aboutsummaryrefslogtreecommitdiff
path: root/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/blkptr.c
diff options
context:
space:
mode:
authorMatt Macy <mmacy@FreeBSD.org>2020-08-25 02:21:27 +0000
committerMatt Macy <mmacy@FreeBSD.org>2020-08-25 02:21:27 +0000
commit9e5787d2284e187abb5b654d924394a65772e004 (patch)
tree2ebf833af6b1953d4a683e2da830fe87bf3435e1 /sys/cddl/contrib/opensolaris/uts/common/fs/zfs/blkptr.c
parent22df1ffd812f0395cdb7c0b1edae1f67b991562a (diff)
downloadsrc-9e5787d2284e187abb5b654d924394a65772e004.tar.gz
src-9e5787d2284e187abb5b654d924394a65772e004.zip
Merge OpenZFS support in to HEAD.
The primary benefit is maintaining a completely shared code base with the community allowing FreeBSD to receive new features sooner and with less effort. I would advise against doing 'zpool upgrade' or creating indispensable pools using new features until this change has had a month+ to soak. Work on merging FreeBSD support in to what was at the time "ZFS on Linux" began in August 2018. I first publicly proposed transitioning FreeBSD to (new) OpenZFS on December 18th, 2018. FreeBSD support in OpenZFS was finally completed in December 2019. A CFT for downstreaming OpenZFS support in to FreeBSD was first issued on July 8th. All issues that were reported have been addressed or, for a couple of less critical matters there are pull requests in progress with OpenZFS. iXsystems has tested and dogfooded extensively internally. The TrueNAS 12 release is based on OpenZFS with some additional features that have not yet made it upstream. Improvements include: project quotas, encrypted datasets, allocation classes, vectorized raidz, vectorized checksums, various command line improvements, zstd compression. Thanks to those who have helped along the way: Ryan Moeller, Allan Jude, Zack Welch, and many others. Sponsored by: iXsystems, Inc. Differential Revision: https://reviews.freebsd.org/D25872
Notes
Notes: svn path=/head/; revision=364746
Diffstat (limited to 'sys/cddl/contrib/opensolaris/uts/common/fs/zfs/blkptr.c')
-rw-r--r--sys/cddl/contrib/opensolaris/uts/common/fs/zfs/blkptr.c152
1 files changed, 0 insertions, 152 deletions
diff --git a/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/blkptr.c b/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/blkptr.c
deleted file mode 100644
index d7a7fdb0e1b1..000000000000
--- a/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/blkptr.c
+++ /dev/null
@@ -1,152 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * This file and its contents are supplied under the terms of the
- * Common Development and Distribution License ("CDDL"), version 1.0.
- * You may only use this file in accordance with the terms of version
- * 1.0 of the CDDL.
- *
- * A full copy of the text of the CDDL should have accompanied this
- * source. A copy of the CDDL is also available via the Internet at
- * http://www.illumos.org/license/CDDL.
- *
- * CDDL HEADER END
- */
-
-/*
- * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
- */
-
-#include <sys/zfs_context.h>
-#include <sys/zio.h>
-#include <sys/zio_compress.h>
-
-/*
- * Embedded-data Block Pointers
- *
- * Normally, block pointers point (via their DVAs) to a block which holds data.
- * If the data that we need to store is very small, this is an inefficient
- * use of space, because a block must be at minimum 1 sector (typically 512
- * bytes or 4KB). Additionally, reading these small blocks tends to generate
- * more random reads.
- *
- * Embedded-data Block Pointers allow small pieces of data (the "payload",
- * up to 112 bytes) to be stored in the block pointer itself, instead of
- * being pointed to. The "Pointer" part of this name is a bit of a
- * misnomer, as nothing is pointed to.
- *
- * BP_EMBEDDED_TYPE_DATA block pointers allow highly-compressible data to
- * be embedded in the block pointer. The logic for this is handled in
- * the SPA, by the zio pipeline. Therefore most code outside the zio
- * pipeline doesn't need special-cases to handle these block pointers.
