aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/CGExpr.cpp
diff options
context:
space:
mode:
authorEd Schouten <ed@FreeBSD.org>2009-06-02 17:58:47 +0000
committerEd Schouten <ed@FreeBSD.org>2009-06-02 17:58:47 +0000
commitec2b103c267a06a66e926f62cd96767b280f5cf5 (patch)
treece7d964cbb5e39695b71481698f10cb099c23d4a /lib/CodeGen/CGExpr.cpp
downloadsrc-ec2b103c267a06a66e926f62cd96767b280f5cf5.tar.gz
src-ec2b103c267a06a66e926f62cd96767b280f5cf5.zip
Import Clang, at r72732.vendor/clang/clang-r72732
Notes
Notes: svn path=/vendor/clang/dist/; revision=193326 svn path=/vendor/clang/clang-r72732/; revision=193327; tag=vendor/clang/clang-r72732
Diffstat (limited to 'lib/CodeGen/CGExpr.cpp')
-rw-r--r--lib/CodeGen/CGExpr.cpp1324
1 files changed, 1324 insertions, 0 deletions
diff --git a/lib/CodeGen/CGExpr.cpp b/lib/CodeGen/CGExpr.cpp
new file mode 100644
index 000000000000..c5f23879d1c3
--- /dev/null
+++ b/lib/CodeGen/CGExpr.cpp
@@ -0,0 +1,1324 @@
+//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Expr nodes as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "CGCall.h"
+#include "CGObjCRuntime.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "llvm/Target/TargetData.h"
+using namespace clang;
+using namespace CodeGen;
+
+//===--------------------------------------------------------------------===//
+// Miscellaneous Helper Methods
+//===--------------------------------------------------------------------===//
+
+/// CreateTempAlloca - This creates a alloca and inserts it into the entry
+/// block.
+llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
+ const char *Name) {
+ if (!Builder.isNamePreserving())
+ Name = "";
+ return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
+}
+
+/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
+/// expression and compare the result against zero, returning an Int1Ty value.
+llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
+ QualType BoolTy = getContext().BoolTy;
+ if (!E->getType()->isAnyComplexType())
+ return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
+
+ return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
+}
+
+/// EmitAnyExpr - Emit code to compute the specified expression which can have
+/// any type. The result is returned as an RValue struct. If this is an
+/// aggregate expression, the aggloc/agglocvolatile arguments indicate where
+/// the result should be returned.
+RValue CodeGenFunction::EmitAnyExpr(const Expr *E, llvm::Value *AggLoc,
+ bool isAggLocVolatile, bool IgnoreResult) {
+ if (!hasAggregateLLVMType(E->getType()))
+ return RValue::get(EmitScalarExpr(E, IgnoreResult));
+ else if (E->getType()->isAnyComplexType())
+ return RValue::getComplex(EmitComplexExpr(E, false, false,
+ IgnoreResult, IgnoreResult));
+
+ EmitAggExpr(E, AggLoc, isAggLocVolatile, IgnoreResult);
+ return RValue::getAggregate(AggLoc, isAggLocVolatile);
+}
+
+/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result
+/// will always be accessible even if no aggregate location is
+/// provided.
+RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E, llvm::Value *AggLoc,
+ bool isAggLocVolatile) {
+ if (!AggLoc && hasAggregateLLVMType(E->getType()) &&
+ !E->getType()->isAnyComplexType())
+ AggLoc = CreateTempAlloca(ConvertType(E->getType()), "agg.tmp");
+ return EmitAnyExpr(E, AggLoc, isAggLocVolatile);
+}
+
+RValue CodeGenFunction::EmitReferenceBindingToExpr(const Expr* E,
+ QualType DestType) {
+ RValue Val;
+ if (E->isLvalue(getContext()) == Expr::LV_Valid) {
+ // Emit the expr as an lvalue.
+ LValue LV = EmitLValue(E);
+ if (LV.isSimple())
+ return RValue::get(LV.getAddress());
+ Val = EmitLoadOfLValue(LV, E->getType());
+ } else {
+ Val = EmitAnyExprToTemp(E);
+ }
+
+ if (Val.isAggregate()) {
+ Val = RValue::get(Val.getAggregateAddr());
+ } else {
+ // Create a temporary variable that we can bind the reference to.
+ llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(E->getType()),
+ "reftmp");
+ if (Val.isScalar())
+ EmitStoreOfScalar(Val.getScalarVal(), Temp, false, E->getType());
+ else
+ StoreComplexToAddr(Val.getComplexVal(), Temp, false);
+ Val = RValue::get(Temp);
+ }
+
+ return Val;
+}
+
+
+/// getAccessedFieldNo - Given an encoded value and a result number, return
+/// the input field number being accessed.
+unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
+ const llvm::Constant *Elts) {
+ if (isa<llvm::ConstantAggregateZero>(Elts))
+ return 0;
+
+ return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue();
+}
+
+
+//===----------------------------------------------------------------------===//
+// LValue Expression Emission
+//===----------------------------------------------------------------------===//
+
+RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
+ if (Ty->isVoidType()) {
+ return RValue::get(0);
+ } else if (const ComplexType *CTy = Ty->getAsComplexType()) {
+ const llvm::Type *EltTy = ConvertType(CTy->getElementType());
+ llvm::Value *U = llvm::UndefValue::get(EltTy);
+ return RValue::getComplex(std::make_pair(U, U));
+ } else if (hasAggregateLLVMType(Ty)) {
+ const llvm::Type *LTy = llvm::PointerType::getUnqual(ConvertType(Ty));
+ return RValue::getAggregate(llvm::UndefValue::get(LTy));
+ } else {
+ return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
+ }
+}
+
+RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
+ const char *Name) {
+ ErrorUnsupported(E, Name);
+ return GetUndefRValue(E->getType());
+}
+
+LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
+ const char *Name) {
+ ErrorUnsupported(E, Name);
+ llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
+ return LValue::MakeAddr(llvm::UndefValue::get(Ty),
+ E->getType().getCVRQualifiers(),
+ getContext().getObjCGCAttrKind(E->getType()));
+}
+
+/// EmitLValue - Emit code to compute a designator that specifies the location
+/// of the expression.
+///
+/// This can return one of two things: a simple address or a bitfield
+/// reference. In either case, the LLVM Value* in the LValue structure is
+/// guaranteed to be an LLVM pointer type.
+///
+/// If this returns a bitfield reference, nothing about the pointee type of
+/// the LLVM value is known: For example, it may not be a pointer to an
+/// integer.
+///
+/// If this returns a normal address, and if the lvalue's C type is fixed
+/// size, this method guarantees that the returned pointer type will point to
+/// an LLVM type of the same size of the lvalue's type. If the lvalue has a
+/// variable length type, this is not possible.
