aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/AST/Interp/Compiler.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/clang/lib/AST/Interp/Compiler.cpp')
-rw-r--r--contrib/llvm-project/clang/lib/AST/Interp/Compiler.cpp5599
1 files changed, 5599 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/AST/Interp/Compiler.cpp b/contrib/llvm-project/clang/lib/AST/Interp/Compiler.cpp
new file mode 100644
index 000000000000..0fc93c14131e
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/AST/Interp/Compiler.cpp
@@ -0,0 +1,5599 @@
+//===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "Compiler.h"
+#include "ByteCodeEmitter.h"
+#include "Context.h"
+#include "Floating.h"
+#include "Function.h"
+#include "InterpShared.h"
+#include "PrimType.h"
+#include "Program.h"
+#include "clang/AST/Attr.h"
+
+using namespace clang;
+using namespace clang::interp;
+
+using APSInt = llvm::APSInt;
+
+namespace clang {
+namespace interp {
+
+/// Scope used to handle temporaries in toplevel variable declarations.
+template <class Emitter> class DeclScope final : public LocalScope<Emitter> {
+public:
+ DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD)
+ : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD),
+ OldGlobalDecl(Ctx->GlobalDecl),
+ OldInitializingDecl(Ctx->InitializingDecl) {
+ Ctx->GlobalDecl = Context::shouldBeGloballyIndexed(VD);
+ Ctx->InitializingDecl = VD;
+ Ctx->InitStack.push_back(InitLink::Decl(VD));
+ }
+
+ void addExtended(const Scope::Local &Local) override {
+ return this->addLocal(Local);
+ }
+
+ ~DeclScope() {
+ this->Ctx->GlobalDecl = OldGlobalDecl;
+ this->Ctx->InitializingDecl = OldInitializingDecl;
+ this->Ctx->InitStack.pop_back();
+ }
+
+private:
+ Program::DeclScope Scope;
+ bool OldGlobalDecl;
+ const ValueDecl *OldInitializingDecl;
+};
+
+/// Scope used to handle initialization methods.
+template <class Emitter> class OptionScope final {
+public:
+ /// Root constructor, compiling or discarding primitives.
+ OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult,
+ bool NewInitializing)
+ : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult),
+ OldInitializing(Ctx->Initializing) {
+ Ctx->DiscardResult = NewDiscardResult;
+ Ctx->Initializing = NewInitializing;
+ }
+
+ ~OptionScope() {
+ Ctx->DiscardResult = OldDiscardResult;
+ Ctx->Initializing = OldInitializing;
+ }
+
+private:
+ /// Parent context.
+ Compiler<Emitter> *Ctx;
+ /// Old discard flag to restore.
+ bool OldDiscardResult;
+ bool OldInitializing;
+};
+
+template <class Emitter>
+bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const {
+ switch (Kind) {
+ case K_This:
+ return Ctx->emitThis(E);
+ case K_Field:
+ // We're assuming there's a base pointer on the stack already.
+ return Ctx->emitGetPtrFieldPop(Offset, E);
+ case K_Temp:
+ return Ctx->emitGetPtrLocal(Offset, E);
+ case K_Decl:
+ return Ctx->visitDeclRef(D, E);
+ default:
+ llvm_unreachable("Unhandled InitLink kind");
+ }
+ return true;
+}
+
+/// Scope managing label targets.
+template <class Emitter> class LabelScope {
+public:
+ virtual ~LabelScope() {}
+
+protected:
+ LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {}
+ /// Compiler instance.
+ Compiler<Emitter> *Ctx;
+};
+
+/// Sets the context for break/continue statements.
+template <class Emitter> class LoopScope final : public LabelScope<Emitter> {
+public:
+ using LabelTy = typename Compiler<Emitter>::LabelTy;
+ using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
+
+ LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel)
+ : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
+ OldContinueLabel(Ctx->ContinueLabel) {
+ this->Ctx->BreakLabel = BreakLabel;
+ this->Ctx->ContinueLabel = ContinueLabel;
+ }
+
+ ~LoopScope() {
+ this->Ctx->BreakLabel = OldBreakLabel;
+ this->Ctx->ContinueLabel = OldContinueLabel;
+ }
+
+private:
+ OptLabelTy OldBreakLabel;
+ OptLabelTy OldContinueLabel;
+};
+
+// Sets the context for a switch scope, mapping labels.
