SET)
+ *n_inputs = ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)));
+
+ else if (GET_CODE (body) == PARALLEL
+ && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
+ *n_inputs = ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
+ else
+ abort ();
+
+ *n_outputs = n_operands - *n_inputs;
+}
+
+/* Scan INSN, which is in BLOCK, and record the life & death of stack
+ registers in REGSTACK. This function is called to process insns from
+ the last insn in a block to the first. The actual scanning is done in
+ record_reg_life_pat.
+
+ If a register is live after a CALL_INSN, but is not a value return
+ register for that CALL_INSN, then code is emitted to initialize that
+ register. The block_end[] data is kept accurate.
+
+ Existing death and unset notes for stack registers are deleted
+ before processing the insn. */
+
+static void
+record_reg_life (insn, block, regstack)
+ rtx insn;
+ int block;
+ stack regstack;
+{
+ rtx note, *note_link;
+ int n_operands;
+
+ if ((GET_CODE (insn) != INSN && GET_CODE (insn) != CALL_INSN)
+ || INSN_DELETED_P (insn))
+ return;
+
+ /* Strip death notes for stack regs from this insn */
+
+ note_link = &REG_NOTES(insn);
+ for (note = *note_link; note; note = XEXP (note, 1))
+ if (STACK_REG_P (XEXP (note, 0))
+ && (REG_NOTE_KIND (note) == REG_DEAD
+ || REG_NOTE_KIND (note) == REG_UNUSED))
+ *note_link = XEXP (note, 1);
+ else
+ note_link = &XEXP (note, 1);
+
+ /* Process all patterns in the insn. */
+
+ n_operands = asm_noperands (PATTERN (insn));
+ if (n_operands >= 0)
+ {
+ /* This insn is an `asm' with operands. Decode the operands,
+ decide how many are inputs, and record the life information. */
+
+ rtx operands[MAX_RECOG_OPERANDS];
+ rtx body = PATTERN (insn);
+ int n_inputs, n_outputs;
+ char **constraints = (char **) alloca (n_operands * sizeof (char *));
+
+ decode_asm_operands (body, operands, NULL_PTR, constraints, NULL_PTR);
+ get_asm_operand_lengths (body, n_operands, &n_inputs, &n_outputs);
+ record_asm_reg_life (insn, regstack, operands, constraints,
+ n_inputs, n_outputs);
+ return;
+ }
+
+ {
+ HARD_REG_SET src, dest;
+ int regno;
+
+ CLEAR_HARD_REG_SET (src);
+ CLEAR_HARD_REG_SET (dest);
+
+ if (GET_CODE (insn) == CALL_INSN)
+ for (note = CALL_INSN_FUNCTION_USAGE (insn);
+ note;
+ note = XEXP (note, 1))
+ if (GET_CODE (XEXP (note, 0)) == USE)
+ record_reg_life_pat (SET_DEST (XEXP (note, 0)), &src, NULL_PTR, 0);
+
+ record_reg_life_pat (PATTERN (insn), &src, &dest, 0);
+ for (regno = FIRST_STACK_REG; regno <= LAST_STACK_REG; regno++)
+ if (! TEST_HARD_REG_BIT (regstack->reg_set, regno))
+ {
+ if (TEST_HARD_REG_BIT (src, regno)
+ && ! TEST_HARD_REG_BIT (dest, regno))
+ REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_DEAD,
+ FP_MODE_REG (regno, DFmode),
+ REG_NOTES (insn));
+ else if (TEST_HARD_REG_BIT (dest, regno))
+ REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_UNUSED,
+ FP_MODE_REG (regno, DFmode),
+ REG_NOTES (insn));
+ }
+
+ if (GET_CODE (insn) == CALL_INSN)
+ {
+ int reg;
+
+ /* There might be a reg that is live after a function call.
+ Initialize it to zero so that the program does not crash. See
+ comment towards the end of stack_reg_life_analysis(). */
+
+ for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
+ if (! TEST_HARD_REG_BIT (dest, reg)
+ && TEST_HARD_REG_BIT (regstack->reg_set, reg))
+ {
+ rtx init, pat;
+
+ /* The insn will use virtual register numbers, and so
+ convert_regs is expected to process these. But BLOCK_NUM
+ cannot be used on these insns, because they do not appear in
+ block_number[]. */
+
+ pat = gen_rtx (SET, VOIDmode, FP_MODE_REG (reg, DFmode),
+ CONST0_RTX (DFmode));
+ init = emit_insn_after (pat, insn);
+ PUT_MODE (init, QImode);
+
+ CLEAR_HARD_REG_BIT (regstack->reg_set, reg);
+
+ /* If the CALL_INSN was the end of a block, move the
+ block_end to point to the new insn. */
+
+ if (block_end[block] == insn)
+ block_end[block] = init;
+ }
+
+ /* Some regs do not survive a CALL */
+ AND_COMPL_HARD_REG_SET (regstack->reg_set, call_used_reg_set);
+ }
+
+ AND_COMPL_HARD_REG_SET (regstack->reg_set, dest);
+ IOR_HARD_REG_SET (regstack->reg_set, src);
+ }
+}
+
+/* Find all basic blocks of the function, which starts with FIRST.
+ For each JUMP_INSN, build the chain of LABEL_REFS on each CODE_LABEL. */
+
+static void
+find_blocks (first)
+ rtx first;
+{
+ register rtx insn;
+ register int block;
+ register RTX_CODE prev_code = BARRIER;
+ register RTX_CODE code;
+ rtx label_value_list = 0;
+
+ /* Record where all the blocks start and end.
+ Record which basic blocks control can drop in to. */
+
+ block = -1;
+ for (insn = first; insn; insn = NEXT_INSN (insn))
+ {
+ /* Note that this loop must select the same block boundaries
+ as code in reg_to_stack, but that these are not the same
+ as those selected in flow.c. */
+
+ code = GET_CODE (insn);
+
+ if (code == CODE_LABEL
+ || (prev_code != INSN
+ && prev_code != CALL_INSN
+ && prev_code != CODE_LABEL
+ && GET_RTX_CLASS (code) == 'i'))
+ {
+ block_begin[++block] = insn;
+ block_end[block] = insn;
+ block_drops_in[block] = prev_code != BARRIER;
+ }
+ else if (GET_RTX_CLASS (code) == 'i')
+ block_end[block] = insn;
+
+ if (GET_RTX_CLASS (code) == 'i')
+ {
+ rtx note;
+
+ /* Make a list of all labels referred to other than by jumps. */
+ for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
+ if (REG_NOTE_KIND (note) == REG_LABEL)
+ label_value_list = gen_rtx (EXPR_LIST, VOIDmode, XEXP (note, 0),
+ label_value_list);
+ }
+
+ block_number[INSN_UID (insn)] = block;
+
+ if (code != NOTE)
+ prev_code = code;
+ }
+
+ if (block + 1 != blocks)
+ abort ();
+
+ /* generate all label references to the corresponding jump insn */
+ for (block = 0; block < blocks; block++)
+ {
+ insn = block_end[block];
+
+ if (GET_CODE (insn) == JUMP_INSN)
+ {
+ rtx pat = PATTERN (insn);
+ int computed_jump = 0;
+ rtx x;
+
+ if (GET_CODE (pat) == PARALLEL)
+ {
+ int len = XVECLEN (pat, 0);
+ int has_use_labelref = 0;
+ int i;
+
+ for (i = len - 1; i >= 0; i--)
+ if (GET_CODE (XVECEXP (pat, 0, i)) == USE
+ && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == LABEL_REF)
+ has_use_labelref = 1;
+
+ if (! has_use_labelref)
+ for (i = len - 1; i >= 0; i--)
+ if (GET_CODE (XVECEXP (pat, 0, i)) == SET
+ && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
+ && uses_reg_or_mem (SET_SRC (XVECEXP (pat, 0, i))))
+ computed_jump = 1;
+ }
+ else if (GET_CODE (pat) == SET
+ && SET_DEST (pat) == pc_rtx
+ && uses_reg_or_mem (SET_SRC (pat)))
+ computed_jump = 1;
+
+ if (computed_jump)
+ {
+ for (x = label_value_list; x; x = XEXP (x, 1))
+ record_label_references (insn,
+ gen_rtx (LABEL_REF, VOIDmode,
+ XEXP (x, 0)));
+
+ for (x = forced_labels; x; x = XEXP (x, 1))
+ record_label_references (insn,
+ gen_rtx (LABEL_REF, VOIDmode,
+ XEXP (x, 0)));
+ }
+
+ record_label_references (insn, pat);
+ }
+ }
+}
+
+/* Return 1 if X contain a REG or MEM that is not in the constant pool. */
+
+static int
+uses_reg_or_mem (x)
+ rtx x;
+{
+ enum rtx_code code = GET_CODE (x);
+ int i, j;
+ char *fmt;
+
+ if (code == REG
+ || (code == MEM
+ && ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
+ && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))))
+ return 1;
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e'
+ && uses_reg_or_mem (XEXP (x, i)))
+ return 1;
+
+ if (fmt[i] == 'E')
+ for (j = 0; j < XVECLEN (x, i); j++)
+ if (uses_reg_or_mem (XVECEXP (x, i, j)))
+ return 1;
+ }
+
+ return 0;
+}
+
+/* If current function returns its result in an fp stack register,
+ return the REG. Otherwise, return 0. */
+
+static rtx
+stack_result (decl)
+ tree decl;
+{
+ rtx result = DECL_RTL (DECL_RESULT (decl));
+
+ if (result != 0
+ && ! (GET_CODE (result) == REG
+ && REGNO (result) < FIRST_PSEUDO_REGISTER))
+ {
+#ifdef FUNCTION_OUTGOING_VALUE
+ result
+ = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
+#else
+ result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
+#endif
+ }
+
+ return result != 0 && STACK_REG_P (result) ? result : 0;
+}
+
+/* Determine the which registers are live at the start of each basic
+ block of the function whose first insn is FIRST.
