aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Utils/VNCoercion.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/Transforms/Utils/VNCoercion.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
downloadsrc-0b57cec536236d46e3dba9bd041533462f33dbb7.tar.gz
src-0b57cec536236d46e3dba9bd041533462f33dbb7.zip
Move all sources from the llvm project into contrib/llvm-project.
This uses the new layout of the upstream repository, which was recently migrated to GitHub, and converted into a "monorepo". That is, most of the earlier separate sub-projects with their own branches and tags were consolidated into one top-level directory, and are now branched and tagged together. Updating the vendor area to match this layout is next.
Notes
Notes: svn path=/head/; revision=355940
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Utils/VNCoercion.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/Utils/VNCoercion.cpp539
1 files changed, 539 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Utils/VNCoercion.cpp b/contrib/llvm-project/llvm/lib/Transforms/Utils/VNCoercion.cpp
new file mode 100644
index 000000000000..a77bf50fe10b
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/Utils/VNCoercion.cpp
@@ -0,0 +1,539 @@
+#include "llvm/Transforms/Utils/VNCoercion.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/MemoryDependenceAnalysis.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Support/Debug.h"
+
+#define DEBUG_TYPE "vncoerce"
+namespace llvm {
+namespace VNCoercion {
+
+/// Return true if coerceAvailableValueToLoadType will succeed.
+bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy,
+ const DataLayout &DL) {
+ Type *StoredTy = StoredVal->getType();
+ if (StoredTy == LoadTy)
+ return true;
+
+ // If the loaded or stored value is an first class array or struct, don't try
+ // to transform them. We need to be able to bitcast to integer.
+ if (LoadTy->isStructTy() || LoadTy->isArrayTy() || StoredTy->isStructTy() ||
+ StoredTy->isArrayTy())
+ return false;
+
+ uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy);
+
+ // The store size must be byte-aligned to support future type casts.
+ if (llvm::alignTo(StoreSize, 8) != StoreSize)
+ return false;
+
+ // The store has to be at least as big as the load.
+ if (StoreSize < DL.getTypeSizeInBits(LoadTy))
+ return false;
+
+ // Don't coerce non-integral pointers to integers or vice versa.
+ if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()) !=
+ DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
+ // As a special case, allow coercion of memset used to initialize
+ // an array w/null. Despite non-integral pointers not generally having a
+ // specific bit pattern, we do assume null is zero.
+ if (auto *CI = dyn_cast<Constant>(StoredVal))
+ return CI->isNullValue();
+ return false;
+ }
+
+ return true;
+}
+
+template <class T, class HelperClass>
+static T *coerceAvailableValueToLoadTypeHelper(T *StoredVal, Type *LoadedTy,
+ HelperClass &Helper,
+ const DataLayout &DL) {
+ assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
+ "precondition violation - materialization can't fail");
+ if (auto *C = dyn_cast<Constant>(StoredVal))
+ if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
+ StoredVal = FoldedStoredVal;
+
+ // If this is already the right type, just return it.
+ Type *StoredValTy = StoredVal->getType();
+
+ uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy);
+ uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy);
+
+ // If the store and reload are the same size, we can always reuse it.
+ if (StoredValSize == LoadedValSize) {
+ // Pointer to Pointer -> use bitcast.
+ if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) {
+ StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
+ } else {
+ // Convert source pointers to integers, which can be bitcast.
+ if (StoredValTy->isPtrOrPtrVectorTy()) {
+ StoredValTy = DL.getIntPtrType(StoredValTy);
+ StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
+ }
+
+ Type *TypeToCastTo = LoadedTy;
+ if (TypeToCastTo->isPtrOrPtrVectorTy())
+ TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
+
+ if (StoredValTy != TypeToCastTo)
+ StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo);
+
+ // Cast to pointer if the load needs a pointer type.