+template <class Emitter> class SwitchScope final : public LabelScope<Emitter> {
+public:
+ using LabelTy = typename Compiler<Emitter>::LabelTy;
+ using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
+ using CaseMap = typename Compiler<Emitter>::CaseMap;
+
+ SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel,
+ OptLabelTy DefaultLabel)
+ : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
+ OldDefaultLabel(this->Ctx->DefaultLabel),
+ OldCaseLabels(std::move(this->Ctx->CaseLabels)) {
+ this->Ctx->BreakLabel = BreakLabel;
+ this->Ctx->DefaultLabel = DefaultLabel;
+ this->Ctx->CaseLabels = std::move(CaseLabels);
+ }
+
+ ~SwitchScope() {
+ this->Ctx->BreakLabel = OldBreakLabel;
+ this->Ctx->DefaultLabel = OldDefaultLabel;
+ this->Ctx->CaseLabels = std::move(OldCaseLabels);
+ }
+
+private:
+ OptLabelTy OldBreakLabel;
+ OptLabelTy OldDefaultLabel;
+ CaseMap OldCaseLabels;
+};
+
+template <class Emitter> class StmtExprScope final {
+public:
+ StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) {
+ Ctx->InStmtExpr = true;
+ }
+
+ ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; }
+
+private:
+ Compiler<Emitter> *Ctx;
+ bool OldFlag;
+};
+
+} // namespace interp
+} // namespace clang
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) {
+ const Expr *SubExpr = CE->getSubExpr();
+ switch (CE->getCastKind()) {
+
+ case CK_LValueToRValue: {
+ if (DiscardResult)
+ return this->discard(SubExpr);
+
+ std::optional<PrimType> SubExprT = classify(SubExpr->getType());
+ // Prepare storage for the result.
+ if (!Initializing && !SubExprT) {
+ std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
+ if (!LocalIndex)
+ return false;
+ if (!this->emitGetPtrLocal(*LocalIndex, CE))
+ return false;
+ }
+
+ if (!this->visit(SubExpr))
+ return false;
+
+ if (SubExprT)
+ return this->emitLoadPop(*SubExprT, CE);
+
+ // If the subexpr type is not primitive, we need to perform a copy here.
+ // This happens for example in C when dereferencing a pointer of struct
+ // type.
+ return this->emitMemcpy(CE);
+ }
+
+ case CK_DerivedToBaseMemberPointer: {
+ assert(classifyPrim(CE->getType()) == PT_MemberPtr);
+ assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr);
+ const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
+ const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
+
+ unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0),
+ QualType(FromMP->getClass(), 0));
+
+ if (!this->visit(SubExpr))
+ return false;
+
+ return this->emitGetMemberPtrBasePop(DerivedOffset, CE);
+ }
+
+ case CK_BaseToDerivedMemberPointer: {
+ assert(classifyPrim(CE) == PT_MemberPtr);
+ assert(classifyPrim(SubExpr) == PT_MemberPtr);
+ const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
+ const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
+
+ unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0),
+ QualType(ToMP->getClass(), 0));
+
+ if (!this->visit(SubExpr))
+ return false;
+ return this->emitGetMemberPtrBasePop(-DerivedOffset, CE);
+ }
+
+ case CK_UncheckedDerivedToBase:
+ case CK_DerivedToBase: {
+ if (!this->visit(SubExpr))
+ return false;
+
+ const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
+ if (const auto *PT = dyn_cast<PointerType>(Ty))
+ return PT->getPointeeType()->getAsCXXRecordDecl();
+ return Ty->getAsCXXRecordDecl();
+ };
+
+ // FIXME: We can express a series of non-virtual casts as a single
+ // GetPtrBasePop op.
+ QualType CurType = SubExpr->getType();
+ for (const CXXBaseSpecifier *B : CE->path()) {
+ if (B->isVirtual()) {
+ if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE))
+ return false;
+ CurType = B->getType();
+ } else {
+ unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType);
+ if (!this->emitGetPtrBasePop(DerivedOffset, CE))
+ return false;
+ CurType = B->getType();
+ }
+ }
+
+ return true;
+ }
+
+ case CK_BaseToDerived: {
+ if (!this->visit(SubExpr))
+ return false;
+
+ unsigned DerivedOffset =
+ collectBaseOffset(SubExpr->getType(), CE->getType());
+
+ return this->emitGetPtrDerivedPop(DerivedOffset, CE);
+ }
+
+ case CK_FloatingCast: {
+ // HLSL uses CK_FloatingCast to cast between vectors.
