diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2014-11-24 09:08:18 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2014-11-24 09:08:18 +0000 |
commit | 5ca98fd98791947eba83a1ed3f2c8191ef7afa6c (patch) | |
tree | f5944309621cee4fe0976be6f9ac619b7ebfc4c2 /lib/Target/X86/X86FastISel.cpp | |
parent | 68bcb7db193e4bc81430063148253d30a791023e (diff) | |
download | src-5ca98fd98791947eba83a1ed3f2c8191ef7afa6c.tar.gz src-5ca98fd98791947eba83a1ed3f2c8191ef7afa6c.zip |
Vendor import of llvm RELEASE_350/final tag r216957 (effectively, 3.5.0 release):vendor/llvm/llvm-release_350-r216957
Notes
Notes:
svn path=/vendor/llvm/dist/; revision=274955
svn path=/vendor/llvm/llvm-release_35-r216957/; revision=274956; tag=vendor/llvm/llvm-release_350-r216957
Diffstat (limited to 'lib/Target/X86/X86FastISel.cpp')
-rw-r--r-- | lib/Target/X86/X86FastISel.cpp | 1947 |
1 files changed, 1347 insertions, 600 deletions
diff --git a/lib/Target/X86/X86FastISel.cpp b/lib/Target/X86/X86FastISel.cpp index 97f96ab72c24..2d494b4aeeb6 100644 --- a/lib/Target/X86/X86FastISel.cpp +++ b/lib/Target/X86/X86FastISel.cpp @@ -15,33 +15,35 @@ #include "X86.h" #include "X86CallingConv.h" -#include "X86ISelLowering.h" #include "X86InstrBuilder.h" +#include "X86InstrInfo.h" +#include "X86MachineFunctionInfo.h" #include "X86RegisterInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" +#include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/IR/CallSite.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Operator.h" -#include "llvm/Support/CallSite.h" #include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; namespace { -class X86FastISel : public FastISel { +class X86FastISel final : public FastISel { /// Subtarget - Keep a pointer to the X86Subtarget around so that we can /// make the right decision when generating code for different targets. const X86Subtarget *Subtarget; @@ -62,28 +64,32 @@ public: X86ScalarSSEf32 = Subtarget->hasSSE1(); } - virtual bool TargetSelectInstruction(const Instruction *I); + bool TargetSelectInstruction(const Instruction *I) override; /// \brief The specified machine instr operand is a vreg, and that /// vreg is being provided by the specified load instruction. If possible, /// try to fold the load as an operand to the instruction, returning true if /// possible. - virtual bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, - const LoadInst *LI); + bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, + const LoadInst *LI) override; - virtual bool FastLowerArguments(); + bool FastLowerArguments() override; + bool FastLowerCall(CallLoweringInfo &CLI) override; + bool FastLowerIntrinsicCall(const IntrinsicInst *II) override; #include "X86GenFastISel.inc" private: bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT); - bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR); + bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, MachineMemOperand *MMO, + unsigned &ResultReg); bool X86FastEmitStore(EVT VT, const Value *Val, const X86AddressMode &AM, - bool Aligned = false); - bool X86FastEmitStore(EVT VT, unsigned ValReg, const X86AddressMode &AM, - bool Aligned = false); + MachineMemOperand *MMO = nullptr, bool Aligned = false); + bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill, + const X86AddressMode &AM, + MachineMemOperand *MMO = nullptr, bool Aligned = false); bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, unsigned &ResultReg); @@ -107,6 +113,12 @@ private: bool X86SelectDivRem(const Instruction *I); + bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I); + + bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I); + + bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I); + bool X86SelectSelect(const Instruction *I); bool X86SelectTrunc(const Instruction *I); @@ -114,11 +126,6 @@ private: bool X86SelectFPExt(const Instruction *I); bool X86SelectFPTrunc(const Instruction *I); - bool X86VisitIntrinsicCall(const IntrinsicInst &I); - bool X86SelectCall(const Instruction *I); - - bool DoSelectCall(const Instruction *I, const char *MemIntName); - const X86InstrInfo *getInstrInfo() const { return getTargetMachine()->getInstrInfo(); } @@ -128,11 +135,11 @@ private: bool handleConstantAddresses(const Value *V, X86AddressMode &AM); - unsigned TargetMaterializeConstant(const Constant *C); + unsigned TargetMaterializeConstant(const Constant *C) override; - unsigned TargetMaterializeAlloca(const AllocaInst *C); + unsigned TargetMaterializeAlloca(const AllocaInst *C) override; - unsigned TargetMaterializeFloatZero(const ConstantFP *CF); + unsigned TargetMaterializeFloatZero(const ConstantFP *CF) override; /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is /// computed in an SSE register, not on the X87 floating point stack. @@ -147,10 +154,182 @@ private: bool TryEmitSmallMemcpy(X86AddressMode DestAM, X86AddressMode SrcAM, uint64_t Len); + + bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, + const Value *Cond); }; } // end anonymous namespace. +static CmpInst::Predicate optimizeCmpPredicate(const CmpInst *CI) { + // If both operands are the same, then try to optimize or fold the cmp. + CmpInst::Predicate Predicate = CI->getPredicate(); + if (CI->getOperand(0) != CI->getOperand(1)) + return Predicate; + + switch (Predicate) { + default: llvm_unreachable("Invalid predicate!"); + case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; + case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; + case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; + case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; + case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; + case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; + case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; + case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; + case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; + case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; + case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; + case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; + case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; + case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; + case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; + case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; + + case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; + case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; + case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; + case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; + case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; + case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; + case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; + case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; + case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; + case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; + } + + return Predicate; +} + +static std::pair<X86::CondCode, bool> +getX86ConditionCode(CmpInst::Predicate Predicate) { + X86::CondCode CC = X86::COND_INVALID; + bool NeedSwap = false; + switch (Predicate) { + default: break; + // Floating-point Predicates + case CmpInst::FCMP_UEQ: CC = X86::COND_E; break; + case CmpInst::FCMP_OLT: NeedSwap = true; // fall-through + case CmpInst::FCMP_OGT: CC = X86::COND_A; break; + case CmpInst::FCMP_OLE: NeedSwap = true; // fall-through + case CmpInst::FCMP_OGE: CC = X86::COND_AE; break; + case CmpInst::FCMP_UGT: NeedSwap = true; // fall-through + case CmpInst::FCMP_ULT: CC = X86::COND_B; break; + case CmpInst::FCMP_UGE: NeedSwap = true; // fall-through + case CmpInst::FCMP_ULE: CC = X86::COND_BE; break; + case CmpInst::FCMP_ONE: CC = X86::COND_NE; break; + case CmpInst::FCMP_UNO: CC = X86::COND_P; break; + case CmpInst::FCMP_ORD: CC = X86::COND_NP; break; + case CmpInst::FCMP_OEQ: // fall-through + case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break; + + // Integer Predicates + case CmpInst::ICMP_EQ: CC = X86::COND_E; break; + case CmpInst::ICMP_NE: CC = X86::COND_NE; break; + case CmpInst::ICMP_UGT: CC = X86::COND_A; break; + case CmpInst::ICMP_UGE: CC = X86::COND_AE; break; + case CmpInst::ICMP_ULT: CC = X86::COND_B; break; + case CmpInst::ICMP_ULE: CC = X86::COND_BE; break; + case CmpInst::ICMP_SGT: CC = X86::COND_G; break; + case CmpInst::ICMP_SGE: CC = X86::COND_GE; break; + case CmpInst::ICMP_SLT: CC = X86::COND_L; break; + case CmpInst::ICMP_SLE: CC = X86::COND_LE; break; + } + + return std::make_pair(CC, NeedSwap); +} + +static std::pair<unsigned, bool> +getX86SSEConditionCode(CmpInst::Predicate Predicate) { + unsigned CC; + bool NeedSwap = false; + + // SSE Condition code mapping: + // 0 - EQ + // 1 - LT + // 2 - LE + // 3 - UNORD + // 4 - NEQ + // 5 - NLT + // 6 - NLE + // 7 - ORD + switch (Predicate) { + default: llvm_unreachable("Unexpected predicate"); + case CmpInst::FCMP_OEQ: CC = 0; break; + case CmpInst::FCMP_OGT: NeedSwap = true; // fall-through + case CmpInst::FCMP_OLT: CC = 1; break; + case CmpInst::FCMP_OGE: NeedSwap = true; // fall-through + case CmpInst::FCMP_OLE: CC = 2; break; + case CmpInst::FCMP_UNO: CC = 3; break; + case CmpInst::FCMP_UNE: CC = 4; break; + case CmpInst::FCMP_ULE: NeedSwap = true; // fall-through + case CmpInst::FCMP_UGE: CC = 5; break; + case CmpInst::FCMP_ULT: NeedSwap = true; // fall-through + case CmpInst::FCMP_UGT: CC = 6; break; + case CmpInst::FCMP_ORD: CC = 7; break; + case CmpInst::FCMP_UEQ: + case CmpInst::FCMP_ONE: CC = 8; break; + } + + return std::make_pair(CC, NeedSwap); +} + +/// \brief Check if it is possible to fold the condition from the XALU intrinsic +/// into the user. The condition code will only be updated on success. +bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, + const Value *Cond) { + if (!isa<ExtractValueInst>(Cond)) + return false; + + const auto *EV = cast<ExtractValueInst>(Cond); + if (!isa<IntrinsicInst>(EV->getAggregateOperand())) + return false; + + const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand()); + MVT RetVT; + const Function *Callee = II->getCalledFunction(); + Type *RetTy = + cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U); + if (!isTypeLegal(RetTy, RetVT)) + return false; + + if (RetVT != MVT::i32 && RetVT != MVT::i64) + return false; + + X86::CondCode TmpCC; + switch (II->getIntrinsicID()) { + default: return false; + case Intrinsic::sadd_with_overflow: + case Intrinsic::ssub_with_overflow: + case Intrinsic::smul_with_overflow: + case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break; + case Intrinsic::uadd_with_overflow: + case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break; + } + + // Check if both instructions are in the same basic block. + if (II->getParent() != I->getParent()) + return false; + + // Make sure nothing is in the way + BasicBlock::const_iterator Start = I; + BasicBlock::const_iterator End = II; + for (auto Itr = std::prev(Start); Itr != End; --Itr) { + // We only expect extractvalue instructions between the intrinsic and the + // instruction to be selected. + if (!isa<ExtractValueInst>(Itr)) + return false; + + // Check that the extractvalue operand comes from the intrinsic. + const auto *EVI = cast<ExtractValueInst>(Itr); + if (EVI->getAggregateOperand() != II) + return false; + } + + CC = TmpCC; + return true; +} + bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) { EVT evt = TLI.getValueType(Ty, /*HandleUnknown=*/true); if (evt == MVT::Other || !evt.isSimple()) @@ -180,10 +359,10 @@ bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) { /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. /// Return true and the result register by reference if it is possible. bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM, - unsigned &ResultReg) { + MachineMemOperand *MMO, unsigned &ResultReg) { // Get opcode and regclass of the output for the given load instruction. unsigned Opc = 0; - const TargetRegisterClass *RC = NULL; + const TargetRegisterClass *RC = nullptr; switch (VT.getSimpleVT().SimpleTy) { default: return false; case MVT::i1: @@ -228,8 +407,11 @@ bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM, } ResultReg = createResultReg(RC); - addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, - DL, TII.get(Opc), ResultReg), AM); + MachineInstrBuilder MIB = + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); + addFullAddress(MIB, AM); + if (MMO) + MIB->addMemOperand(*FuncInfo.MF, MMO); return true; } @@ -237,9 +419,9 @@ bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM, /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr /// and a displacement offset, or a GlobalAddress, /// i.e. V. Return true if it is possible. -bool -X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, - const X86AddressMode &AM, bool Aligned) { +bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill, + const X86AddressMode &AM, + MachineMemOperand *MMO, bool Aligned) { // Get opcode and regclass of the output for the given store instruction. unsigned Opc = 0; switch (VT.getSimpleVT().SimpleTy) { @@ -248,8 +430,9 @@ X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, case MVT::i1: { // Mask out all but lowest bit. unsigned AndResult = createResultReg(&X86::GR8RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, - TII.get(X86::AND8ri), AndResult).addReg(ValReg).addImm(1); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(X86::AND8ri), AndResult) + .