+///
+LValue CodeGenFunction::EmitLValue(const Expr *E) {
+ switch (E->getStmtClass()) {
+ default: return EmitUnsupportedLValue(E, "l-value expression");
+
+ case Expr::BinaryOperatorClass:
+ return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
+ case Expr::CallExprClass:
+ case Expr::CXXOperatorCallExprClass:
+ return EmitCallExprLValue(cast<CallExpr>(E));
+ case Expr::VAArgExprClass:
+ return EmitVAArgExprLValue(cast<VAArgExpr>(E));
+ case Expr::DeclRefExprClass:
+ case Expr::QualifiedDeclRefExprClass:
+ return EmitDeclRefLValue(cast<DeclRefExpr>(E));
+ case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
+ case Expr::PredefinedExprClass:
+ return EmitPredefinedLValue(cast<PredefinedExpr>(E));
+ case Expr::StringLiteralClass:
+ return EmitStringLiteralLValue(cast<StringLiteral>(E));
+ case Expr::ObjCEncodeExprClass:
+ return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
+
+ case Expr::BlockDeclRefExprClass:
+ return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E));
+
+ case Expr::CXXConditionDeclExprClass:
+ return EmitCXXConditionDeclLValue(cast<CXXConditionDeclExpr>(E));
+ case Expr::CXXTemporaryObjectExprClass:
+ case Expr::CXXConstructExprClass:
+ return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
+ case Expr::CXXBindTemporaryExprClass:
+ return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
+
+ case Expr::ObjCMessageExprClass:
+ return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
+ case Expr::ObjCIvarRefExprClass:
+ return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
+ case Expr::ObjCPropertyRefExprClass:
+ return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E));
+ case Expr::ObjCKVCRefExprClass:
+ return EmitObjCKVCRefLValue(cast<ObjCKVCRefExpr>(E));
+ case Expr::ObjCSuperExprClass:
+ return EmitObjCSuperExprLValue(cast<ObjCSuperExpr>(E));
+
+ case Expr::StmtExprClass:
+ return EmitStmtExprLValue(cast<StmtExpr>(E));
+ case Expr::UnaryOperatorClass:
+ return EmitUnaryOpLValue(cast<UnaryOperator>(E));
+ case Expr::ArraySubscriptExprClass:
+ return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
+ case Expr::ExtVectorElementExprClass:
+ return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
+ case Expr::MemberExprClass: return EmitMemberExpr(cast<MemberExpr>(E));
+ case Expr::CompoundLiteralExprClass:
+ return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
+ case Expr::ConditionalOperatorClass:
+ return EmitConditionalOperator(cast<ConditionalOperator>(E));
+ case Expr::ChooseExprClass:
+ return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
+ case Expr::ImplicitCastExprClass:
+ case Expr::CStyleCastExprClass:
+ case Expr::CXXFunctionalCastExprClass:
+ case Expr::CXXStaticCastExprClass:
+ case Expr::CXXDynamicCastExprClass:
+ case Expr::CXXReinterpretCastExprClass:
+ case Expr::CXXConstCastExprClass:
+ return EmitCastLValue(cast<CastExpr>(E));
+ }
+}
+
+llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
+ QualType Ty) {
+ llvm::Value *V = Builder.CreateLoad(Addr, Volatile, "tmp");
+
+ // Bool can have different representation in memory than in registers.
+ if (Ty->isBooleanType())
+ if (V->getType() != llvm::Type::Int1Ty)
+ V = Builder.CreateTrunc(V, llvm::Type::Int1Ty, "tobool");
+
+ return V;
+}
+
+void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
+ bool Volatile, QualType Ty) {
+
+ if (Ty->isBooleanType()) {
+ // Bool can have different representation in memory than in registers.
+ const llvm::Type *SrcTy = Value->getType();
+ const llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
+ if (DstPtr->getElementType() != SrcTy) {
+ const llvm::Type *MemTy =
+ llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
+ Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
+ }
+ }
+
+ Builder.CreateStore(Value, Addr, Volatile);
+}
+
+/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
+/// this method emits the address of the lvalue, then loads the result as an
+/// rvalue, returning the rvalue.
+RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
+ if (LV.isObjCWeak()) {
+ // load of a __weak object.
+ llvm::Value *AddrWeakObj = LV.getAddress();
+ llvm::Value *read_weak = CGM.getObjCRuntime().EmitObjCWeakRead(*this,
+ AddrWeakObj);
+ return RValue::get(read_weak);
+ }
+
+ if (LV.isSimple()) {
+ llvm::Value *Ptr = LV.getAddress();
+ const llvm::Type *EltTy =
+ cast<llvm::PointerType>(Ptr->getType())->getElementType();
+
+ // Simple scalar l-value.
+ if (EltTy->isSingleValueType())
+ return RValue::get(EmitLoadOfScalar(Ptr, LV.isVolatileQualified(),
+ ExprType));
+
+ assert(ExprType->isFunctionType() && "Unknown scalar value");
+ return RValue::get(Ptr);
+ }
+
+ if (LV.isVectorElt()) {
+ llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
+ LV.isVolatileQualified(), "tmp");
+ return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
+ "vecext"));
+ }
+
+ // If this is a reference to a subset of the elements of a vector, either
+ // shuffle the input or extract/insert them as appropriate.
+ if (LV.isExtVectorElt())
+ return EmitLoadOfExtVectorElementLValue(LV, ExprType);
+
+ if (LV.isBitfield())
+ return EmitLoadOfBitfieldLValue(LV, ExprType);
+
+ if (LV.isPropertyRef())
+ return EmitLoadOfPropertyRefLValue(LV, ExprType);
+
+ assert(LV.isKVCRef() && "Unknown LValue type!");
+ return EmitLoadOfKVCRefLValue(LV, ExprType);
+}
+
+RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
+ QualType ExprType) {
+ unsigned StartBit = LV.getBitfieldStartBit();
+ unsigned BitfieldSize = LV.getBitfieldSize();
+ llvm::Value *Ptr = LV.getBitfieldAddr();
+
+ const llvm::Type *EltTy =
+ cast<llvm::PointerType>(Ptr->getType())->getElementType();
+ unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy);
+
+ // In some cases the bitfield may straddle two memory locations.
+ // Currently we load the entire bitfield, then do the magic to
+ // sign-extend it if necessary. This results in somewhat more code
+ // than necessary for the common case (one load), since two shifts
+ // accomplish both the masking and sign extension.
+ unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit);
+ llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "tmp");
+
+ // Shift to proper location.
+ if (StartBit)
+ Val = Builder.CreateLShr(Val, llvm::ConstantInt::get(EltTy, StartBit),
+ "bf.lo");
+
+ // Mask off unused bits.
+ llvm::Constant *LowMask =
+ llvm::ConstantInt::get(llvm::APInt::getLowBitsSet(EltTySize, LowBits));
+ Val = Builder.CreateAnd(Val, LowMask, "bf.lo.cleared");
+
+ // Fetch the high bits if necessary.
