aboutsummaryrefslogtreecommitdiff
path: root/lib/Sema/SemaDeclCXX.cpp
diff options
context:
space:
mode:
authorEd Schouten <ed@FreeBSD.org>2009-06-02 17:58:47 +0000
committerEd Schouten <ed@FreeBSD.org>2009-06-02 17:58:47 +0000
commitec2b103c267a06a66e926f62cd96767b280f5cf5 (patch)
treece7d964cbb5e39695b71481698f10cb099c23d4a /lib/Sema/SemaDeclCXX.cpp
downloadsrc-ec2b103c267a06a66e926f62cd96767b280f5cf5.tar.gz
src-ec2b103c267a06a66e926f62cd96767b280f5cf5.zip
Import Clang, at r72732.vendor/clang/clang-r72732
Notes
Notes: svn path=/vendor/clang/dist/; revision=193326 svn path=/vendor/clang/clang-r72732/; revision=193327; tag=vendor/clang/clang-r72732
Diffstat (limited to 'lib/Sema/SemaDeclCXX.cpp')
-rw-r--r--lib/Sema/SemaDeclCXX.cpp2823
1 files changed, 2823 insertions, 0 deletions
diff --git a/lib/Sema/SemaDeclCXX.cpp b/lib/Sema/SemaDeclCXX.cpp
new file mode 100644
index 000000000000..f13179f0438f
--- /dev/null
+++ b/lib/Sema/SemaDeclCXX.cpp
@@ -0,0 +1,2823 @@
+//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for C++ declarations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sema.h"
+#include "SemaInherit.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclVisitor.h"
+#include "clang/AST/TypeOrdering.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Parse/DeclSpec.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/Compiler.h"
+#include <algorithm> // for std::equal
+#include <map>
+
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// CheckDefaultArgumentVisitor
+//===----------------------------------------------------------------------===//
+
+namespace {
+ /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
+ /// the default argument of a parameter to determine whether it
+ /// contains any ill-formed subexpressions. For example, this will
+ /// diagnose the use of local variables or parameters within the
+ /// default argument expression.
+ class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
+ : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
+ Expr *DefaultArg;
+ Sema *S;
+
+ public:
+ CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
+ : DefaultArg(defarg), S(s) {}
+
+ bool VisitExpr(Expr *Node);
+ bool VisitDeclRefExpr(DeclRefExpr *DRE);
+ bool VisitCXXThisExpr(CXXThisExpr *ThisE);
+ };
+
+ /// VisitExpr - Visit all of the children of this expression.
+ bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
+ bool IsInvalid = false;
+ for (Stmt::child_iterator I = Node->child_begin(),
+ E = Node->child_end(); I != E; ++I)
+ IsInvalid |= Visit(*I);
+ return IsInvalid;
+ }
+
+ /// VisitDeclRefExpr - Visit a reference to a declaration, to
+ /// determine whether this declaration can be used in the default
+ /// argument expression.
+ bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
+ NamedDecl *Decl = DRE->getDecl();
+ if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
+ // C++ [dcl.fct.default]p9
+ // Default arguments are evaluated each time the function is
+ // called. The order of evaluation of function arguments is
+ // unspecified. Consequently, parameters of a function shall not
+ // be used in default argument expressions, even if they are not
+ // evaluated. Parameters of a function declared before a default
+ // argument expression are in scope and can hide namespace and
+ // class member names.
+ return S->Diag(DRE->getSourceRange().getBegin(),
+ diag::err_param_default_argument_references_param)
+ << Param->getDeclName() << DefaultArg->getSourceRange();
+ } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
+ // C++ [dcl.fct.default]p7
+ // Local variables shall not be used in default argument
+ // expressions.
+ if (VDecl->isBlockVarDecl())
+ return S->Diag(DRE->getSourceRange().getBegin(),
+ diag::err_param_default_argument_references_local)
+ << VDecl->getDeclName() << DefaultArg->getSourceRange();
+ }
+
+ return false;
+ }
+
+ /// VisitCXXThisExpr - Visit a C++ "this" expression.
+ bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
+ // C++ [dcl.fct.default]p8:
+ // The keyword this shall not be used in a default argument of a
+ // member function.
+ return S->Diag(ThisE->getSourceRange().getBegin(),
+ diag::err_param_default_argument_references_this)
+ << ThisE->getSourceRange();
+ }
+}
+
+/// ActOnParamDefaultArgument - Check whether the default argument
+/// provided for a function parameter is well-formed. If so, attach it
+/// to the parameter declaration.
+void
+Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
+ ExprArg defarg) {
+ ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
+ ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
+ QualType ParamType = Param->getType();
+
+ // Default arguments are only permitted in C++
+ if (!getLangOptions().CPlusPlus) {
+ Diag(EqualLoc, diag::err_param_default_argument)
+ << DefaultArg->getSourceRange();
+ Param->setInvalidDecl();
+ return;
+ }
+
+ // C++ [dcl.fct.default]p5
+ // A default argument expression is implicitly converted (clause
+ // 4) to the parameter type. The default argument expression has
+ // the same semantic constraints as the initializer expression in
+ // a declaration of a variable of the parameter type, using the
+ // copy-initialization semantics (8.5).
+ Expr *DefaultArgPtr = DefaultArg.get();
+ bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
+ EqualLoc,
+ Param->getDeclName(),
+ /*DirectInit=*/false);
+ if (DefaultArgPtr != DefaultArg.get()) {
+ DefaultArg.take();
+ DefaultArg.reset(DefaultArgPtr);
+ }
+ if (DefaultInitFailed) {
+ return;
+ }
+
+ // Check that the default argument is well-formed
+ CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
+ if (DefaultArgChecker.Visit(DefaultArg.get())) {
+ Param->setInvalidDecl();
+ return;
+ }
+
+ // Okay: add the default argument to the parameter
+ Param->setDefaultArg(DefaultArg.take());
+}
+
+/// ActOnParamUnparsedDefaultArgument - We've seen a default
+/// argument for a function parameter, but we can't parse it yet
+/// because we're inside a class definition. Note that this default
+/// argument will be parsed later.
+void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
+ SourceLocation EqualLoc) {
+ ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
+ if (Param)
+ Param->setUnparsedDefaultArg();
+}
+
+/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
+/// the default argument for the parameter param failed.
+void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
+ cast<ParmVarDecl>(param.getAs<Decl>())->setInvalidDecl();
+}
+
+/// CheckExtraCXXDefaultArguments - Check for any extra default
+/// arguments in the declarator, which is not a function declaration
+/// or definition and therefore is not permitted to have default
+/// arguments. This routine should be invoked for every declarator
+/// that is not a function declaration or definition.
+void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
+ // C++ [dcl.fct.default]p3
+ // A default argument expression shall be specified only in the
+ // parameter-declaration-clause of a function declaration or in a
+ // template-parameter (14.1). It shall not be specified for a
+ // parameter pack. If it is specified in a
+ // parameter-declaration-clause, it shall not occur within a
+ // declarator or abstract-declarator of a parameter-declaration.
+ for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
+ DeclaratorChunk &chunk = D.getTypeObject(i);
+ if (chunk.Kind == DeclaratorChunk::Function) {
+ for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
+ ParmVarDecl *Param =
+ cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
+ if (Param->hasUnparsedDefaultArg()) {
+ CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
+ Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
+ << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
+ delete Toks;
+ chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
+ } else if (Param->getDefaultArg()) {
+ Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
+ << Param->getDefaultArg()->getSourceRange();
+ Param->setDefaultArg(0);
+ }
+ }
+ }
+ }
+}
+
+// MergeCXXFunctionDecl - Merge two declarations of the same C++
+// function, once we already know that they have the same
+// type. Subroutine of MergeFunctionDecl. Returns true if there was an
+// error, false otherwise.
+bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
+ bool Invalid = false;
+
+ // C++ [dcl.fct.default]p4:
+ //
+ // For non-template functions, default arguments can be added in
+ // later declarations of a function in the same
+ // scope. Declarations in different scopes have completely
+ // distinct sets of default arguments. That is, declarations in
+ // inner scopes do not acquire default arguments from
+ // declarations in outer scopes, and vice versa. In a given
+ // function declaration, all parameters subsequent to a
+ // parameter with a default argument shall have default
+ // arguments supplied in this or previous declarations. A
+ // default argument shall not be redefined by a later
+ // declaration (not even to the same value).
+ for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
+ ParmVarDecl *OldParam = Old->getParamDecl(p);
+ ParmVarDecl *NewParam = New->getParamDecl(p);
+
+ if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
+ Diag(NewParam->getLocation(),
+ diag::err_param_default_argument_redefinition)
+ << NewParam->getDefaultArg()->getSourceRange();
+ Diag(OldParam->getLocation(), diag::note_previous_definition);
+ Invalid = true;
+ } else if (OldParam->getDefaultArg()) {
+ // Merge the old default argument into the new parameter
+ NewParam->setDefaultArg(OldParam->getDefaultArg());
+ }
+ }
+
+ return Invalid;
+}
+
+/// CheckCXXDefaultArguments - Verify that the default arguments for a
+/// function declaration are well-formed according to C++
+/// [dcl.fct.default].
+void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
+ unsigned NumParams = FD->getNumParams();
+ unsigned p;
+
+ // Find first parameter with a default argument
+ for (p = 0; p < NumParams; ++p) {
+ ParmVarDecl *Param = FD->getParamDecl(p);
+ if (Param->getDefaultArg())
+ break;
+ }
+
+ // C++ [dcl.fct.default]p4:
+ // In a given function declaration, all parameters
+ // subsequent to a parameter with a default argument shall
+ // have default arguments supplied in this or previous
+ // declarations. A default argument shall not be redefined
+ // by a later declaration (not even to the same value).
+ unsigned LastMissingDefaultArg = 0;
+ for(; p < NumParams; ++p) {
+ ParmVarDecl *Param = FD->getParamDecl(p);
+ if (!Param->getDefaultArg()) {
+ if (Param->isInvalidDecl())
+ /* We already complained about this parameter. */;
+ else if (Param->getIdentifier())
+ Diag(Param->getLocation(),
+ diag::err_param_default_argument_missing_name)
+ << Param->getIdentifier();
+ else
+ Diag(Param->getLocation(),
+ diag::err_param_default_argument_missing);
+
+ LastMissingDefaultArg = p;
+ }
+ }
+
+ if (LastMissingDefaultArg > 0) {
+ // Some default arguments were missing. Clear out all of the
+ // default arguments up to (and including) the last missing
+ // default argument, so that we leave the function parameters
+ // in a semantically valid state.
+ for (p = 0; p <= LastMissingDefaultArg; ++p) {
+ ParmVarDecl *Param = FD->getParamDecl(p);
+ if (Param->getDefaultArg()) {
+ if (!Param->hasUnparsedDefaultArg())
+ Param->getDefaultArg()->Destroy(Context);
+ Param->setDefaultArg(0);
+ }
+ }
+ }
+}
+
+/// isCurrentClassName - Determine whether the identifier II is the
+/// name of the class type currently being defined. In the case of
+/// nested classes, this will only return true if II is the name of
+/// the innermost class.
+bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
+ const CXXScopeSpec *SS) {
+ CXXRecordDecl *CurDecl;
+ if (SS && SS->isSet() && !SS->isInvalid()) {
+ DeclContext *DC = computeDeclContext(*SS);
+ CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
+ } else
+ CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
+
+ if (CurDecl)
+ return &II == CurDecl->getIdentifier();
+ else
+ return false;
+}
+
+/// \brief Check the validity of a C++ base class specifier.
+///
+/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
+/// and returns NULL otherwise.
+CXXBaseSpecifier *
+Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
+ SourceRange SpecifierRange,
+ bool Virtual, AccessSpecifier Access,
+ QualType BaseType,
+ SourceLocation BaseLoc) {
+ // C++ [class.union]p1:
+ // A union shall not have base classes.