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1); ValReg = AndResult; } // FALLTHROUGH, handling i1 as i8. @@ -288,16 +471,21 @@ X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, break; } - addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, - DL, TII.get(Opc)), AM).addReg(ValReg); + MachineInstrBuilder MIB = + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)); + addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill)); + if (MMO) + MIB->addMemOperand(*FuncInfo.MF, MMO); + return true; } bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, - const X86AddressMode &AM, bool Aligned) { + const X86AddressMode &AM, + MachineMemOperand *MMO, bool Aligned) { // Handle 'null' like i32/i64 0. if (isa<ConstantPointerNull>(Val)) - Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext())); + Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext())); // If this is a store of a simple constant, fold the constant into the store. if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { @@ -317,10 +505,12 @@ bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, } if (Opc) { - addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, - DL, TII.get(Opc)), AM) - .addImm(Signed ? (uint64_t) CI->getSExtValue() : - CI->getZExtValue()); + MachineInstrBuilder MIB = + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)); + addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue() + : CI->getZExtValue()); + if (MMO) + MIB->addMemOperand(*FuncInfo.MF, MMO); return true; } } @@ -329,7 +519,8 @@ bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, if (ValReg == 0) return false; - return X86FastEmitStore(VT, ValReg, AM, Aligned); + bool ValKill = hasTrivialKill(Val); + return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned); } /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of @@ -355,17 +546,8 @@ bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { return false; // Can't handle TLS yet. - if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) - if (GVar->isThreadLocal()) - return false; - - // Can't handle TLS yet, part 2 (this is slightly crazy, but this is how - // it works...). - if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) - if (const GlobalVariable *GVar = - dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false))) - if (GVar->isThreadLocal()) - return false; + if (GV->isThreadLocal()) + return false; // RIP-relative addresses can't have additional register operands, so if // we've already folded stuff into the addressing mode, just force the @@ -406,7 +588,7 @@ bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { } else { // Issue load from stub. unsigned Opc = 0; - const TargetRegisterClass *RC = NULL; + const TargetRegisterClass *RC = nullptr; X86AddressMode StubAM; StubAM.Base.Reg = AM.Base.Reg; StubAM.GV = GV; @@ -428,7 +610,7 @@ bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { LoadReg = createResultReg(RC); MachineInstrBuilder LoadMI = - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg); addFullAddress(LoadMI, StubAM); // Ok, back to normal mode. @@ -441,7 +623,7 @@ bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { // Now construct the final address. Note that the Disp, Scale, // and Index values may already be set here. AM.Base.Reg = LoadReg; - AM.GV = 0; + AM.GV = nullptr; return true; } } @@ -467,7 +649,7 @@ bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { SmallVector<const Value *, 32> GEPs; redo_gep: - const User *U = NULL; + const User *U = nullptr; unsigned Opcode = Instruction::UserOp1; if (const Instruction *I = dyn_cast<Instruction>(V)) { // Don't walk into other basic blocks; it's possible we haven't @@ -547,14 +729,14 @@ redo_gep: i != e; ++i, ++GTI) { const Value *Op = *i; if (StructType *STy = dyn_cast<StructType>(*GTI)) { - const StructLayout *SL = TD.getStructLayout(STy); + const StructLayout *SL = DL.getStructLayout(STy); Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue()); continue; } // A array/variable index is always of the form i*S where S is the // constant scale size. See if we can push the scale into immediates. - uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType()); + uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); for (;;) { if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { // Constant-offset addressing. @@ -626,7 +808,7 @@ redo_gep: /// X86SelectCallAddress - Attempt to fill in an address from the given value. /// bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { - const User *U = NULL; + const User *U = nullptr; unsigned Opcode = Instruction::UserOp1; const Instruction *I = dyn_cast<Instruction>(V); // Record if the value is defined in the same basic block. @@ -696,8 +878,8 @@ bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { (AM.Base.Reg != 0 || AM.IndexReg != 0)) return false; - // Can't handle DLLImport. - if (GV->hasDLLImportLinkage()) + // Can't handle DLL Import. + if (GV->hasDLLImportStorageClass()) return false; // Can't handle TLS. @@ -749,19 +931,24 @@ bool X86FastISel::X86SelectStore(const Instruction *I) { if (S->isAtomic()) return false; - unsigned SABIAlignment = - TD.getABITypeAlignment(S->getValueOperand()->getType()); - bool Aligned = S->getAlignment() == 0 || S->getAlignment() >= SABIAlignment; + const Value *Val = S->getValueOperand(); + const Value *Ptr = S->getPointerOperand(); MVT VT; - if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true)) + if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true)) return false; + unsigned Alignment = S->getAlignment(); + unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType()); + if (Alignment == 0) // Ensure that codegen never sees alignment 0 + Alignment = ABIAlignment; + bool Aligned = Alignment >= ABIAlignment; + X86AddressMode AM; - if (!X86SelectAddress(I->getOperand(1), AM)) + if (!X86SelectAddress(Ptr, AM)) return false; - return X86FastEmitStore(VT, I->getOperand(0), AM, Aligned); + return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned); } /// X86SelectRet - Select and emit code to implement ret instructions. @@ -864,7 +1051,7 @@ bool X86FastISel::X86SelectRet(const Instruction *I) { // Avoid a cross-class copy. This is very unlikely. if (!SrcRC->contains(DstReg)) return false; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); // Add register to return instruction. @@ -876,19 +1063,19 @@ bool X86FastISel::X86SelectRet(const Instruction *I) { // a virtual register in the entry block, so now we copy the value out // and into %rax. We also do the same with %eax for Win32. if (F.hasStructRetAttr() && - (Subtarget->is64Bit() || Subtarget->isTargetWindows())) { + (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC())) { unsigned Reg = X86MFInfo->getSRetReturnReg(); assert(Reg && "SRetReturnReg should have been set in LowerFormalArguments()!"); unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), RetReg).addReg(Reg); RetRegs.push_back(RetReg); } // Now emit the RET. MachineInstrBuilder MIB = - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::RET)); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL)); for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) MIB.addReg(RetRegs[i], RegState::Implicit); return true; @@ -896,25 +1083,29 @@ bool X86FastISel::X86SelectRet(const Instruction *I) { /// X86SelectLoad - Select and emit code to implement load instructions. /// -bool X86FastISel::X86SelectLoad(const Instruction *I) { +bool X86FastISel::X86SelectLoad(const Instruction *I) { + const LoadInst *LI = cast<LoadInst>(I); + // Atomic loads need special handling. - if (cast<LoadInst>(I)->isAtomic()) + if (LI->isAtomic()) return false; MVT VT; - if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true)) + if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true)) return false; + const Value *Ptr = LI->getPointerOperand(); + X86AddressMode AM; - if (!X86SelectAddress(I->getOperand(0), AM)) + if (!X86SelectAddress(Ptr, AM)) return false; unsigned ResultReg = 0; - if (X86FastEmitLoad(VT, AM, ResultReg)) { - UpdateValueMap(I, ResultReg); - return true; - } - return false; + if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg)) + return false; + + UpdateValueMap(I, ResultReg); + return true; } static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) { @@ -961,14 +1152,14 @@ bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, // Handle 'null' like i32/i64 0. if (isa<ConstantPointerNull>(Op1)) - Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext())); + Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext())); // We have two options: compare with register or immediate. If the RHS of // the compare is an immediate that we can fold into this compare, use // CMPri, otherwise use CMPrr. if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareImmOpc)) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CompareImmOpc)) .addReg(Op0Reg) .addImm(Op1C->getSExtValue()); return true; @@ -980,7 +1171,7 @@ bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, unsigned Op1Reg = getRegForValue(Op1); if (Op1Reg == 0) return false; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareOpc)) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CompareOpc)) .addReg(Op0Reg) .addReg(Op1Reg); @@ -994,73 +1185,89 @@ bool X86FastISel::X86SelectCmp(const Instruction *I) { if (!isTypeLegal(I->getOperand(0)->getType(), VT)) return false; - unsigned ResultReg = createResultReg(&X86::GR8RegClass); - unsigned SetCCOpc; - bool SwapArgs; // false -> compare Op0, Op1. true -> compare Op1, Op0. - switch (CI->getPredicate()) { - case CmpInst::FCMP_OEQ: { - if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT)) + // Try to optimize or fold the cmp. + CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); + unsigned ResultReg = 0; + switch (Predicate) { + default: break; + case CmpInst::FCMP_FALSE: { + ResultReg = createResultReg(&X86::GR32RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0), + ResultReg); + ResultReg = FastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true, + X86::sub_8bit); + if (!ResultReg) return false; + break; + } + case CmpInst::FCMP_TRUE: { + ResultReg = createResultReg(&X86::GR8RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri), + ResultReg).addImm(1); + break; + } + } - unsigned EReg = createResultReg(&X86::GR8RegClass); - unsigned NPReg = createResultReg(&X86::GR8RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETEr), EReg); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, - TII.get(X86::SETNPr), NPReg); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, - TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg); + if (ResultReg) { UpdateValueMap(I, ResultReg); return true; } - case CmpInst::FCMP_UNE: { - if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT)) + + const Value *LHS = CI->getOperand(0); + const Value *RHS = CI->getOperand(1); + + // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. + // We