+ if (LoadedTy->isPtrOrPtrVectorTy())
+ StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
+ }
+
+ if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
+ if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
+ StoredVal = FoldedStoredVal;
+
+ return StoredVal;
+ }
+ // If the loaded value is smaller than the available value, then we can
+ // extract out a piece from it. If the available value is too small, then we
+ // can't do anything.
+ assert(StoredValSize >= LoadedValSize &&
+ "canCoerceMustAliasedValueToLoad fail");
+
+ // Convert source pointers to integers, which can be manipulated.
+ if (StoredValTy->isPtrOrPtrVectorTy()) {
+ StoredValTy = DL.getIntPtrType(StoredValTy);
+ StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
+ }
+
+ // Convert vectors and fp to integer, which can be manipulated.
+ if (!StoredValTy->isIntegerTy()) {
+ StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
+ StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy);
+ }
+
+ // If this is a big-endian system, we need to shift the value down to the low
+ // bits so that a truncate will work.
+ if (DL.isBigEndian()) {
+ uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy) -
+ DL.getTypeStoreSizeInBits(LoadedTy);
+ StoredVal = Helper.CreateLShr(
+ StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt));
+ }
+
+ // Truncate the integer to the right size now.
+ Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
+ StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy);
+
+ if (LoadedTy != NewIntTy) {
+ // If the result is a pointer, inttoptr.
+ if (LoadedTy->isPtrOrPtrVectorTy())
+ StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
+ else
+ // Otherwise, bitcast.
+ StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
+ }
+
+ if (auto *C = dyn_cast<Constant>(StoredVal))
+ if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
+ StoredVal = FoldedStoredVal;
+
+ return StoredVal;
+}
+
+/// If we saw a store of a value to memory, and
+/// then a load from a must-aliased pointer of a different type, try to coerce
+/// the stored value. LoadedTy is the type of the load we want to replace.
+/// IRB is IRBuilder used to insert new instructions.
+///
+/// If we can't do it, return null.
+Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
+ IRBuilder<> &IRB, const DataLayout &DL) {
+ return coerceAvailableValueToLoadTypeHelper(StoredVal, LoadedTy, IRB, DL);
+}
+
+/// This function is called when we have a memdep query of a load that ends up
+/// being a clobbering memory write (store, memset, memcpy, memmove). This
+/// means that the write *may* provide bits used by the load but we can't be
+/// sure because the pointers don't must-alias.
+///
+/// Check this case to see if there is anything more we can do before we give
+/// up. This returns -1 if we have to give up, or a byte number in the stored
+/// value of the piece that feeds the load.
+static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
+ Value *WritePtr,
+ uint64_t WriteSizeInBits,
+ const DataLayout &DL) {
+ // If the loaded or stored value is a first class array or struct, don't try
+ // to transform them. We need to be able to bitcast to integer.
+ if (LoadTy->isStructTy() || LoadTy->isArrayTy())
+ return -1;
+
+ int64_t StoreOffset = 0, LoadOffset = 0;
+ Value *StoreBase =
+ GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
+ Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
+ if (StoreBase != LoadBase)
+ return -1;
+
+ // If the load and store are to the exact same address, they should have been
+ // a must alias. AA must have gotten confused.
+ // FIXME: Study to see if/when this happens. One case is forwarding a memset
+ // to a load from the base of the memset.
+
+ // If the load and store don't overlap at all, the store doesn't provide
+ // anything to the load. In this case, they really don't alias at all, AA
+ // must have gotten confused.
+ uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy);
+
+ if ((WriteSizeInBits & 7) | (LoadSize & 7))
+ return -1;
+ uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes.
+ LoadSize /= 8;
+
+ bool isAAFailure = false;
+ if (StoreOffset < LoadOffset)
+ isAAFailure = StoreOffset + int64_t(StoreSize) <= LoadOffset;
+ else
+ isAAFailure = LoadOffset + int64_t(LoadSize) <= StoreOffset;
+
+ if (isAAFailure)
+ return -1;
+
+ // If the Load isn't completely contained within the stored bits, we don't
+ // have all the bits to feed it. We could do something crazy in the future
+ // (issue a smaller load then merge the bits in) but this seems unlikely to be
+ // valuable.