+ if (Class->isUnion()) {
+ Diag(Class->getLocation(), diag::err_base_clause_on_union)
+ << SpecifierRange;
+ return 0;
+ }
+
+ if (BaseType->isDependentType())
+ return new CXXBaseSpecifier(SpecifierRange, Virtual,
+ Class->getTagKind() == RecordDecl::TK_class,
+ Access, BaseType);
+
+ // Base specifiers must be record types.
+ if (!BaseType->isRecordType()) {
+ Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
+ return 0;
+ }
+
+ // C++ [class.union]p1:
+ // A union shall not be used as a base class.
+ if (BaseType->isUnionType()) {
+ Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
+ return 0;
+ }
+
+ // C++ [class.derived]p2:
+ // The class-name in a base-specifier shall not be an incompletely
+ // defined class.
+ if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
+ SpecifierRange))
+ return 0;
+
+ // If the base class is polymorphic, the new one is, too.
+ RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
+ assert(BaseDecl && "Record type has no declaration");
+ BaseDecl = BaseDecl->getDefinition(Context);
+ assert(BaseDecl && "Base type is not incomplete, but has no definition");
+ if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
+ Class->setPolymorphic(true);
+
+ // C++ [dcl.init.aggr]p1:
+ // An aggregate is [...] a class with [...] no base classes [...].
+ Class->setAggregate(false);
+ Class->setPOD(false);
+
+ if (Virtual) {
+ // C++ [class.ctor]p5:
+ // A constructor is trivial if its class has no virtual base classes.
+ Class->setHasTrivialConstructor(false);
+ } else {
+ // C++ [class.ctor]p5:
+ // A constructor is trivial if all the direct base classes of its
+ // class have trivial constructors.
+ Class->setHasTrivialConstructor(cast<CXXRecordDecl>(BaseDecl)->
+ hasTrivialConstructor());
+ }
+
+ // C++ [class.ctor]p3:
+ // A destructor is trivial if all the direct base classes of its class
+ // have trivial destructors.
+ Class->setHasTrivialDestructor(cast<CXXRecordDecl>(BaseDecl)->
+ hasTrivialDestructor());
+
+ // Create the base specifier.
+ // FIXME: Allocate via ASTContext?
+ return new CXXBaseSpecifier(SpecifierRange, Virtual,
+ Class->getTagKind() == RecordDecl::TK_class,
+ Access, BaseType);
+}
+
+/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
+/// one entry in the base class list of a class specifier, for
+/// example:
+/// class foo : public bar, virtual private baz {
+/// 'public bar' and 'virtual private baz' are each base-specifiers.
+Sema::BaseResult
+Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
+ bool Virtual, AccessSpecifier Access,
+ TypeTy *basetype, SourceLocation BaseLoc) {
+ AdjustDeclIfTemplate(classdecl);
+ CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
+ QualType BaseType = QualType::getFromOpaquePtr(basetype);
+ if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
+ Virtual, Access,
+ BaseType, BaseLoc))
+ return BaseSpec;
+
+ return true;
+}
+
+/// \brief Performs the actual work of attaching the given base class
+/// specifiers to a C++ class.
+bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
+ unsigned NumBases) {
+ if (NumBases == 0)
+ return false;
+
+ // Used to keep track of which base types we have already seen, so
+ // that we can properly diagnose redundant direct base types. Note
+ // that the key is always the unqualified canonical type of the base
+ // class.
+ std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
+
+ // Copy non-redundant base specifiers into permanent storage.
+ unsigned NumGoodBases = 0;
+ bool Invalid = false;
+ for (unsigned idx = 0; idx < NumBases; ++idx) {
+ QualType NewBaseType
+ = Context.getCanonicalType(Bases[idx]->getType());
+ NewBaseType = NewBaseType.getUnqualifiedType();
+
+ if (KnownBaseTypes[NewBaseType]) {
+ // C++ [class.mi]p3:
+ // A class shall not be specified as a direct base class of a
+ // derived class more than once.
+ Diag(Bases[idx]->getSourceRange().getBegin(),
+ diag::err_duplicate_base_class)
+ << KnownBaseTypes[NewBaseType]->getType()
+ << Bases[idx]->getSourceRange();
+
+ // Delete the duplicate base class specifier; we're going to
+ // overwrite its pointer later.
+ delete Bases[idx];
+
+ Invalid = true;
+ } else {
+ // Okay, add this new base class.
+ KnownBaseTypes[NewBaseType] = Bases[idx];
+ Bases[NumGoodBases++] = Bases[idx];
+ }
+ }
+
+ // Attach the remaining base class specifiers to the derived class.
+ Class->setBases(Bases, NumGoodBases);
+
+ // Delete the remaining (good) base class specifiers, since their
+ // data has been copied into the CXXRecordDecl.
+ for (unsigned idx = 0; idx < NumGoodBases; ++idx)
+ delete Bases[idx];
+
+ return Invalid;
+}
+
+/// ActOnBaseSpecifiers - Attach the given base specifiers to the
+/// class, after checking whether there are any duplicate base
+/// classes.
+void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
+ unsigned NumBases) {
+ if (!ClassDecl || !Bases || !NumBases)
+ return;
+
+ AdjustDeclIfTemplate(ClassDecl);
+ AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
+ (CXXBaseSpecifier**)(Bases), NumBases);
+}
+
+//===----------------------------------------------------------------------===//
+// C++ class member Handling
+//===----------------------------------------------------------------------===//
+
+/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
+/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
+/// bitfield width if there is one and 'InitExpr' specifies the initializer if
+/// any.
+Sema::DeclPtrTy
+Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
+ ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
+ const DeclSpec &DS = D.getDeclSpec();
+ DeclarationName Name = GetNameForDeclarator(D);
+ Expr *BitWidth = static_cast<Expr*>(BW);
+ Expr *Init = static_cast<Expr*>(InitExpr);
+ SourceLocation Loc = D.getIdentifierLoc();
+
+ bool isFunc = D.isFunctionDeclarator();
+
+ // C++ 9.2p6: A member shall not be declared to have automatic storage
+ // duration (auto, register) or with the extern storage-class-specifier.
+ // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
+ // data members and cannot be applied to names declared const or static,
+ // and cannot be applied to reference members.
+ switch (DS.getStorageClassSpec()) {
+ case DeclSpec::SCS_unspecified:
+ case DeclSpec::SCS_typedef:
+ case DeclSpec::SCS_static:
+ // FALL THROUGH.
+ break;
+ case DeclSpec::SCS_mutable:
+ if (isFunc) {
+ if (DS.getStorageClassSpecLoc().isValid())
+ Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
+ else
+ Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
+
+ // FIXME: It would be nicer if the keyword was ignored only for this
+ // declarator. Otherwise we could get follow-up errors.
+ D.getMutableDeclSpec().ClearStorageClassSpecs();
+ } else {
+ QualType T = GetTypeForDeclarator(D, S);
+ diag::kind err = static_cast<diag::kind>(0);
+ if (T->isReferenceType())
+ err = diag::err_mutable_reference;
+ else if (T.isConstQualified())
+ err = diag::err_mutable_const;
+ if (err != 0) {
+ if (DS.getStorageClassSpecLoc().isValid())
+ Diag(DS.getStorageClassSpecLoc(), err);
+ else
+ Diag(DS.getThreadSpecLoc(), err);
+ // FIXME: It would be nicer if the keyword was ignored only for this
+ // declarator. Otherwise we could get follow-up errors.
+ D.getMutableDeclSpec().ClearStorageClassSpecs();
+ }
+ }
+ break;
+ default:
+ if (DS.getStorageClassSpecLoc().isValid())
+ Diag(DS.getStorageClassSpecLoc(),
+ diag::err_storageclass_invalid_for_member);
+ else
+ Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
+ D.getMutableDeclSpec().ClearStorageClassSpecs();
+ }
+
+ if (!isFunc &&
+ D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
+ D.getNumTypeObjects() == 0) {
+ // Check also for this case:
+ //
+ // typedef int f();
+ // f a;
+ //
+ QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
+ isFunc = TDType->isFunctionType();
+ }
+
+ bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
+ DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
+ !isFunc);
+
+ Decl *Member;
+ if (isInstField) {
+ Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
+ AS);
+ assert(Member && "HandleField never returns null");
+ } else {
+ Member = ActOnDeclarator(S, D).getAs<Decl>();
+ if (!Member) {
+ if (BitWidth) DeleteExpr(BitWidth);
+ return DeclPtrTy();
+ }
+
+ // Non-instance-fields can't have a bitfield.
+ if (BitWidth) {
+ if (Member->isInvalidDecl()) {
+ // don't emit another diagnostic.
+ } else if (isa<VarDecl>(Member)) {
+ // C++ 9.6p3: A bit-field shall not be a static member.
+ // "static member 'A' cannot be a bit-field"
+ Diag(Loc, diag::err_static_not_bitfield)
+ << Name << BitWidth->getSourceRange();
+ } else if (isa<TypedefDecl>(Member)) {
+ // "typedef member 'x' cannot be a bit-field"
+ Diag(Loc, diag::err_typedef_not_bitfield)
+ << Name << BitWidth->getSourceRange();
+ } else {
+ // A function typedef ("typedef int f(); f a;").
+ // C++ 9.6p3: A bit-field shall have integral or enumeration type.
+ Diag(Loc, diag::err_not_integral_type_bitfield)
+ << Name << cast<ValueDecl>(Member)->getType()
+ << BitWidth->getSourceRange();
+ }
+
+ DeleteExpr(BitWidth);
+ BitWidth = 0;
+ Member->setInvalidDecl();
+ }
+
+ Member->setAccess(AS);
+ }
+
+ assert((Name || isInstField) && "No identifier for non-field ?");
+
+ if (Init)
+ AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
+ if (Deleted) // FIXME: Source location is not very good.
+ SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
+
+ if (isInstField) {
+ FieldCollector->Add(cast<FieldDecl>(Member));
+ return DeclPtrTy();
+ }
+ return DeclPtrTy::make(Member);
+}
+
+/// ActOnMemInitializer - Handle a C++ member initializer.
+Sema::MemInitResult
+Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
+ Scope *S,
+ IdentifierInfo *MemberOrBase,
+ SourceLocation IdLoc,
+ SourceLocation LParenLoc,
+ ExprTy **Args, unsigned NumArgs,
+ SourceLocation *CommaLocs,
+ SourceLocation RParenLoc) {
+ CXXConstructorDecl *Constructor
+ = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
+ if (!Constructor) {
+ // The user wrote a constructor initializer on a function that is
+ // not a C++ constructor. Ignore the error for now, because we may
+ // have more member initializers coming; we'll diagnose it just
+ // once in ActOnMemInitializers.
+ return true;
+ }
+
+ CXXRecordDecl *ClassDecl = Constructor->getParent();
+
+ // C++ [class.base.init]p2:
+ // Names in a mem-initializer-id are looked up in the scope of the
+ // constructor’s class and, if not found in that scope, are looked
+ // up in the scope containing the constructor’s
+ // definition. [Note: if the constructor’s class contains a member
+ // with the same name as a direct or virtual base class of the
+ // class, a mem-initializer-id naming the member or base class and
+ // composed of a single identifier refers to the class member. A
+ // mem-initializer-id for the hidden base class may be specified
+ // using a qualified name. ]
+ // Look for a member, first.
+ FieldDecl *Member = 0;
+ DeclContext::lookup_result Result
+ = ClassDecl->lookup(Context, MemberOrBase);
+ if (Result.first != Result.second)
+ Member = dyn_cast<FieldDecl>(*Result.first);
+
+ // FIXME: Handle members of an anonymous union.
+
+ if (Member) {
+ // FIXME: Perform direct initialization of the member.
+ return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
+ }
+
+ // It didn't name a member, so see if it names a class.
+ TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
+ if (!BaseTy)
+ return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
+ << MemberOrBase << SourceRange(IdLoc, RParenLoc);
+
+ QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
+ if (!BaseType->isRecordType())
+ return Diag(IdLoc, diag::err_base_init_does_not_name_class)
+ << BaseType << SourceRange(IdLoc, RParenLoc);
+
+ // C++ [class.base.init]p2:
+ // [...] Unless the mem-initializer-id names a nonstatic data
+ // member of the constructor’s class or a direct or virtual base
+ // of that class, the mem-initializer is ill-formed. A
+ // mem-initializer-list can initialize a base class using any
+ // name that denotes that base class type.