+ if (LowBits < BitfieldSize) {
+ unsigned HighBits = BitfieldSize - LowBits;
+ llvm::Value *HighPtr =
+ Builder.CreateGEP(Ptr, llvm::ConstantInt::get(llvm::Type::Int32Ty, 1),
+ "bf.ptr.hi");
+ llvm::Value *HighVal = Builder.CreateLoad(HighPtr,
+ LV.isVolatileQualified(),
+ "tmp");
+
+ // Mask off unused bits.
+ llvm::Constant *HighMask =
+ llvm::ConstantInt::get(llvm::APInt::getLowBitsSet(EltTySize, HighBits));
+ HighVal = Builder.CreateAnd(HighVal, HighMask, "bf.lo.cleared");
+
+ // Shift to proper location and or in to bitfield value.
+ HighVal = Builder.CreateShl(HighVal,
+ llvm::ConstantInt::get(EltTy, LowBits));
+ Val = Builder.CreateOr(Val, HighVal, "bf.val");
+ }
+
+ // Sign extend if necessary.
+ if (LV.isBitfieldSigned()) {
+ llvm::Value *ExtraBits = llvm::ConstantInt::get(EltTy,
+ EltTySize - BitfieldSize);
+ Val = Builder.CreateAShr(Builder.CreateShl(Val, ExtraBits),
+ ExtraBits, "bf.val.sext");
+ }
+
+ // The bitfield type and the normal type differ when the storage sizes
+ // differ (currently just _Bool).
+ Val = Builder.CreateIntCast(Val, ConvertType(ExprType), false, "tmp");
+
+ return RValue::get(Val);
+}
+
+RValue CodeGenFunction::EmitLoadOfPropertyRefLValue(LValue LV,
+ QualType ExprType) {
+ return EmitObjCPropertyGet(LV.getPropertyRefExpr());
+}
+
+RValue CodeGenFunction::EmitLoadOfKVCRefLValue(LValue LV,
+ QualType ExprType) {
+ return EmitObjCPropertyGet(LV.getKVCRefExpr());
+}
+
+// If this is a reference to a subset of the elements of a vector, create an
+// appropriate shufflevector.
+RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV,
+ QualType ExprType) {
+ llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
+ LV.isVolatileQualified(), "tmp");
+
+ const llvm::Constant *Elts = LV.getExtVectorElts();
+
+ // If the result of the expression is a non-vector type, we must be
+ // extracting a single element. Just codegen as an extractelement.
+ const VectorType *ExprVT = ExprType->getAsVectorType();
+ if (!ExprVT) {
+ unsigned InIdx = getAccessedFieldNo(0, Elts);
+ llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
+ return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
+ }
+
+ // Always use shuffle vector to try to retain the original program structure
+ unsigned NumResultElts = ExprVT->getNumElements();
+
+ llvm::SmallVector<llvm::Constant*, 4> Mask;
+ for (unsigned i = 0; i != NumResultElts; ++i) {
+ unsigned InIdx = getAccessedFieldNo(i, Elts);
+ Mask.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx));
+ }
+
+ llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
+ Vec = Builder.CreateShuffleVector(Vec,
+ llvm::UndefValue::get(Vec->getType()),
+ MaskV, "tmp");
+ return RValue::get(Vec);
+}
+
+
+
+/// EmitStoreThroughLValue - Store the specified rvalue into the specified
+/// lvalue, where both are guaranteed to the have the same type, and that type
+/// is 'Ty'.
+void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
+ QualType Ty) {
+ if (!Dst.isSimple()) {
+ if (Dst.isVectorElt()) {
+ // Read/modify/write the vector, inserting the new element.
+ llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(),
+ Dst.isVolatileQualified(), "tmp");
+ Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
+ Dst.getVectorIdx(), "vecins");
+ Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
+ return;
+ }
+
+ // If this is an update of extended vector elements, insert them as
+ // appropriate.
+ if (Dst.isExtVectorElt())
+ return EmitStoreThroughExtVectorComponentLValue(Src, Dst, Ty);
+
+ if (Dst.isBitfield())
+ return EmitStoreThroughBitfieldLValue(Src, Dst, Ty);
+
+ if (Dst.isPropertyRef())
+ return EmitStoreThroughPropertyRefLValue(Src, Dst, Ty);
+
+ if (Dst.isKVCRef())
+ return EmitStoreThroughKVCRefLValue(Src, Dst, Ty);
+
+ assert(0 && "Unknown LValue type");
+ }
+
+ if (Dst.isObjCWeak() && !Dst.isNonGC()) {
+ // load of a __weak object.
+ llvm::Value *LvalueDst = Dst.getAddress();
+ llvm::Value *src = Src.getScalarVal();
+ CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
+ return;
+ }
+
+ if (Dst.isObjCStrong() && !Dst.isNonGC()) {
+ // load of a __strong object.
+ llvm::Value *LvalueDst = Dst.getAddress();
+ llvm::Value *src = Src.getScalarVal();
+#if 0
+ // FIXME. We cannot positively determine if we have an 'ivar' assignment,
+ // object assignment or an unknown assignment. For now, generate call to
+ // objc_assign_strongCast assignment which is a safe, but consevative
+ // assumption.
+ if (Dst.isObjCIvar())
+ CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, LvalueDst);
+ else
+ CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst);
+#endif
+ if (Dst.isGlobalObjCRef())
+ CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst);
+ else
+ CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
+ return;
+ }
+
+ assert(Src.isScalar() && "Can't emit an agg store with this method");
+ EmitStoreOfScalar(Src.getScalarVal(), Dst.getAddress(),
+ Dst.isVolatileQualified(), Ty);
+}
+
+void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
+ QualType Ty,
+ llvm::Value **Result) {
+ unsigned StartBit = Dst.getBitfieldStartBit();
+ unsigned BitfieldSize = Dst.getBitfieldSize();
+ llvm::Value *Ptr = Dst.getBitfieldAddr();
+
+ const llvm::Type *EltTy =
+ cast<llvm::PointerType>(Ptr->getType())->getElementType();
+ unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy);
+
+ // Get the new value, cast to the appropriate type and masked to
+ // exactly the size of the bit-field.
+ llvm::Value *SrcVal = Src.getScalarVal();
+ llvm::Value *NewVal = Builder.CreateIntCast(SrcVal, EltTy, false, "tmp");
+ llvm::Constant *Mask =
+ llvm::ConstantInt::get(llvm::APInt::getLowBitsSet(EltTySize, BitfieldSize));
+ NewVal = Builder.CreateAnd(NewVal, Mask, "bf.value");
+
+ // Return the new value of the bit-field, if requested.
+ if (Result) {
+ // Cast back to the proper type for result.