+ if (StoreOffset > LoadOffset ||
+ StoreOffset + StoreSize < LoadOffset + LoadSize)
+ return -1;
+
+ // Okay, we can do this transformation. Return the number of bytes into the
+ // store that the load is.
+ return LoadOffset - StoreOffset;
+}
+
+/// This function is called when we have a
+/// memdep query of a load that ends up being a clobbering store.
+int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
+ StoreInst *DepSI, const DataLayout &DL) {
+ auto *StoredVal = DepSI->getValueOperand();
+
+ // Cannot handle reading from store of first-class aggregate yet.
+ if (StoredVal->getType()->isStructTy() ||
+ StoredVal->getType()->isArrayTy())
+ return -1;
+
+ // Don't coerce non-integral pointers to integers or vice versa.
+ if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()) !=
+ DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
+ // Allow casts of zero values to null as a special case
+ auto *CI = dyn_cast<Constant>(StoredVal);
+ if (!CI || !CI->isNullValue())
+ return -1;
+ }
+
+ Value *StorePtr = DepSI->getPointerOperand();
+ uint64_t StoreSize =
+ DL.getTypeSizeInBits(DepSI->getValueOperand()->getType());
+ return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize,
+ DL);
+}
+
+/// This function is called when we have a
+/// memdep query of a load that ends up being clobbered by another load. See if
+/// the other load can feed into the second load.
+int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI,
+ const DataLayout &DL) {
+ // Cannot handle reading from store of first-class aggregate yet.
+ if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
+ return -1;
+
+ // Don't coerce non-integral pointers to integers or vice versa.
+ if (DL.isNonIntegralPointerType(DepLI->getType()->getScalarType()) !=
+ DL.isNonIntegralPointerType(LoadTy->getScalarType()))
+ return -1;
+
+ Value *DepPtr = DepLI->getPointerOperand();
+ uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType());
+ int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
+ if (R != -1)
+ return R;
+
+ // If we have a load/load clobber an DepLI can be widened to cover this load,
+ // then we should widen it!
+ int64_t LoadOffs = 0;
+ const Value *LoadBase =
+ GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
+ unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
+
+ unsigned Size = MemoryDependenceResults::getLoadLoadClobberFullWidthSize(
+ LoadBase, LoadOffs, LoadSize, DepLI);
+ if (Size == 0)
+ return -1;
+
+ // Check non-obvious conditions enforced by MDA which we rely on for being
+ // able to materialize this potentially available value
+ assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!");
+ assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load");
+
+ return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL);
+}
+
+int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
+ MemIntrinsic *MI, const DataLayout &DL) {
+ // If the mem operation is a non-constant size, we can't handle it.
+ ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
+ if (!SizeCst)
+ return -1;
+ uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8;
+
+ // If this is memset, we just need to see if the offset is valid in the size
+ // of the memset..
+ if (MI->getIntrinsicID() == Intrinsic::memset) {
+ if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
+ auto *CI = dyn_cast<ConstantInt>(cast<MemSetInst>(MI)->getValue());
+ if (!CI || !CI->isZero())
+ return -1;
+ }
+ return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
+ MemSizeInBits, DL);
+ }
+
+ // If we have a memcpy/memmove, the only case we can handle is if this is a
+ // copy from constant memory. In that case, we can read directly from the
+ // constant memory.
+ MemTransferInst *MTI = cast<MemTransferInst>(MI);
+
+ Constant *Src = dyn_cast<Constant>(MTI->getSource());
+ if (!Src)
+ return -1;
+
+ GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL));
+ if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
+ return -1;
+
+ // See if the access is within the bounds of the transfer.