don't have to materialize a zero constant for this case and can just use + // %x again on the RHS. + if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { + const auto *RHSC = dyn_cast<ConstantFP>(RHS); + if (RHSC && RHSC->isNullValue()) + RHS = LHS; + } + + // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. + static unsigned SETFOpcTable[2][3] = { + { X86::SETEr, X86::SETNPr, X86::AND8rr }, + { X86::SETNEr, X86::SETPr, X86::OR8rr } + }; + unsigned *SETFOpc = nullptr; + switch (Predicate) { + default: break; + case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break; + case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break; + } + + ResultReg = createResultReg(&X86::GR8RegClass); + if (SETFOpc) { + if (!X86FastEmitCompare(LHS, RHS, VT)) return false; - unsigned NEReg = createResultReg(&X86::GR8RegClass); - unsigned PReg = createResultReg(&X86::GR8RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETNEr), NEReg); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETPr), PReg); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::OR8rr),ResultReg) - .addReg(PReg).addReg(NEReg); + unsigned FlagReg1 = createResultReg(&X86::GR8RegClass); + unsigned FlagReg2 = createResultReg(&X86::GR8RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]), + FlagReg1); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]), + FlagReg2); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]), + ResultReg).addReg(FlagReg1).addReg(FlagReg2); UpdateValueMap(I, ResultReg); return true; } - case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr; break; - case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break; - case CmpInst::FCMP_OLT: SwapArgs = true; SetCCOpc = X86::SETAr; break; - case CmpInst::FCMP_OLE: SwapArgs = true; SetCCOpc = X86::SETAEr; break; - case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break; - case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break; - case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr; break; - case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr; break; - case CmpInst::FCMP_UGT: SwapArgs = true; SetCCOpc = X86::SETBr; break; - case CmpInst::FCMP_UGE: SwapArgs = true; SetCCOpc = X86::SETBEr; break; - case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr; break; - case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break; - - case CmpInst::ICMP_EQ: SwapArgs = false; SetCCOpc = X86::SETEr; break; - case CmpInst::ICMP_NE: SwapArgs = false; SetCCOpc = X86::SETNEr; break; - case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr; break; - case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break; - case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr; break; - case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break; - case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr; break; - case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break; - case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr; break; - case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break; - default: - return false; - } - const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); + X86::CondCode CC; + bool SwapArgs; + std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate); + assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); + unsigned Opc = X86::getSETFromCond(CC); + if (SwapArgs) - std::swap(Op0, Op1); + std::swap(LHS, RHS); - // Emit a compare of Op0/Op1. - if (!X86FastEmitCompare(Op0, Op1, VT)) + // Emit a compare of LHS/RHS. + if (!X86FastEmitCompare(LHS, RHS, VT)) return false; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(SetCCOpc), ResultReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); UpdateValueMap(I, ResultReg); return true; } @@ -1097,11 +1304,11 @@ bool X86FastISel::X86SelectZExt(const Instruction *I) { } unsigned Result32 = createResultReg(&X86::GR32RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovInst), Result32) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32) .addReg(ResultReg); ResultReg = createResultReg(&X86::GR64RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::SUBREG_TO_REG), + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg) .addImm(0).addReg(Result32).addImm(X86::sub_32bit); } else if (DstVT != MVT::i8) { @@ -1126,73 +1333,88 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) { // Fold the common case of a conditional branch with a comparison // in the same block (values defined on other blocks may not have // initialized registers). + X86::CondCode CC; if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { if (CI->hasOneUse() && CI->getParent() == I->getParent()) { EVT VT = TLI.getValueType(CI->getOperand(0)->getType()); + // Try to optimize or fold the cmp. + CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); + switch (Predicate) { + default: break; + case CmpInst::FCMP_FALSE: FastEmitBranch(FalseMBB, DbgLoc); return true; + case CmpInst::FCMP_TRUE: FastEmitBranch(TrueMBB, DbgLoc); return true; + } + + const Value *CmpLHS = CI->getOperand(0); + const Value *CmpRHS = CI->getOperand(1); + + // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, + // 0.0. + // We don't have to materialize a zero constant for this case and can just + // use %x again on the RHS. + if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { + const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); + if (CmpRHSC && CmpRHSC->isNullValue()) + CmpRHS = CmpLHS; + } + // Try to take advantage of fallthrough opportunities. - CmpInst::Predicate Predicate = CI->getPredicate(); if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { std::swap(TrueMBB, FalseMBB); Predicate = CmpInst::getInversePredicate(Predicate); } - bool SwapArgs; // false -> compare Op0, Op1. true -> compare Op1, Op0. - unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA" - + // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition + // code check. Instead two branch instructions are required to check all + // the flags. First we change the predicate to a supported condition code, + // which will be the first branch. Later one we will emit the second + // branch. + bool NeedExtraBranch = false; switch (Predicate) { + default: break; case CmpInst::FCMP_OEQ: - std::swap(TrueMBB, FalseMBB); - Predicate = CmpInst::FCMP_UNE; - // FALL THROUGH - case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE_4; break; - case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA_4; break; - case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE_4; break; - case CmpInst::FCMP_OLT: SwapArgs = true; BranchOpc = X86::JA_4; break; - case CmpInst::FCMP_OLE: SwapArgs = true; BranchOpc = X86::JAE_4; break; - case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE_4; break; - case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP_4; break; - case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP_4; break; - case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE_4; break; - case CmpInst::FCMP_UGT: SwapArgs = true; BranchOpc = X86::JB_4; break; - case CmpInst::FCMP_UGE: SwapArgs = true; BranchOpc = X86::JBE_4; break; - case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4; break; - case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break; - - case CmpInst::ICMP_EQ: SwapArgs = false; BranchOpc = X86::JE_4; break; - case CmpInst::ICMP_NE: SwapArgs = false; BranchOpc = X86::JNE_4; break; - case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4; break; - case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE_4; break; - case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4; break; - case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break; - case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG_4; break; - case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE_4; break; - case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL_4; break; - case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE_4; break; - default: - return false; + std::swap(TrueMBB, FalseMBB); // fall-through + case CmpInst::FCMP_UNE: + NeedExtraBranch = true; + Predicate = CmpInst::FCMP_ONE; + break; } - const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); + bool SwapArgs; + unsigned BranchOpc; + std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate); + assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); + + BranchOpc = X86::GetCondBranchFromCond(CC); if (SwapArgs) - std::swap(Op0, Op1); + std::swap(CmpLHS, CmpRHS); // Emit a compare of the LHS and RHS, setting the flags. - if (!X86FastEmitCompare(Op0, Op1, VT)) + if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT)) return false; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BranchOpc)) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc)) .addMBB(TrueMBB); - if (Predicate == CmpInst::FCMP_UNE) { - // X86 requires a second branch to handle UNE (and OEQ, - // which is mapped to UNE above). - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JP_4)) + // X86 requires a second branch to handle UNE (and OEQ, which is mapped + // to UNE above). + if (NeedExtraBranch) { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_4)) .addMBB(TrueMBB); } - FastEmitBranch(FalseMBB, DL); - FuncInfo.MBB->addSuccessor(TrueMBB); + // Obtain the branch weight and add the TrueBB to the successor list. + uint32_t BranchWeight = 0; + if (FuncInfo.BPI) + BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(), + TrueMBB->getBasicBlock()); + FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight); + + // Emits an unconditional branch to the FalseBB, obtains the branch + // weight, and adds it to the successor list. + FastEmitBranch(FalseMBB, DbgLoc); + return true; } } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { @@ -1212,7 +1434,7 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) { if (TestOpc) { unsigned OpReg = getRegForValue(TI->getOperand(0)); if (OpReg == 0) return false; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TestOpc)) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc)) .addReg(OpReg).addImm(1); unsigned JmpOpc = X86::JNE_4; @@ -1221,13 +1443,35 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) { JmpOpc = X86::JE_4; } - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(JmpOpc)) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc)) .addMBB(TrueMBB); - FastEmitBranch(FalseMBB, DL); - FuncInfo.MBB->addSuccessor(TrueMBB); + FastEmitBranch(FalseMBB, DbgLoc); + uint32_t BranchWeight = 0; + if (FuncInfo.BPI) + BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(), + TrueMBB->getBasicBlock()); + FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight); return true; } } + } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) { + // Fake request the condition, otherwise the intrinsic might be completely + // optimized away. + unsigned TmpReg = getRegForValue(BI->getCondition()); + if (TmpReg == 0) + return false; + + unsigned BranchOpc = X86::GetCondBranchFromCond(CC); + + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc)) + .addMBB(TrueMBB); + FastEmitBranch(FalseMBB, DbgLoc); + uint32_t BranchWeight = 0; + if (FuncInfo.BPI) + BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(), + TrueMBB->getBasicBlock()); + FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight); + return true; } // Otherwise do a clumsy setcc and re-test it. @@ -1236,18 +1480,22 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) { unsigned OpReg = getRegForValue(BI->getCondition()); if (OpReg == 0) return false; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8ri)) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) .addReg(OpReg).addImm(1); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JNE_4)) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_4)) .addMBB(TrueMBB); - FastEmitBranch(FalseMBB, DL); - FuncInfo.MBB->addSuccessor(TrueMBB); + FastEmitBranch(FalseMBB, DbgLoc); + uint32_t BranchWeight = 0; + if (FuncInfo.BPI) + BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(), + TrueMBB->getBasicBlock()); + FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight); return true; } bool X86FastISel::X86SelectShift(const Instruction *I) { unsigned CReg = 0, OpReg = 0; - const