+
+ First, if the function returns a real_type, mark the function
+ return type as live at each return point, as the RTL may not give any
+ hint that the register is live.
+
+ Then, start with the last block and work back to the first block.
+ Similarly, work backwards within each block, insn by insn, recording
+ which regs are dead and which are used (and therefore live) in the
+ hard reg set of block_stack_in[].
+
+ After processing each basic block, if there is a label at the start
+ of the block, propagate the live registers to all jumps to this block.
+
+ As a special case, if there are regs live in this block, that are
+ not live in a block containing a jump to this label, and the block
+ containing the jump has already been processed, we must propagate this
+ block's entry register life back to the block containing the jump, and
+ restart life analysis from there.
+
+ In the worst case, this function may traverse the insns
+ REG_STACK_SIZE times. This is necessary, since a jump towards the end
+ of the insns may not know that a reg is live at a target that is early
+ in the insns. So we back up and start over with the new reg live.
+
+ If there are registers that are live at the start of the function,
+ insns are emitted to initialize these registers. Something similar is
+ done after CALL_INSNs in record_reg_life. */
+
+static void
+stack_reg_life_analysis (first, stackentry)
+ rtx first;
+ HARD_REG_SET *stackentry;
+{
+ int reg, block;
+ struct stack_def regstack;
+
+ {
+ rtx retvalue;
+
+ if (retvalue = stack_result (current_function_decl))
+ {
+ /* Find all RETURN insns and mark them. */
+
+ for (block = blocks - 1; --block >= 0;)
+ if (GET_CODE (block_end[block]) == JUMP_INSN
+ && GET_CODE (PATTERN (block_end[block])) == RETURN)
+ mark_regs_pat (retvalue, block_out_reg_set+block);
+
+ /* Mark off the end of last block if we "fall off" the end of the
+ function into the epilogue. */
+
+ if (GET_CODE (block_end[blocks-1]) != JUMP_INSN
+ || GET_CODE (PATTERN (block_end[blocks-1])) == RETURN)
+ mark_regs_pat (retvalue, block_out_reg_set+blocks-1);
+ }
+ }
+
+ /* now scan all blocks backward for stack register use */
+
+ block = blocks - 1;
+ while (block >= 0)
+ {
+ register rtx insn, prev;
+
+ /* current register status at last instruction */
+
+ COPY_HARD_REG_SET (regstack.reg_set, block_out_reg_set[block]);
+
+ prev = block_end[block];
+ do
+ {
+ insn = prev;
+ prev = PREV_INSN (insn);
+
+ /* If the insn is a CALL_INSN, we need to ensure that
+ everything dies. But otherwise don't process unless there
+ are some stack regs present. */
+
+ if (GET_MODE (insn) == QImode || GET_CODE (insn) == CALL_INSN)
+ record_reg_life (insn, block, &regstack);
+
+ } while (insn != block_begin[block]);
+
+ /* Set the state at the start of the block. Mark that no
+ register mapping information known yet. */
+
+ COPY_HARD_REG_SET (block_stack_in[block].reg_set, regstack.reg_set);
+ block_stack_in[block].top = -2;
+
+ /* If there is a label, propagate our register life to all jumps
+ to this label. */
+
+ if (GET_CODE (insn) == CODE_LABEL)
+ {
+ register rtx label;
+ int must_restart = 0;
+
+ for (label = LABEL_REFS (insn); label != insn;
+ label = LABEL_NEXTREF (label))
+ {
+ int jump_block = BLOCK_NUM (CONTAINING_INSN (label));
+
+ if (jump_block < block)
+ IOR_HARD_REG_SET (block_out_reg_set[jump_block],
+ block_stack_in[block].reg_set);
+ else
+ {
+ /* The block containing the jump has already been
+ processed. If there are registers that were not known
+ to be live then, but are live now, we must back up
+ and restart life analysis from that point with the new
+ life information. */
+
+ GO_IF_HARD_REG_SUBSET (block_stack_in[block].reg_set,
+ block_out_reg_set[jump_block],
+ win);
+
+ IOR_HARD_REG_SET (block_out_reg_set[jump_block],
+ block_stack_in[block].reg_set);
+
+ block = jump_block;
+ must_restart = 1;
+
+ win:
+ ;
+ }
+ }
+ if (must_restart)
+ continue;
+ }
+
+ if (block_drops_in[block])
+ IOR_HARD_REG_SET (block_out_reg_set[block-1],
+ block_stack_in[block].reg_set);
+
+ block -= 1;
+ }
+
+ /* If any reg is live at the start of the first block of a
+ function, then we must guarantee that the reg holds some value by
+ generating our own "load" of that register. Otherwise a 387 would
+ fault trying to access an empty register. */
+
+ /* Load zero into each live register. The fact that a register
+ appears live at the function start necessarily implies an error
+ in the user program: it means that (unless the offending code is *never*
+ executed) this program is using uninitialised floating point
+ variables. In order to keep broken code like this happy, we initialise
+ those variables with zero.
+
+ Note that we are inserting virtual register references here:
+ these insns must be processed by convert_regs later. Also, these
+ insns will not be in block_number, so BLOCK_NUM() will fail for them. */
+
+ for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; reg--)
+ if (TEST_HARD_REG_BIT (block_stack_in[0].reg_set, reg)
+ && ! TEST_HARD_REG_BIT (*stackentry, reg))
+ {
+ rtx init_rtx;
+
+ init_rtx = gen_rtx (SET, VOIDmode, FP_MODE_REG(reg, DFmode),
+ CONST0_RTX (DFmode));
+ block_begin[0] = emit_insn_after (init_rtx, first);
+ PUT_MODE (block_begin[0], QImode);
+
+ CLEAR_HARD_REG_BIT (block_stack_in[0].reg_set, reg);
+ }
+}
+
+/*****************************************************************************
+ This section deals with stack register substitution, and forms the second
+ pass over the RTL.