+ int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
+ MemSizeInBits, DL);
+ if (Offset == -1)
+ return Offset;
+
+ // Don't coerce non-integral pointers to integers or vice versa, and the
+ // memtransfer is implicitly a raw byte code
+ if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
+ // TODO: Can allow nullptrs from constant zeros
+ return -1;
+
+ unsigned AS = Src->getType()->getPointerAddressSpace();
+ // Otherwise, see if we can constant fold a load from the constant with the
+ // offset applied as appropriate.
+ Src =
+ ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS));
+ Constant *OffsetCst =
+ ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
+ Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
+ OffsetCst);
+ Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
+ if (ConstantFoldLoadFromConstPtr(Src, LoadTy, DL))
+ return Offset;
+ return -1;
+}
+
+template <class T, class HelperClass>
+static T *getStoreValueForLoadHelper(T *SrcVal, unsigned Offset, Type *LoadTy,
+ HelperClass &Helper,
+ const DataLayout &DL) {
+ LLVMContext &Ctx = SrcVal->getType()->getContext();
+
+ // If two pointers are in the same address space, they have the same size,
+ // so we don't need to do any truncation, etc. This avoids introducing
+ // ptrtoint instructions for pointers that may be non-integral.
+ if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() &&
+ cast<PointerType>(SrcVal->getType())->getAddressSpace() ==
+ cast<PointerType>(LoadTy)->getAddressSpace()) {
+ return SrcVal;
+ }
+
+ uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
+ uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8;
+ // Compute which bits of the stored value are being used by the load. Convert
+ // to an integer type to start with.
+ if (SrcVal->getType()->isPtrOrPtrVectorTy())
+ SrcVal = Helper.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType()));
+ if (!SrcVal->getType()->isIntegerTy())
+ SrcVal = Helper.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8));
+
+ // Shift the bits to the least significant depending on endianness.
+ unsigned ShiftAmt;
+ if (DL.isLittleEndian())
+ ShiftAmt = Offset * 8;
+ else
+ ShiftAmt = (StoreSize - LoadSize - Offset) * 8;
+ if (ShiftAmt)
+ SrcVal = Helper.CreateLShr(SrcVal,
+ ConstantInt::get(SrcVal->getType(), ShiftAmt));
+
+ if (LoadSize != StoreSize)
+ SrcVal = Helper.CreateTruncOrBitCast(SrcVal,
+ IntegerType::get(Ctx, LoadSize * 8));
+ return SrcVal;
+}
+
+/// This function is called when we have a memdep query of a load that ends up
+/// being a clobbering store. This means that the store provides bits used by
+/// the load but the pointers don't must-alias. Check this case to see if
+/// there is anything more we can do before we give up.
+Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy,
+ Instruction *InsertPt, const DataLayout &DL) {
+
+ IRBuilder<> Builder(InsertPt);
+ SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL);
+ return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, Builder, DL);
+}
+
+Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset,
+ Type *LoadTy, const DataLayout &DL) {
+ ConstantFolder F;
+ SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, F, DL);
+ return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, F, DL);
+}
+
+/// This function is called when we have a memdep query of a load that ends up
+/// being a clobbering load. This means that the load *may* provide bits used
+/// by the load but we can't be sure because the pointers don't must-alias.
+/// Check this case to see if there is anything more we can do before we give
+/// up.
+Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy,
+ Instruction *InsertPt, const DataLayout &DL) {
+ // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
+ // widen SrcVal out to a larger load.
+ unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType());
+ unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
+ if (Offset + LoadSize > SrcValStoreSize) {
+ assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
+ assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
+ // If we have a load/load clobber an DepLI can be widened to cover this
+ // load, then we should widen it to the next power of 2 size big enough!
+ unsigned NewLoadSize = Offset + LoadSize;
+ if (!isPowerOf2_32(NewLoadSize))
+ NewLoadSize = NextPowerOf2(NewLoadSize);
+
+ Value *PtrVal = SrcVal->getPointerOperand();
+ // Insert the new load after the old load. This ensures that subsequent
+ // memdep queries will find the new load. We can't easily remove the old
+ // load completely because it is already in the value numbering table.
+ IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
+ Type *DestTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8);
+ Type *DestPTy =
+ PointerType::get(DestTy, PtrVal->getType()->getPointerAddressSpace());
+ Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
+ PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
+ LoadInst *NewLoad = Builder.CreateLoad(DestTy, PtrVal);
+ NewLoad->takeName(SrcVal);
+ NewLoad->setAlignment(SrcVal->getAlignment());
+
+ LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
+ LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
+
+ // Replace uses of the original load with the wider load. On a big endian
+ // system, we need to shift down to get the relevant bits.
+ Value *RV = NewLoad;
+ if (DL.isBigEndian())
+ RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8);
+ RV = Builder.CreateTrunc(RV, SrcVal->getType());
+ SrcVal->replaceAllUsesWith(RV);
+
+ SrcVal = NewLoad;
+ }
+
+ return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
+}
+
+Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset,
+ Type *LoadTy, const DataLayout &DL) {
+ unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType());
+ unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
+ if (Offset + LoadSize > SrcValStoreSize)
+ return nullptr;
+ return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL);
+}
+
+template <class T, class HelperClass>
+T *getMemInstValueForLoadHelper(MemIntrinsic *SrcInst, unsigned Offset,
+ Type *LoadTy, HelperClass &Helper,
+ const DataLayout &DL) {
+ LLVMContext &Ctx = LoadTy->getContext();
+ uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy) / 8;
+
+ // We know that this method is only called when the mem transfer fully
+ // provides the bits for the load.
+ if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
+ // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
+ // independently of what the offset is.
+ T *Val = cast<T>(MSI->getValue());
+ if (LoadSize != 1)
+ Val =
+ Helper.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8));
+ T *OneElt = Val;
+
+ // Splat the value out to the right number of bits.
+ for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) {
+ // If we can double the number of bytes set, do it.
+ if (NumBytesSet * 2 <= LoadSize) {
+ T *ShVal = Helper.CreateShl(
+ Val, ConstantInt::get(Val->getType(), NumBytesSet * 8));
+ Val = Helper.CreateOr(Val, ShVal);
+ NumBytesSet <<= 1;
+ continue;
+ }
+
+ // Otherwise insert one byte at a time.
+ T *ShVal = Helper.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8));
+ Val = Helper.CreateOr(OneElt, ShVal);
+ ++NumBytesSet;
+ }
+
+ return coerceAvailableValueToLoadTypeHelper(Val, LoadTy, Helper, DL);
+ }
+
+ // Otherwise, this is a memcpy/memmove from a constant global.
+ MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
+ Constant *Src = cast<Constant>(MTI->getSource());
+ unsigned AS = Src->getType()->getPointerAddressSpace();
+
+ // Otherwise, see if we can constant fold a load from the constant with the
+ // offset applied as appropriate.
+ Src =
+ ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS));
+ Constant *OffsetCst =
+ ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
+ Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
+ OffsetCst);
+ Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
+ return ConstantFoldLoadFromConstPtr(Src, LoadTy, DL);
+}
+
+/// This function is called when we have a
+/// memdep query of a load that ends up being a clobbering mem intrinsic.
+Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
+ Type *LoadTy, Instruction *InsertPt,
+ const DataLayout &DL) {
+ IRBuilder<> Builder(InsertPt);
+ return getMemInstValueForLoadHelper<Value, IRBuilder<>>(SrcInst, Offset,
+ LoadTy, Builder, DL);
+}
+
+Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
+ Type *LoadTy, const DataLayout &DL) {
+ // The only case analyzeLoadFromClobberingMemInst cannot be converted to a
+ // constant is when it's a memset of a non-constant.
+ if (auto *MSI = dyn_cast<MemSetInst>(SrcInst))
+ if (!isa<Constant>(MSI->getValue()))
+ return nullptr;
+ ConstantFolder F;
+ return getMemInstValueForLoadHelper<Constant, ConstantFolder>(SrcInst, Offset,
+ LoadTy, F, DL);
+}
+} // namespace VNCoercion
+} // namespace llvm