diff options
Diffstat (limited to 'contrib/arm-optimized-routines/math/aarch64/experimental/cbrt_2u.c')
-rw-r--r-- | contrib/arm-optimized-routines/math/aarch64/experimental/cbrt_2u.c | 69 |
1 files changed, 69 insertions, 0 deletions
diff --git a/contrib/arm-optimized-routines/math/aarch64/experimental/cbrt_2u.c b/contrib/arm-optimized-routines/math/aarch64/experimental/cbrt_2u.c new file mode 100644 index 000000000000..cf31627e43dc --- /dev/null +++ b/contrib/arm-optimized-routines/math/aarch64/experimental/cbrt_2u.c @@ -0,0 +1,69 @@ +/* + * Double-precision cbrt(x) function. + * + * Copyright (c) 2022-2024, Arm Limited. + * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception + */ + +#include "math_config.h" +#include "test_sig.h" +#include "test_defs.h" + +TEST_SIG (S, D, 1, cbrt, -10.0, 10.0) + +#define AbsMask 0x7fffffffffffffff +#define TwoThirds 0x1.5555555555555p-1 + +#define C(i) __cbrt_data.poly[i] +#define T(i) __cbrt_data.table[i] + +/* Approximation for double-precision cbrt(x), using low-order polynomial and + two Newton iterations. Greatest observed error is 1.79 ULP. Errors repeat + according to the exponent, for instance an error observed for double value + m * 2^e will be observed for any input m * 2^(e + 3*i), where i is an + integer. + cbrt(0x1.fffff403f0bc6p+1) got 0x1.965fe72821e9bp+0 + want 0x1.965fe72821e99p+0. */ +double +cbrt (double x) +{ + uint64_t ix = asuint64 (x); + uint64_t iax = ix & AbsMask; + uint64_t sign = ix & ~AbsMask; + + if (unlikely (iax == 0 || iax == 0x7ff0000000000000)) + return x; + + /* |x| = m * 2^e, where m is in [0.5, 1.0]. + We can easily decompose x into m and e using frexp. */ + int e; + double m = frexp (asdouble (iax), &e); + + /* Calculate rough approximation for cbrt(m) in [0.5, 1.0], starting point + for Newton iterations. */ + double p_01 = fma (C (1), m, C (0)); + double p_23 = fma (C (3), m, C (2)); + double p = fma (p_23, m * m, p_01); + + /* Two iterations of Newton's method for iteratively approximating cbrt. */ + double m_by_3 = m / 3; + double a = fma (TwoThirds, p, m_by_3 / (p * p)); + a = fma (TwoThirds, a, m_by_3 / (a * a)); + + /* Assemble the result by the following: + + cbrt(x) = cbrt(m) * 2 ^ (e / 3). + + Let t = (2 ^ (e / 3)) / (2 ^ round(e / 3)). + + Then we know t = 2 ^ (i / 3), where i is the remainder from e / 3. + i is an integer in [-2, 2], so t can be looked up in the table T. + Hence the result is assembled as: + + cbrt(x) = cbrt(m) * t * 2 ^ round(e / 3) * sign. + Which can be done easily using ldexp. */ + return asdouble (asuint64 (ldexp (a * T (2 + e % 3), e / 3)) | sign); +} + +TEST_ULP (cbrt, 1.30) +TEST_SYM_INTERVAL (cbrt, 0, inf, 1000000) |