+ if (!SubExpr->getType()->isFloatingType() ||
+ !CE->getType()->isFloatingType())
+ return false;
+ if (DiscardResult)
+ return this->discard(SubExpr);
+ if (!this->visit(SubExpr))
+ return false;
+ const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
+ return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE);
+ }
+
+ case CK_IntegralToFloating: {
+ if (DiscardResult)
+ return this->discard(SubExpr);
+ std::optional<PrimType> FromT = classify(SubExpr->getType());
+ if (!FromT)
+ return false;
+
+ if (!this->visit(SubExpr))
+ return false;
+
+ const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
+ llvm::RoundingMode RM = getRoundingMode(CE);
+ return this->emitCastIntegralFloating(*FromT, TargetSemantics, RM, CE);
+ }
+
+ case CK_FloatingToBoolean:
+ case CK_FloatingToIntegral: {
+ if (DiscardResult)
+ return this->discard(SubExpr);
+
+ std::optional<PrimType> ToT = classify(CE->getType());
+
+ if (!ToT)
+ return false;
+
+ if (!this->visit(SubExpr))
+ return false;
+
+ if (ToT == PT_IntAP)
+ return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()),
+ CE);
+ if (ToT == PT_IntAPS)
+ return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()),
+ CE);
+
+ return this->emitCastFloatingIntegral(*ToT, CE);
+ }
+
+ case CK_NullToPointer:
+ case CK_NullToMemberPointer: {
+ if (DiscardResult)
+ return true;
+
+ const Descriptor *Desc = nullptr;
+ const QualType PointeeType = CE->getType()->getPointeeType();
+ if (!PointeeType.isNull()) {
+ if (std::optional<PrimType> T = classify(PointeeType))
+ Desc = P.createDescriptor(SubExpr, *T);
+ }
+ return this->emitNull(classifyPrim(CE->getType()), Desc, CE);
+ }
+
+ case CK_PointerToIntegral: {
+ if (DiscardResult)
+ return this->discard(SubExpr);
+
+ if (!this->visit(SubExpr))
+ return false;
+
+ // If SubExpr doesn't result in a pointer, make it one.
+ if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) {
+ assert(isPtrType(FromT));
+ if (!this->emitDecayPtr(FromT, PT_Ptr, CE))
+ return false;
+ }
+
+ PrimType T = classifyPrim(CE->getType());
+ if (T == PT_IntAP)
+ return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()),
+ CE);
+ if (T == PT_IntAPS)
+ return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()),
+ CE);
+ return this->emitCastPointerIntegral(T, CE);
+ }
+
+ case CK_ArrayToPointerDecay: {
+ if (!this->visit(SubExpr))
+ return false;
+ if (!this->emitArrayDecay(CE))
+ return false;
+ if (DiscardResult)
+ return this->emitPopPtr(CE);
+ return true;
+ }
+
+ case CK_IntegralToPointer: {
+ QualType IntType = SubExpr->getType();
+ assert(IntType->isIntegralOrEnumerationType());
+ if (!this->visit(SubExpr))
+ return false;
+ // FIXME: I think the discard is wrong since the int->ptr cast might cause a
+ // diagnostic.
+ PrimType T = classifyPrim(IntType);
+ if (DiscardResult)
+ return this->emitPop(T, CE);
+
+ QualType PtrType = CE->getType();
+ assert(PtrType->isPointerType());
+
+ const Descriptor *Desc;
+ if (std::optional<PrimType> T = classify(PtrType->getPointeeType()))
+ Desc = P.createDescriptor(SubExpr, *T);
+ else if (PtrType->getPointeeType()->isVoidType())
+ Desc = nullptr;
+ else
+ Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(),
+ Descriptor::InlineDescMD, true, false,
+ /*IsMutable=*/false, nullptr);
+
+ if (!this->emitGetIntPtr(T, Desc, CE))
+ return false;
+
+ PrimType DestPtrT = classifyPrim(PtrType);
+ if (DestPtrT == PT_Ptr)
+ return true;
+
+ // In case we're converting the integer to a non-Pointer.