+
+ // First, check for a direct base class.
+ const CXXBaseSpecifier *DirectBaseSpec = 0;
+ for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
+ Base != ClassDecl->bases_end(); ++Base) {
+ if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
+ Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
+ // We found a direct base of this type. That's what we're
+ // initializing.
+ DirectBaseSpec = &*Base;
+ break;
+ }
+ }
+
+ // Check for a virtual base class.
+ // FIXME: We might be able to short-circuit this if we know in advance that
+ // there are no virtual bases.
+ const CXXBaseSpecifier *VirtualBaseSpec = 0;
+ if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
+ // We haven't found a base yet; search the class hierarchy for a
+ // virtual base class.
+ BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
+ /*DetectVirtual=*/false);
+ if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
+ for (BasePaths::paths_iterator Path = Paths.begin();
+ Path != Paths.end(); ++Path) {
+ if (Path->back().Base->isVirtual()) {
+ VirtualBaseSpec = Path->back().Base;
+ break;
+ }
+ }
+ }
+ }
+
+ // C++ [base.class.init]p2:
+ // If a mem-initializer-id is ambiguous because it designates both
+ // a direct non-virtual base class and an inherited virtual base
+ // class, the mem-initializer is ill-formed.
+ if (DirectBaseSpec && VirtualBaseSpec)
+ return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
+ << MemberOrBase << SourceRange(IdLoc, RParenLoc);
+
+ return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
+}
+
+void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
+ SourceLocation ColonLoc,
+ MemInitTy **MemInits, unsigned NumMemInits) {
+ CXXConstructorDecl *Constructor =
+ dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
+
+ if (!Constructor) {
+ Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
+ return;
+ }
+}
+
+namespace {
+ /// PureVirtualMethodCollector - traverses a class and its superclasses
+ /// and determines if it has any pure virtual methods.
+ class VISIBILITY_HIDDEN PureVirtualMethodCollector {
+ ASTContext &Context;
+
+ public:
+ typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
+
+ private:
+ MethodList Methods;
+
+ void Collect(const CXXRecordDecl* RD, MethodList& Methods);
+
+ public:
+ PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
+ : Context(Ctx) {
+
+ MethodList List;
+ Collect(RD, List);
+
+ // Copy the temporary list to methods, and make sure to ignore any
+ // null entries.
+ for (size_t i = 0, e = List.size(); i != e; ++i) {
+ if (List[i])
+ Methods.push_back(List[i]);
+ }
+ }
+
+ bool empty() const { return Methods.empty(); }
+
+ MethodList::const_iterator methods_begin() { return Methods.begin(); }
+ MethodList::const_iterator methods_end() { return Methods.end(); }
+ };
+
+ void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
+ MethodList& Methods) {
+ // First, collect the pure virtual methods for the base classes.
+ for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
+ BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
+ if (const RecordType *RT = Base->getType()->getAsRecordType()) {
+ const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
+ if (BaseDecl && BaseDecl->isAbstract())
+ Collect(BaseDecl, Methods);
+ }
+ }
+
+ // Next, zero out any pure virtual methods that this class overrides.
+ typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
+
+ MethodSetTy OverriddenMethods;
+ size_t MethodsSize = Methods.size();
+
+ for (RecordDecl::decl_iterator i = RD->decls_begin(Context),
+ e = RD->decls_end(Context);
+ i != e; ++i) {
+ // Traverse the record, looking for methods.
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
+ // If the method is pre virtual, add it to the methods vector.
+ if (MD->isPure()) {
+ Methods.push_back(MD);
+ continue;
+ }
+
+ // Otherwise, record all the overridden methods in our set.
+ for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
+ E = MD->end_overridden_methods(); I != E; ++I) {
+ // Keep track of the overridden methods.
+ OverriddenMethods.insert(*I);
+ }
+ }
+ }
+
+ // Now go through the methods and zero out all the ones we know are
+ // overridden.
+ for (size_t i = 0, e = MethodsSize; i != e; ++i) {
+ if (OverriddenMethods.count(Methods[i]))
+ Methods[i] = 0;
+ }
+
+ }
+}
+
+bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
+ unsigned DiagID, AbstractDiagSelID SelID,
+ const CXXRecordDecl *CurrentRD) {
+
+ if (!getLangOptions().CPlusPlus)
+ return false;
+
+ if (const ArrayType *AT = Context.getAsArrayType(T))
+ return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
+ CurrentRD);
+
+ if (const PointerType *PT = T->getAsPointerType()) {
+ // Find the innermost pointer type.
+ while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
+ PT = T;
+
+ if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
+ return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
+ CurrentRD);
+ }
+
+ const RecordType *RT = T->getAsRecordType();
+ if (!RT)
+ return false;
+
+ const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
+ if (!RD)
+ return false;
+
+ if (CurrentRD && CurrentRD != RD)
+ return false;
+
+ if (!RD->isAbstract())
+ return false;
+
+ Diag(Loc, DiagID) << RD->getDeclName() << SelID;
+
+ // Check if we've already emitted the list of pure virtual functions for this
+ // class.
+ if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
+ return true;
+
+ PureVirtualMethodCollector Collector(Context, RD);
+
+ for (PureVirtualMethodCollector::MethodList::const_iterator I =
+ Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
+ const CXXMethodDecl *MD = *I;
+
+ Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
+ MD->getDeclName();
+ }
+
+ if (!PureVirtualClassDiagSet)
+ PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
+ PureVirtualClassDiagSet->insert(RD);
+
+ return true;
+}
+
+namespace {
+ class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
+ : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
+ Sema &SemaRef;
+ CXXRecordDecl *AbstractClass;
+
+ bool VisitDeclContext(const DeclContext *DC) {
+ bool Invalid = false;
+
+ for (CXXRecordDecl::decl_iterator I = DC->decls_begin(SemaRef.Context),
+ E = DC->decls_end(SemaRef.Context); I != E; ++I)
+ Invalid |= Visit(*I);
+
+ return Invalid;
+ }
+
+ public:
+ AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
+ : SemaRef(SemaRef), AbstractClass(ac) {
+ Visit(SemaRef.Context.getTranslationUnitDecl());
+ }
+
+ bool VisitFunctionDecl(const FunctionDecl *FD) {
+ if (FD->isThisDeclarationADefinition()) {
+ // No need to do the check if we're in a definition, because it requires
+ // that the return/param types are complete.
+ // because that requires
+ return VisitDeclContext(FD);
+ }
+
+ // Check the return type.
+ QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
+ bool Invalid =
+ SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
+ diag::err_abstract_type_in_decl,
+ Sema::AbstractReturnType,
+ AbstractClass);
+
+ for (FunctionDecl::param_const_iterator I = FD->param_begin(),
+ E = FD->param_end(); I != E; ++I) {
+ const ParmVarDecl *VD = *I;
+ Invalid |=
+ SemaRef.RequireNonAbstractType(VD->getLocation(),
+ VD->getOriginalType(),
+ diag::err_abstract_type_in_decl,
+ Sema::AbstractParamType,
+ AbstractClass);
+ }
+
+ return Invalid;
+ }
+
+ bool VisitDecl(const Decl* D) {
+ if (const DeclContext *DC = dyn_cast<DeclContext>(D))
+ return VisitDeclContext(DC);
+
+ return false;
+ }
+ };
+}
+
+void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
+ DeclPtrTy TagDecl,
+ SourceLocation LBrac,
+ SourceLocation RBrac) {
+ AdjustDeclIfTemplate(TagDecl);
+ ActOnFields(S, RLoc, TagDecl,
+ (DeclPtrTy*)FieldCollector->getCurFields(),
+ FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
+
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
+ if (!RD->isAbstract()) {
+ // Collect all the pure virtual methods and see if this is an abstract
+ // class after all.
+ PureVirtualMethodCollector Collector(Context, RD);
+ if (!Collector.empty())
+ RD->setAbstract(true);
+ }
+
+ if (RD->isAbstract())
+ AbstractClassUsageDiagnoser(*this, RD);
+
+ if (RD->hasTrivialConstructor() || RD->hasTrivialDestructor()) {
+ for (RecordDecl::field_iterator i = RD->field_begin(Context),
+ e = RD->field_end(Context); i != e; ++i) {
+ // All the nonstatic data members must have trivial constructors.
+ QualType FTy = i->getType();
+ while (const ArrayType *AT = Context.getAsArrayType(FTy))
+ FTy = AT->getElementType();
+
+ if (const RecordType *RT = FTy->getAsRecordType()) {
+ CXXRecordDecl *FieldRD = cast<CXXRecordDecl>(RT->getDecl());
+
+ if (!FieldRD->hasTrivialConstructor())
+ RD->setHasTrivialConstructor(false);
+ if (!FieldRD->hasTrivialDestructor())
+ RD->setHasTrivialDestructor(false);
+
+ // If RD has neither a trivial constructor nor a trivial destructor
+ // we don't need to continue checking.
+ if (!RD->hasTrivialConstructor() && !RD->hasTrivialDestructor())
+ break;
+ }
+ }
+ }
+
+ if (!RD->isDependentType())
+ AddImplicitlyDeclaredMembersToClass(RD);
+}
+
+/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
+/// special functions, such as the default constructor, copy
+/// constructor, or destructor, to the given C++ class (C++
+/// [special]p1). This routine can only be executed just before the
+/// definition of the class is complete.
+void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
+ QualType ClassType = Context.getTypeDeclType(ClassDecl);
+ ClassType = Context.getCanonicalType(ClassType);
+
+ // FIXME: Implicit declarations have exception specifications, which are
+ // the union of the specifications of the implicitly called functions.
+
+ if (!ClassDecl->hasUserDeclaredConstructor()) {
+ // C++ [class.ctor]p5:
+ // A default constructor for a class X is a constructor of class X
+ // that can be called without an argument. If there is no
+ // user-declared constructor for class X, a default constructor is
+ // implicitly declared. An implicitly-declared default constructor
+ // is an inline public member of its class.
+ DeclarationName Name
+ = Context.DeclarationNames.getCXXConstructorName(ClassType);
+ CXXConstructorDecl *DefaultCon =
+ CXXConstructorDecl::Create(Context, ClassDecl,
+ ClassDecl->getLocation(), Name,
+ Context.getFunctionType(Context.VoidTy,
+ 0, 0, false, 0),
+ /*isExplicit=*/false,
+ /*isInline=*/true,
+ /*isImplicitlyDeclared=*/true);
+ DefaultCon->setAccess(AS_public);
+ DefaultCon->setImplicit();
+ ClassDecl->addDecl(Context, DefaultCon);
+
+ // Notify the class that we've added a constructor.
+ ClassDecl->addedConstructor(Context, DefaultCon);
+ }
+
+ if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
+ // C++ [class.copy]p4:
+ // If the class definition does not explicitly declare a copy
+ // constructor, one is declared implicitly.
+
+ // C++ [class.copy]p5:
+ // The implicitly-declared copy constructor for a class X will
+ // have the form
+ //
+ // X::X(const X&)
+ //
+ // if
+ bool HasConstCopyConstructor = true;
+
+ // -- each direct or virtual base class B of X has a copy
+ // constructor whose first parameter is of type const B& or
+ // const volatile B&, and
+ for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
+ HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
+ const CXXRecordDecl *BaseClassDecl
+ = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
+ HasConstCopyConstructor
+ = BaseClassDecl->hasConstCopyConstructor(Context);
+ }
+
+ // -- for all the nonstatic data members of X that are of a
+ // class type M (or array thereof), each such class type
+ // has a copy constructor whose first parameter is of type
+ // const M& or const volatile M&.