+ *****************************************************************************/
+
+/* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
+ the desired hard REGNO. */
+
+static void
+replace_reg (reg, regno)
+ rtx *reg;
+ int regno;
+{
+ if (regno < FIRST_STACK_REG || regno > LAST_STACK_REG
+ || ! STACK_REG_P (*reg))
+ abort ();
+
+ switch (GET_MODE_CLASS (GET_MODE (*reg)))
+ {
+ default: abort ();
+ case MODE_FLOAT:
+ case MODE_COMPLEX_FLOAT:;
+ }
+
+ *reg = FP_MODE_REG (regno, GET_MODE (*reg));
+}
+
+/* Remove a note of type NOTE, which must be found, for register
+ number REGNO from INSN. Remove only one such note. */
+
+static void
+remove_regno_note (insn, note, regno)
+ rtx insn;
+ enum reg_note note;
+ int regno;
+{
+ register rtx *note_link, this;
+
+ note_link = &REG_NOTES(insn);
+ for (this = *note_link; this; this = XEXP (this, 1))
+ if (REG_NOTE_KIND (this) == note
+ && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
+ {
+ *note_link = XEXP (this, 1);
+ return;
+ }
+ else
+ note_link = &XEXP (this, 1);
+
+ abort ();
+}
+
+/* Find the hard register number of virtual register REG in REGSTACK.
+ The hard register number is relative to the top of the stack. -1 is
+ returned if the register is not found. */
+
+static int
+get_hard_regnum (regstack, reg)
+ stack regstack;
+ rtx reg;
+{
+ int i;
+
+ if (! STACK_REG_P (reg))
+ abort ();
+
+ for (i = regstack->top; i >= 0; i--)
+ if (regstack->reg[i] == REGNO (reg))
+ break;
+
+ return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
+}
+
+/* Delete INSN from the RTL. Mark the insn, but don't remove it from
+ the chain of insns. Doing so could confuse block_begin and block_end
+ if this were the only insn in the block. */
+
+static void
+delete_insn_for_stacker (insn)
+ rtx insn;
+{
+ PUT_CODE (insn, NOTE);
+ NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
+ NOTE_SOURCE_FILE (insn) = 0;
+}
+
+/* Emit an insn to pop virtual register REG before or after INSN.
+ REGSTACK is the stack state after INSN and is updated to reflect this
+ pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
+ is represented as a SET whose destination is the register to be popped
+ and source is the top of stack. A death note for the top of stack
+ cases the movdf pattern to pop. */
+
+static rtx
+emit_pop_insn (insn, regstack, reg, when)
+ rtx insn;
+ stack regstack;
+ rtx reg;
+ rtx (*when)();
+{
+ rtx pop_insn, pop_rtx;
+ int hard_regno;
+
+ hard_regno = get_hard_regnum (regstack, reg);
+
+ if (hard_regno < FIRST_STACK_REG)
+ abort ();
+
+ pop_rtx = gen_rtx (SET, VOIDmode, FP_MODE_REG (hard_regno, DFmode),
+ FP_MODE_REG (FIRST_STACK_REG, DFmode));
+
+ pop_insn = (*when) (pop_rtx, insn);
+ /* ??? This used to be VOIDmode, but that seems wrong. */
+ PUT_MODE (pop_insn, QImode);
+
+ REG_NOTES (pop_insn) = gen_rtx (EXPR_LIST, REG_DEAD,
+ FP_MODE_REG (FIRST_STACK_REG, DFmode),
+ REG_NOTES (pop_insn));
+
+ regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
+ = regstack->reg[regstack->top];
+ regstack->top -= 1;
+ CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
+
+ return pop_insn;
+}
+
+/* Emit an insn before or after INSN to swap virtual register REG with the
+ top of stack. WHEN should be `emit_insn_before' or `emit_insn_before'
+ REGSTACK is the stack state before the swap, and is updated to reflect
+ the swap. A swap insn is represented as a PARALLEL of two patterns:
+ each pattern moves one reg to the other.
+
+ If REG is already at the top of the stack, no insn is emitted. */
+
+static void
+emit_swap_insn (insn, regstack, reg)
+ rtx insn;
+ stack regstack;
+ rtx reg;
+{
+ int hard_regno;
+ rtx gen_swapdf();
+ rtx swap_rtx, swap_insn;
+ int tmp, other_reg; /* swap regno temps */
+ rtx i1; /* the stack-reg insn prior to INSN */
+ rtx i1set = NULL_RTX; /* the SET rtx within I1 */
+
+ hard_regno = get_hard_regnum (regstack, reg);
+
+ if (hard_regno < FIRST_STACK_REG)
+ abort ();
+ if (hard_regno == FIRST_STACK_REG)
+ return;
+
+ other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
+
+ tmp = regstack->reg[other_reg];
+ regstack->reg[other_reg] = regstack->reg[regstack->top];
+ regstack->reg[regstack->top] = tmp;
+
+ /* Find the previous insn involving stack regs, but don't go past
+ any labels, calls or jumps. */
+ i1 = prev_nonnote_insn (insn);
+ while (i1 && GET_CODE (i1) == INSN && GET_MODE (i1) != QImode)
+ i1 = prev_nonnote_insn (i1);
+
+ if (i1)
+ i1set = single_set (i1);
+
+ if (i1set)
+ {
+ rtx i2; /* the stack-reg insn prior to I1 */
+ rtx i1src = *get_true_reg (&SET_SRC (i1set));
+ rtx i1dest = *get_true_reg (&SET_DEST (i1set));
+
+ /* If the previous register stack push was from the reg we are to
+ swap with, omit the swap. */
+
+ if (GET_CODE (i1dest) == REG && REGNO (i1dest) == FIRST_STACK_REG
+ && GET_CODE (i1src) == REG && REGNO (i1src) == hard_regno - 1
+ && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
+ return;
+
+ /* If the previous insn wrote to the reg we are to swap with,
+ omit the swap. */
+
+ if (GET_CODE (i1dest) == REG && REGNO (i1dest) == hard_regno
+ && GET_CODE (i1src) == REG && REGNO (i1src) == FIRST_STACK_REG
+ && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
+ return;
+ }
+
+ if (GET_RTX_CLASS (GET_CODE (i1)) == 'i' && sets_cc0_p (PATTERN (i1)))
+ {
+ i1 = next_nonnote_insn (i1);
+ if (i1 == insn)
+ abort ();
+ }
+
+ swap_rtx = gen_swapdf (FP_MODE_REG (hard_regno, DFmode),
+ FP_MODE_REG (FIRST_STACK_REG, DFmode));
+ swap_insn = emit_insn_after (swap_rtx, i1);
+ /* ??? This used to be VOIDmode, but that seems wrong. */
+ PUT_MODE (swap_insn, QImode);
+}
+
+/* Handle a move to or from a stack register in PAT, which is in INSN.
+ REGSTACK is the current stack. */
+
+static void
+move_for_stack_reg (insn, regstack, pat)
+ rtx insn;
+ stack regstack;
+ rtx pat;
+{
+ rtx *psrc = get_true_reg (&SET_SRC (pat));
+ rtx *pdest = get_true_reg (&SET_DEST (pat));
+ rtx src, dest;
+ rtx note;
+
+ src = *psrc; dest = *pdest;
+
+ if (STACK_REG_P (src) && STACK_REG_P (dest))
+ {
+ /* Write from one stack reg to another. If SRC dies here, then
+ just change the register mapping and delete the insn. */
+
+ note = find_regno_note (insn, REG_DEAD, REGNO (src));
+ if (note)
+ {
+ int i;
+
+ /* If this is a no-op move, there must not be a REG_DEAD note. */
+ if (REGNO (src) == REGNO (dest))
+ abort ();
+
+ for (i = regstack->top; i >= 0; i--)
+ if (regstack->reg[i] == REGNO (src))
+ break;
+
+ /* The source must be live, and the dest must be dead. */
+ if (i < 0 || get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
+ abort ();
+
+ /* It is possible that the dest is unused after this insn.