+ const llvm::Type *SrcTy = SrcVal->getType();
+ llvm::Value *SrcTrunc = Builder.CreateIntCast(NewVal, SrcTy, false,
+ "bf.reload.val");
+
+ // Sign extend if necessary.
+ if (Dst.isBitfieldSigned()) {
+ unsigned SrcTySize = CGM.getTargetData().getTypeSizeInBits(SrcTy);
+ llvm::Value *ExtraBits = llvm::ConstantInt::get(SrcTy,
+ SrcTySize - BitfieldSize);
+ SrcTrunc = Builder.CreateAShr(Builder.CreateShl(SrcTrunc, ExtraBits),
+ ExtraBits, "bf.reload.sext");
+ }
+
+ *Result = SrcTrunc;
+ }
+
+ // In some cases the bitfield may straddle two memory locations.
+ // Emit the low part first and check to see if the high needs to be
+ // done.
+ unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit);
+ llvm::Value *LowVal = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
+ "bf.prev.low");
+
+ // Compute the mask for zero-ing the low part of this bitfield.
+ llvm::Constant *InvMask =
+ llvm::ConstantInt::get(~llvm::APInt::getBitsSet(EltTySize, StartBit,
+ StartBit + LowBits));
+
+ // Compute the new low part as
+ // LowVal = (LowVal & InvMask) | (NewVal << StartBit),
+ // with the shift of NewVal implicitly stripping the high bits.
+ llvm::Value *NewLowVal =
+ Builder.CreateShl(NewVal, llvm::ConstantInt::get(EltTy, StartBit),
+ "bf.value.lo");
+ LowVal = Builder.CreateAnd(LowVal, InvMask, "bf.prev.lo.cleared");
+ LowVal = Builder.CreateOr(LowVal, NewLowVal, "bf.new.lo");
+
+ // Write back.
+ Builder.CreateStore(LowVal, Ptr, Dst.isVolatileQualified());
+
+ // If the low part doesn't cover the bitfield emit a high part.
+ if (LowBits < BitfieldSize) {
+ unsigned HighBits = BitfieldSize - LowBits;
+ llvm::Value *HighPtr =
+ Builder.CreateGEP(Ptr, llvm::ConstantInt::get(llvm::Type::Int32Ty, 1),
+ "bf.ptr.hi");
+ llvm::Value *HighVal = Builder.CreateLoad(HighPtr,
+ Dst.isVolatileQualified(),
+ "bf.prev.hi");
+
+ // Compute the mask for zero-ing the high part of this bitfield.
+ llvm::Constant *InvMask =
+ llvm::ConstantInt::get(~llvm::APInt::getLowBitsSet(EltTySize, HighBits));
+
+ // Compute the new high part as
+ // HighVal = (HighVal & InvMask) | (NewVal lshr LowBits),
+ // where the high bits of NewVal have already been cleared and the
+ // shift stripping the low bits.
+ llvm::Value *NewHighVal =
+ Builder.CreateLShr(NewVal, llvm::ConstantInt::get(EltTy, LowBits),
+ "bf.value.high");
+ HighVal = Builder.CreateAnd(HighVal, InvMask, "bf.prev.hi.cleared");
+ HighVal = Builder.CreateOr(HighVal, NewHighVal, "bf.new.hi");
+
+ // Write back.
+ Builder.CreateStore(HighVal, HighPtr, Dst.isVolatileQualified());
+ }
+}
+
+void CodeGenFunction::EmitStoreThroughPropertyRefLValue(RValue Src,
+ LValue Dst,
+ QualType Ty) {
+ EmitObjCPropertySet(Dst.getPropertyRefExpr(), Src);
+}
+
+void CodeGenFunction::EmitStoreThroughKVCRefLValue(RValue Src,
+ LValue Dst,
+ QualType Ty) {
+ EmitObjCPropertySet(Dst.getKVCRefExpr(), Src);
+}
+
+void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
+ LValue Dst,
+ QualType Ty) {
+ // This access turns into a read/modify/write of the vector. Load the input
+ // value now.
+ llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
+ Dst.isVolatileQualified(), "tmp");
+ const llvm::Constant *Elts = Dst.getExtVectorElts();
+
+ llvm::Value *SrcVal = Src.getScalarVal();
+
+ if (const VectorType *VTy = Ty->getAsVectorType()) {
+ unsigned NumSrcElts = VTy->getNumElements();
+ unsigned NumDstElts =
+ cast<llvm::VectorType>(Vec->getType())->getNumElements();
+ if (NumDstElts == NumSrcElts) {
+ // Use shuffle vector is the src and destination are the same number
+ // of elements
+ llvm::SmallVector<llvm::Constant*, 4> Mask;
+ for (unsigned i = 0; i != NumSrcElts; ++i) {
+ unsigned InIdx = getAccessedFieldNo(i, Elts);
+ Mask.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx));
+ }
+
+ llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
+ Vec = Builder.CreateShuffleVector(SrcVal,
+ llvm::UndefValue::get(Vec->getType()),
+ MaskV, "tmp");
+ }
+ else if (NumDstElts > NumSrcElts) {
+ // Extended the source vector to the same length and then shuffle it
+ // into the destination.
+ // FIXME: since we're shuffling with undef, can we just use the indices
+ // into that? This could be simpler.
+ llvm::SmallVector<llvm::Constant*, 4> ExtMask;
+ unsigned i;
+ for (i = 0; i != NumSrcElts; ++i)
+ ExtMask.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, i));
+ for (; i != NumDstElts; ++i)
+ ExtMask.push_back(llvm::UndefValue::get(llvm::Type::Int32Ty));
+ llvm::Value *ExtMaskV = llvm::ConstantVector::get(&ExtMask[0],
+ ExtMask.size());
+ llvm::Value *ExtSrcVal =
+ Builder.CreateShuffleVector(SrcVal,
+ llvm::UndefValue::get(SrcVal->getType()),
+ ExtMaskV, "tmp");
+ // build identity
+ llvm::SmallVector<llvm::Constant*, 4> Mask;
+ for (unsigned i = 0; i != NumDstElts; ++i) {
+ Mask.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, i));
+ }
+ // modify when what gets shuffled in
+ for (unsigned i = 0; i != NumSrcElts; ++i) {
+ unsigned Idx = getAccessedFieldNo(i, Elts);
+ Mask[Idx] =llvm::ConstantInt::get(llvm::Type::Int32Ty, i+NumDstElts);
+ }
+ llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
+ Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV, "tmp");
+ }
+ else {
+ // We should never shorten the vector
+ assert(0 && "unexpected shorten vector length");
+ }
+ } else {
+ // If the Src is a scalar (not a vector) it must be updating one element.