+ for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
+ HasConstCopyConstructor && Field != ClassDecl->field_end(Context);
+ ++Field) {
+ QualType FieldType = (*Field)->getType();
+ if (const ArrayType *Array = Context.getAsArrayType(FieldType))
+ FieldType = Array->getElementType();
+ if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
+ const CXXRecordDecl *FieldClassDecl
+ = cast<CXXRecordDecl>(FieldClassType->getDecl());
+ HasConstCopyConstructor
+ = FieldClassDecl->hasConstCopyConstructor(Context);
+ }
+ }
+
+ // Otherwise, the implicitly declared copy constructor will have
+ // the form
+ //
+ // X::X(X&)
+ QualType ArgType = ClassType;
+ if (HasConstCopyConstructor)
+ ArgType = ArgType.withConst();
+ ArgType = Context.getLValueReferenceType(ArgType);
+
+ // An implicitly-declared copy constructor is an inline public
+ // member of its class.
+ DeclarationName Name
+ = Context.DeclarationNames.getCXXConstructorName(ClassType);
+ CXXConstructorDecl *CopyConstructor
+ = CXXConstructorDecl::Create(Context, ClassDecl,
+ ClassDecl->getLocation(), Name,
+ Context.getFunctionType(Context.VoidTy,
+ &ArgType, 1,
+ false, 0),
+ /*isExplicit=*/false,
+ /*isInline=*/true,
+ /*isImplicitlyDeclared=*/true);
+ CopyConstructor->setAccess(AS_public);
+ CopyConstructor->setImplicit();
+
+ // Add the parameter to the constructor.
+ ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
+ ClassDecl->getLocation(),
+ /*IdentifierInfo=*/0,
+ ArgType, VarDecl::None, 0);
+ CopyConstructor->setParams(Context, &FromParam, 1);
+
+ ClassDecl->addedConstructor(Context, CopyConstructor);
+ ClassDecl->addDecl(Context, CopyConstructor);
+ }
+
+ if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
+ // Note: The following rules are largely analoguous to the copy
+ // constructor rules. Note that virtual bases are not taken into account
+ // for determining the argument type of the operator. Note also that
+ // operators taking an object instead of a reference are allowed.
+ //
+ // C++ [class.copy]p10:
+ // If the class definition does not explicitly declare a copy
+ // assignment operator, one is declared implicitly.
+ // The implicitly-defined copy assignment operator for a class X
+ // will have the form
+ //
+ // X& X::operator=(const X&)
+ //
+ // if
+ bool HasConstCopyAssignment = true;
+
+ // -- each direct base class B of X has a copy assignment operator
+ // whose parameter is of type const B&, const volatile B& or B,
+ // and
+ for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
+ HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
+ const CXXRecordDecl *BaseClassDecl
+ = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
+ HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
+ }
+
+ // -- for all the nonstatic data members of X that are of a class
+ // type M (or array thereof), each such class type has a copy
+ // assignment operator whose parameter is of type const M&,
+ // const volatile M& or M.
+ for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
+ HasConstCopyAssignment && Field != ClassDecl->field_end(Context);
+ ++Field) {
+ QualType FieldType = (*Field)->getType();
+ if (const ArrayType *Array = Context.getAsArrayType(FieldType))
+ FieldType = Array->getElementType();
+ if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
+ const CXXRecordDecl *FieldClassDecl
+ = cast<CXXRecordDecl>(FieldClassType->getDecl());
+ HasConstCopyAssignment
+ = FieldClassDecl->hasConstCopyAssignment(Context);
+ }
+ }
+
+ // Otherwise, the implicitly declared copy assignment operator will
+ // have the form
+ //
+ // X& X::operator=(X&)
+ QualType ArgType = ClassType;
+ QualType RetType = Context.getLValueReferenceType(ArgType);
+ if (HasConstCopyAssignment)
+ ArgType = ArgType.withConst();
+ ArgType = Context.getLValueReferenceType(ArgType);
+
+ // An implicitly-declared copy assignment operator is an inline public
+ // member of its class.
+ DeclarationName Name =
+ Context.DeclarationNames.getCXXOperatorName(OO_Equal);
+ CXXMethodDecl *CopyAssignment =
+ CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
+ Context.getFunctionType(RetType, &ArgType, 1,
+ false, 0),
+ /*isStatic=*/false, /*isInline=*/true);
+ CopyAssignment->setAccess(AS_public);
+ CopyAssignment->setImplicit();
+
+ // Add the parameter to the operator.
+ ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
+ ClassDecl->getLocation(),
+ /*IdentifierInfo=*/0,
+ ArgType, VarDecl::None, 0);
+ CopyAssignment->setParams(Context, &FromParam, 1);
+
+ // Don't call addedAssignmentOperator. There is no way to distinguish an
+ // implicit from an explicit assignment operator.
+ ClassDecl->addDecl(Context, CopyAssignment);
+ }
+
+ if (!ClassDecl->hasUserDeclaredDestructor()) {
+ // C++ [class.dtor]p2:
+ // If a class has no user-declared destructor, a destructor is
+ // declared implicitly. An implicitly-declared destructor is an
+ // inline public member of its class.
+ DeclarationName Name
+ = Context.DeclarationNames.getCXXDestructorName(ClassType);
+ CXXDestructorDecl *Destructor
+ = CXXDestructorDecl::Create(Context, ClassDecl,
+ ClassDecl->getLocation(), Name,
+ Context.getFunctionType(Context.VoidTy,
+ 0, 0, false, 0),
+ /*isInline=*/true,
+ /*isImplicitlyDeclared=*/true);
+ Destructor->setAccess(AS_public);
+ Destructor->setImplicit();
+ ClassDecl->addDecl(Context, Destructor);
+ }
+}
+
+void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
+ TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
+ if (!Template)
+ return;
+
+ TemplateParameterList *Params = Template->getTemplateParameters();
+ for (TemplateParameterList::iterator Param = Params->begin(),
+ ParamEnd = Params->end();
+ Param != ParamEnd; ++Param) {
+ NamedDecl *Named = cast<NamedDecl>(*Param);
+ if (Named->getDeclName()) {
+ S->AddDecl(DeclPtrTy::make(Named));
+ IdResolver.AddDecl(Named);
+ }
+ }
+}
+
+/// ActOnStartDelayedCXXMethodDeclaration - We have completed
+/// parsing a top-level (non-nested) C++ class, and we are now
+/// parsing those parts of the given Method declaration that could
+/// not be parsed earlier (C++ [class.mem]p2), such as default
+/// arguments. This action should enter the scope of the given
+/// Method declaration as if we had just parsed the qualified method
+/// name. However, it should not bring the parameters into scope;
+/// that will be performed by ActOnDelayedCXXMethodParameter.
+void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
+ CXXScopeSpec SS;
+ FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
+ QualType ClassTy
+ = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
+ SS.setScopeRep(
+ NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
+ ActOnCXXEnterDeclaratorScope(S, SS);
+}
+
+/// ActOnDelayedCXXMethodParameter - We've already started a delayed
+/// C++ method declaration. We're (re-)introducing the given
+/// function parameter into scope for use in parsing later parts of
+/// the method declaration. For example, we could see an
+/// ActOnParamDefaultArgument event for this parameter.
+void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
+ ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
+
+ // If this parameter has an unparsed default argument, clear it out
+ // to make way for the parsed default argument.
+ if (Param->hasUnparsedDefaultArg())
+ Param->setDefaultArg(0);
+
+ S->AddDecl(DeclPtrTy::make(Param));
+ if (Param->getDeclName())
+ IdResolver.AddDecl(Param);
+}
+
+/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
+/// processing the delayed method declaration for Method. The method
+/// declaration is now considered finished. There may be a separate
+/// ActOnStartOfFunctionDef action later (not necessarily
+/// immediately!) for this method, if it was also defined inside the
+/// class body.
+void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
+ FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
+ CXXScopeSpec SS;
+ QualType ClassTy
+ = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
+ SS.setScopeRep(
+ NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
+ ActOnCXXExitDeclaratorScope(S, SS);
+
+ // Now that we have our default arguments, check the constructor
+ // again. It could produce additional diagnostics or affect whether
+ // the class has implicitly-declared destructors, among other
+ // things.
+ if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
+ CheckConstructor(Constructor);
+
+ // Check the default arguments, which we may have added.
+ if (!Method->isInvalidDecl())
+ CheckCXXDefaultArguments(Method);
+}
+
+/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
+/// the well-formedness of the constructor declarator @p D with type @p
+/// R. If there are any errors in the declarator, this routine will
+/// emit diagnostics and set the invalid bit to true. In any case, the type
+/// will be updated to reflect a well-formed type for the constructor and
+/// returned.
+QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
+ FunctionDecl::StorageClass &SC) {
+ bool isVirtual = D.getDeclSpec().isVirtualSpecified();
+
+ // C++ [class.ctor]p3:
+ // A constructor shall not be virtual (10.3) or static (9.4). A
+ // constructor can be invoked for a const, volatile or const
+ // volatile object. A constructor shall not be declared const,
+ // volatile, or const volatile (9.3.2).
+ if (isVirtual) {
+ if (!D.isInvalidType())
+ Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
+ << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
+ << SourceRange(D.getIdentifierLoc());
+ D.setInvalidType();
+ }
+ if (SC == FunctionDecl::Static) {
+ if (!D.isInvalidType())
+ Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
+ << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
+ << SourceRange(D.getIdentifierLoc());
+ D.setInvalidType();
+ SC = FunctionDecl::None;
+ }
+
+ DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
+ if (FTI.TypeQuals != 0) {
+ if (FTI.TypeQuals & QualType::Const)
+ Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
+ << "const" << SourceRange(D.getIdentifierLoc());
+ if (FTI.TypeQuals & QualType::Volatile)
+ Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
+ << "volatile" << SourceRange(D.getIdentifierLoc());
+ if (FTI.TypeQuals & QualType::Restrict)
+ Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
+ << "restrict" << SourceRange(D.getIdentifierLoc());
+ }
+
+ // Rebuild the function type "R" without any type qualifiers (in
+ // case any of the errors above fired) and with "void" as the
+ // return type, since constructors don't have return types. We
+ // *always* have to do this, because GetTypeForDeclarator will
+ // put in a result type of "int" when none was specified.
+ const FunctionProtoType *Proto = R->getAsFunctionProtoType();
+ return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
+ Proto->getNumArgs(),
+ Proto->isVariadic(), 0);
+}
+
+/// CheckConstructor - Checks a fully-formed constructor for
+/// well-formedness, issuing any diagnostics required. Returns true if
+/// the constructor declarator is invalid.
+void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
+ CXXRecordDecl *ClassDecl
+ = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
+ if (!ClassDecl)
+ return Constructor->setInvalidDecl();
+
+ // C++ [class.copy]p3:
+ // A declaration of a constructor for a class X is ill-formed if
+ // its first parameter is of type (optionally cv-qualified) X and
+ // either there are no other parameters or else all other
+ // parameters have default arguments.
+ if (!Constructor->isInvalidDecl() &&
+ ((Constructor->getNumParams() == 1) ||
+ (Constructor->getNumParams() > 1 &&
+ Constructor->getParamDecl(1)->getDefaultArg() != 0))) {
+ QualType ParamType = Constructor->getParamDecl(0)->getType();
+ QualType ClassTy = Context.getTagDeclType(ClassDecl);
+ if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
+ SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
+ Diag(ParamLoc, diag::err_constructor_byvalue_arg)
+ << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
+ Constructor->setInvalidDecl();
+ }
+ }
+
+ // Notify the class that we've added a constructor.
+ ClassDecl->addedConstructor(Context, Constructor);
+}
+
+static inline bool
+FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
+ return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
+ FTI.ArgInfo[0].Param &&
+ FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
+}
+
+/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
+/// the well-formednes of the destructor declarator @p D with type @p
+/// R. If there are any errors in the declarator, this routine will
+/// emit diagnostics and set the declarator to invalid. Even if this happens,
+/// will be updated to reflect a well-formed type for the destructor and
+/// returned.
+QualType Sema::CheckDestructorDeclarator(Declarator &D,
+ FunctionDecl::StorageClass& SC) {
+ // C++ [class.dtor]p1:
+ // [...] A typedef-name that names a class is a class-name
+ // (7.1.3); however, a typedef-name that names a class shall not
+ // be used as the identifier in the declarator for a destructor
+ // declaration.
+ QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
+ if (isa<TypedefType>(DeclaratorType)) {
+ Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
+ << DeclaratorType;
+ D.setInvalidType();
+ }
+
+ // C++ [class.dtor]p2:
+ // A destructor is used to destroy objects of its class type. A
+ // destructor takes no parameters, and no return type can be
+ // specified for it (not even void). The address of a destructor
+ // shall not be taken. A destructor shall not be static. A
+ // destructor can be invoked for a const, volatile or const
+ // volatile object. A destructor shall not be declared const,
+ // volatile or const volatile (9.3.2).
+ if (SC == FunctionDecl::Static) {
+ if (!D.isInvalidType())
+ Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
+ << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
+ << SourceRange(D.getIdentifierLoc());
+ SC = FunctionDecl::None;
+ D.setInvalidType();
+ }
+ if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
+ // Destructors don't have return types, but the parser will
+ // happily parse something like:
+ //
+ // class X {
+ // float ~X();
+ // };
+ //
+ // The return type will be eliminated later.
+ Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
+ << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
+ << SourceRange(D.getIdentifierLoc());
+ }
+
+ DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
+ if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
+ if (FTI.TypeQuals & QualType::Const)
+ Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
+ << "const" << SourceRange(D.getIdentifierLoc());
+ if (FTI.TypeQuals & QualType::Volatile)
+ Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
+ << "volatile" << SourceRange(D.getIdentifierLoc());
+ if (FTI.TypeQuals & QualType::Restrict)
+ Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
+ << "restrict" << SourceRange(D.getIdentifierLoc());
+ D.setInvalidType();
+ }
+
+ // Make sure we don't have any parameters.
+ if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
+ Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
+
+ // Delete the parameters.
+ FTI.freeArgs();
+ D.setInvalidType();
+ }
+
+ // Make sure the destructor isn't variadic.
+ if (FTI.isVariadic) {
+ Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
+ D.setInvalidType();
+ }
+
+ // Rebuild the function type "R" without any type qualifiers or
+ // parameters (in case any of the errors above fired) and with
+ // "void" as the return type, since destructors don't have return
+ // types. We *always* have to do this, because GetTypeForDeclarator
+ // will put in a result type of "int" when none was specified.
+ return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
+}
+
+/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
+/// well-formednes of the conversion function declarator @p D with
+/// type @p R. If there are any errors in the declarator, this routine
+/// will emit diagnostics and return true. Otherwise, it will return
+/// false. Either way, the type @p R will be updated to reflect a
+/// well-formed type for the conversion operator.
+void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
+ FunctionDecl::StorageClass& SC) {
+ // C++ [class.conv.fct]p1:
+ // Neither parameter types nor return type can be specified. The
+ // type of a conversion function (8.3.5) is “function taking no
+ // parameter returning conversion-type-id.”
+ if (SC == FunctionDecl::Static) {
+ if (!D.isInvalidType())
+ Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
+ << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
+ << SourceRange(D.getIdentifierLoc());
+ D.setInvalidType();
+ SC = FunctionDecl::None;
+ }
+ if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
+ // Conversion functions don't have return types, but the parser will
+ // happily parse something like:
+ //
+ // class X {
+ // float operator bool();
+ // };
+ //
+ // The return type will be changed later anyway.
+ Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
+ << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
+ << SourceRange(D.getIdentifierLoc());
+ }
+
+ // Make sure we don't have any parameters.
+ if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
+ Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
+
+ // Delete the parameters.
+ D.getTypeObject(0).Fun.freeArgs();
+ D.setInvalidType();
+ }
+
+ // Make sure the conversion function isn't variadic.
+ if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
+ Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
+ D.setInvalidType();
+ }
+
+ // C++ [class.conv.fct]p4:
+ // The conversion-type-id shall not represent a function type nor
+ // an array type.
+ QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
+ if (ConvType->isArrayType()) {
+ Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
+ ConvType = Context.getPointerType(ConvType);
+ D.setInvalidType();
+ } else if (ConvType->isFunctionType()) {
+ Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
+ ConvType = Context.getPointerType(ConvType);
+ D.setInvalidType();
+ }
+
+ // Rebuild the function type "R" without any parameters (in case any
+ // of the errors above fired) and with the conversion type as the
+ // return type.
+ R = Context.getFunctionType(ConvType, 0, 0, false,
+ R->getAsFunctionProtoType()->getTypeQuals());
+
+ // C++0x explicit conversion operators.
+ if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
+ Diag(D.getDeclSpec().getExplicitSpecLoc(),
+ diag::warn_explicit_conversion_functions)
+ << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
+}
+
+/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
+/// the declaration of the given C++ conversion function. This routine
+/// is responsible for recording the conversion function in the C++
+/// class, if possible.
+Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
+ assert(Conversion && "Expected to receive a conversion function declaration");
+
+ // Set the lexical context of this conversion function
+ Conversion->setLexicalDeclContext(CurContext);
+
+ CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
+
+ // Make sure we aren't redeclaring the conversion function.
+ QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
+
+ // C++ [class.conv.fct]p1:
+ // [...] A conversion function is never used to convert a
+ // (possibly cv-qualified) object to the (possibly cv-qualified)
+ // same object type (or a reference to it), to a (possibly
+ // cv-qualified) base class of that type (or a reference to it),
+ // or to (possibly cv-qualified) void.
+ // FIXME: Suppress this warning if the conversion function ends up being a
+ // virtual function that overrides a virtual function in a base class.
+ QualType ClassType
+ = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
+ if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
+ ConvType = ConvTypeRef->getPointeeType();
+ if (ConvType->isRecordType()) {
+ ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
+ if (ConvType == ClassType)
+ Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
+ << ClassType;
+ else if (IsDerivedFrom(ClassType, ConvType))
+ Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
+ << ClassType << ConvType;
+ } else if (ConvType->isVoidType()) {
+ Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
+ << ClassType << ConvType;
+ }
+
+ if (Conversion->getPreviousDeclaration()) {
+ OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
+ for (OverloadedFunctionDecl::function_iterator
+ Conv = Conversions->function_begin(),
+ ConvEnd = Conversions->function_end();
+ Conv != ConvEnd; ++Conv) {
+ if (*Conv == Conversion->getPreviousDeclaration()) {
+ *Conv = Conversion;
+ return DeclPtrTy::make(Conversion);
+ }
+ }
+ assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
+ } else
+ ClassDecl->addConversionFunction(Context, Conversion);
+
+ return DeclPtrTy::make(Conversion);
+}
+
+//===----------------------------------------------------------------------===//
+// Namespace Handling
+//===----------------------------------------------------------------------===//
+
+/// ActOnStartNamespaceDef - This is called at the start of a namespace
+/// definition.
+Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
+ SourceLocation IdentLoc,
+ IdentifierInfo *II,
+ SourceLocation LBrace) {
+ NamespaceDecl *Namespc =
+ NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
+ Namespc->setLBracLoc(LBrace);
+
+ Scope *DeclRegionScope = NamespcScope->getParent();
+
+ if (II) {
+ // C++ [namespace.def]p2:
+ // The identifier in an original-namespace-definition shall not have been
+ // previously defined in the declarative region in which the
+ // original-namespace-definition appears. The identifier in an
+ // original-namespace-definition is the name of the namespace. Subsequently
+ // in that declarative region, it is treated as an original-namespace-name.
+
+ NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
+ true);
+
+ if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
+ // This is an extended namespace definition.
+ // Attach this namespace decl to the chain of extended namespace
+ // definitions.
+ OrigNS->setNextNamespace(Namespc);
+ Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
+
+ // Remove the previous declaration from the scope.
+ if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
+ IdResolver.RemoveDecl(OrigNS);
+ DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
+ }
+ } else if (PrevDecl) {
+ // This is an invalid name redefinition.
+ Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
+ << Namespc->getDeclName();
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ Namespc->setInvalidDecl();
+ // Continue on to push Namespc as current DeclContext and return it.
+ }
+
+ PushOnScopeChains(Namespc, DeclRegionScope);
+ } else {
+ // FIXME: Handle anonymous namespaces
+ }
+
+ // Although we could have an invalid decl (i.e. the namespace name is a
+ // redefinition), push it as current DeclContext and try to continue parsing.
+ // FIXME: We should be able to push Namespc here, so that the each DeclContext
+ // for the namespace has the declarations that showed up in that particular
+ // namespace definition.
+ PushDeclContext(NamespcScope, Namespc);
+ return DeclPtrTy::make(Namespc);
+}
+
+/// ActOnFinishNamespaceDef - This callback is called after a namespace is
+/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
+void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
+ Decl *Dcl = D.getAs<Decl>();
+ NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
+ assert(Namespc && "Invalid parameter, expected NamespaceDecl");
+ Namespc->setRBracLoc(RBrace);
+ PopDeclContext();
+}
+
+Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
+ SourceLocation UsingLoc,
+ SourceLocation NamespcLoc,
+ const CXXScopeSpec &SS,
+ SourceLocation IdentLoc,
+ IdentifierInfo *NamespcName,
+ AttributeList *AttrList) {
+ assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
+ assert(NamespcName && "Invalid NamespcName.");
+ assert(IdentLoc.isValid() && "Invalid NamespceName location.");
+ assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
+
+ UsingDirectiveDecl *UDir = 0;
+
+ // Lookup namespace name.
+ LookupResult R = LookupParsedName(S, &SS, NamespcName,
+ LookupNamespaceName, false);
+ if (R.isAmbiguous()) {
+ DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
+ return DeclPtrTy();
+ }
+ if (NamedDecl *NS = R) {
+ assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
+ // C++ [namespace.udir]p1:
+ // A using-directive specifies that the names in the nominated
+ // namespace can be used in the scope in which the
+ // using-directive appears after the using-directive. During
+ // unqualified name lookup (3.4.1), the names appear as if they
+ // were declared in the nearest enclosing namespace which
+ // contains both the using-directive and the nominated
+ // namespace. [Note: in this context, “contains” means “contains
+ // directly or indirectly”. ]
+
+ // Find enclosing context containing both using-directive and
+ // nominated namespace.
+ DeclContext *CommonAncestor = cast<DeclContext>(NS);
+ while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
+ CommonAncestor = CommonAncestor->getParent();
+
+ UDir = UsingDirectiveDecl::Create(Context,
+ CurContext, UsingLoc,
+ NamespcLoc,
+ SS.getRange(),
+ (NestedNameSpecifier *)SS.getScopeRep(),
+ IdentLoc,
+ cast<NamespaceDecl>(NS),
+ CommonAncestor);
+ PushUsingDirective(S, UDir);
+ } else {
+ Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
+ }
+
+ // FIXME: We ignore attributes for now.
+ delete AttrList;
+ return DeclPtrTy::make(UDir);
+}
+
+void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
+ // If scope has associated entity, then using directive is at namespace
+ // or translation unit scope. We add UsingDirectiveDecls, into
+ // it's lookup structure.
+ if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
+ Ctx->addDecl(Context, UDir);
+ else
+ // Otherwise it is block-sope. using-directives will affect lookup
+ // only to the end of scope.
+ S->PushUsingDirective(DeclPtrTy::make(UDir));
+}
+
+/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
+/// is a namespace alias, returns the namespace it points to.
+static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
+ if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
+ return AD->getNamespace();
+ return dyn_cast_or_null<NamespaceDecl>(D);
+}
+
+Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
+ SourceLocation NamespaceLoc,
+ SourceLocation AliasLoc,
+ IdentifierInfo *Alias,
+ const CXXScopeSpec &SS,
+ SourceLocation IdentLoc,
+ IdentifierInfo *Ident) {
+
+ // Lookup the namespace name.
+ LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
+
+ // Check if we have a previous declaration with the same name.
+ if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
+ if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
+ // We already have an alias with the same name that points to the same
+ // namespace, so don't create a new one.