+ If so, just pop the src. */
+
+ if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
+ {
+ emit_pop_insn (insn, regstack, src, emit_insn_after);
+
+ delete_insn_for_stacker (insn);
+ return;
+ }
+
+ regstack->reg[i] = REGNO (dest);
+
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
+ CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
+
+ delete_insn_for_stacker (insn);
+
+ return;
+ }
+
+ /* The source reg does not die. */
+
+ /* If this appears to be a no-op move, delete it, or else it
+ will confuse the machine description output patterns. But if
+ it is REG_UNUSED, we must pop the reg now, as per-insn processing
+ for REG_UNUSED will not work for deleted insns. */
+
+ if (REGNO (src) == REGNO (dest))
+ {
+ if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
+ emit_pop_insn (insn, regstack, dest, emit_insn_after);
+
+ delete_insn_for_stacker (insn);
+ return;
+ }
+
+ /* The destination ought to be dead */
+ if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
+ abort ();
+
+ replace_reg (psrc, get_hard_regnum (regstack, src));
+
+ regstack->reg[++regstack->top] = REGNO (dest);
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
+ replace_reg (pdest, FIRST_STACK_REG);
+ }
+ else if (STACK_REG_P (src))
+ {
+ /* Save from a stack reg to MEM, or possibly integer reg. Since
+ only top of stack may be saved, emit an exchange first if
+ needs be. */
+
+ emit_swap_insn (insn, regstack, src);
+
+ note = find_regno_note (insn, REG_DEAD, REGNO (src));
+ if (note)
+ {
+ replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
+ regstack->top--;
+ CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
+ }
+ else if (GET_MODE (src) == XFmode && regstack->top != REG_STACK_SIZE)
+ {
+ /* A 387 cannot write an XFmode value to a MEM without
+ clobbering the source reg. The output code can handle
+ this by reading back the value from the MEM.
+ But it is more efficient to use a temp register if one is
+ available. Push the source value here if the register
+ stack is not full, and then write the value to memory via
+ a pop. */
+ rtx push_rtx, push_insn;
+ rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, XFmode);
+
+ push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
+ push_insn = emit_insn_before (push_rtx, insn);
+ PUT_MODE (push_insn, QImode);
+ REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_DEAD, top_stack_reg,
+ REG_NOTES (insn));
+ }
+
+ replace_reg (psrc, FIRST_STACK_REG);
+ }
+ else if (STACK_REG_P (dest))
+ {
+ /* Load from MEM, or possibly integer REG or constant, into the
+ stack regs. The actual target is always the top of the
+ stack. The stack mapping is changed to reflect that DEST is
+ now at top of stack. */
+
+ /* The destination ought to be dead */
+ if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
+ abort ();
+
+ if (regstack->top >= REG_STACK_SIZE)
+ abort ();
+
+ regstack->reg[++regstack->top] = REGNO (dest);
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
+ replace_reg (pdest, FIRST_STACK_REG);
+ }
+ else
+ abort ();
+}
+
+void
+swap_rtx_condition (pat)
+ rtx pat;
+{
+ register char *fmt;
+ register int i;
+
+ if (GET_RTX_CLASS (GET_CODE (pat)) == '<')
+ {
+ PUT_CODE (pat, swap_condition (GET_CODE (pat)));
+ return;
+ }
+
+ fmt = GET_RTX_FORMAT (GET_CODE (pat));
+ for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'E')
+ {
+ register int j;
+
+ for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
+ swap_rtx_condition (XVECEXP (pat, i, j));
+ }
+ else if (fmt[i] == 'e')
+ swap_rtx_condition (XEXP (pat, i));
+ }
+}
+
+/* Handle a comparison. Special care needs to be taken to avoid
+ causing comparisons that a 387 cannot do correctly, such as EQ.
+
+ Also, a pop insn may need to be emitted. The 387 does have an
+ `fcompp' insn that can pop two regs, but it is sometimes too expensive
+ to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
+ set up. */
+
+static void
+compare_for_stack_reg (insn, regstack, pat)
+ rtx insn;
+ stack regstack;
+ rtx pat;
+{
+ rtx *src1, *src2;
+ rtx src1_note, src2_note;
+
+ src1 = get_true_reg (&XEXP (SET_SRC (pat), 0));
+ src2 = get_true_reg (&XEXP (SET_SRC (pat), 1));
+
+ /* ??? If fxch turns out to be cheaper than fstp, give priority to
+ registers that die in this insn - move those to stack top first. */
+ if (! STACK_REG_P (*src1)
+ || (STACK_REG_P (*src2)
+ && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
+ {
+ rtx temp, next;
+
+ temp = XEXP (SET_SRC (pat), 0);
+ XEXP (SET_SRC (pat), 0) = XEXP (SET_SRC (pat), 1);
+ XEXP (SET_SRC (pat), 1) = temp;
+
+ src1 = get_true_reg (&XEXP (SET_SRC (pat), 0));
+ src2 = get_true_reg (&XEXP (SET_SRC (pat), 1));
+
+ next = next_cc0_user (insn);
+ if (next == NULL_RTX)
+ abort ();
+
+ swap_rtx_condition (PATTERN (next));
+ INSN_CODE (next) = -1;
+ INSN_CODE (insn) = -1;
+ }
+
+ /* We will fix any death note later. */
+
+ src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
+
+ if (STACK_REG_P (*src2))
+ src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
+ else
+ src2_note = NULL_RTX;
+
+ emit_swap_insn (insn, regstack, *src1);
+
+ replace_reg (src1, FIRST_STACK_REG);
+
+ if (STACK_REG_P (*src2))
+ replace_reg (src2, get_hard_regnum (regstack, *src2));
+
+ if (src1_note)
+ {
+ CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (XEXP (src1_note, 0)));
+ replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
+ regstack->top--;
+ }
+
+ /* If the second operand dies, handle that. But if the operands are
+ the same stack register, don't bother, because only one death is
+ needed, and it was just handled. */
+
+ if (src2_note
+ && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
+ && REGNO (*src1) == REGNO (*src2)))
+ {
+ /* As a special case, two regs may die in this insn if src2 is
+ next to top of stack and the top of stack also dies. Since
+ we have already popped src1, "next to top of stack" is really
+ at top (FIRST_STACK_REG) now. */
+
+ if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
+ && src1_note)
+ {
+ CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (XEXP (src2_note, 0)));
+ replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
+ regstack->top--;
+ }
+ else
+ {
+ /* The 386 can only represent death of the first operand in
+ the case handled above. In all other cases, emit a separate
+ pop and remove the death note from here. */
+
+ link_cc0_insns (insn);
+
+ remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
+
+ emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
+ emit_insn_after);
+ }
+ }
+}
+
+/* Substitute new registers in PAT, which is part of INSN. REGSTACK
+ is the current register layout. */
+
+static void
+subst_stack_regs_pat (insn, regstack, pat)
+ rtx insn;
+ stack regstack;
+ rtx pat;
+{
+ rtx *dest, *src;
+ rtx *src1 = (rtx *) NULL_PTR, *src2;
+ rtx src1_note, src2_note;
+
+ if (GET_CODE (pat) != SET)
+ return;
+
+ dest = get_true_reg (&SET_DEST (pat));
+ src = get_true_reg (&SET_SRC (pat));
+
+ /* See if this is a `movM' pattern, and handle elsewhere if so. */
+
+ if (*dest != cc0_rtx
+ && (STACK_REG_P (*src)
+ || (STACK_REG_P (*dest)
+ && (GET_CODE (*src) == REG || GET_CODE (*src) == MEM
+ || GET_CODE (*src) == CONST_DOUBLE))))
+ move_for_stack_reg (insn, regstack, pat);
+ else
+ switch (GET_CODE (SET_SRC (pat)))
+ {
+ case COMPARE:
+ compare_for_stack_reg (insn, regstack, pat);
+ break;
+
+ case CALL:
+ {
+ int count;
+ for (count = HARD_REGNO_NREGS (REGNO (*dest), GET_MODE (*dest));
+ --count >= 0;)
+ {
+ regstack->reg[++regstack->top] = REGNO (*dest) + count;
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
+ }
+ }
+ replace_reg (dest, FIRST_STACK_REG);
+ break;
+
+ case REG:
+ /* This is a `tstM2' case. */
+ if (*dest != cc0_rtx)
+ abort ();
+
+ src1 = src;
+
+ /* Fall through. */
+
+ case FLOAT_TRUNCATE:
+ case SQRT:
+ case ABS:
+ case NEG:
+ /* These insns only operate on the top of the stack. DEST might
+ be cc0_rtx if we're processing a tstM pattern. Also, it's
+ possible that the tstM case results in a REG_DEAD note on the
+ source. */
+
+ if (src1 == 0)
+ src1 = get_true_reg (&XEXP (SET_SRC (pat), 0));
+
+ emit_swap_insn (insn, regstack, *src1);
+
+ src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
+
+ if (STACK_REG_P (*dest))
+ replace_reg (dest, FIRST_STACK_REG);
+
+ if (src1_note)
+ {
+ replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
+ regstack->top--;
+ CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
+ }
+
+ replace_reg (src1, FIRST_STACK_REG);
+
+ break;
+
+ case MINUS:
+ case DIV:
+ /* On i386, reversed forms of subM3 and divM3 exist for
+ MODE_FLOAT, so the same code that works for addM3 and mulM3
+ can be used. */
+ case MULT:
+ case PLUS:
+ /* These insns can accept the top of stack as a destination
+ from a stack reg or mem, or can use the top of stack as a
+ source and some other stack register (possibly top of stack)
+ as a destination. */
+
+ src1 = get_true_reg (&XEXP (SET_SRC (pat), 0));
+ src2 = get_true_reg (&XEXP (SET_SRC (pat), 1));
+
+ /* We will fix any death note later. */
+
+ if (STACK_REG_P (*src1))
+ src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
+ else
+ src1_note = NULL_RTX;
+ if (STACK_REG_P (*src2))
+ src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
+ else
+ src2_note = NULL_RTX;
+
+ /* If either operand is not a stack register, then the dest
+ must be top of stack. */
+
+ if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
+ emit_swap_insn (insn, regstack, *dest);
+ else
+ {
+ /* Both operands are REG. If neither operand is already
+ at the top of stack, choose to make the one that is the dest
+ the new top of stack. */
+
+ int src1_hard_regnum, src2_hard_regnum;
+
+ src1_hard_regnum = get_hard_regnum (regstack, *src1);
+ src2_hard_regnum = get_hard_regnum (regstack, *src2);
+ if (src1_hard_regnum == -1 || src2_hard_regnum == -1)
+ abort ();
+
+ if (src1_hard_regnum != FIRST_STACK_REG
+ && src2_hard_regnum != FIRST_STACK_REG)
+ emit_swap_insn (insn, regstack, *dest);
+ }
+
+ if (STACK_REG_P (*src1))
+ replace_reg (src1, get_hard_regnum (regstack, *src1));
+ if (STACK_REG_P (*src2))
+ replace_reg (src2, get_hard_regnum (regstack, *src2));
+
+ if (src1_note)
+ {
+ /* If the register that dies is at the top of stack, then
+ the destination is somewhere else - merely substitute it.
+ But if the reg that dies is not at top of stack, then
+ move the top of stack to the dead reg, as though we had
+ done the insn and then a store-with-pop. */
+
+ if (REGNO (XEXP (src1_note, 0)) == regstack->reg[regstack->top])
+ {
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
+ replace_reg (dest, get_hard_regnum (regstack, *dest));
+ }
+ else
+ {
+ int regno = get_hard_regnum (regstack, XEXP (src1_note, 0));
+
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
+ replace_reg (dest, regno);
+
+ regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
+ = regstack->reg[regstack->top];
+ }
+
+ CLEAR_HARD_REG_BIT (regstack->reg_set,
+ REGNO (XEXP (src1_note, 0)));
+ replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
+ regstack->top--;
+ }
+ else if (src2_note)
+ {
+ if (REGNO (XEXP (src2_note, 0)) == regstack->reg[regstack->top])
+ {
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
+ replace_reg (dest, get_hard_regnum (regstack, *dest));
+ }
+ else
+ {
+ int regno = get_hard_regnum (regstack, XEXP (src2_note, 0));
+
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
+ replace_reg (dest, regno);
+
+ regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
+ = regstack->reg[regstack->top];
+ }
+
+ CLEAR_HARD_REG_BIT (regstack->reg_set,
+ REGNO (XEXP (src2_note, 0)));
+ replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
+ regstack->top--;
+ }
+ else
+ {
+ SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
+ replace_reg (dest, get_hard_regnum (regstack, *dest));
+ }
+
+ break;
+
+ case UNSPEC:
+ switch (XINT (SET_SRC (pat), 1))
+ {
+ case 1: /* sin */
+ case 2: /* cos */
+ /* These insns only operate on the top of the stack. */
+
+ src1 = get_true_reg (&XVECEXP (SET_SRC (pat), 0, 0));
+
+ emit_swap_insn (insn, regstack, *src1);
+
+ src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
+
+ if (STACK_REG_P (*dest))
+ replace_reg (dest, FIRST_STACK_REG);
+
+ if (src1_note)
+ {
+ replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
+ regstack->top--;
+ CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
+ }
+
+ replace_reg (src1, FIRST_STACK_REG);
+
+ break;
+
+ default:
+ abort ();
+ }
+ break;
+
+ default:
+ abort ();
+ }
+}
+
+/* Substitute hard regnums for any stack regs in INSN, which has
+ N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
+ before the insn, and is updated with changes made here. CONSTRAINTS is
+ an array of the constraint strings used in the asm statement.
+
+ OPERANDS is an array of the operands, and OPERANDS_LOC is a
+ parallel array of where the operands were found. The output operands
+ all precede the input operands.