TargetRegisterClass *RC = NULL; + const TargetRegisterClass *RC = nullptr; if (I->getType()->isIntegerTy(8)) { CReg = X86::CL; RC = &X86::GR8RegClass; @@ -1297,18 +1545,18 @@ bool X86FastISel::X86SelectShift(const Instruction *I) { unsigned Op1Reg = getRegForValue(I->getOperand(1)); if (Op1Reg == 0) return false; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), CReg).addReg(Op1Reg); // The shift instruction uses X86::CL. If we defined a super-register // of X86::CL, emit a subreg KILL to precisely describe what we're doing here. if (CReg != X86::CL) - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::KILL), X86::CL) .addReg(CReg, RegState::Kill); unsigned ResultReg = createResultReg(RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpReg), ResultReg) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg) .addReg(Op0Reg); UpdateValueMap(I, ResultReg); return true; @@ -1409,38 +1657,38 @@ bool X86FastISel::X86SelectDivRem(const Instruction *I) { return false; // Move op0 into low-order input register. - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg); // Zero-extend or sign-extend into high-order input register. if (OpEntry.OpSignExtend) { if (OpEntry.IsOpSigned) - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpEntry.OpSignExtend)); else { unsigned Zero32 = createResultReg(&X86::GR32RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0), Zero32); // Copy the zero into the appropriate sub/super/identical physical // register. Unfortunately the operations needed are not uniform enough to // fit neatly into the table above. if (VT.SimpleTy == MVT::i16) { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), TypeEntry.HighInReg) .addReg(Zero32, 0, X86::sub_16bit); } else if (VT.SimpleTy == MVT::i32) { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), TypeEntry.HighInReg) .addReg(Zero32); } else if (VT.SimpleTy == MVT::i64) { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg) .addImm(0).addReg(Zero32).addImm(X86::sub_32bit); } } } // Generate the DIV/IDIV instruction. - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpEntry.OpDivRem)).addReg(Op1Reg); // For i8 remainder, we can't reference AH directly, as we'll end // up with bogus copies like %R9B = COPY %AH. Reference AX @@ -1456,11 +1704,11 @@ bool X86FastISel::X86SelectDivRem(const Instruction *I) { OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) { unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass); unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), SourceSuperReg).addReg(X86::AX); // Shift AX right by 8 bits instead of using AH. - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SHR16ri), + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri), ResultSuperReg).addReg(SourceSuperReg).addImm(8); // Now reference the 8-bit subreg of the result. @@ -1470,7 +1718,7 @@ bool X86FastISel::X86SelectDivRem(const Instruction *I) { // Copy the result out of the physreg if we haven't already. if (!ResultReg) { ResultReg = createResultReg(TypeEntry.RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Copy), ResultReg) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg) .addReg(OpEntry.DivRemResultReg); } UpdateValueMap(I, ResultReg); @@ -1478,45 +1726,319 @@ bool X86FastISel::X86SelectDivRem(const Instruction *I) { return true; } -bool X86FastISel::X86SelectSelect(const Instruction *I) { - MVT VT; - if (!isTypeLegal(I->getType(), VT)) +/// \brief Emit a conditional move instruction (if the are supported) to lower +/// the select. +bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) { + // Check if the subtarget supports these instructions. + if (!Subtarget->hasCMov()) return false; - // We only use cmov here, if we don't have a cmov instruction bail. - if (!Subtarget->hasCMov()) return false; + // FIXME: Add support for i8. + if (RetVT < MVT::i16 || RetVT > MVT::i64) + return false; - unsigned Opc = 0; - const TargetRegisterClass *RC = NULL; - if (VT == MVT::i16) { - Opc = X86::CMOVE16rr; - RC = &X86::GR16RegClass; - } else if (VT == MVT::i32) { - Opc = X86::CMOVE32rr; - RC = &X86::GR32RegClass; - } else if (VT == MVT::i64) { - Opc = X86::CMOVE64rr; - RC = &X86::GR64RegClass; - } else { + const Value *Cond = I->getOperand(0); + const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); + bool NeedTest = true; + X86::CondCode CC = X86::COND_NE; + + // Optimize conditions coming from a compare if both instructions are in the + // same basic block (values defined in other basic blocks may not have + // initialized registers). + const auto *CI = dyn_cast<CmpInst>(Cond); + if (CI && (CI->getParent() == I->getParent())) { + CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); + + // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. + static unsigned SETFOpcTable[2][3] = { + { X86::SETNPr, X86::SETEr , X86::TEST8rr }, + { X86::SETPr, X86::SETNEr, X86::OR8rr } + }; + unsigned *SETFOpc = nullptr; + switch (Predicate) { + default: break; + case CmpInst::FCMP_OEQ: + SETFOpc = &SETFOpcTable[0][0]; + Predicate = CmpInst::ICMP_NE; + break; + case CmpInst::FCMP_UNE: + SETFOpc = &SETFOpcTable[1][0]; + Predicate = CmpInst::ICMP_NE; + break; + } + + bool NeedSwap; + std::tie(CC, NeedSwap) = getX86ConditionCode(Predicate); + assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); + + const Value *CmpLHS = CI->getOperand(0); + const Value *CmpRHS = CI->getOperand(1); + if (NeedSwap) + std::swap(CmpLHS, CmpRHS); + + EVT CmpVT = TLI.getValueType(CmpLHS->getType()); + // Emit a compare of the LHS and RHS, setting the flags. + if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT)) + return false; + + if (SETFOpc) { + unsigned FlagReg1 = createResultReg(&X86::GR8RegClass); + unsigned FlagReg2 = createResultReg(&X86::GR8RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]), + FlagReg1); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]), + FlagReg2); + auto const &II = TII.get(SETFOpc[2]); + if (II.getNumDefs()) { + unsigned TmpReg = createResultReg(&X86::GR8RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg) + .addReg(FlagReg2).addReg(FlagReg1); + } else { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) + .addReg(FlagReg2).addReg(FlagReg1); + } + } + NeedTest = false; + } else if (foldX86XALUIntrinsic(CC, I, Cond)) { + // Fake request the condition, otherwise the intrinsic might be completely + // optimized away. + unsigned TmpReg = getRegForValue(Cond); + if (TmpReg == 0) + return false; + + NeedTest = false; + } + + if (NeedTest) { + // Selects operate on i1, however, CondReg is 8 bits width and may contain + // garbage. Indeed, only the less significant bit is supposed to be + // accurate. If we read more than the lsb, we may see non-zero values + // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for + // the select. This is achieved by performing TEST against 1. + unsigned CondReg = getRegForValue(Cond); + if (CondReg == 0) + return false; + bool CondIsKill = hasTrivialKill(Cond); + + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) + .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1); + } + + const Value *LHS = I->getOperand(1); + const Value *RHS = I->getOperand(2); + + unsigned RHSReg = getRegForValue(RHS); + bool RHSIsKill = hasTrivialKill(RHS); + + unsigned LHSReg = getRegForValue(LHS); + bool LHSIsKill = hasTrivialKill(LHS); + + if (!LHSReg || !RHSReg) + return false; + + unsigned Opc = X86::getCMovFromCond(CC, RC->getSize()); + unsigned ResultReg = FastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill, + LHSReg, LHSIsKill); + UpdateValueMap(I, ResultReg); + return true; +} + +/// \brief Emit SSE instructions to lower the select. +/// +/// Try to use SSE1/SSE2 instructions to simulate a select without branches. +/// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary +/// SSE instructions are available. +bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) { + // Optimize conditions coming from a compare if both instructions are in the + // same basic block (values defined in other basic blocks may not have + // initialized registers). + const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0)); + if (!CI || (CI->getParent() != I->getParent())) return false; + + if (I->getType() != CI->getOperand(0)->getType() || + !((Subtarget->hasSSE1() && RetVT == MVT::f32) || + (Subtarget->hasSSE2() && RetVT == MVT::f64) )) + return false; + + const Value *CmpLHS = CI->getOperand(0); + const Value *CmpRHS = CI->getOperand(1); + CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); + + // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. + // We don't have to materialize a zero constant for this case and can just use + // %x again on the RHS. + if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { + const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); + if (CmpRHSC && CmpRHSC->isNullValue()) + CmpRHS = CmpLHS; } - unsigned Op0Reg = getRegForValue(I->getOperand(0)); - if (Op0Reg == 0) return false; - unsigned Op1Reg = getRegForValue(I->getOperand(1)); - if (Op1Reg == 0) return false; - unsigned Op2Reg = getRegForValue(I->getOperand(2)); - if (Op2Reg == 0) return false; + unsigned CC; + bool NeedSwap; + std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate); + if (CC > 7) + return false; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr)) - .addReg(Op0Reg).addReg(Op0Reg); - unsigned ResultReg = createResultReg(RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) - .addReg(Op1Reg).addReg(Op2Reg); + if (NeedSwap) + std::swap(CmpLHS, CmpRHS); + + static unsigned OpcTable[2][2][4] = { + { { X86::CMPSSrr, X86::FsANDPSrr, X86::FsANDNPSrr, X86::FsORPSrr }, + { X86::VCMPSSrr, X86::VFsANDPSrr, X86::VFsANDNPSrr, X86::VFsORPSrr } }, + { { X86::CMPSDrr, X86::FsANDPDrr, X86::FsANDNPDrr, X86::FsORPDrr }, + { X86::VCMPSDrr, X86::VFsANDPDrr, X86::VFsANDNPDrr, X86::VFsORPDrr } } + }; + + bool HasAVX = Subtarget->hasAVX(); + unsigned *Opc = nullptr; + switch (RetVT.SimpleTy) { + default: return false; + case MVT::f32: Opc = &OpcTable[0][HasAVX][0]; break; + case MVT::f64: Opc = &OpcTable[1][HasAVX][0]; break; + } + + const Value *LHS = I->getOperand(1); + const Value *RHS = I->getOperand(2); + + unsigned LHSReg = getRegForValue(LHS); + bool LHSIsKill = hasTrivialKill(LHS); + + unsigned RHSReg = getRegForValue(RHS); + bool RHSIsKill = hasTrivialKill(RHS); + + unsigned CmpLHSReg = getRegForValue(CmpLHS); + bool CmpLHSIsKill = hasTrivialKill(CmpLHS); + + unsigned CmpRHSReg = getRegForValue(CmpRHS); + bool CmpRHSIsKill = hasTrivialKill(CmpRHS); + + if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS) + return false; + + const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); + unsigned CmpReg = FastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill, + CmpRHSReg, CmpRHSIsKill, CC); + unsigned AndReg = FastEmitInst_rr(Opc[1], RC, CmpReg, /*IsKill=*/false, + LHSReg, LHSIsKill); + unsigned AndNReg = FastEmitInst_rr(Opc[2], RC, CmpReg, /*IsKill=*/true, + RHSReg, RHSIsKill); + unsigned ResultReg = FastEmitInst_rr(Opc[3], RC, AndNReg, /*IsKill=*/true, + AndReg, /*IsKill=*/true); UpdateValueMap(I, ResultReg); return true; } +bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) { + // These are pseudo CMOV instructions and will be later expanded into control- + // flow. + unsigned Opc; + switch (RetVT.SimpleTy) { + default: return false; + case MVT::i8: Opc = X86::CMOV_GR8; break; + case MVT::i16: Opc = X86::CMOV_GR16; break; + case MVT::i32: Opc = X86::CMOV_GR32; break; + case MVT::f32: Opc = X86::CMOV_FR32; break; + case MVT::f64: Opc = X86::CMOV_FR64; break; + } + + const Value *Cond = I->getOperand(0); + X86::CondCode CC = X86::COND_NE; + + // Optimize conditions coming from a compare if both instructions are in the + // same basic block (values defined in other basic blocks may not have + // initialized registers). + const auto *CI = dyn_cast<CmpInst>(Cond); + if (CI && (CI->getParent() == I->getParent())) { + bool NeedSwap; + std::tie(CC, NeedSwap) = getX86ConditionCode(CI->getPredicate()); + if (CC > X86::LAST_VALID_COND) + return false; + + const Value *CmpLHS = CI->getOperand(0); + const Value *CmpRHS = CI->getOperand(1); + + if (NeedSwap) + std::swap(CmpLHS, CmpRHS); + + EVT CmpVT = TLI.getValueType(CmpLHS->getType()); + if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT)) + return false; + } else { + unsigned CondReg = getRegForValue(Cond); + if (CondReg == 0) + return false; + bool CondIsKill = hasTrivialKill(Cond); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) + .