+ if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
+ return DeclPtrTy();
+ }
+
+ unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
+ diag::err_redefinition_different_kind;
+ Diag(AliasLoc, DiagID) << Alias;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ return DeclPtrTy();
+ }
+
+ if (R.isAmbiguous()) {
+ DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
+ return DeclPtrTy();
+ }
+
+ if (!R) {
+ Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
+ return DeclPtrTy();
+ }
+
+ NamespaceAliasDecl *AliasDecl =
+ NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
+ Alias, SS.getRange(),
+ (NestedNameSpecifier *)SS.getScopeRep(),
+ IdentLoc, R);
+
+ CurContext->addDecl(Context, AliasDecl);
+ return DeclPtrTy::make(AliasDecl);
+}
+
+void Sema::InitializeVarWithConstructor(VarDecl *VD,
+ CXXConstructorDecl *Constructor,
+ QualType DeclInitType,
+ Expr **Exprs, unsigned NumExprs) {
+ Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
+ false, Exprs, NumExprs);
+ VD->setInit(Context, Temp);
+}
+
+/// AddCXXDirectInitializerToDecl - This action is called immediately after
+/// ActOnDeclarator, when a C++ direct initializer is present.
+/// e.g: "int x(1);"
+void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
+ SourceLocation LParenLoc,
+ MultiExprArg Exprs,
+ SourceLocation *CommaLocs,
+ SourceLocation RParenLoc) {
+ unsigned NumExprs = Exprs.size();
+ assert(NumExprs != 0 && Exprs.get() && "missing expressions");
+ Decl *RealDecl = Dcl.getAs<Decl>();
+
+ // If there is no declaration, there was an error parsing it. Just ignore
+ // the initializer.
+ if (RealDecl == 0)
+ return;
+
+ VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
+ if (!VDecl) {
+ Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
+ RealDecl->setInvalidDecl();
+ return;
+ }
+
+ // FIXME: Need to handle dependent types and expressions here.
+
+ // We will treat direct-initialization as a copy-initialization:
+ // int x(1); -as-> int x = 1;
+ // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
+ //
+ // Clients that want to distinguish between the two forms, can check for
+ // direct initializer using VarDecl::hasCXXDirectInitializer().
+ // A major benefit is that clients that don't particularly care about which
+ // exactly form was it (like the CodeGen) can handle both cases without
+ // special case code.
+
+ // C++ 8.5p11:
+ // The form of initialization (using parentheses or '=') is generally
+ // insignificant, but does matter when the entity being initialized has a
+ // class type.
+ QualType DeclInitType = VDecl->getType();
+ if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
+ DeclInitType = Array->getElementType();
+
+ // FIXME: This isn't the right place to complete the type.
+ if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
+ diag::err_typecheck_decl_incomplete_type)) {
+ VDecl->setInvalidDecl();
+ return;
+ }
+
+ if (VDecl->getType()->isRecordType()) {
+ CXXConstructorDecl *Constructor
+ = PerformInitializationByConstructor(DeclInitType,
+ (Expr **)Exprs.get(), NumExprs,
+ VDecl->getLocation(),
+ SourceRange(VDecl->getLocation(),
+ RParenLoc),
+ VDecl->getDeclName(),
+ IK_Direct);
+ if (!Constructor)
+ RealDecl->setInvalidDecl();
+ else {
+ VDecl->setCXXDirectInitializer(true);
+ InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
+ (Expr**)Exprs.release(), NumExprs);
+ }
+ return;
+ }
+
+ if (NumExprs > 1) {
+ Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
+ << SourceRange(VDecl->getLocation(), RParenLoc);
+ RealDecl->setInvalidDecl();
+ return;
+ }
+
+ // Let clients know that initialization was done with a direct initializer.
+ VDecl->setCXXDirectInitializer(true);
+
+ assert(NumExprs == 1 && "Expected 1 expression");
+ // Set the init expression, handles conversions.
+ AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
+ /*DirectInit=*/true);
+}
+
+/// PerformInitializationByConstructor - Perform initialization by
+/// constructor (C++ [dcl.init]p14), which may occur as part of
+/// direct-initialization or copy-initialization. We are initializing
+/// an object of type @p ClassType with the given arguments @p
+/// Args. @p Loc is the location in the source code where the
+/// initializer occurs (e.g., a declaration, member initializer,
+/// functional cast, etc.) while @p Range covers the whole
+/// initialization. @p InitEntity is the entity being initialized,
+/// which may by the name of a declaration or a type. @p Kind is the
+/// kind of initialization we're performing, which affects whether
+/// explicit constructors will be considered. When successful, returns
+/// the constructor that will be used to perform the initialization;
+/// when the initialization fails, emits a diagnostic and returns
+/// null.
+CXXConstructorDecl *
+Sema::PerformInitializationByConstructor(QualType ClassType,
+ Expr **Args, unsigned NumArgs,
+ SourceLocation Loc, SourceRange Range,
+ DeclarationName InitEntity,
+ InitializationKind Kind) {
+ const RecordType *ClassRec = ClassType->getAsRecordType();
+ assert(ClassRec && "Can only initialize a class type here");
+
+ // C++ [dcl.init]p14:
+ //
+ // If the initialization is direct-initialization, or if it is
+ // copy-initialization where the cv-unqualified version of the
+ // source type is the same class as, or a derived class of, the
+ // class of the destination, constructors are considered. The
+ // applicable constructors are enumerated (13.3.1.3), and the
+ // best one is chosen through overload resolution (13.3). The
+ // constructor so selected is called to initialize the object,
+ // with the initializer expression(s) as its argument(s). If no
+ // constructor applies, or the overload resolution is ambiguous,
+ // the initialization is ill-formed.
+ const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
+ OverloadCandidateSet CandidateSet;
+
+ // Add constructors to the overload set.
+ DeclarationName ConstructorName
+ = Context.DeclarationNames.getCXXConstructorName(
+ Context.getCanonicalType(ClassType.getUnqualifiedType()));
+ DeclContext::lookup_const_iterator Con, ConEnd;
+ for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(Context, ConstructorName);
+ Con != ConEnd; ++Con) {
+ CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
+ if ((Kind == IK_Direct) ||
+ (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
+ (Kind == IK_Default && Constructor->isDefaultConstructor()))
+ AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
+ }
+
+ // FIXME: When we decide not to synthesize the implicitly-declared
+ // constructors, we'll need to make them appear here.
+
+ OverloadCandidateSet::iterator Best;
+ switch (BestViableFunction(CandidateSet, Best)) {
+ case OR_Success:
+ // We found a constructor. Return it.
+ return cast<CXXConstructorDecl>(Best->Function);
+
+ case OR_No_Viable_Function:
+ if (InitEntity)
+ Diag(Loc, diag::err_ovl_no_viable_function_in_init)
+ << InitEntity << Range;
+ else
+ Diag(Loc, diag::err_ovl_no_viable_function_in_init)
+ << ClassType << Range;
+ PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
+ return 0;
+
+ case OR_Ambiguous:
+ if (InitEntity)
+ Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
+ else
+ Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
+ PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
+ return 0;
+
+ case OR_Deleted:
+ if (InitEntity)
+ Diag(Loc, diag::err_ovl_deleted_init)
+ << Best->Function->isDeleted()
+ << InitEntity << Range;
+ else
+ Diag(Loc, diag::err_ovl_deleted_init)
+ << Best->Function->isDeleted()
+ << InitEntity << Range;
+ PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
+ return 0;
+ }
+
+ return 0;
+}
+
+/// CompareReferenceRelationship - Compare the two types T1 and T2 to
+/// determine whether they are reference-related,
+/// reference-compatible, reference-compatible with added
+/// qualification, or incompatible, for use in C++ initialization by
+/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
+/// type, and the first type (T1) is the pointee type of the reference
+/// type being initialized.
+Sema::ReferenceCompareResult
+Sema::CompareReferenceRelationship(QualType T1, QualType T2,
+ bool& DerivedToBase) {
+ assert(!T1->isReferenceType() &&
+ "T1 must be the pointee type of the reference type");
+ assert(!T2->isReferenceType() && "T2 cannot be a reference type");
+
+ T1 = Context.getCanonicalType(T1);
+ T2 = Context.getCanonicalType(T2);
+ QualType UnqualT1 = T1.getUnqualifiedType();
+ QualType UnqualT2 = T2.getUnqualifiedType();
+
+ // C++ [dcl.init.ref]p4:
+ // Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
+ // reference-related to “cv2 T2” if T1 is the same type as T2, or
+ // T1 is a base class of T2.
+ if (UnqualT1 == UnqualT2)
+ DerivedToBase = false;
+ else if (IsDerivedFrom(UnqualT2, UnqualT1))
+ DerivedToBase = true;
+ else
+ return Ref_Incompatible;
+
+ // At this point, we know that T1 and T2 are reference-related (at
+ // least).
+
+ // C++ [dcl.init.ref]p4:
+ // "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
+ // reference-related to T2 and cv1 is the same cv-qualification
+ // as, or greater cv-qualification than, cv2. For purposes of
+ // overload resolution, cases for which cv1 is greater
+ // cv-qualification than cv2 are identified as
+ // reference-compatible with added qualification (see 13.3.3.2).
+ if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
+ return Ref_Compatible;
+ else if (T1.isMoreQualifiedThan(T2))
+ return Ref_Compatible_With_Added_Qualification;
+ else
+ return Ref_Related;
+}
+
+/// CheckReferenceInit - Check the initialization of a reference
+/// variable with the given initializer (C++ [dcl.init.ref]). Init is
+/// the initializer (either a simple initializer or an initializer
+/// list), and DeclType is the type of the declaration. When ICS is
+/// non-null, this routine will compute the implicit conversion
+/// sequence according to C++ [over.ics.ref] and will not produce any
+/// diagnostics; when ICS is null, it will emit diagnostics when any
+/// errors are found. Either way, a return value of true indicates
+/// that there was a failure, a return value of false indicates that
+/// the reference initialization succeeded.
+///
+/// When @p SuppressUserConversions, user-defined conversions are
+/// suppressed.
+/// When @p AllowExplicit, we also permit explicit user-defined
+/// conversion functions.
+/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
+bool
+Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
+ ImplicitConversionSequence *ICS,
+ bool SuppressUserConversions,
+ bool AllowExplicit, bool ForceRValue) {
+ assert(DeclType->isReferenceType() && "Reference init needs a reference");
+
+ QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
+ QualType T2 = Init->getType();
+
+ // If the initializer is the address of an overloaded function, try
+ // to resolve the overloaded function. If all goes well, T2 is the
+ // type of the resulting function.
+ if (Context.getCanonicalType(T2) == Context.OverloadTy) {
+ FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
+ ICS != 0);
+ if (Fn) {
+ // Since we're performing this reference-initialization for
+ // real, update the initializer with the resulting function.
+ if (!ICS) {
+ if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
+ return true;
+
+ FixOverloadedFunctionReference(Init, Fn);
+ }
+
+ T2 = Fn->getType();
+ }
+ }
+
+ // Compute some basic properties of the types and the initializer.
+ bool isRValRef = DeclType->isRValueReferenceType();
+ bool DerivedToBase = false;
+ Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
+ Init->isLvalue(Context);
+ ReferenceCompareResult RefRelationship
+ = CompareReferenceRelationship(T1, T2, DerivedToBase);
+
+ // Most paths end in a failed conversion.
+ if (ICS)
+ ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
+
+ // C++ [dcl.init.ref]p5:
+ // A reference to type “cv1 T1” is initialized by an expression
+ // of type “cv2 T2” as follows:
+
+ // -- If the initializer expression
+
+ // Rvalue references cannot bind to lvalues (N2812).
+ // There is absolutely no situation where they can. In particular, note that
+ // this is ill-formed, even if B has a user-defined conversion to A&&:
+ // B b;
+ // A&& r = b;
+ if (isRValRef && InitLvalue == Expr::LV_Valid) {
+ if (!ICS)
+ Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
+ << Init->getSourceRange();
+ return true;
+ }
+
+ bool BindsDirectly = false;
+ // -- is an lvalue (but is not a bit-field), and “cv1 T1” is
+ // reference-compatible with “cv2 T2,” or
+ //
+ // Note that the bit-field check is skipped if we are just computing
+ // the implicit conversion sequence (C++ [over.best.ics]p2).