+
+ There are several requirements and assumptions about the use of
+ stack-like regs in asm statements. These rules are enforced by
+ record_asm_stack_regs; see comments there for details. Any
+ asm_operands left in the RTL at this point may be assume to meet the
+ requirements, since record_asm_stack_regs removes any problem asm. */
+
+static void
+subst_asm_stack_regs (insn, regstack, operands, operands_loc, constraints,
+ n_inputs, n_outputs)
+ rtx insn;
+ stack regstack;
+ rtx *operands, **operands_loc;
+ char **constraints;
+ int n_inputs, n_outputs;
+{
+ int n_operands = n_inputs + n_outputs;
+ int first_input = n_outputs;
+ rtx body = PATTERN (insn);
+
+ int *operand_matches = (int *) alloca (n_operands * sizeof (int *));
+ enum reg_class *operand_class
+ = (enum reg_class *) alloca (n_operands * sizeof (enum reg_class *));
+
+ rtx *note_reg; /* Array of note contents */
+ rtx **note_loc; /* Address of REG field of each note */
+ enum reg_note *note_kind; /* The type of each note */
+
+ rtx *clobber_reg;
+ rtx **clobber_loc;
+
+ struct stack_def temp_stack;
+ int n_notes;
+ int n_clobbers;
+ rtx note;
+ int i;
+
+ /* Find out what the constraints required. If no constraint
+ alternative matches, that is a compiler bug: we should have caught
+ such an insn during the life analysis pass (and reload should have
+ caught it regardless). */
+
+ i = constrain_asm_operands (n_operands, operands, constraints,
+ operand_matches, operand_class);
+ if (i < 0)
+ abort ();
+
+ /* Strip SUBREGs here to make the following code simpler. */
+ for (i = 0; i < n_operands; i++)
+ if (GET_CODE (operands[i]) == SUBREG
+ && GET_CODE (SUBREG_REG (operands[i])) == REG)
+ {
+ operands_loc[i] = & SUBREG_REG (operands[i]);
+ operands[i] = SUBREG_REG (operands[i]);
+ }
+
+ /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
+
+ for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
+ i++;
+
+ note_reg = (rtx *) alloca (i * sizeof (rtx));
+ note_loc = (rtx **) alloca (i * sizeof (rtx *));
+ note_kind = (enum reg_note *) alloca (i * sizeof (enum reg_note));
+
+ n_notes = 0;
+ for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
+ {
+ rtx reg = XEXP (note, 0);
+ rtx *loc = & XEXP (note, 0);
+
+ if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
+ {
+ loc = & SUBREG_REG (reg);
+ reg = SUBREG_REG (reg);
+ }
+
+ if (STACK_REG_P (reg)
+ && (REG_NOTE_KIND (note) == REG_DEAD
+ || REG_NOTE_KIND (note) == REG_UNUSED))
+ {
+ note_reg[n_notes] = reg;
+ note_loc[n_notes] = loc;
+ note_kind[n_notes] = REG_NOTE_KIND (note);
+ n_notes++;
+ }
+ }
+
+ /* Set up CLOBBER_REG and CLOBBER_LOC. */
+
+ n_clobbers = 0;
+
+ if (GET_CODE (body) == PARALLEL)
+ {
+ clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx *));
+ clobber_loc = (rtx **) alloca (XVECLEN (body, 0) * sizeof (rtx **));
+
+ for (i = 0; i < XVECLEN (body, 0); i++)
+ if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
+ {
+ rtx clobber = XVECEXP (body, 0, i);
+ rtx reg = XEXP (clobber, 0);
+ rtx *loc = & XEXP (clobber, 0);
+
+ if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
+ {
+ loc = & SUBREG_REG (reg);
+ reg = SUBREG_REG (reg);
+ }
+
+ if (STACK_REG_P (reg))
+ {
+ clobber_reg[n_clobbers] = reg;
+ clobber_loc[n_clobbers] = loc;
+ n_clobbers++;
+ }
+ }
+ }
+
+ bcopy ((char *) regstack, (char *) &temp_stack, sizeof (temp_stack));
+
+ /* Put the input regs into the desired place in TEMP_STACK. */
+
+ for (i = first_input; i < first_input + n_inputs; i++)
+ if (STACK_REG_P (operands[i])
+ && reg_class_subset_p (operand_class[i], FLOAT_REGS)
+ && operand_class[i] != FLOAT_REGS)
+ {
+ /* If an operand needs to be in a particular reg in
+ FLOAT_REGS, the constraint was either 't' or 'u'. Since
+ these constraints are for single register classes, and reload
+ guaranteed that operand[i] is already in that class, we can
+ just use REGNO (operands[i]) to know which actual reg this
+ operand needs to be in. */
+
+ int regno = get_hard_regnum (&temp_stack, operands[i]);
+
+ if (regno < 0)
+ abort ();
+
+ if (regno != REGNO (operands[i]))
+ {
+ /* operands[i] is not in the right place. Find it
+ and swap it with whatever is already in I's place.
+ K is where operands[i] is now. J is where it should
+ be. */
+ int j, k, temp;
+
+ k = temp_stack.top - (regno - FIRST_STACK_REG);
+ j = (temp_stack.top
+ - (REGNO (operands[i]) - FIRST_STACK_REG));
+
+ temp = temp_stack.reg[k];
+ temp_stack.reg[k] = temp_stack.reg[j];
+ temp_stack.reg[j] = temp;
+ }
+ }
+
+ /* emit insns before INSN to make sure the reg-stack is in the right
+ order. */
+
+ change_stack (insn, regstack, &temp_stack, emit_insn_before);
+
+ /* Make the needed input register substitutions. Do death notes and
+ clobbers too, because these are for inputs, not outputs. */
+
+ for (i = first_input; i < first_input + n_inputs; i++)
+ if (STACK_REG_P (operands[i]))
+ {
+ int regnum = get_hard_regnum (regstack, operands[i]);
+
+ if (regnum < 0)
+ abort ();
+
+ replace_reg (operands_loc[i], regnum);
+ }
+
+ for (i = 0; i < n_notes; i++)
+ if (note_kind[i] == REG_DEAD)
+ {
+ int regnum = get_hard_regnum (regstack, note_reg[i]);
+
+ if (regnum < 0)
+ abort ();
+
+ replace_reg (note_loc[i], regnum);
+ }
+
+ for (i = 0; i < n_clobbers; i++)
+ {
+ /* It's OK for a CLOBBER to reference a reg that is not live.
+ Don't try to replace it in that case. */
+ int regnum = get_hard_regnum (regstack, clobber_reg[i]);
+
+ if (regnum >= 0)
+ {
+ /* Sigh - clobbers always have QImode. But replace_reg knows
+ that these regs can't be MODE_INT and will abort. Just put
+ the right reg there without calling replace_reg. */
+
+ *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
+ }
+ }
+
+ /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
+
+ for (i = first_input; i < first_input + n_inputs; i++)
+ if (STACK_REG_P (operands[i]))
+ {
+ /* An input reg is implicitly popped if it is tied to an
+ output, or if there is a CLOBBER for it. */
+ int j;
+
+ for (j = 0; j < n_clobbers; j++)
+ if (operands_match_p (clobber_reg[j], operands[i]))
+ break;
+
+ if (j < n_clobbers || operand_matches[i] >= 0)
+ {
+ /* operands[i] might not be at the top of stack. But that's OK,
+ because all we need to do is pop the right number of regs
+ off of the top of the reg-stack. record_asm_stack_regs
+ guaranteed that all implicitly popped regs were grouped
+ at the top of the reg-stack. */
+
+ CLEAR_HARD_REG_BIT (regstack->reg_set,
+ regstack->reg[regstack->top]);
+ regstack->top--;
+ }
+ }
+
+ /* Now add to REGSTACK any outputs that the asm implicitly pushed.
+ Note that there isn't any need to substitute register numbers.
+ ??? Explain why this is true. */
+
+ for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
+ {
+ /* See if there is an output for this hard reg. */
+ int j;
+
+ for (j = 0; j < n_outputs; j++)
+ if (STACK_REG_P (operands[j]) && REGNO (operands[j]) == i)
+ {
+ regstack->reg[++regstack->top] = i;
+ SET_HARD_REG_BIT (regstack->reg_set, i);
+ break;
+ }
+ }
+
+ /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
+ input that the asm didn't implicitly pop. If the asm didn't
+ implicitly pop an input reg, that reg will still be live.
+
+ Note that we can't use find_regno_note here: the register numbers
+ in the death notes have already been substituted. */
+
+ for (i = 0; i < n_outputs; i++)
+ if (STACK_REG_P (operands[i]))
+ {
+ int j;
+
+ for (j = 0; j < n_notes; j++)
+ if (REGNO (operands[i]) == REGNO (note_reg[j])
+ && note_kind[j] == REG_UNUSED)
+ {
+ insn = emit_pop_insn (insn, regstack, operands[i],
+ emit_insn_after);
+ break;
+ }
+ }
+
+ for (i = first_input; i < first_input + n_inputs; i++)
+ if (STACK_REG_P (operands[i]))
+ {
+ int j;
+
+ for (j = 0; j < n_notes; j++)
+ if (REGNO (operands[i]) == REGNO (note_reg[j])
+ && note_kind[j] == REG_DEAD
+ && TEST_HARD_REG_BIT (regstack->reg_set, REGNO (operands[i])))
+ {
+ insn = emit_pop_insn (insn, regstack, operands[i],
+ emit_insn_after);
+ break;
+ }
+ }
+}
+
+/* Substitute stack hard reg numbers for stack virtual registers in
+ INSN. Non-stack register numbers are not changed. REGSTACK is the
+ current stack content. Insns may be emitted as needed to arrange the
+ stack for the 387 based on the contents of the insn. */
+
+static void
+subst_stack_regs (insn, regstack)
+ rtx insn;
+ stack regstack;
+{
+ register rtx *note_link, note;
+ register int i;
+ int n_operands;
+
+ if (GET_CODE (insn) == CALL_INSN)
+ {
+ int top = regstack->top;
+
+ /* If there are any floating point parameters to be passed in
+ registers for this call, make sure they are in the right
+ order. */
+
+ if (top >= 0)
+ {
+ straighten_stack (PREV_INSN (insn), regstack);
+
+ /* Now mark the arguments as dead after the call. */
+
+ while (regstack->top >= 0)
+ {
+ CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
+ regstack->top--;
+ }
+ }
+ }
+
+ /* Do the actual substitution if any stack regs are mentioned.