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1); + } + + const Value *LHS = I->getOperand(1); + const Value *RHS = I->getOperand(2); + + unsigned LHSReg = getRegForValue(LHS); + bool LHSIsKill = hasTrivialKill(LHS); + + unsigned RHSReg = getRegForValue(RHS); + bool RHSIsKill = hasTrivialKill(RHS); + + if (!LHSReg || !RHSReg) + return false; + + const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); + + unsigned ResultReg = + FastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC); + UpdateValueMap(I, ResultReg); + return true; +} + +bool X86FastISel::X86SelectSelect(const Instruction *I) { + MVT RetVT; + if (!isTypeLegal(I->getType(), RetVT)) + return false; + + // Check if we can fold the select. + if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) { + CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); + const Value *Opnd = nullptr; + switch (Predicate) { + default: break; + case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break; + case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break; + } + // No need for a select anymore - this is an unconditional move. + if (Opnd) { + unsigned OpReg = getRegForValue(Opnd); + if (OpReg == 0) + return false; + bool OpIsKill = hasTrivialKill(Opnd); + const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); + unsigned ResultReg = createResultReg(RC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), ResultReg) + .addReg(OpReg, getKillRegState(OpIsKill)); + UpdateValueMap(I, ResultReg); + return true; + } + } + + // First try to use real conditional move instructions. + if (X86FastEmitCMoveSelect(RetVT, I)) + return true; + + // Try to use a sequence of SSE instructions to simulate a conditional move. + if (X86FastEmitSSESelect(RetVT, I)) + return true; + + // Fall-back to pseudo conditional move instructions, which will be later + // converted to control-flow. + if (X86FastEmitPseudoSelect(RetVT, I)) + return true; + + return false; +} + bool X86FastISel::X86SelectFPExt(const Instruction *I) { // fpext from float to double. if (X86ScalarSSEf64 && @@ -1526,7 +2048,7 @@ bool X86FastISel::X86SelectFPExt(const Instruction *I) { unsigned OpReg = getRegForValue(V); if (OpReg == 0) return false; unsigned ResultReg = createResultReg(&X86::FR64RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::CVTSS2SDrr), ResultReg) .addReg(OpReg); UpdateValueMap(I, ResultReg); @@ -1545,7 +2067,7 @@ bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { unsigned OpReg = getRegForValue(V); if (OpReg == 0) return false; unsigned ResultReg = createResultReg(&X86::FR32RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::CVTSD2SSrr), ResultReg) .addReg(OpReg); UpdateValueMap(I, ResultReg); @@ -1585,7 +2107,7 @@ bool X86FastISel::X86SelectTrunc(const Instruction *I) { (const TargetRegisterClass*)&X86::GR16_ABCDRegClass : (const TargetRegisterClass*)&X86::GR32_ABCDRegClass; unsigned CopyReg = createResultReg(CopyRC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), CopyReg).addReg(InputReg); InputReg = CopyReg; } @@ -1628,8 +2150,8 @@ bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, } unsigned Reg; - bool RV = X86FastEmitLoad(VT, SrcAM, Reg); - RV &= X86FastEmitStore(VT, Reg, DestAM); + bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg); + RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM); assert(RV && "Failed to emit load or store??"); unsigned Size = VT.getSizeInBits()/8; @@ -1641,24 +2163,88 @@ bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, return true; } -bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { +static bool isCommutativeIntrinsic(IntrinsicInst const *II) { + switch (II->getIntrinsicID()) { + case Intrinsic::sadd_with_overflow: + case Intrinsic::uadd_with_overflow: + case Intrinsic::smul_with_overflow: + case Intrinsic::umul_with_overflow: + return true; + default: + return false; + } +} + +bool X86FastISel::FastLowerIntrinsicCall(const IntrinsicInst *II) { // FIXME: Handle more intrinsics. - switch (I.getIntrinsicID()) { + switch (II->getIntrinsicID()) { default: return false; + case Intrinsic::frameaddress: { + Type *RetTy = II->getCalledFunction()->getReturnType(); + + MVT VT; + if (!isTypeLegal(RetTy, VT)) + return false; + + unsigned Opc; + const TargetRegisterClass *RC = nullptr; + + switch (VT.SimpleTy) { + default: llvm_unreachable("Invalid result type for frameaddress."); + case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break; + case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break; + } + + // This needs to be set before we call getFrameRegister, otherwise we get + // the wrong frame register. + MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo(); + MFI->setFrameAddressIsTaken(true); + + const X86RegisterInfo *RegInfo = + static_cast<const X86RegisterInfo*>(TM.getRegisterInfo()); + unsigned FrameReg = RegInfo->getFrameRegister(*(FuncInfo.MF)); + assert(((FrameReg == X86::RBP && VT == MVT::i64) || + (FrameReg == X86::EBP && VT == MVT::i32)) && + "Invalid Frame Register!"); + + // Always make a copy of the frame register to to a vreg first, so that we + // never directly reference the frame register (the TwoAddressInstruction- + // Pass doesn't like that). + unsigned SrcReg = createResultReg(RC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg); + + // Now recursively load from the frame address. + // movq (%rbp), %rax + // movq (%rax), %rax + // movq (%rax), %rax + // ... + unsigned DestReg; + unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue(); + while (Depth--) { + DestReg = createResultReg(RC); + addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(Opc), DestReg), SrcReg); + SrcReg = DestReg; + } + + UpdateValueMap(II, SrcReg); + return true; + } case Intrinsic::memcpy: { - const MemCpyInst &MCI = cast<MemCpyInst>(I); + const MemCpyInst *MCI = cast<MemCpyInst>(II); // Don't handle volatile or variable length memcpys. - if (MCI.isVolatile()) + if (MCI->isVolatile()) return false; - if (isa<ConstantInt>(MCI.getLength())) { + if (isa<ConstantInt>(MCI->getLength())) { // Small memcpy's are common enough that we want to do them // without a call if possible. - uint64_t Len = cast<ConstantInt>(MCI.getLength())->getZExtValue(); + uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue(); if (IsMemcpySmall(Len)) { X86AddressMode DestAM, SrcAM; - if (!X86SelectAddress(MCI.getRawDest(), DestAM) || - !X86SelectAddress(MCI.getRawSource(), SrcAM)) + if (!X86SelectAddress(MCI->getRawDest(), DestAM) || + !X86SelectAddress(MCI->getRawSource(), SrcAM)) return false; TryEmitSmallMemcpy(DestAM, SrcAM, Len); return true; @@ -1666,35 +2252,37 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { } unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; - if (!MCI.getLength()->getType()->isIntegerTy(SizeWidth)) + if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth)) return false; - if (MCI.getSourceAddressSpace() > 255 || MCI.getDestAddressSpace() > 255) + if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255) return false; - return DoSelectCall(&I, "memcpy"); + return LowerCallTo(II, "memcpy", II->getNumArgOperands() - 2); } case Intrinsic::memset: { - const MemSetInst &MSI = cast<MemSetInst>(I); + const MemSetInst *MSI = cast<MemSetInst>(II); - if (MSI.isVolatile()) + if (MSI->isVolatile()) return false; unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; - if (!MSI.getLength()->getType()->isIntegerTy(SizeWidth)) + if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth)) return false; - if (MSI.getDestAddressSpace() > 255) + if (MSI->getDestAddressSpace() > 255) return false; - return DoSelectCall(&I, "memset"); + return LowerCallTo(II, "memset", II->getNumArgOperands() - 2); } case Intrinsic::stackprotector: { // Emit code to store the stack guard onto the stack. EVT PtrTy = TLI.getPointerTy(); - const Value *Op1 = I.getArgOperand(0); // The guard's value. - const AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); + const Value *Op1 = II->getArgOperand(0); // The guard's value. + const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1)); + + MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]); // Grab the frame index. X86AddressMode AM; @@ -1703,7 +2291,7 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { return true; } case Intrinsic::dbg_declare: { - const DbgDeclareInst *DI = cast<DbgDeclareInst>(&I); + const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); X86AddressMode AM; assert(DI->getAddress() && "Null address should be checked earlier!"); if (!X86SelectAddress(DI->getAddress(), AM)) @@ -1711,57 +2299,239 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); // FIXME may need to add RegState::Debug to any registers produced, // although ESP/EBP should be the only ones at the moment. - addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II), AM). + addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM). addImm(0).addMetadata(DI->getVariable()); return true; } case Intrinsic::trap: { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TRAP)); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP)); return true; } - case Intrinsic::sadd_with_overflow: - case Intrinsic::uadd_with_overflow: { - // FIXME: Should fold immediates. + case Intrinsic::sqrt: { + if (!Subtarget->hasSSE1()) + return false; - // Replace "add with overflow" intrinsics with an "add" instruction followed - // by a seto/setc instruction. - const Function *Callee = I.getCalledFunction(); - Type *RetTy = - cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0)); + Type *RetTy = II->getCalledFunction()->getReturnType(); MVT VT; if (!isTypeLegal(RetTy, VT)) return false; - const Value *Op1 = I.getArgOperand(0); - const Value *Op2 = I.getArgOperand(1); - unsigned Reg1 = getRegForValue(Op1); - unsigned Reg2 = getRegForValue(Op2); + // Unfortunately we can't use FastEmit_r, because the AVX version of FSQRT + // is not generated by FastISel yet. + // FIXME: Update this code once tablegen can handle it. + static const unsigned SqrtOpc[2][2] = { + {X86::SQRTSSr, X86::VSQRTSSr}, + {X86::SQRTSDr, X86::VSQRTSDr} + }; + bool HasAVX = Subtarget->hasAVX(); + unsigned Opc; + const TargetRegisterClass *RC; + switch (VT.SimpleTy) { + default: return false; + case MVT::f32: Opc = SqrtOpc[0][HasAVX]; RC = &X86::FR32RegClass; break; + case MVT::f64: Opc = SqrtOpc[1][HasAVX]; RC = &X86::FR64RegClass; break; + } - if (Reg1 == 0 || Reg2 == 0) - // FIXME: Handle values *not* in registers. + const Value *SrcVal = II->getArgOperand(0); + unsigned SrcReg = getRegForValue(SrcVal); + + if (SrcReg == 0) return false; - unsigned OpC = 0; - if (VT == MVT::i32) - OpC = X86::ADD32rr; - else if (VT == MVT::i64) - OpC = X86::ADD64rr; - else + unsigned ImplicitDefReg = 0; + if (HasAVX) { + ImplicitDefReg = createResultReg(RC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); + } + + unsigned ResultReg = createResultReg(RC); + MachineInstrBuilder MIB; + MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), + ResultReg); + + if (ImplicitDefReg) + MIB.addReg(ImplicitDefReg); + + MIB.addReg(SrcReg); + + UpdateValueMap(II, ResultReg); + return true; + } + case Intrinsic::sadd_with_overflow: + case Intrinsic::uadd_with_overflow: + case Intrinsic::ssub_with_overflow: + case Intrinsic::usub_with_overflow: + case Intrinsic::smul_with_overflow: + case Intrinsic::umul_with_overflow: { + // This implements the basic lowering of the xalu with overflow intrinsics + // into add/sub/mul followed by either seto or setb. + const Function *Callee = II->getCalledFunction(); + auto *Ty = cast<StructType>(Callee->getReturnType()); + Type *RetTy = Ty->getTypeAtIndex(0U); + Type *CondTy = Ty->getTypeAtIndex(1); + + MVT VT; + if (!isTypeLegal(RetTy, VT)) + return false; + + if (VT < MVT::i8 || VT > MVT::i64) + return false; + + const Value *LHS = II->getArgOperand(0); + const Value *RHS = II->getArgOperand(1); + + // Canonicalize immediate to the RHS. + if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && + isCommutativeIntrinsic(II)) + std::swap(LHS, RHS); + + unsigned BaseOpc, CondOpc; + switch (II->getIntrinsicID()) { + default: llvm_unreachable("Unexpected intrinsic!"); + case Intrinsic::sadd_with_overflow: + BaseOpc = ISD::ADD; CondOpc = X86::SETOr; break; + case Intrinsic::uadd_with_overflow: + BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break; + case Intrinsic::ssub_with_overflow: + BaseOpc = ISD::SUB; CondOpc = X86::SETOr; break; + case Intrinsic::usub_with_overflow: + BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break; + case Intrinsic::smul_with_overflow: + BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break; + case Intrinsic::umul_with_overflow: + BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break; + } + + unsigned LHSReg = getRegForValue(LHS); + if (LHSReg == 0) return false; + bool LHSIsKill = hasTrivialKill(LHS); + + unsigned ResultReg = 0; + // Check if we have an immediate version. + if (auto const *C = dyn_cast<ConstantInt>(RHS)) { + ResultReg = FastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill, + C->getZExtValue()); + } + + unsigned RHSReg; + bool RHSIsKill; + if (!ResultReg) { + RHSReg = getRegForValue(RHS); + if (RHSReg == 0) + return false; + RHSIsKill = hasTrivialKill(RHS); + ResultReg = FastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg, + RHSIsKill); + } + + // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit + // it manually. + if (BaseOpc == X86ISD::UMUL && !ResultReg) { + static const unsigned MULOpc[] = + { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r }; + static const unsigned Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX }; + // First copy the first operand into RAX, which is an implicit input to + // the X86::MUL*r instruction. + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8]) + .addReg(LHSReg, getKillRegState(LHSIsKill)); + ResultReg = FastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8], + TLI.getRegClassFor(VT), RHSReg, RHSIsKill); + } else if (BaseOpc == X86ISD::SMUL && !ResultReg) { + static const unsigned MULOpc[] = + { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr }; + if (VT == MVT::i8) { + // Copy the first operand into AL, which is an implicit input to the + // X86::IMUL8r instruction. + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), X86::AL) + .addReg(LHSReg, getKillRegState(LHSIsKill)); + ResultReg = FastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg, + RHSIsKill); + } else + ResultReg = FastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8], + TLI.getRegClassFor(VT), LHSReg, LHSIsKill, + RHSReg, RHSIsKill); + } - // The call to CreateRegs builds two sequential registers, to store the - // both the returned values. - unsigned ResultReg = FuncInfo.CreateRegs(I.getType()); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg) - .addReg(Reg1).addReg(Reg2); + if (!ResultReg) + return false; - unsigned Opc = X86::SETBr; - if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow) - Opc = X86::SETOr; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg+1); + unsigned ResultReg2 = FuncInfo.CreateRegs(CondTy); + assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers."); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc), + ResultReg2); - UpdateValueMap(&I, ResultReg, 2); + UpdateValueMap(II, ResultReg, 2); + return true; + } + case Intrinsic::x86_sse_cvttss2si: + case Intrinsic::x86_sse_cvttss2si64: + case Intrinsic::x86_sse2_cvttsd2si: + case Intrinsic::x86_sse2_cvttsd2si64: { + bool IsInputDouble; + switch (II->getIntrinsicID()) { + default: llvm_unreachable("Unexpected intrinsic."); + case Intrinsic::x86_sse_cvttss2si: + case Intrinsic::x86_sse_cvttss2si64: + if (!Subtarget->hasSSE1()) + return false; + IsInputDouble = false; + break; + case Intrinsic::x86_sse2_cvttsd2si: + case Intrinsic::x86_sse2_cvttsd2si64: + if (!Subtarget->hasSSE2()) + return false; + IsInputDouble = true; + break; + } + + Type *RetTy = II->getCalledFunction()->getReturnType(); + MVT VT; + if (!isTypeLegal(RetTy, VT)) + return false; + + static const unsigned CvtOpc[2][2][2] = { + { { X86::CVTTSS2SIrr, X86::VCVTTSS2SIrr }, + { X86::CVTTSS2SI64rr, X86::VCVTTSS2SI64rr } }, + { { X86::CVTTSD2SIrr, X86::VCVTTSD2SIrr }, + { X86::CVTTSD2SI64rr, X86::VCVTTSD2SI64rr } } + }; + bool HasAVX = Subtarget->hasAVX(); + unsigned Opc; + switch (VT.SimpleTy) { + default: llvm_unreachable("Unexpected result type."); + case MVT::i32: Opc = CvtOpc[IsInputDouble][0][HasAVX]; break; + case MVT::i64: Opc = CvtOpc[IsInputDouble][1][HasAVX]; break; + } + + // Check if we can fold insertelement instructions into the convert. + const Value *Op = II->getArgOperand(0); + while (auto *IE = dyn_cast<InsertElementInst>(Op)) { + const Value *Index = IE->getOperand(2); + if (!isa<ConstantInt>(Index)) + break; + unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); + + if (Idx == 0) { + Op = IE->getOperand(1); + break; + } + Op = IE->getOperand(0); + } + + unsigned Reg = getRegForValue(Op); + if (Reg == 0) + return false; + + unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) + .addReg(Reg); + + UpdateValueMap(II, ResultReg); return true; } } @@ -1786,107 +2556,128 @@ bool X86FastISel::FastLowerArguments() { return false; // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments. - unsigned Idx = 1; - for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); - I != E; ++I, ++Idx) { - if (Idx > 6) - return false; - + unsigned GPRCnt = 0; + unsigned FPRCnt = 0; + unsigned Idx = 0; + for (auto const &Arg : F->args()) { + // The first argument is at index 1. + ++Idx; if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) || F->getAttributes().hasAttribute(Idx, Attribute::InReg) || F->getAttributes().hasAttribute(Idx, Attribute::StructRet) || F->getAttributes().hasAttribute(Idx, Attribute::Nest)) return false; - Type *ArgTy = I->getType(); + Type *ArgTy = Arg.getType(); if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) return false; EVT ArgVT = TLI.getValueType(ArgTy); if (!ArgVT.isSimple()) return false; switch (ArgVT.getSimpleVT().SimpleTy) { + default: return false; case MVT::i32: case MVT::i64: + ++GPRCnt; + break; + case MVT::f32: + case MVT::f64: + if (!Subtarget->hasSSE1()) + return false; + ++FPRCnt; break; - default: - return false; } + + if (GPRCnt > 6) + return false; + + if (FPRCnt > 8) + return false; } - static const uint16_t GPR32ArgRegs[] = { + static const MCPhysReg GPR32ArgRegs[] = { X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D }; - static const uint16_t GPR64ArgRegs[] = { + static const MCPhysReg GPR64ArgRegs[] = { X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9 }; + static const MCPhysReg XMMArgRegs[] = { + X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, + X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 + }; - Idx = 0; - const TargetRegisterClass *RC32 = TLI.getRegClassFor(MVT::i32); - const TargetRegisterClass *RC64 = TLI.getRegClassFor(MVT::i64); - for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); - I != E; ++I, ++Idx) { - bool is32Bit = TLI.getValueType(I->getType()) == MVT::i32; - const TargetRegisterClass *RC = is32Bit ? RC32 : RC64; - unsigned SrcReg = is32Bit ? GPR32ArgRegs[Idx] : GPR64ArgRegs[Idx]; + unsigned GPRIdx = 0; + unsigned FPRIdx = 0; + for (auto const &Arg : F->args()) { + MVT VT = TLI.getSimpleValueType(Arg.getType()); + const TargetRegisterClass *RC = TLI.getRegClassFor(VT); + unsigned SrcReg; + switch (VT.SimpleTy) { + default: llvm_unreachable("Unexpected value type."); + case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break; + case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break; + case MVT::f32: // fall-through + case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break; + } unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. // Without this, EmitLiveInCopies may eliminate the livein if its only // use is a bitcast (which isn't turned into an instruction). unsigned ResultReg = createResultReg(RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), - ResultReg).addReg(DstReg, getKillRegState(true)); - UpdateValueMap(I, ResultReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), ResultReg) + .addReg(DstReg, getKillRegState(true)); + UpdateValueMap(&Arg, ResultReg); } return true; } -bool X86FastISel::X86SelectCall(const Instruction *I) { - const CallInst *CI = cast<CallInst>(I); - const Value *Callee = CI->getCalledValue(); - - // Can't handle inline asm yet. - if (isa<InlineAsm>(Callee)) - return false; - - // Handle intrinsic calls. - if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) - return X86VisitIntrinsicCall(*II); - - // Allow SelectionDAG isel to handle tail calls. - if (cast<CallInst>(I)->isTailCall()) - return false; - - return DoSelectCall(I, 0); -} - -static unsigned computeBytesPoppedByCallee(const X86Subtarget &Subtarget, - const ImmutableCallSite &CS) { - if (Subtarget.is64Bit()) +static unsigned computeBytesPoppedByCallee(const X86Subtarget *Subtarget, + CallingConv::ID CC, + ImmutableCallSite *CS) { + if (Subtarget->is64Bit()) return 0; - if (Subtarget.isTargetWindows()) + if (Subtarget->getTargetTriple().isOSMSVCRT()) return 0; - CallingConv::ID CC = CS.getCallingConv(); - if (CC == CallingConv::Fast || CC == CallingConv::GHC) + if (CC == CallingConv::Fast || CC == CallingConv::GHC || + CC == CallingConv::HiPE) return 0; - if (!CS.paramHasAttr(1, Attribute::StructRet)) + if (CS && !CS->paramHasAttr(1, Attribute::StructRet)) return 0; - if (CS.paramHasAttr(1, Attribute::InReg)) + if (CS && CS->paramHasAttr(1, Attribute::InReg)) return 0; return 4; } -// Select either a call, or an llvm.memcpy/memmove/memset intrinsic -bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) { - const CallInst *CI = cast<CallInst>(I); - const Value *Callee = CI->getCalledValue(); - - // Handle only C and fastcc calling conventions for now. - ImmutableCallSite CS(CI); - CallingConv::ID CC = CS.getCallingConv(); - bool isWin64 = Subtarget->isCallingConvWin64(CC); - if (CC != CallingConv::C && CC != CallingConv::Fast && - CC != CallingConv::X86_FastCall && CC != CallingConv::X86_64_Win64 && - CC != CallingConv::X86_64_SysV) +bool X86FastISel::FastLowerCall(CallLoweringInfo &CLI) { + auto &OutVals = CLI.OutVals; + auto &OutFlags = CLI.OutFlags; + auto &OutRegs = CLI.OutRegs; + auto &Ins = CLI.Ins; + auto &InRegs = CLI.InRegs; + CallingConv::ID CC = CLI.CallConv; + bool &IsTailCall = CLI.IsTailCall; + bool IsVarArg = CLI.IsVarArg; + const Value *Callee = CLI.Callee; + const char *SymName = CLI.SymName; + + bool Is64Bit = Subtarget->is64Bit(); + bool IsWin64 = Subtarget->isCallingConvWin64(CC); + + // Handle only C, fastcc, and webkit_js calling conventions for now. + switch (CC) { + default: return false; + case CallingConv::C: + case CallingConv::Fast: + case CallingConv::WebKit_JS: + case CallingConv::X86_FastCall: + case CallingConv::X86_64_Win64: + case CallingConv::X86_64_SysV: + break; + } + + // Allow SelectionDAG isel to handle tail calls. + if (IsTailCall) return false; // fastcc with -tailcallopt is intended to provide a guaranteed @@ -1894,162 +2685,101 @@ bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) { if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) return false; - PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); - FunctionType *FTy = cast<FunctionType>(PT->getElementType()); - bool isVarArg = FTy->isVarArg(); - // Don't know how to handle Win64 varargs yet. Nothing special needed for - // x86-32. Special handling for x86-64 is implemented. - if (isVarArg && isWin64) + // x86-32. Special handling for x86-64 is implemented. + if (IsVarArg && IsWin64) return false; - // Fast-isel doesn't know about callee-pop yet. - if (X86::isCalleePop(CC, Subtarget->is64Bit(), isVarArg, - TM.Options.GuaranteedTailCallOpt)) + // Don't know about inalloca yet. + if (CLI.CS && CLI.CS->hasInAllocaArgument()) return false; - // Check whether the function can return without sret-demotion. - SmallVector<ISD::OutputArg, 