+ if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
+ RefRelationship >= Ref_Compatible_With_Added_Qualification) {
+ BindsDirectly = true;
+
+ if (ICS) {
+ // C++ [over.ics.ref]p1:
+ // When a parameter of reference type binds directly (8.5.3)
+ // to an argument expression, the implicit conversion sequence
+ // is the identity conversion, unless the argument expression
+ // has a type that is a derived class of the parameter type,
+ // in which case the implicit conversion sequence is a
+ // derived-to-base Conversion (13.3.3.1).
+ ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
+ ICS->Standard.First = ICK_Identity;
+ ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
+ ICS->Standard.Third = ICK_Identity;
+ ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
+ ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
+ ICS->Standard.ReferenceBinding = true;
+ ICS->Standard.DirectBinding = true;
+ ICS->Standard.RRefBinding = false;
+ ICS->Standard.CopyConstructor = 0;
+
+ // Nothing more to do: the inaccessibility/ambiguity check for
+ // derived-to-base conversions is suppressed when we're
+ // computing the implicit conversion sequence (C++
+ // [over.best.ics]p2).
+ return false;
+ } else {
+ // Perform the conversion.
+ // FIXME: Binding to a subobject of the lvalue is going to require more
+ // AST annotation than this.
+ ImpCastExprToType(Init, T1, /*isLvalue=*/true);
+ }
+ }
+
+ // -- has a class type (i.e., T2 is a class type) and can be
+ // implicitly converted to an lvalue of type “cv3 T3,”
+ // where “cv1 T1” is reference-compatible with “cv3 T3”
+ // 92) (this conversion is selected by enumerating the
+ // applicable conversion functions (13.3.1.6) and choosing
+ // the best one through overload resolution (13.3)),
+ if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
+ // FIXME: Look for conversions in base classes!
+ CXXRecordDecl *T2RecordDecl
+ = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
+
+ OverloadCandidateSet CandidateSet;
+ OverloadedFunctionDecl *Conversions
+ = T2RecordDecl->getConversionFunctions();
+ for (OverloadedFunctionDecl::function_iterator Func
+ = Conversions->function_begin();
+ Func != Conversions->function_end(); ++Func) {
+ CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
+
+ // If the conversion function doesn't return a reference type,
+ // it can't be considered for this conversion.
+ if (Conv->getConversionType()->isLValueReferenceType() &&
+ (AllowExplicit || !Conv->isExplicit()))
+ AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
+ }
+
+ OverloadCandidateSet::iterator Best;
+ switch (BestViableFunction(CandidateSet, Best)) {
+ case OR_Success:
+ // This is a direct binding.
+ BindsDirectly = true;
+
+ if (ICS) {
+ // C++ [over.ics.ref]p1:
+ //
+ // [...] If the parameter binds directly to the result of
+ // applying a conversion function to the argument
+ // expression, the implicit conversion sequence is a
+ // user-defined conversion sequence (13.3.3.1.2), with the
+ // second standard conversion sequence either an identity
+ // conversion or, if the conversion function returns an
+ // entity of a type that is a derived class of the parameter
+ // type, a derived-to-base Conversion.
+ ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
+ ICS->UserDefined.Before = Best->Conversions[0].Standard;
+ ICS->UserDefined.After = Best->FinalConversion;
+ ICS->UserDefined.ConversionFunction = Best->Function;
+ assert(ICS->UserDefined.After.ReferenceBinding &&
+ ICS->UserDefined.After.DirectBinding &&
+ "Expected a direct reference binding!");
+ return false;
+ } else {
+ // Perform the conversion.
+ // FIXME: Binding to a subobject of the lvalue is going to require more
+ // AST annotation than this.
+ ImpCastExprToType(Init, T1, /*isLvalue=*/true);
+ }
+ break;
+
+ case OR_Ambiguous:
+ assert(false && "Ambiguous reference binding conversions not implemented.");
+ return true;
+
+ case OR_No_Viable_Function:
+ case OR_Deleted:
+ // There was no suitable conversion, or we found a deleted
+ // conversion; continue with other checks.
+ break;
+ }
+ }
+
+ if (BindsDirectly) {
+ // C++ [dcl.init.ref]p4:
+ // [...] In all cases where the reference-related or
+ // reference-compatible relationship of two types is used to
+ // establish the validity of a reference binding, and T1 is a
+ // base class of T2, a program that necessitates such a binding
+ // is ill-formed if T1 is an inaccessible (clause 11) or
+ // ambiguous (10.2) base class of T2.
+ //
+ // Note that we only check this condition when we're allowed to
+ // complain about errors, because we should not be checking for
+ // ambiguity (or inaccessibility) unless the reference binding
+ // actually happens.
+ if (DerivedToBase)
+ return CheckDerivedToBaseConversion(T2, T1,
+ Init->getSourceRange().getBegin(),
+ Init->getSourceRange());
+ else
+ return false;
+ }
+
+ // -- Otherwise, the reference shall be to a non-volatile const
+ // type (i.e., cv1 shall be const), or the reference shall be an
+ // rvalue reference and the initializer expression shall be an rvalue.
+ if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
+ if (!ICS)
+ Diag(Init->getSourceRange().getBegin(),
+ diag::err_not_reference_to_const_init)
+ << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
+ << T2 << Init->getSourceRange();
+ return true;
+ }
+
+ // -- If the initializer expression is an rvalue, with T2 a
+ // class type, and “cv1 T1” is reference-compatible with
+ // “cv2 T2,” the reference is bound in one of the
+ // following ways (the choice is implementation-defined):
+ //
+ // -- The reference is bound to the object represented by
+ // the rvalue (see 3.10) or to a sub-object within that
+ // object.
+ //
+ // -- A temporary of type “cv1 T2” [sic] is created, and
+ // a constructor is called to copy the entire rvalue
+ // object into the temporary. The reference is bound to
+ // the temporary or to a sub-object within the
+ // temporary.
+ //
+ // The constructor that would be used to make the copy
+ // shall be callable whether or not the copy is actually
+ // done.
+ //
+ // Note that C++0x [dcl.init.ref]p5 takes away this implementation
+ // freedom, so we will always take the first option and never build
+ // a temporary in this case. FIXME: We will, however, have to check
+ // for the presence of a copy constructor in C++98/03 mode.
+ if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
+ RefRelationship >= Ref_Compatible_With_Added_Qualification) {
+ if (ICS) {
+ ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
+ ICS->Standard.First = ICK_Identity;
+ ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
+ ICS->Standard.Third = ICK_Identity;
+ ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
+ ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
+ ICS->Standard.ReferenceBinding = true;
+ ICS->Standard.DirectBinding = false;
+ ICS->Standard.RRefBinding = isRValRef;
+ ICS->Standard.CopyConstructor = 0;
+ } else {
+ // FIXME: Binding to a subobject of the rvalue is going to require more
+ // AST annotation than this.
+ ImpCastExprToType(Init, T1, /*isLvalue=*/false);
+ }
+ return false;
+ }
+
+ // -- Otherwise, a temporary of type “cv1 T1” is created and
+ // initialized from the initializer expression using the
+ // rules for a non-reference copy initialization (8.5). The
+ // reference is then bound to the temporary. If T1 is
+ // reference-related to T2, cv1 must be the same
+ // cv-qualification as, or greater cv-qualification than,
+ // cv2; otherwise, the program is ill-formed.
+ if (RefRelationship == Ref_Related) {
+ // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
+ // we would be reference-compatible or reference-compatible with
+ // added qualification. But that wasn't the case, so the reference
+ // initialization fails.
+ if (!ICS)
+ Diag(Init->getSourceRange().getBegin(),
+ diag::err_reference_init_drops_quals)
+ << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
+ << T2 << Init->getSourceRange();
+ return true;
+ }
+
+ // If at least one of the types is a class type, the types are not
+ // related, and we aren't allowed any user conversions, the
+ // reference binding fails. This case is important for breaking
+ // recursion, since TryImplicitConversion below will attempt to
+ // create a temporary through the use of a copy constructor.
+ if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
+ (T1->isRecordType() || T2->isRecordType())) {
+ if (!ICS)
+ Diag(Init->getSourceRange().getBegin(),
+ diag::err_typecheck_convert_incompatible)
+ << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
+ return true;
+ }
+
+ // Actually try to convert the initializer to T1.
+ if (ICS) {
+ // C++ [over.ics.ref]p2:
+ //
+ // When a parameter of reference type is not bound directly to
+ // an argument expression, the conversion sequence is the one
+ // required to convert the argument expression to the
+ // underlying type of the reference according to
+ // 13.3.3.1. Conceptually, this conversion sequence corresponds
+ // to copy-initializing a temporary of the underlying type with
+ // the argument expression. Any difference in top-level
+ // cv-qualification is subsumed by the initialization itself
+ // and does not constitute a conversion.
+ *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
+ // Of course, that's still a reference binding.
+ if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
+ ICS->Standard.ReferenceBinding = true;
+ ICS->Standard.RRefBinding = isRValRef;
+ } else if(ICS->ConversionKind ==
+ ImplicitConversionSequence::UserDefinedConversion) {
+ ICS->UserDefined.After.ReferenceBinding = true;
+ ICS->UserDefined.After.RRefBinding = isRValRef;
+ }
+ return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
+ } else {
+ return PerformImplicitConversion(Init, T1, "initializing");
+ }
+}
+
+/// CheckOverloadedOperatorDeclaration - Check whether the declaration
+/// of this overloaded operator is well-formed. If so, returns false;
+/// otherwise, emits appropriate diagnostics and returns true.
+bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
+ assert(FnDecl && FnDecl->isOverloadedOperator() &&
+ "Expected an overloaded operator declaration");
+
+ OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
+
+ // C++ [over.oper]p5:
+ // The allocation and deallocation functions, operator new,
+ // operator new[], operator delete and operator delete[], are
+ // described completely in 3.7.3. The attributes and restrictions
+ // found in the rest of this subclause do not apply to them unless
+ // explicitly stated in 3.7.3.
+ // FIXME: Write a separate routine for checking this. For now, just allow it.
+ if (Op == OO_New || Op == OO_Array_New ||
+ Op == OO_Delete || Op == OO_Array_Delete)
+ return false;
+
+ // C++ [over.oper]p6:
+ // An operator function shall either be a non-static member
+ // function or be a non-member function and have at least one
+ // parameter whose type is a class, a reference to a class, an
+ // enumeration, or a reference to an enumeration.
+ if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
+ if (MethodDecl->isStatic())
+ return Diag(FnDecl->getLocation(),
+ diag::err_operator_overload_static) << FnDecl->getDeclName();
+ } else {
+ bool ClassOrEnumParam = false;
+ for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
+ ParamEnd = FnDecl->param_end();
+ Param != ParamEnd; ++Param) {
+ QualType ParamType = (*Param)->getType().getNonReferenceType();
+ if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
+ ClassOrEnumParam = true;
+ break;
+ }
+ }
+
+ if (!ClassOrEnumParam)
+ return Diag(FnDecl->getLocation(),
+ diag::err_operator_overload_needs_class_or_enum)
+ << FnDecl->getDeclName();
+ }
+
+ // C++ [over.oper]p8:
+ // An operator function cannot have default arguments (8.3.6),
+ // except where explicitly stated below.
+ //
+ // Only the function-call operator allows default arguments
+ // (C++ [over.call]p1).
+ if (Op != OO_Call) {
+ for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
+ Param != FnDecl->param_end(); ++Param) {
+ if ((*Param)->hasUnparsedDefaultArg())
+ return Diag((*Param)->getLocation(),
+ diag::err_operator_overload_default_arg)
+ << FnDecl->getDeclName();
+ else if (Expr *DefArg = (*Param)->getDefaultArg())
+ return Diag((*Param)->getLocation(),
+ diag::err_operator_overload_default_arg)
+ << FnDecl->getDeclName() << DefArg->getSourceRange();
+ }
+ }
+
+ static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
+ { false, false, false }
+#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
+ , { Unary, Binary, MemberOnly }
+#include "clang/Basic/OperatorKinds.def"
+ };
+
+ bool CanBeUnaryOperator = OperatorUses[Op][0];
+ bool CanBeBinaryOperator = OperatorUses[Op][1];
+ bool MustBeMemberOperator = OperatorUses[Op][2];
+
+ // C++ [over.oper]p8:
+ // [...] Operator functions cannot have more or fewer parameters
+ // than the number required for the corresponding operator, as
+ // described in the rest of this subclause.