+ Since we only record whether entire insn mentions stack regs, and
+ subst_stack_regs_pat only works for patterns that contain stack regs,
+ we must check each pattern in a parallel here. A call_value_pop could
+ fail otherwise. */
+
+ if (GET_MODE (insn) == QImode)
+ {
+ n_operands = asm_noperands (PATTERN (insn));
+ if (n_operands >= 0)
+ {
+ /* This insn is an `asm' with operands. Decode the operands,
+ decide how many are inputs, and do register substitution.
+ Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
+
+ rtx operands[MAX_RECOG_OPERANDS];
+ rtx *operands_loc[MAX_RECOG_OPERANDS];
+ rtx body = PATTERN (insn);
+ int n_inputs, n_outputs;
+ char **constraints
+ = (char **) alloca (n_operands * sizeof (char *));
+
+ decode_asm_operands (body, operands, operands_loc,
+ constraints, NULL_PTR);
+ get_asm_operand_lengths (body, n_operands, &n_inputs, &n_outputs);
+ subst_asm_stack_regs (insn, regstack, operands, operands_loc,
+ constraints, n_inputs, n_outputs);
+ return;
+ }
+
+ if (GET_CODE (PATTERN (insn)) == PARALLEL)
+ for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
+ {
+ if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
+ subst_stack_regs_pat (insn, regstack,
+ XVECEXP (PATTERN (insn), 0, i));
+ }
+ else
+ subst_stack_regs_pat (insn, regstack, PATTERN (insn));
+ }
+
+ /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
+ REG_UNUSED will already have been dealt with, so just return. */
+
+ if (GET_CODE (insn) == NOTE)
+ return;
+
+ /* If there is a REG_UNUSED note on a stack register on this insn,
+ the indicated reg must be popped. The REG_UNUSED note is removed,
+ since the form of the newly emitted pop insn references the reg,
+ making it no longer `unset'. */
+
+ note_link = &REG_NOTES(insn);
+ for (note = *note_link; note; note = XEXP (note, 1))
+ if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
+ {
+ *note_link = XEXP (note, 1);
+ insn = emit_pop_insn (insn, regstack, XEXP (note, 0), emit_insn_after);
+ }
+ else
+ note_link = &XEXP (note, 1);
+}
+
+/* Change the organization of the stack so that it fits a new basic
+ block. Some registers might have to be popped, but there can never be
+ a register live in the new block that is not now live.
+
+ Insert any needed insns before or after INSN. WHEN is emit_insn_before
+ or emit_insn_after. OLD is the original stack layout, and NEW is
+ the desired form. OLD is updated to reflect the code emitted, ie, it
+ will be the same as NEW upon return.
+
+ This function will not preserve block_end[]. But that information
+ is no longer needed once this has executed. */
+
+static void
+change_stack (insn, old, new, when)
+ rtx insn;
+ stack old;
+ stack new;
+ rtx (*when)();
+{
+ int reg;
+
+ /* We will be inserting new insns "backwards", by calling emit_insn_before.
+ If we are to insert after INSN, find the next insn, and insert before
+ it. */
+
+ if (when == emit_insn_after)
+ insn = NEXT_INSN (insn);
+
+ /* Pop any registers that are not needed in the new block. */
+
+ for (reg = old->top; reg >= 0; reg--)
+ if (! TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
+ emit_pop_insn (insn, old, FP_MODE_REG (old->reg[reg], DFmode),
+ emit_insn_before);
+
+ if (new->top == -2)
+ {
+ /* If the new block has never been processed, then it can inherit
+ the old stack order. */
+
+ new->top = old->top;
+ bcopy (old->reg, new->reg, sizeof (new->reg));
+ }
+ else
+ {
+ /* This block has been entered before, and we must match the
+ previously selected stack order. */
+
+ /* By now, the only difference should be the order of the stack,
+ not their depth or liveliness. */
+
+ GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
+
+ abort ();
+
+ win:
+
+ if (old->top != new->top)
+ abort ();
+
+ /* Loop here emitting swaps until the stack is correct. The
+ worst case number of swaps emitted is N + 2, where N is the
+ depth of the stack. In some cases, the reg at the top of
+ stack may be correct, but swapped anyway in order to fix
+ other regs. But since we never swap any other reg away from
+ its correct slot, this algorithm will converge. */
+
+ do
+ {
+ /* Swap the reg at top of stack into the position it is
+ supposed to be in, until the correct top of stack appears. */
+
+ while (old->reg[old->top] != new->reg[new->top])
+ {
+ for (reg = new->top; reg >= 0; reg--)
+ if (new->reg[reg] == old->reg[old->top])
+ break;
+
+ if (reg == -1)
+ abort ();
+
+ emit_swap_insn (insn, old,
+ FP_MODE_REG (old->reg[reg], DFmode));
+ }
+
+ /* See if any regs remain incorrect. If so, bring an
+ incorrect reg to the top of stack, and let the while loop
+ above fix it. */
+
+ for (reg = new->top; reg >= 0; reg--)
+ if (new->reg[reg] != old->reg[reg])
+ {
+ emit_swap_insn (insn, old,
+ FP_MODE_REG (old->reg[reg], DFmode));
+ break;
+ }
+ } while (reg >= 0);
+
+ /* At this point there must be no differences. */
+
+ for (reg = old->top; reg >= 0; reg--)
+ if (old->reg[reg] != new->reg[reg])
+ abort ();
+ }
+}
+
+/* Check PAT, which points to RTL in INSN, for a LABEL_REF. If it is
+ found, ensure that a jump from INSN to the code_label to which the
+ label_ref points ends up with the same stack as that at the
+ code_label. Do this by inserting insns just before the code_label to
+ pop and rotate the stack until it is in the correct order. REGSTACK
+ is the order of the register stack in INSN.