+ unsigned InIdx = getAccessedFieldNo(0, Elts);
+ llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
+ Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
+ }
+
+ Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
+}
+
+LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
+ const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
+
+ if (VD && (VD->isBlockVarDecl() || isa<ParmVarDecl>(VD) ||
+ isa<ImplicitParamDecl>(VD))) {
+ LValue LV;
+ bool NonGCable = VD->hasLocalStorage() && !VD->hasAttr<BlocksAttr>();
+ if (VD->hasExternalStorage()) {
+ llvm::Value *V = CGM.GetAddrOfGlobalVar(VD);
+ if (VD->getType()->isReferenceType())
+ V = Builder.CreateLoad(V, "tmp");
+ LV = LValue::MakeAddr(V, E->getType().getCVRQualifiers(),
+ getContext().getObjCGCAttrKind(E->getType()));
+ }
+ else {
+ llvm::Value *V = LocalDeclMap[VD];
+ assert(V && "DeclRefExpr not entered in LocalDeclMap?");
+ // local variables do not get their gc attribute set.
+ QualType::GCAttrTypes attr = QualType::GCNone;
+ // local static?
+ if (!NonGCable)
+ attr = getContext().getObjCGCAttrKind(E->getType());
+ if (VD->hasAttr<BlocksAttr>()) {
+ bool needsCopyDispose = BlockRequiresCopying(VD->getType());
+ const llvm::Type *PtrStructTy = V->getType();
+ const llvm::Type *Ty = PtrStructTy;
+ Ty = llvm::PointerType::get(Ty, 0);
+ V = Builder.CreateStructGEP(V, 1, "forwarding");
+ V = Builder.CreateBitCast(V, Ty);
+ V = Builder.CreateLoad(V, false);
+ V = Builder.CreateBitCast(V, PtrStructTy);
+ V = Builder.CreateStructGEP(V, needsCopyDispose*2 + 4, "x");
+ }
+ if (VD->getType()->isReferenceType())
+ V = Builder.CreateLoad(V, "tmp");
+ LV = LValue::MakeAddr(V, E->getType().getCVRQualifiers(), attr);
+ }
+ LValue::SetObjCNonGC(LV, NonGCable);
+ return LV;
+ } else if (VD && VD->isFileVarDecl()) {
+ llvm::Value *V = CGM.GetAddrOfGlobalVar(VD);
+ if (VD->getType()->isReferenceType())
+ V = Builder.CreateLoad(V, "tmp");
+ LValue LV = LValue::MakeAddr(V, E->getType().getCVRQualifiers(),
+ getContext().getObjCGCAttrKind(E->getType()));
+ if (LV.isObjCStrong())
+ LV.SetGlobalObjCRef(LV, true);
+ return LV;
+ } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl())) {
+ llvm::Value* V = CGM.GetAddrOfFunction(GlobalDecl(FD));
+ if (!FD->hasPrototype()) {
+ if (const FunctionProtoType *Proto =
+ FD->getType()->getAsFunctionProtoType()) {
+ // Ugly case: for a K&R-style definition, the type of the definition
+ // isn't the same as the type of a use. Correct for this with a
+ // bitcast.
+ QualType NoProtoType =
+ getContext().getFunctionNoProtoType(Proto->getResultType());
+ NoProtoType = getContext().getPointerType(NoProtoType);
+ V = Builder.CreateBitCast(V, ConvertType(NoProtoType), "tmp");
+ }
+ }
+ return LValue::MakeAddr(V, E->getType().getCVRQualifiers(),
+ getContext().getObjCGCAttrKind(E->getType()));
+ }
+ else if (const ImplicitParamDecl *IPD =
+ dyn_cast<ImplicitParamDecl>(E->getDecl())) {
+ llvm::Value *V = LocalDeclMap[IPD];
+ assert(V && "BlockVarDecl not entered in LocalDeclMap?");
+ return LValue::MakeAddr(V, E->getType().getCVRQualifiers(),
+ getContext().getObjCGCAttrKind(E->getType()));
+ }
+ assert(0 && "Unimp declref");
+ //an invalid LValue, but the assert will
+ //ensure that this point is never reached.
+ return LValue();
+}
+
+LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) {
+ return LValue::MakeAddr(GetAddrOfBlockDecl(E),
+ E->getType().getCVRQualifiers(),
+ getContext().getObjCGCAttrKind(E->getType()));
+}
+
+LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
+ // __extension__ doesn't affect lvalue-ness.
+ if (E->getOpcode() == UnaryOperator::Extension)
+ return EmitLValue(E->getSubExpr());
+
+ QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
+ switch (E->getOpcode()) {
+ default: assert(0 && "Unknown unary operator lvalue!");
+ case UnaryOperator::Deref:
+ {
+ QualType T =
+ E->getSubExpr()->getType()->getAsPointerType()->getPointeeType();
+ LValue LV = LValue::MakeAddr(EmitScalarExpr(E->getSubExpr()),
+ ExprTy->getAsPointerType()->getPointeeType()
+ .getCVRQualifiers(),
+ getContext().getObjCGCAttrKind(T));
+ // We should not generate __weak write barrier on indirect reference
+ // of a pointer to object; as in void foo (__weak id *param); *param = 0;
+ // But, we continue to generate __strong write barrier on indirect write
+ // into a pointer to object.
+ if (getContext().getLangOptions().ObjC1 &&
+ getContext().getLangOptions().getGCMode() != LangOptions::NonGC &&
+ LV.isObjCWeak())
+ LValue::SetObjCNonGC(LV, !E->isOBJCGCCandidate(getContext()));
+ return LV;
+ }
+ case UnaryOperator::Real:
+ case UnaryOperator::Imag:
+ LValue LV = EmitLValue(E->getSubExpr());
+ unsigned Idx = E->getOpcode() == UnaryOperator::Imag;
+ return LValue::MakeAddr(Builder.CreateStructGEP(LV.getAddress(),
+ Idx, "idx"),
+ ExprTy.getCVRQualifiers());
+ }
+}
+
+LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
+ return LValue::MakeAddr(CGM.GetAddrOfConstantStringFromLiteral(E), 0);
+}
+
+LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
+ return LValue::MakeAddr(CGM.GetAddrOfConstantStringFromObjCEncode(E), 0);
+}
+
+
+LValue CodeGenFunction::EmitPredefinedFunctionName(unsigned Type) {
+ std::string GlobalVarName;
+
+ switch (Type) {
+ default:
+ assert(0 && "Invalid type");
+ case PredefinedExpr::Func:
+ GlobalVarName = "__func__.";
+ break;
+ case PredefinedExpr::Function:
+ GlobalVarName = "__FUNCTION__.";
+ break;
+ case PredefinedExpr::PrettyFunction:
+ // FIXME:: Demangle C++ method names
+ GlobalVarName = "__PRETTY_FUNCTION__.";
+ break;
+ }
+
+ // FIXME: This isn't right at all. The logic for computing this should go
+ // into a method on PredefinedExpr. This would allow sema and codegen to be
+ // consistent for things like sizeof(__func__) etc.