+ unsigned NumParams = FnDecl->getNumParams()
+ + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
+ if (Op != OO_Call &&
+ ((NumParams == 1 && !CanBeUnaryOperator) ||
+ (NumParams == 2 && !CanBeBinaryOperator) ||
+ (NumParams < 1) || (NumParams > 2))) {
+ // We have the wrong number of parameters.
+ unsigned ErrorKind;
+ if (CanBeUnaryOperator && CanBeBinaryOperator) {
+ ErrorKind = 2; // 2 -> unary or binary.
+ } else if (CanBeUnaryOperator) {
+ ErrorKind = 0; // 0 -> unary
+ } else {
+ assert(CanBeBinaryOperator &&
+ "All non-call overloaded operators are unary or binary!");
+ ErrorKind = 1; // 1 -> binary
+ }
+
+ return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
+ << FnDecl->getDeclName() << NumParams << ErrorKind;
+ }
+
+ // Overloaded operators other than operator() cannot be variadic.
+ if (Op != OO_Call &&
+ FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
+ return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
+ << FnDecl->getDeclName();
+ }
+
+ // Some operators must be non-static member functions.
+ if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
+ return Diag(FnDecl->getLocation(),
+ diag::err_operator_overload_must_be_member)
+ << FnDecl->getDeclName();
+ }
+
+ // C++ [over.inc]p1:
+ // The user-defined function called operator++ implements the
+ // prefix and postfix ++ operator. If this function is a member
+ // function with no parameters, or a non-member function with one
+ // parameter of class or enumeration type, it defines the prefix
+ // increment operator ++ for objects of that type. If the function
+ // is a member function with one parameter (which shall be of type
+ // int) or a non-member function with two parameters (the second
+ // of which shall be of type int), it defines the postfix
+ // increment operator ++ for objects of that type.
+ if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
+ ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
+ bool ParamIsInt = false;
+ if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
+ ParamIsInt = BT->getKind() == BuiltinType::Int;
+
+ if (!ParamIsInt)
+ return Diag(LastParam->getLocation(),
+ diag::err_operator_overload_post_incdec_must_be_int)
+ << LastParam->getType() << (Op == OO_MinusMinus);
+ }
+
+ // Notify the class if it got an assignment operator.
+ if (Op == OO_Equal) {
+ // Would have returned earlier otherwise.
+ assert(isa<CXXMethodDecl>(FnDecl) &&
+ "Overloaded = not member, but not filtered.");
+ CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
+ Method->getParent()->addedAssignmentOperator(Context, Method);
+ }
+
+ return false;
+}
+
+/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
+/// linkage specification, including the language and (if present)
+/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
+/// the location of the language string literal, which is provided
+/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
+/// the '{' brace. Otherwise, this linkage specification does not
+/// have any braces.
+Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
+ SourceLocation ExternLoc,
+ SourceLocation LangLoc,
+ const char *Lang,
+ unsigned StrSize,
+ SourceLocation LBraceLoc) {
+ LinkageSpecDecl::LanguageIDs Language;
+ if (strncmp(Lang, "\"C\"", StrSize) == 0)
+ Language = LinkageSpecDecl::lang_c;
+ else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
+ Language = LinkageSpecDecl::lang_cxx;
+ else {
+ Diag(LangLoc, diag::err_bad_language);
+ return DeclPtrTy();
+ }
+
+ // FIXME: Add all the various semantics of linkage specifications
+
+ LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
+ LangLoc, Language,
+ LBraceLoc.isValid());
+ CurContext->addDecl(Context, D);
+ PushDeclContext(S, D);
+ return DeclPtrTy::make(D);
+}
+
+/// ActOnFinishLinkageSpecification - Completely the definition of
+/// the C++ linkage specification LinkageSpec. If RBraceLoc is
+/// valid, it's the position of the closing '}' brace in a linkage
+/// specification that uses braces.
+Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
+ DeclPtrTy LinkageSpec,
+ SourceLocation RBraceLoc) {
+ if (LinkageSpec)
+ PopDeclContext();
+ return LinkageSpec;
+}
+
+/// \brief Perform semantic analysis for the variable declaration that
+/// occurs within a C++ catch clause, returning the newly-created
+/// variable.
+VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
+ IdentifierInfo *Name,
+ SourceLocation Loc,
+ SourceRange Range) {
+ bool Invalid = false;
+
+ // Arrays and functions decay.
+ if (ExDeclType->isArrayType())
+ ExDeclType = Context.getArrayDecayedType(ExDeclType);
+ else if (ExDeclType->isFunctionType())
+ ExDeclType = Context.getPointerType(ExDeclType);
+
+ // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
+ // The exception-declaration shall not denote a pointer or reference to an
+ // incomplete type, other than [cv] void*.
+ // N2844 forbids rvalue references.
+ if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
+ Diag(Loc, diag::err_catch_rvalue_ref) << Range;
+ Invalid = true;
+ }
+
+ QualType BaseType = ExDeclType;
+ int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
+ unsigned DK = diag::err_catch_incomplete;
+ if (const PointerType *Ptr = BaseType->getAsPointerType()) {
+ BaseType = Ptr->getPointeeType();
+ Mode = 1;
+ DK = diag::err_catch_incomplete_ptr;
+ } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
+ // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
+ BaseType = Ref->getPointeeType();
+ Mode = 2;
+ DK = diag::err_catch_incomplete_ref;
+ }
+ if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
+ !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
+ Invalid = true;
+
+ if (!Invalid && !ExDeclType->isDependentType() &&
+ RequireNonAbstractType(Loc, ExDeclType,
+ diag::err_abstract_type_in_decl,
+ AbstractVariableType))
+ Invalid = true;
+
+ // FIXME: Need to test for ability to copy-construct and destroy the
+ // exception variable.
+
+ // FIXME: Need to check for abstract classes.
+
+ VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
+ Name, ExDeclType, VarDecl::None,
+ Range.getBegin());
+
+ if (Invalid)
+ ExDecl->setInvalidDecl();
+
+ return ExDecl;
+}
+
+/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
+/// handler.
+Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
+ QualType ExDeclType = GetTypeForDeclarator(D, S);
+
+ bool Invalid = D.isInvalidType();
+ IdentifierInfo *II = D.getIdentifier();
+ if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
+ // The scope should be freshly made just for us. There is just no way
+ // it contains any previous declaration.
+ assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
+ if (PrevDecl->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
+ }
+ }
+
+ if (D.getCXXScopeSpec().isSet() && !Invalid) {
+ Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
+ << D.getCXXScopeSpec().getRange();
+ Invalid = true;
+ }
+
+ VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
+ D.getIdentifier(),
+ D.getIdentifierLoc(),
+ D.getDeclSpec().getSourceRange());
+
+ if (Invalid)
+ ExDecl->setInvalidDecl();
+
+ // Add the exception declaration into this scope.
+ if (II)
+ PushOnScopeChains(ExDecl, S);
+ else
+ CurContext->addDecl(Context, ExDecl);
+
+ ProcessDeclAttributes(ExDecl, D);
+ return DeclPtrTy::make(ExDecl);
+}
+
+Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
+ ExprArg assertexpr,
+ ExprArg assertmessageexpr) {
+ Expr *AssertExpr = (Expr *)assertexpr.get();
+ StringLiteral *AssertMessage =
+ cast<StringLiteral>((Expr *)assertmessageexpr.get());
+
+ if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
+ llvm::APSInt Value(32);
+ if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
+ Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
+ AssertExpr->getSourceRange();
+ return DeclPtrTy();
+ }
+
+ if (Value == 0) {
+ std::string str(AssertMessage->getStrData(),
+ AssertMessage->getByteLength());
+ Diag(AssertLoc, diag::err_static_assert_failed)
+ << str << AssertExpr->getSourceRange();
+ }
+ }
+
+ assertexpr.release();
+ assertmessageexpr.release();
+ Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
+ AssertExpr, AssertMessage);
+
+ CurContext->addDecl(Context, Decl);
+ return DeclPtrTy::make(Decl);
+}
+
+bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
+ if (!(S->getFlags() & Scope::ClassScope)) {
+ Diag(FriendLoc, diag::err_friend_decl_outside_class);
+ return true;
+ }
+
+ return false;
+}
+
+void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
+ Decl *Dcl = dcl.getAs<Decl>();
+ FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
+ if (!Fn) {
+ Diag(DelLoc, diag::err_deleted_non_function);
+ return;
+ }
+ if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
+ Diag(DelLoc, diag::err_deleted_decl_not_first);
+ Diag(Prev->getLocation(), diag::note_previous_declaration);
+ // If the declaration wasn't the first, we delete the function anyway for
+ // recovery.
+ }
+ Fn->setDeleted();
+}
+
+static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
+ for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
+ ++CI) {
+ Stmt *SubStmt = *CI;
+ if (!SubStmt)
+ continue;
+ if (isa<ReturnStmt>(SubStmt))
+ Self.Diag(SubStmt->getSourceRange().getBegin(),
+ diag::err_return_in_constructor_handler);
+ if (!isa<Expr>(SubStmt))
+ SearchForReturnInStmt(Self, SubStmt);
+ }
+}
+
+void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
+ for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
+ CXXCatchStmt *Handler = TryBlock->getHandler(I);
+ SearchForReturnInStmt(*this, Handler);
+ }
+}
+
+bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
+ const CXXMethodDecl *Old) {
+ QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
+ QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
+
+ QualType CNewTy = Context.getCanonicalType(NewTy);
+ QualType COldTy = Context.getCanonicalType(OldTy);
+
+ if (CNewTy == COldTy &&
+ CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
+ return false;
+
+ // Check if the return types are covariant
+ QualType NewClassTy, OldClassTy;
+
+ /// Both types must be pointers or references to classes.
+ if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
+ if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
+ NewClassTy = NewPT->getPointeeType();
+ OldClassTy = OldPT->getPointeeType();
+ }
+ } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
+ if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
+ NewClassTy = NewRT->getPointeeType();
+ OldClassTy = OldRT->getPointeeType();
+ }
+ }
+
+ // The return types aren't either both pointers or references to a class type.
+ if (NewClassTy.isNull()) {
+ Diag(New->getLocation(),
+ diag::err_different_return_type_for_overriding_virtual_function)
+ << New->getDeclName() << NewTy << OldTy;
+ Diag(Old->getLocation(), diag::note_overridden_virtual_function);
+
+ return true;
+ }
+
+ if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
+ // Check if the new class derives from the old class.
+ if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
+ Diag(New->getLocation(),
+ diag::err_covariant_return_not_derived)
+ << New->getDeclName() << NewTy << OldTy;
+ Diag(Old->getLocation(), diag::note_overridden_virtual_function);
+ return true;
+ }
+
+ // Check if we the conversion from derived to base is valid.
+ if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
+ diag::err_covariant_return_inaccessible_base,
+ diag::err_covariant_return_ambiguous_derived_to_base_conv,
+ // FIXME: Should this point to the return type?
+ New->getLocation(), SourceRange(), New->getDeclName())) {
+ Diag(Old->getLocation(), diag::note_overridden_virtual_function);
+ return true;
+ }
+ }
+
+ // The qualifiers of the return types must be the same.
+ if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
+ Diag(New->getLocation(),
+ diag::err_covariant_return_type_different_qualifications)
+ << New->getDeclName() << NewTy << OldTy;
+ Diag(Old->getLocation(), diag::note_overridden_virtual_function);
+ return true;
+ };
+
+
+ // The new class type must have the same or less qualifiers as the old type.
+ if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
+ Diag(New->getLocation(),
+ diag::err_covariant_return_type_class_type_more_qualified)
+ << New->getDeclName() << NewTy << OldTy;
+ Diag(Old->getLocation(), diag::note_overridden_virtual_function);
+ return true;
+ };
+
+ return false;
+}