4> Outs; - GetReturnInfo(I->getType(), CS.getAttributes(), Outs, TLI); - bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), - *FuncInfo.MF, FTy->isVarArg(), - Outs, FTy->getContext()); - if (!CanLowerReturn) - return false; - - // Materialize callee address in a register. FIXME: GV address can be - // handled with a CALLpcrel32 instead. - X86AddressMode CalleeAM; - if (!X86SelectCallAddress(Callee, CalleeAM)) - return false; - unsigned CalleeOp = 0; - const GlobalValue *GV = 0; - if (CalleeAM.GV != 0) { - GV = CalleeAM.GV; - } else if (CalleeAM.Base.Reg != 0) { - CalleeOp = CalleeAM.Base.Reg; - } else + // Fast-isel doesn't know about callee-pop yet. + if (X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg, + TM.Options.GuaranteedTailCallOpt)) return false; - // Deal with call operands first. - SmallVector<const Value *, 8> ArgVals; - SmallVector<unsigned, 8> Args; - SmallVector<MVT, 8> ArgVTs; - SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; - unsigned arg_size = CS.arg_size(); - Args.reserve(arg_size); - ArgVals.reserve(arg_size); - ArgVTs.reserve(arg_size); - ArgFlags.reserve(arg_size); - for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); - i != e; ++i) { - // If we're lowering a mem intrinsic instead of a regular call, skip the - // last two arguments, which should not passed to the underlying functions. - if (MemIntName && e-i <= 2) - break; - Value *ArgVal = *i; - ISD::ArgFlagsTy Flags; - unsigned AttrInd = i - CS.arg_begin() + 1; - if (CS.paramHasAttr(AttrInd, Attribute::SExt)) - Flags.setSExt(); - if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) - Flags.setZExt(); - - if (CS.paramHasAttr(AttrInd, Attribute::ByVal)) { - PointerType *Ty = cast<PointerType>(ArgVal->getType()); - Type *ElementTy = Ty->getElementType(); - unsigned FrameSize = TD.getTypeAllocSize(ElementTy); - unsigned FrameAlign = CS.getParamAlignment(AttrInd); - if (!FrameAlign) - FrameAlign = TLI.getByValTypeAlignment(ElementTy); - Flags.setByVal(); - Flags.setByValSize(FrameSize); - Flags.setByValAlign(FrameAlign); - if (!IsMemcpySmall(FrameSize)) - return false; - } - - if (CS.paramHasAttr(AttrInd, Attribute::InReg)) - Flags.setInReg(); - if (CS.paramHasAttr(AttrInd, Attribute::Nest)) - Flags.setNest(); - - // If this is an i1/i8/i16 argument, promote to i32 to avoid an extra - // instruction. This is safe because it is common to all fastisel supported - // calling conventions on x86. - if (ConstantInt *CI = dyn_cast<ConstantInt>(ArgVal)) { - if (CI->getBitWidth() == 1 || CI->getBitWidth() == 8 || - CI->getBitWidth() == 16) { + // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra + // instruction. This is safe because it is common to all FastISel supported + // calling conventions on x86. + for (int i = 0, e = OutVals.size(); i != e; ++i) { + Value *&Val = OutVals[i]; + ISD::ArgFlagsTy Flags = OutFlags[i]; + if (auto *CI = dyn_cast<ConstantInt>(Val)) { + if (CI->getBitWidth() < 32) { if (Flags.isSExt()) - ArgVal = ConstantExpr::getSExt(CI,Type::getInt32Ty(CI->getContext())); + Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext())); else - ArgVal = ConstantExpr::getZExt(CI,Type::getInt32Ty(CI->getContext())); + Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext())); } } - unsigned ArgReg; - // Passing bools around ends up doing a trunc to i1 and passing it. // Codegen this as an argument + "and 1". - if (ArgVal->getType()->isIntegerTy(1) && isa<TruncInst>(ArgVal) && - cast<TruncInst>(ArgVal)->getParent() == I->getParent() && - ArgVal->hasOneUse()) { - ArgVal = cast<TruncInst>(ArgVal)->getOperand(0); - ArgReg = getRegForValue(ArgVal); - if (ArgReg == 0) return false; - - MVT ArgVT; - if (!isTypeLegal(ArgVal->getType(), ArgVT)) return false; - - ArgReg = FastEmit_ri(ArgVT, ArgVT, ISD::AND, ArgReg, - ArgVal->hasOneUse(), 1); - } else { - ArgReg = getRegForValue(ArgVal); - } + if (auto *TI = dyn_cast<TruncInst>(Val)) { + if (TI->getType()->isIntegerTy(1) && CLI.CS && + (TI->getParent() == CLI.CS->getInstruction()->getParent()) && + TI->hasOneUse()) { + Val = cast<TruncInst>(Val)->getOperand(0); + unsigned ResultReg = getRegForValue(Val); + + if (!ResultReg) + return false; - if (ArgReg == 0) return false; + MVT ArgVT; + if (!isTypeLegal(Val->getType(), ArgVT)) + return false; - Type *ArgTy = ArgVal->getType(); - MVT ArgVT; - if (!isTypeLegal(ArgTy, ArgVT)) - return false; - if (ArgVT == MVT::x86mmx) - return false; - unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy); - Flags.setOrigAlign(OriginalAlignment); + ResultReg = + FastEmit_ri(ArgVT, ArgVT, ISD::AND, ResultReg, Val->hasOneUse(), 1); - Args.push_back(ArgReg); - ArgVals.push_back(ArgVal); - ArgVTs.push_back(ArgVT); - ArgFlags.push_back(Flags); + if (!ResultReg) + return false; + UpdateValueMap(Val, ResultReg); + } + } } // Analyze operands of the call, assigning locations to each operand. SmallVector<CCValAssign, 16> ArgLocs; - CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs, - I->getParent()->getContext()); + CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, ArgLocs, + CLI.RetTy->getContext()); // Allocate shadow area for Win64 - if (isWin64) + if (IsWin64) CCInfo.AllocateStack(32, 8); - CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_X86); + SmallVector<MVT, 16> OutVTs; + for (auto *Val : OutVals) { + MVT VT; + if (!isTypeLegal(Val->getType(), VT)) + return false; + OutVTs.push_back(VT); + } + CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86); // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getNextStackOffset(); // Issue CALLSEQ_START unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackDown)) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)) .addImm(NumBytes); - // Process argument: walk the register/memloc assignments, inserting - // copies / loads. - SmallVector<unsigned, 4> RegArgs; + // Walk the register/memloc assignments, inserting copies/loads. + const X86RegisterInfo *RegInfo = + static_cast<const X86RegisterInfo *>(TM.getRegisterInfo()); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { - CCValAssign &VA = ArgLocs[i]; - unsigned Arg = Args[VA.getValNo()]; - EVT ArgVT = ArgVTs[VA.getValNo()]; + CCValAssign const &VA = ArgLocs[i]; + const Value *ArgVal = OutVals[VA.getValNo()]; + MVT ArgVT = OutVTs[VA.getValNo()]; + + if (ArgVT == MVT::x86mmx) + return false; + + unsigned ArgReg = getRegForValue(ArgVal); + if (!ArgReg) + return false; // Promote the value if needed. switch (VA.getLocInfo()) { @@ -2057,8 +2787,8 @@ bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) { case CCValAssign::SExt: { assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && "Unexpected extend"); - bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), - Arg, ArgVT, Arg); + bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, + ArgVT, ArgReg); assert(Emitted && "Failed to emit a sext!"); (void)Emitted; ArgVT = VA.getLocVT(); break; @@ -2066,8 +2796,8 @@ bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) { case CCValAssign::ZExt: { assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && "Unexpected extend"); - bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), - Arg, ArgVT, Arg); + bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, + ArgVT, ArgReg); assert(Emitted && "Failed to emit a zext!"); (void)Emitted; ArgVT = VA.getLocVT(); break; @@ -2075,31 +2805,32 @@ bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) { case CCValAssign::AExt: { assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && "Unexpected extend"); - bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), - Arg, ArgVT, Arg); + bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg, + ArgVT, ArgReg); if (!Emitted) - Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), - Arg, ArgVT, Arg); + Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, + ArgVT, ArgReg); if (!Emitted) - Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), - Arg, ArgVT, Arg); + Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, + ArgVT, ArgReg); assert(Emitted && "Failed to emit a aext!"); (void)Emitted; ArgVT = VA.getLocVT(); break; } case CCValAssign::BCvt: { - unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT(), - ISD::BITCAST, Arg, /*TODO: Kill=*/false); - assert(BC != 0 && "Failed to emit a bitcast!"); - Arg = BC; + ArgReg = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg, + /*TODO: Kill=*/false); + assert(ArgReg && "Failed to emit a bitcast!"); ArgVT = VA.getLocVT(); break; } - case CCValAssign::VExt: + case CCValAssign::VExt: // VExt has not been implemented, so this should be impossible to reach // for now. However, fallback to Selection DAG isel once implemented. return false; + case CCValAssign::FPExt: + llvm_unreachable("Unexpected loc info!"); case CCValAssign::Indirect: // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully // support this. @@ -2107,32 +2838,34 @@ bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) { } if (VA.isRegLoc()) { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), - VA.getLocReg()).addReg(Arg); - RegArgs.push_back(VA.getLocReg()); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); + OutRegs.push_back(VA.getLocReg()); } else { + assert(VA.isMemLoc()); unsigned LocMemOffset = VA.getLocMemOffset(); X86AddressMode AM; - const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo*>( - getTargetMachine()->getRegisterInfo()); AM.Base.Reg = RegInfo->getStackRegister(); AM.Disp = LocMemOffset; - const Value *ArgVal = ArgVals[VA.getValNo()]; - ISD::ArgFlagsTy Flags = ArgFlags[VA.getValNo()]; - + ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()]; + unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType()); + MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( + MachinePointerInfo::getStack(LocMemOffset), MachineMemOperand::MOStore, + ArgVT.getStoreSize(), Alignment); if (Flags.isByVal()) { X86AddressMode SrcAM; - SrcAM.Base.Reg = Arg; - bool Res = TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()); - assert(Res && "memcpy length already checked!"); (void)Res; + SrcAM.Base.Reg = ArgReg; + if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize())) + return false; } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) { // If this is a really simple value, emit this with the Value* version // of X86FastEmitStore. If it isn't simple, we don't want to do this, // as it can cause us to reevaluate the argument. - if (!X86FastEmitStore(ArgVT, ArgVal, AM)) + if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO)) return false; } else { - if (!X86FastEmitStore(ArgVT, Arg, AM)) + bool ValIsKill = hasTrivialKill(ArgVal); + if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO)) return false; } } @@ -2142,41 +2875,57 @@ bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) { // GOT pointer. if (Subtarget->isPICStyleGOT()) { unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), - X86::EBX).addReg(Base); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base); } - if (Subtarget->is64Bit() && isVarArg && !isWin64) { + if (Is64Bit && IsVarArg && !IsWin64) { + // From AMD64 ABI document: + // For calls that may call functions that use varargs or stdargs + // (prototype-less calls or calls to functions containing ellipsis (...) in + // the declaration) %al is used as hidden argument to specify the number + // of SSE registers used. The contents of %al do not need to match exactly + // the number of registers, but must be an ubound on the number of SSE + // registers used and is in the range 0 - 8 inclusive. + // Count the number of XMM registers allocated. - static const uint16_t XMMArgRegs[] = { + static const MCPhysReg XMMArgRegs[] = { X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 }; unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::MOV8ri), + assert((Subtarget->hasSSE1() || !NumXMMRegs) + && "SSE registers cannot be used when SSE is disabled"); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri), X86::AL).addImm(NumXMMRegs); } + // Materialize callee address in a register. FIXME: GV address can be + // handled with a CALLpcrel32 instead. + X86AddressMode CalleeAM; + if (!X86SelectCallAddress(Callee, CalleeAM)) + return false; + + unsigned CalleeOp = 0; + const GlobalValue *GV = nullptr; + if (CalleeAM.GV != nullptr) { + GV = CalleeAM.GV; + } else if (CalleeAM.Base.Reg != 0) { + CalleeOp = CalleeAM.Base.Reg; + } else + return false; + // Issue the call. MachineInstrBuilder MIB; if (CalleeOp) { // Register-indirect call. - unsigned CallOpc; - if (Subtarget->is64Bit()) - CallOpc = X86::CALL64r; - else - CallOpc = X86::CALL32r; - MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc)) + unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r; + MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc)) .addReg(CalleeOp); - } else { // Direct call. assert(GV && "Not a direct call"); - unsigned CallOpc; - if (Subtarget->is64Bit()) - CallOpc = X86::CALL64pcrel32; - else - CallOpc = X86::CALLpcrel32; + unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32; // See if we need any target-specific flags on the GV operand. unsigned char OpFlags = 0; @@ -2199,113 +2948,97 @@ bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) { OpFlags = X86II::MO_DARWIN_STUB; } - - MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc)); - if (MemIntName) - MIB.addExternalSymbol(MemIntName, OpFlags); + MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc)); + if (SymName) + MIB.addExternalSymbol(SymName, OpFlags); else MIB.addGlobalAddress(GV, 0, OpFlags); } - // Add a register mask with the call-preserved registers. + // Add a register mask operand representing the call-preserved registers. // Proper defs for return values will be added by setPhysRegsDeadExcept(). - MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv())); + MIB.addRegMask(TRI.getCallPreservedMask(CC)); // Add an implicit use GOT pointer in EBX. if (Subtarget->isPICStyleGOT()) MIB.addReg(X86::EBX, RegState::Implicit); - if (Subtarget->is64Bit() && isVarArg && !isWin64) + if (Is64Bit && IsVarArg && !IsWin64) MIB.addReg(X86::AL, RegState::Implicit); // Add implicit physical register uses to the call. - for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) - MIB.addReg(RegArgs[i], RegState::Implicit); + for (auto Reg : OutRegs) + MIB.addReg(Reg, RegState::Implicit); // Issue CALLSEQ_END + unsigned NumBytesForCalleeToPop = + computeBytesPoppedByCallee(Subtarget, CC, CLI.CS); unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); - const unsigned NumBytesCallee = computeBytesPoppedByCallee(*Subtarget, CS); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackUp)) - .addImm(NumBytes).addImm(NumBytesCallee); - - // Build info for return calling conv lowering code. - // FIXME: This is practically a copy-paste from TargetLowering::LowerCallTo. - SmallVector<ISD::InputArg, 32> Ins; - SmallVector<EVT, 4> RetTys; - ComputeValueVTs(TLI, I->getType(), RetTys); - for (unsigned i = 0, e = RetTys.size(); i != e; ++i) { - EVT VT = RetTys[i]; - MVT RegisterVT = TLI.getRegisterType(I->getParent()->getContext(), VT); - unsigned NumRegs = TLI.getNumRegisters(I->getParent()->getContext(), VT); - for (unsigned j = 0; j != NumRegs; ++j) { - ISD::InputArg MyFlags; - MyFlags.VT = RegisterVT; - MyFlags.Used = !CS.getInstruction()->use_empty(); - if (CS.paramHasAttr(0, Attribute::SExt)) - MyFlags.Flags.setSExt(); - if (CS.paramHasAttr(0, Attribute::ZExt)) - MyFlags.Flags.setZExt(); - if (CS.paramHasAttr(0, Attribute::InReg)) - MyFlags.Flags.setInReg(); - Ins.push_back(MyFlags); - } - } + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) + .addImm(NumBytes).addImm(NumBytesForCalleeToPop); // Now handle call return values. - SmallVector<unsigned, 4> UsedRegs; SmallVector<CCValAssign, 16> RVLocs; - CCState CCRetInfo(CC, false, *FuncInfo.MF, TM, RVLocs, - I->getParent()->getContext()); - unsigned ResultReg = FuncInfo.CreateRegs(I->getType()); + CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs, + CLI.RetTy->getContext()); CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86); + + // Copy all of the result registers out of their specified physreg. + unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy); for (unsigned i = 0; i != RVLocs.size(); ++i) { - EVT CopyVT = RVLocs[i].getValVT(); + CCValAssign &VA = RVLocs[i]; + EVT CopyVT = VA.getValVT(); unsigned CopyReg = ResultReg + i; - // If this is a call to a function that returns an fp value on the x87 fp - // stack, but where we prefer to use the value in xmm registers, copy it - // out as F80 and use a truncate to move it from fp stack reg to xmm reg. - if ((RVLocs[i].getLocReg() == X86::ST0 || - RVLocs[i].getLocReg() == X86::ST1)) { - if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) { + // If this is x86-64, and we disabled SSE, we can't return FP values + if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && + ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { + report_fatal_error("SSE register return with SSE disabled"); + } + + // If this is a call to a function that returns an fp value on the floating + // point stack, we must guarantee the value is popped from the stack, so + // a COPY is not good enough - the copy instruction may be eliminated if the + // return value is not used. We use the FpPOP_RETVAL instruction instead. + if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) { + // If we prefer to use the value in xmm registers, copy it out as f80 and + // use a truncate to move it from fp stack reg to xmm reg. + if (isScalarFPTypeInSSEReg(VA.getValVT())) { CopyVT = MVT::f80; CopyReg = createResultReg(&X86::RFP80RegClass); } - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::FpPOP_RETVAL), - CopyReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(X86::FpPOP_RETVAL), CopyReg); + + // Round the f80 to the right size, which also moves it to the appropriate + // xmm register. This is accomplished by storing the f80 value in memory + // and then loading it back. + if (CopyVT != VA.getValVT()) { + EVT ResVT = VA.getValVT(); + unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; + unsigned MemSize = ResVT.getSizeInBits()/8; + int FI = MFI.CreateStackObject(MemSize, MemSize, false); + addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(Opc)), FI) + .addReg(CopyReg); + Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm; + addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(Opc), ResultReg + i), FI); + } } else { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), - CopyReg).addReg(RVLocs[i].getLocReg()); - UsedRegs.push_back(RVLocs[i].getLocReg()); - } - - if (CopyVT != RVLocs[i].getValVT()) { - // Round the F80 the right size, which also moves to the appropriate xmm - // register. This is accomplished by storing the F80 value in memory and - // then loading it back. Ewww... - EVT ResVT = RVLocs[i].getValVT(); - unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; - unsigned MemSize = ResVT.getSizeInBits()/8; - int FI = MFI.CreateStackObject(MemSize, MemSize, false); - addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, - TII.get(Opc)), FI) - .addReg(CopyReg); - Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm; - addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, - TII.get(Opc), ResultReg + i), FI); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(TargetOpcode::COPY), CopyReg).addReg(VA.getLocReg()); + InRegs.push_back(VA.getLocReg()); } } - if (RVLocs.size()) - UpdateValueMap(I, ResultReg, RVLocs.size()); - - // Set all unused physreg defs as dead. - static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); + CLI.ResultReg = ResultReg; + CLI.NumResultRegs = RVLocs.size(); + CLI.Call = MIB; return true; } - bool X86FastISel::TargetSelectInstruction(const Instruction *I) { switch (I->getOpcode()) { @@ -2323,8 +3056,6 @@ X86FastISel::TargetSelectInstruction(const Instruction *I) { return X86SelectZExt(I); case Instruction::Br: return X86SelectBranch(I); - case Instruction::Call: - return X86SelectCall(I); case Instruction::LShr: case Instruction::AShr: case Instruction::Shl: @@ -2371,7 +3102,7 @@ unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) { // Get opcode and regclass of the output for the given load instruction. unsigned Opc = 0; - const TargetRegisterClass *RC = NULL; + const TargetRegisterClass *RC = nullptr; switch (VT.SimpleTy) { default: return 0; case MVT::i8: @@ -2414,30 +3145,39 @@ unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) { return 0; } - // Materialize addresses with LEA instructions. + // Materialize addresses with LEA/MOV instructions. if (isa<GlobalValue>(C)) { X86AddressMode AM; if (X86SelectAddress(C, AM)) { // If the expression is just a basereg, then we're done, otherwise we need // to emit an LEA. if (AM.BaseType == X86AddressMode::RegBase && - AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == 0) + AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr) return AM.Base.Reg; - Opc = TLI.getPointerTy() == MVT::i32 ? X86::LEA32r : X86::LEA64r; unsigned ResultReg = createResultReg(RC); - addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + if (TM.getRelocationModel() == Reloc::Static && + TLI.getPointerTy() == MVT::i64) { + // The displacement code be more than 32 bits away so we need to use + // an instruction with a 64 bit immediate + Opc = X86::MOV64ri; + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, + TII.get(Opc), ResultReg).addGlobalAddress(cast<GlobalValue>(C)); + } else { + Opc = TLI.getPointerTy() == MVT::i32 ? X86::LEA32r : X86::LEA64r; + addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg), AM); + } return ResultReg; } return 0; } // MachineConstantPool wants an explicit alignment. - unsigned Align = TD.getPrefTypeAlignment(C->getType()); + unsigned Align = DL.getPrefTypeAlignment(C->getType()); if (Align == 0) { // Alignment of vector types. FIXME! - Align = TD.getTypeAllocSize(C->getType()); + Align = DL.getTypeAllocSize(C->getType()); } // x86-32 PIC requires a PIC base register for constant pools. @@ -2457,7 +3197,7 @@ unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) { // Create the load from the constant pool. unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align); unsigned ResultReg = createResultReg(RC); - addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg), MCPOffset, PICBase, OpFlag); @@ -2474,6 +3214,7 @@ unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) { // X86SelectAddrss, and TargetMaterializeAlloca. if (!FuncInfo.StaticAllocaMap.count(C)) return 0; + assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?"); X86AddressMode AM; if (!X86SelectAddress(C, AM)) @@ -2481,7 +3222,7 @@ unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) { unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r; const TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy()); unsigned ResultReg = createResultReg(RC); - addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg), AM); return ResultReg; } @@ -2493,7 +3234,7 @@ unsigned X86FastISel::TargetMaterializeFloatZero(const ConstantFP *CF) { // Get opcode and regclass for the given zero. unsigned Opc = 0; - const TargetRegisterClass *RC = NULL; + const TargetRegisterClass *RC = nullptr; switch (VT.SimpleTy) { default: return 0; case MVT::f32: @@ -2520,29 +3261,35 @@ unsigned X86FastISel::TargetMaterializeFloatZero(const ConstantFP *CF) { } unsigned ResultReg = createResultReg(RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); return ResultReg; } bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, const LoadInst *LI) { + const Value *Ptr = LI->getPointerOperand(); X86AddressMode AM; - if (!X86SelectAddress(LI->getOperand(0), AM)) + if (!X86SelectAddress(Ptr, AM)) return false; const X86InstrInfo &XII = (const X86InstrInfo&)TII; - unsigned Size = TD.getTypeAllocSize(LI->getType()); + unsigned Size = DL.getTypeAllocSize(LI->getType()); unsigned Alignment = LI->getAlignment(); + if (Alignment == 0) // Ensure that codegen never sees alignment 0 + Alignment = DL.getABITypeAlignment(LI->getType()); + SmallVector<MachineOperand, 8> AddrOps; AM.getFullAddress(AddrOps); MachineInstr *Result = XII.foldMemoryOperandImpl(*FuncInfo.MF, MI, OpNo, AddrOps, Size, Alignment); - if (Result == 0) return false; + if (!Result) + return false; + Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI)); FuncInfo.MBB->insert(FuncInfo.InsertPt, Result); MI->eraseFromParent(); return true; |