+ std::string FunctionName;
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
+ FunctionName = CGM.getMangledName(FD);
+ } else {
+ // Just get the mangled name; skipping the asm prefix if it
+ // exists.
+ FunctionName = CurFn->getName();
+ if (FunctionName[0] == '\01')
+ FunctionName = FunctionName.substr(1, std::string::npos);
+ }
+
+ GlobalVarName += FunctionName;
+ llvm::Constant *C =
+ CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
+ return LValue::MakeAddr(C, 0);
+}
+
+LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
+ switch (E->getIdentType()) {
+ default:
+ return EmitUnsupportedLValue(E, "predefined expression");
+ case PredefinedExpr::Func:
+ case PredefinedExpr::Function:
+ case PredefinedExpr::PrettyFunction:
+ return EmitPredefinedFunctionName(E->getIdentType());
+ }
+}
+
+LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
+ // The index must always be an integer, which is not an aggregate. Emit it.
+ llvm::Value *Idx = EmitScalarExpr(E->getIdx());
+
+ // If the base is a vector type, then we are forming a vector element lvalue
+ // with this subscript.
+ if (E->getBase()->getType()->isVectorType()) {
+ // Emit the vector as an lvalue to get its address.
+ LValue LHS = EmitLValue(E->getBase());
+ assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
+ // FIXME: This should properly sign/zero/extend or truncate Idx to i32.
+ return LValue::MakeVectorElt(LHS.getAddress(), Idx,
+ E->getBase()->getType().getCVRQualifiers());
+ }
+
+ // The base must be a pointer, which is not an aggregate. Emit it.
+ llvm::Value *Base = EmitScalarExpr(E->getBase());
+
+ // Extend or truncate the index type to 32 or 64-bits.
+ QualType IdxTy = E->getIdx()->getType();
+ bool IdxSigned = IdxTy->isSignedIntegerType();
+ unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
+ if (IdxBitwidth != LLVMPointerWidth)
+ Idx = Builder.CreateIntCast(Idx, llvm::IntegerType::get(LLVMPointerWidth),
+ IdxSigned, "idxprom");
+
+ // We know that the pointer points to a type of the correct size,
+ // unless the size is a VLA or Objective-C interface.
+ llvm::Value *Address = 0;
+ if (const VariableArrayType *VAT =
+ getContext().getAsVariableArrayType(E->getType())) {
+ llvm::Value *VLASize = VLASizeMap[VAT];
+
+ Idx = Builder.CreateMul(Idx, VLASize);
+
+ QualType BaseType = getContext().getBaseElementType(VAT);
+
+ uint64_t BaseTypeSize = getContext().getTypeSize(BaseType) / 8;
+ Idx = Builder.CreateUDiv(Idx,
+ llvm::ConstantInt::get(Idx->getType(),
+ BaseTypeSize));
+ Address = Builder.CreateGEP(Base, Idx, "arrayidx");
+ } else if (const ObjCInterfaceType *OIT =
+ dyn_cast<ObjCInterfaceType>(E->getType())) {
+ llvm::Value *InterfaceSize =
+ llvm::ConstantInt::get(Idx->getType(),
+ getContext().getTypeSize(OIT) / 8);
+
+ Idx = Builder.CreateMul(Idx, InterfaceSize);
+
+ llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
+ Address = Builder.CreateGEP(Builder.CreateBitCast(Base, i8PTy),
+ Idx, "arrayidx");
+ Address = Builder.CreateBitCast(Address, Base->getType());
+ } else {
+ Address = Builder.CreateGEP(Base, Idx, "arrayidx");
+ }
+
+ QualType T = E->getBase()->getType()->getAsPointerType()->getPointeeType();
+ LValue LV = LValue::MakeAddr(Address,
+ T.getCVRQualifiers(),
+ getContext().getObjCGCAttrKind(T));
+ if (getContext().getLangOptions().ObjC1 &&
+ getContext().getLangOptions().getGCMode() != LangOptions::NonGC)
+ LValue::SetObjCNonGC(LV, !E->isOBJCGCCandidate(getContext()));
+ return LV;
+}
+
+static
+llvm::Constant *GenerateConstantVector(llvm::SmallVector<unsigned, 4> &Elts) {
+ llvm::SmallVector<llvm::Constant *, 4> CElts;
+
+ for (unsigned i = 0, e = Elts.size(); i != e; ++i)
+ CElts.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, Elts[i]));
+
+ return llvm::ConstantVector::get(&CElts[0], CElts.size());
+}
+
+LValue CodeGenFunction::
+EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
+ // Emit the base vector as an l-value.
+ LValue Base;
+
+ // ExtVectorElementExpr's base can either be a vector or pointer to vector.
+ if (!E->isArrow()) {
+ assert(E->getBase()->getType()->isVectorType());
+ Base = EmitLValue(E->getBase());
+ } else {
+ const PointerType *PT = E->getBase()->getType()->getAsPointerType();
+ llvm::Value *Ptr = EmitScalarExpr(E->getBase());
+ Base = LValue::MakeAddr(Ptr, PT->getPointeeType().getCVRQualifiers());
+ }
+
+ // Encode the element access list into a vector of unsigned indices.
+ llvm::SmallVector<unsigned, 4> Indices;
+ E->getEncodedElementAccess(Indices);
+
+ if (Base.isSimple()) {
+ llvm::Constant *CV = GenerateConstantVector(Indices);
+ return LValue::MakeExtVectorElt(Base.getAddress(), CV,
+ Base.getQualifiers());
+ }
+ assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
+
+ llvm::Constant *BaseElts = Base.getExtVectorElts();
+ llvm::SmallVector<llvm::Constant *, 4> CElts;
+
+ for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
+ if (isa<llvm::ConstantAggregateZero>(BaseElts))
+ CElts.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, 0));
+ else
+ CElts.push_back(BaseElts->getOperand(Indices[i]));
+ }
+ llvm::Constant *CV = llvm::ConstantVector::get(&CElts[0], CElts.size());
+ return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV,
+ Base.getQualifiers());
+}
+
+LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
+ bool isUnion = false;
+ bool isIvar = false;
+ bool isNonGC = false;
+ Expr *BaseExpr = E->getBase();
+ llvm::Value *BaseValue = NULL;
+ unsigned CVRQualifiers=0;
+
+ // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
+ if (E->isArrow()) {
+ BaseValue = EmitScalarExpr(BaseExpr);
+ const PointerType *PTy =
+ BaseExpr->getType()->getAsPointerType();
+ if (PTy->getPointeeType()->isUnionType())
+ isUnion = true;
+ CVRQualifiers = PTy->getPointeeType().getCVRQualifiers();
+ } else if (isa<ObjCPropertyRefExpr>(BaseExpr) ||
+ isa<ObjCKVCRefExpr>(BaseExpr)) {
+ RValue RV = EmitObjCPropertyGet(BaseExpr);
+ BaseValue = RV.getAggregateAddr();
+ if (BaseExpr->getType()->isUnionType())
+ isUnion = true;
+ CVRQualifiers = BaseExpr->getType().getCVRQualifiers();
+ } else {
+ LValue BaseLV = EmitLValue(BaseExpr);
+ if (BaseLV.isObjCIvar())
+ isIvar = true;
+ if (BaseLV.isNonGC())
+ isNonGC = true;
+ // FIXME: this isn't right for bitfields.