+
+ Any code that is emitted here must not be later processed as part
+ of any block, as it will already contain hard register numbers. */
+
+static void
+goto_block_pat (insn, regstack, pat)
+ rtx insn;
+ stack regstack;
+ rtx pat;
+{
+ rtx label;
+ rtx new_jump, new_label, new_barrier;
+ rtx *ref;
+ stack label_stack;
+ struct stack_def temp_stack;
+ int reg;
+
+ switch (GET_CODE (pat))
+ {
+ case RETURN:
+ straighten_stack (PREV_INSN (insn), regstack);
+ return;
+ default:
+ {
+ int i, j;
+ char *fmt = GET_RTX_FORMAT (GET_CODE (pat));
+
+ for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ goto_block_pat (insn, regstack, XEXP (pat, i));
+ if (fmt[i] == 'E')
+ for (j = 0; j < XVECLEN (pat, i); j++)
+ goto_block_pat (insn, regstack, XVECEXP (pat, i, j));
+ }
+ return;
+ }
+ case LABEL_REF:;
+ }
+
+ label = XEXP (pat, 0);
+ if (GET_CODE (label) != CODE_LABEL)
+ abort ();
+
+ /* First, see if in fact anything needs to be done to the stack at all. */
+ if (INSN_UID (label) <= 0)
+ return;
+
+ label_stack = &block_stack_in[BLOCK_NUM (label)];
+
+ if (label_stack->top == -2)
+ {
+ /* If the target block hasn't had a stack order selected, then
+ we need merely ensure that no pops are needed. */
+
+ for (reg = regstack->top; reg >= 0; reg--)
+ if (! TEST_HARD_REG_BIT (label_stack->reg_set, regstack->reg[reg]))
+ break;
+
+ if (reg == -1)
+ {
+ /* change_stack will not emit any code in this case. */
+
+ change_stack (label, regstack, label_stack, emit_insn_after);
+ return;
+ }
+ }
+ else if (label_stack->top == regstack->top)
+ {
+ for (reg = label_stack->top; reg >= 0; reg--)
+ if (label_stack->reg[reg] != regstack->reg[reg])
+ break;
+
+ if (reg == -1)
+ return;
+ }
+
+ /* At least one insn will need to be inserted before label. Insert
+ a jump around the code we are about to emit. Emit a label for the new
+ code, and point the original insn at this new label. We can't use
+ redirect_jump here, because we're using fld[4] of the code labels as
+ LABEL_REF chains, no NUSES counters. */
+
+ new_jump = emit_jump_insn_before (gen_jump (label), label);
+ record_label_references (new_jump, PATTERN (new_jump));
+ JUMP_LABEL (new_jump) = label;
+
+ new_barrier = emit_barrier_after (new_jump);
+
+ new_label = gen_label_rtx ();
+ emit_label_after (new_label, new_barrier);
+ LABEL_REFS (new_label) = new_label;
+
+ /* The old label_ref will no longer point to the code_label if now uses,
+ so strip the label_ref from the code_label's chain of references. */
+
+ for (ref = &LABEL_REFS (label); *ref != label; ref = &LABEL_NEXTREF (*ref))
+ if (*ref == pat)
+ break;
+
+ if (*ref == label)
+ abort ();
+
+ *ref = LABEL_NEXTREF (*ref);
+
+ XEXP (pat, 0) = new_label;
+ record_label_references (insn, PATTERN (insn));
+
+ if (JUMP_LABEL (insn) == label)
+ JUMP_LABEL (insn) = new_label;
+
+ /* Now emit the needed code. */
+
+ temp_stack = *regstack;
+
+ change_stack (new_label, &temp_stack, label_stack, emit_insn_after);
+}
+
+/* Traverse all basic blocks in a function, converting the register
+ references in each insn from the "flat" register file that gcc uses, to
+ the stack-like registers the 387 uses. */
+
+static void
+convert_regs ()
+{
+ register int block, reg;
+ register rtx insn, next;
+ struct stack_def regstack;
+
+ for (block = 0; block < blocks; block++)
+ {
+ if (block_stack_in[block].top == -2)
+ {
+ /* This block has not been previously encountered. Choose a
+ default mapping for any stack regs live on entry */
+
+ block_stack_in[block].top = -1;
+
+ for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; reg--)
+ if (TEST_HARD_REG_BIT (block_stack_in[block].reg_set, reg))
+ block_stack_in[block].reg[++block_stack_in[block].top] = reg;
+ }
+
+ /* Process all insns in this block. Keep track of `next' here,
+ so that we don't process any insns emitted while making
+ substitutions in INSN. */
+
+ next = block_begin[block];
+ regstack = block_stack_in[block];
+ do
+ {
+ insn = next;
+ next = NEXT_INSN (insn);
+
+ /* Don't bother processing unless there is a stack reg
+ mentioned or if it's a CALL_INSN (register passing of
+ floating point values). */
+
+ if (GET_MODE (insn) == QImode || GET_CODE (insn) == CALL_INSN)
+ subst_stack_regs (insn, &regstack);
+
+ } while (insn != block_end[block]);
+
+ /* Something failed if the stack life doesn't match. */
+
+ GO_IF_HARD_REG_EQUAL (regstack.reg_set, block_out_reg_set[block], win);
+
+ abort ();
+
+ win:
+
+ /* Adjust the stack of this block on exit to match the stack of
+ the target block, or copy stack information into stack of
+ jump target if the target block's stack order hasn't been set
+ yet. */
+
+ if (GET_CODE (insn) == JUMP_INSN)
+ goto_block_pat (insn, &regstack, PATTERN (insn));
+
+ /* Likewise handle the case where we fall into the next block. */
+
+ if ((block < blocks - 1) && block_drops_in[block+1])
+ change_stack (insn, &regstack, &block_stack_in[block+1],
+ emit_insn_after);
+ }
+
+ /* If the last basic block is the end of a loop, and that loop has
+ regs live at its start, then the last basic block will have regs live
+ at its end that need to be popped before the function returns. */
+
+ {
+ int value_reg_low, value_reg_high;
+ value_reg_low = value_reg_high = -1;
+ {
+ rtx retvalue;
+ if (retvalue = stack_result (current_function_decl))
+ {
+ value_reg_low = REGNO (retvalue);
+ value_reg_high = value_reg_low +
+ HARD_REGNO_NREGS (value_reg_low, GET_MODE (retvalue)) - 1;
+ }
+
+ }
+ for (reg = regstack.top; reg >= 0; reg--)
+ if (regstack.reg[reg] < value_reg_low ||
+ regstack.reg[reg] > value_reg_high)
+ insn = emit_pop_insn (insn, &regstack,
+ FP_MODE_REG (regstack.reg[reg], DFmode),
+ emit_insn_after);
+ }
+ straighten_stack (insn, &regstack);
+}
+
+/* Check expression PAT, which is in INSN, for label references. if
+ one is found, print the block number of destination to FILE. */
+
+static void
+print_blocks (file, insn, pat)
+ FILE *file;
+ rtx insn, pat;
+{
+ register RTX_CODE code = GET_CODE (pat);
+ register int i;
+ register char *fmt;
+
+ if (code == LABEL_REF)
+ {
+ register rtx label = XEXP (pat, 0);
+
+ if (GET_CODE (label) != CODE_LABEL)
+ abort ();
+
+ fprintf (file, " %d", BLOCK_NUM (label));
+
+ return;
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ print_blocks (file, insn, XEXP (pat, i));
+ if (fmt[i] == 'E')
+ {
+ register int j;
+ for (j = 0; j < XVECLEN (pat, i); j++)
+ print_blocks (file, insn, XVECEXP (pat, i, j));
+ }
+ }
+}
+
+/* Write information about stack registers and stack blocks into FILE.
+ This is part of making a debugging dump. */
+static void
+dump_stack_info (file)
+ FILE *file;
+{
+ register int block;
+
+ fprintf (file, "\n%d stack blocks.\n", blocks);
+ for (block = 0; block < blocks; block++)
+ {
+ register rtx head, jump, end;
+ register int regno;
+
+ fprintf (file, "\nStack block %d: first insn %d, last %d.\n",
+ block, INSN_UID (block_begin[block]),
+ INSN_UID (block_end[block]));
+
+ head = block_begin[block];
+
+ fprintf (file, "Reached from blocks: ");
+ if (GET_CODE (head) == CODE_LABEL)
+ for (jump = LABEL_REFS (head);
+ jump != head;
+ jump = LABEL_NEXTREF (jump))
+ {
+ register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
+ fprintf (file, " %d", from_block);
+ }
+ if (block_drops_in[block])
+ fprintf (file, " previous");
+
+ fprintf (file, "\nlive stack registers on block entry: ");
+ for (regno = FIRST_STACK_REG; regno <= LAST_STACK_REG; regno++)
+ {
+ if (TEST_HARD_REG_BIT (block_stack_in[block].reg_set, regno))
+ fprintf (file, "%d ", regno);
+ }
+
+ fprintf (file, "\nlive stack registers on block exit: ");
+ for (regno = FIRST_STACK_REG; regno <= LAST_STACK_REG; regno++)
+ {
+ if (TEST_HARD_REG_BIT (block_out_reg_set[block], regno))
+ fprintf (file, "%d ", regno);
+ }
+
+ end = block_end[block];
+
+ fprintf (file, "\nJumps to blocks: ");
+ if (GET_CODE (end) == JUMP_INSN)
+ print_blocks (file, end, PATTERN (end));
+
+ if (block + 1 < blocks && block_drops_in[block+1])
+ fprintf (file, " next");
+ else if (block + 1 == blocks
+ || (GET_CODE (end) == JUMP_INSN
+ && GET_CODE (PATTERN (end)) == RETURN))
+ fprintf (file, " return");
+
+ fprintf (file, "\n");
+ }
+}
+#endif /* STACK_REGS */