- *
- * See spa.h for details on the exact layout of embedded block pointers.
- */
-
-void
-encode_embedded_bp_compressed(blkptr_t *bp, void *data,
- enum zio_compress comp, int uncompressed_size, int compressed_size)
-{
- uint64_t *bp64 = (uint64_t *)bp;
- uint64_t w = 0;
- uint8_t *data8 = data;
-
- ASSERT3U(compressed_size, <=, BPE_PAYLOAD_SIZE);
- ASSERT(uncompressed_size == compressed_size ||
- comp != ZIO_COMPRESS_OFF);
- ASSERT3U(comp, >=, ZIO_COMPRESS_OFF);
- ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
-
- bzero(bp, sizeof (*bp));
- BP_SET_EMBEDDED(bp, B_TRUE);
- BP_SET_COMPRESS(bp, comp);
- BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
- BPE_SET_LSIZE(bp, uncompressed_size);
- BPE_SET_PSIZE(bp, compressed_size);
-
- /*
- * Encode the byte array into the words of the block pointer.
- * First byte goes into low bits of first word (little endian).
- */
- for (int i = 0; i < compressed_size; i++) {
- BF64_SET(w, (i % sizeof (w)) * NBBY, NBBY, data8[i]);
- if (i % sizeof (w) == sizeof (w) - 1) {
- /* we've reached the end of a word */
- ASSERT3P(bp64, <, bp + 1);
- *bp64 = w;
- bp64++;
- if (!BPE_IS_PAYLOADWORD(bp, bp64))
- bp64++;
- w = 0;
- }
- }
- /* write last partial word */
- if (bp64 < (uint64_t *)(bp + 1))
- *bp64 = w;
-}
-
-/*
- * buf must be at least BPE_GET_PSIZE(bp) bytes long (which will never be
- * more than BPE_PAYLOAD_SIZE bytes).
- */
-void
-decode_embedded_bp_compressed(const blkptr_t *bp, void *buf)
-{
- int psize;
- uint8_t *buf8 = buf;
- uint64_t w = 0;
- const uint64_t *bp64 = (const uint64_t *)bp;
-
- ASSERT(BP_IS_EMBEDDED(bp));
-
- psize = BPE_GET_PSIZE(bp);
-
- /*
- * Decode the words of the block pointer into the byte array.
- * Low bits of first word are the first byte (little endian).
- */
- for (int i = 0; i < psize; i++) {
- if (i % sizeof (w) == 0) {
- /* beginning of a word */
- ASSERT3P(bp64, <, bp + 1);
- w = *bp64;
- bp64++;
- if (!BPE_IS_PAYLOADWORD(bp, bp64))
- bp64++;
- }
- buf8[i] = BF64_GET(w, (i % sizeof (w)) * NBBY, NBBY);
- }
-}
-
-/*
- * Fill in the buffer with the (decompressed) payload of the embedded
- * blkptr_t. Takes into account compression and byteorder (the payload is
- * treated as a stream of bytes).
- * Return 0 on success, or ENOSPC if it won't fit in the buffer.
- */
-int
-decode_embedded_bp(const blkptr_t *bp, void *buf, int buflen)
-{
- int lsize, psize;
-
- ASSERT(BP_IS_EMBEDDED(bp));
-
- lsize = BPE_GET_LSIZE(bp);
- psize = BPE_GET_PSIZE(bp);
-
- if (lsize > buflen)
- return (ENOSPC);
- ASSERT3U(lsize, ==, buflen);
-
- if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
- uint8_t dstbuf[BPE_PAYLOAD_SIZE];
- decode_embedded_bp_compressed(bp, dstbuf);
- VERIFY0(zio_decompress_data_buf(BP_GET_COMPRESS(bp),
- dstbuf, buf, psize, buflen));
- } else {
- ASSERT3U(lsize, ==, psize);
- decode_embedded_bp_compressed(bp, buf);
- }
-
- return (0);
-}