+ BaseValue = BaseLV.getAddress();
+ if (BaseExpr->getType()->isUnionType())
+ isUnion = true;
+ CVRQualifiers = BaseExpr->getType().getCVRQualifiers();
+ }
+
+ FieldDecl *Field = dyn_cast<FieldDecl>(E->getMemberDecl());
+ // FIXME: Handle non-field member expressions
+ assert(Field && "No code generation for non-field member references");
+ LValue MemExpLV = EmitLValueForField(BaseValue, Field, isUnion,
+ CVRQualifiers);
+ LValue::SetObjCIvar(MemExpLV, isIvar);
+ LValue::SetObjCNonGC(MemExpLV, isNonGC);
+ return MemExpLV;
+}
+
+LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value* BaseValue,
+ FieldDecl* Field,
+ unsigned CVRQualifiers) {
+ unsigned idx = CGM.getTypes().getLLVMFieldNo(Field);
+ // FIXME: CodeGenTypes should expose a method to get the appropriate type for
+ // FieldTy (the appropriate type is ABI-dependent).
+ const llvm::Type *FieldTy =
+ CGM.getTypes().ConvertTypeForMem(Field->getType());
+ const llvm::PointerType *BaseTy =
+ cast<llvm::PointerType>(BaseValue->getType());
+ unsigned AS = BaseTy->getAddressSpace();
+ BaseValue = Builder.CreateBitCast(BaseValue,
+ llvm::PointerType::get(FieldTy, AS),
+ "tmp");
+ llvm::Value *V = Builder.CreateGEP(BaseValue,
+ llvm::ConstantInt::get(llvm::Type::Int32Ty, idx),
+ "tmp");
+
+ CodeGenTypes::BitFieldInfo bitFieldInfo =
+ CGM.getTypes().getBitFieldInfo(Field);
+ return LValue::MakeBitfield(V, bitFieldInfo.Begin, bitFieldInfo.Size,
+ Field->getType()->isSignedIntegerType(),
+ Field->getType().getCVRQualifiers()|CVRQualifiers);
+}
+
+LValue CodeGenFunction::EmitLValueForField(llvm::Value* BaseValue,
+ FieldDecl* Field,
+ bool isUnion,
+ unsigned CVRQualifiers)
+{
+ if (Field->isBitField())
+ return EmitLValueForBitfield(BaseValue, Field, CVRQualifiers);
+
+ unsigned idx = CGM.getTypes().getLLVMFieldNo(Field);
+ llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp");
+
+ // Match union field type.
+ if (isUnion) {
+ const llvm::Type *FieldTy =
+ CGM.getTypes().ConvertTypeForMem(Field->getType());
+ const llvm::PointerType * BaseTy =
+ cast<llvm::PointerType>(BaseValue->getType());
+ unsigned AS = BaseTy->getAddressSpace();
+ V = Builder.CreateBitCast(V,
+ llvm::PointerType::get(FieldTy, AS),
+ "tmp");
+ }
+ if (Field->getType()->isReferenceType())
+ V = Builder.CreateLoad(V, "tmp");
+
+ QualType::GCAttrTypes attr = QualType::GCNone;
+ if (CGM.getLangOptions().ObjC1 &&
+ CGM.getLangOptions().getGCMode() != LangOptions::NonGC) {
+ QualType Ty = Field->getType();
+ attr = Ty.getObjCGCAttr();
+ if (attr != QualType::GCNone) {
+ // __weak attribute on a field is ignored.
+ if (attr == QualType::Weak)
+ attr = QualType::GCNone;
+ }
+ else if (getContext().isObjCObjectPointerType(Ty))
+ attr = QualType::Strong;
+ }
+ LValue LV =
+ LValue::MakeAddr(V,
+ Field->getType().getCVRQualifiers()|CVRQualifiers,
+ attr);
+ return LV;
+}
+
+LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr* E){
+ const llvm::Type *LTy = ConvertType(E->getType());
+ llvm::Value *DeclPtr = CreateTempAlloca(LTy, ".compoundliteral");
+
+ const Expr* InitExpr = E->getInitializer();
+ LValue Result = LValue::MakeAddr(DeclPtr, E->getType().getCVRQualifiers());
+
+ if (E->getType()->isComplexType()) {
+ EmitComplexExprIntoAddr(InitExpr, DeclPtr, false);
+ } else if (hasAggregateLLVMType(E->getType())) {
+ EmitAnyExpr(InitExpr, DeclPtr, false);
+ } else {
+ EmitStoreThroughLValue(EmitAnyExpr(InitExpr), Result, E->getType());
+ }
+
+ return Result;
+}
+
+LValue CodeGenFunction::EmitConditionalOperator(const ConditionalOperator* E) {
+ // We don't handle vectors yet.
+ if (E->getType()->isVectorType())
+ return EmitUnsupportedLValue(E, "conditional operator");
+
+ // ?: here should be an aggregate.
+ assert((hasAggregateLLVMType(E->getType()) &&
+ !E->getType()->isAnyComplexType()) &&
+ "Unexpected conditional operator!");
+
+ llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType()));
+ EmitAggExpr(E, Temp, false);
+
+ return LValue::MakeAddr(Temp, E->getType().getCVRQualifiers(),
+ getContext().getObjCGCAttrKind(E->getType()));
+
+}
+
+/// EmitCastLValue - Casts are never lvalues. If a cast is needed by the code
+/// generator in an lvalue context, then it must mean that we need the address
+/// of an aggregate in order to access one of its fields. This can happen for
+/// all the reasons that casts are permitted with aggregate result, including
+/// noop aggregate casts, and cast from scalar to union.
+LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
+ // If this is an aggregate-to-aggregate cast, just use the input's address as
+ // the lvalue.
+ if (getContext().hasSameUnqualifiedType(E->getType(),
+ E->getSubExpr()->getType()))
+ return EmitLValue(E->getSubExpr());
+
+ // Otherwise, we must have a cast from scalar to union.
+ assert(E->getType()->isUnionType() && "Expected scalar-to-union cast");
+
+ // Casts are only lvalues when the source and destination types are the same.
+ llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType()));
+ EmitAnyExpr(E->getSubExpr(), Temp, false);
+
+ return LValue::MakeAddr(Temp, E->getType().getCVRQualifiers(),
+ getContext().getObjCGCAttrKind(E->getType()));
+}
+
+//===--------------------------------------------------------------------===//
+// Expression Emission
+//===--------------------------------------------------------------------===//
+
+
+RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) {
+ // Builtins never have block type.
+ if (E->getCallee()->getType()->isBlockPointerType())
+ return EmitBlockCallExpr(E);
+
+ if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
+ return EmitCXXMemberCallExpr(CE);
+
+ const Decl *TargetDecl = 0;
+ if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) {
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
+ TargetDecl = DRE->getDecl();
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(TargetDecl))
+ if (unsigned builtinID = FD->getBuiltinID(getContext()))
+ return EmitBuiltinExpr(FD, builtinID, E);
+ }
+ }
+
+ if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) {
+ if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
+ return EmitCXXOperatorMemberCallExpr(CE, MD);
+ }
+
+ llvm::Value *Callee = EmitScalarExpr(E->getCallee());
+ return EmitCall(Callee, E->getCallee()->getType(),
+ E->arg_begin(), E->arg_end(), TargetDecl);
+}
+
+LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
+ // Comma expressions just emit their LHS then their RHS as an l-value.
+ if (E->getOpcode() == BinaryOperator::Comma) {
+ EmitAnyExpr(E->getLHS());
+ return EmitLValue(E->getRHS());
+ }
+
+ // Can only get l-value for binary operator expressions which are a
+ // simple assignment of aggregate type.
+ if (E->getOpcode() != BinaryOperator::Assign)
+ return EmitUnsupportedLValue(E, "binary l-value expression");
+
+ llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType()));
+ EmitAggExpr(E, Temp, false);
+ // FIXME: Are these qualifiers correct?
+ return LValue::MakeAddr(Temp, E->getType().getCVRQualifiers(),
+ getContext().getObjCGCAttrKind(E->getType()));
+}
+
+LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
+ RValue RV = EmitCallExpr(E);
+
+ if (RV.isScalar()) {
+ assert(E->getCallReturnType()->isReferenceType() &&
+ "Can't have a scalar return unless the return type is a "
+ "reference type!");
+
+ return LValue::MakeAddr(RV.getScalarVal(), E->getType().getCVRQualifiers(),
+ getContext().getObjCGCAttrKind(E->getType()));
+ }
+
+ return LValue::MakeAddr(RV.getAggregateAddr(),
+ E->getType().getCVRQualifiers(),
+ getContext().getObjCGCAttrKind(E->getType()));
+}
+
+LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
+ // FIXME: This shouldn't require another copy.
+ llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType()));
+ EmitAggExpr(E, Temp, false);
+ return LValue::MakeAddr(Temp, E->getType().getCVRQualifiers());
+}
+
+LValue
+CodeGenFunction::EmitCXXConditionDeclLValue(const CXXConditionDeclExpr *E) {
+ EmitLocalBlockVarDecl(*E->getVarDecl());
+ return EmitDeclRefLValue(E);
+}
+
+LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
+ llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(E->getType()), "tmp");
+ EmitCXXConstructExpr(Temp, E);
+ return LValue::MakeAddr(Temp, E->getType().getCVRQualifiers());
+}
+
+LValue
+CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
+ LValue LV = EmitLValue(E->getSubExpr());
+
+ PushCXXTemporary(E->getTemporary(), LV.getAddress());
+
+ return LV;
+}
+
+LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
+ // Can only get l-value for message expression returning aggregate type
+ RValue RV = EmitObjCMessageExpr(E);
+ // FIXME: can this be volatile?
+ return LValue::MakeAddr(RV.getAggregateAddr(),
+ E->getType().getCVRQualifiers(),
+ getContext().getObjCGCAttrKind(E->getType()));
+}
+
+llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
+ const ObjCIvarDecl *Ivar) {
+ return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
+}
+
+LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
+ llvm::Value *BaseValue,
+ const ObjCIvarDecl *Ivar,
+ unsigned CVRQualifiers) {
+ return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
+ Ivar, CVRQualifiers);
+}
+
+LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
+ // FIXME: A lot of the code below could be shared with EmitMemberExpr.
+ llvm::Value *BaseValue = 0;
+ const Expr *BaseExpr = E->getBase();
+ unsigned CVRQualifiers = 0;
+ QualType ObjectTy;
+ if (E->isArrow()) {
+ BaseValue = EmitScalarExpr(BaseExpr);
+ const PointerType *PTy = BaseExpr->getType()->getAsPointerType();
+ ObjectTy = PTy->getPointeeType();
+ CVRQualifiers = ObjectTy.getCVRQualifiers();
+ } else {
+ LValue BaseLV = EmitLValue(BaseExpr);
+ // FIXME: this isn't right for bitfields.
+ BaseValue = BaseLV.getAddress();
+ ObjectTy = BaseExpr->getType();
+ CVRQualifiers = ObjectTy.getCVRQualifiers();
+ }
+
+ return EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), CVRQualifiers);
+}
+
+LValue
+CodeGenFunction::EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E) {
+ // This is a special l-value that just issues sends when we load or
+ // store through it.
+ return LValue::MakePropertyRef(E, E->getType().getCVRQualifiers());
+}
+
+LValue
+CodeGenFunction::EmitObjCKVCRefLValue(const ObjCKVCRefExpr *E) {
+ // This is a special l-value that just issues sends when we load or
+ // store through it.
+ return LValue::MakeKVCRef(E, E->getType().getCVRQualifiers());
+}
+
+LValue
+CodeGenFunction::EmitObjCSuperExprLValue(const ObjCSuperExpr *E) {
+ return EmitUnsupportedLValue(E, "use of super");
+}
+
+LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
+
+ // Can only get l-value for message expression returning aggregate type
+ RValue RV = EmitAnyExprToTemp(E);
+ // FIXME: can this be volatile?
+ return LValue::MakeAddr(RV.getAggregateAddr(),
+ E->getType().getCVRQualifiers(),
+ getContext().getObjCGCAttrKind(E->getType()));
+}
+
+
+RValue CodeGenFunction::EmitCall(llvm::Value *Callee, QualType CalleeType,
+ CallExpr::const_arg_iterator ArgBeg,
+ CallExpr::const_arg_iterator ArgEnd,
+ const Decl *TargetDecl) {
+ // Get the actual function type. The callee type will always be a
+ // pointer to function type or a block pointer type.
+ assert(CalleeType->isFunctionPointerType() &&
+ "Call must have function pointer type!");
+
+ QualType FnType = CalleeType->getAsPointerType()->getPointeeType();
+ QualType ResultType = FnType->getAsFunctionType()->getResultType();
+
+ CallArgList Args;
+ EmitCallArgs(Args, FnType->getAsFunctionProtoType(), ArgBeg, ArgEnd);
+
+ return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args),
+ Callee, Args, TargetDecl);
+}