+ return this->emitDecayPtr(PT_Ptr, DestPtrT, CE);
+ }
+
+ case CK_AtomicToNonAtomic:
+ case CK_ConstructorConversion:
+ case CK_FunctionToPointerDecay:
+ case CK_NonAtomicToAtomic:
+ case CK_NoOp:
+ case CK_UserDefinedConversion:
+ case CK_AddressSpaceConversion:
+ return this->delegate(SubExpr);
+
+ case CK_BitCast: {
+ // Reject bitcasts to atomic types.
+ if (CE->getType()->isAtomicType()) {
+ if (!this->discard(SubExpr))
+ return false;
+ return this->emitInvalidCast(CastKind::Reinterpret, CE);
+ }
+
+ if (DiscardResult)
+ return this->discard(SubExpr);
+
+ QualType SubExprTy = SubExpr->getType();
+ std::optional<PrimType> FromT = classify(SubExprTy);
+ std::optional<PrimType> ToT = classify(CE->getType());
+ if (!FromT || !ToT)
+ return false;
+
+ assert(isPtrType(*FromT));
+ assert(isPtrType(*ToT));
+ if (FromT == ToT) {
+ if (CE->getType()->isVoidPointerType())
+ return this->delegate(SubExpr);
+
+ if (!this->visit(SubExpr))
+ return false;
+ if (FromT == PT_Ptr)
+ return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE);
+ return true;
+ }
+
+ if (!this->visit(SubExpr))
+ return false;
+ return this->emitDecayPtr(*FromT, *ToT, CE);
+ }
+
+ case CK_IntegralToBoolean:
+ case CK_BooleanToSignedIntegral:
+ case CK_IntegralCast: {
+ if (DiscardResult)
+ return this->discard(SubExpr);
+ std::optional<PrimType> FromT = classify(SubExpr->getType());
+ std::optional<PrimType> ToT = classify(CE->getType());
+
+ if (!FromT || !ToT)
+ return false;
+
+ if (!this->visit(SubExpr))
+ return false;
+
+ // Possibly diagnose casts to enum types if the target type does not
+ // have a fixed size.
+ if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) {
+ if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>();
+ ET && !ET->getDecl()->isFixed()) {
+ if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE))
+ return false;
+ }
+ }
+
+ if (ToT == PT_IntAP)
+ return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE);
+ if (ToT == PT_IntAPS)
+ return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE);
+
+ if (FromT == ToT)
+ return true;
+ if (!this->emitCast(*FromT, *ToT, CE))
+ return false;
+
+ if (CE->getCastKind() == CK_BooleanToSignedIntegral)
+ return this->emitNeg(*ToT, CE);
+ return true;
+ }
+
+ case CK_PointerToBoolean:
+ case CK_MemberPointerToBoolean: {
+ PrimType PtrT = classifyPrim(SubExpr->getType());
+
+ // Just emit p != nullptr for this.
+ if (!this->visit(SubExpr))
+ return false;
+
+ if (!this->emitNull(PtrT, nullptr, CE))
+ return false;
+
+ return this->emitNE(PtrT, CE);
+ }
+
+ case CK_IntegralComplexToBoolean:
+ case CK_FloatingComplexToBoolean: {
+ if (DiscardResult)
+ return this->discard(SubExpr);
+ if (!this->visit(SubExpr))
+ return false;
+ return this->emitComplexBoolCast(SubExpr);
+ }
+
+ case CK_IntegralComplexToReal:
+ case CK_FloatingComplexToReal:
+ return this->emitComplexReal(SubExpr);
+
+ case CK_IntegralRealToComplex:
+ case CK_FloatingRealToComplex: {
+ // We're creating a complex value here, so we need to
+ // allocate storage for it.
+ if (!Initializing) {
+ std::optional<unsigned> LocalIndex = allocateLocal(CE);
+ if (!LocalIndex)
+ return false;
+ if (!this->emitGetPtrLocal(*LocalIndex, CE))
+ return false;
+ }
+
+ // Init the complex value to {SubExpr, 0}.
+ if (!this->visitArrayElemInit(0, SubExpr))
+ return false;
+ // Zero-init the second element.
+ PrimType T = classifyPrim(SubExpr->getType());
+ if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr))
+ return false;
+ return this->emitInitElem(T, 1, SubExpr);
+ }
+
+ case CK_IntegralComplexCast:
+ case CK_FloatingComplexCast:
+ case CK_IntegralComplexToFloatingComplex:
+ case CK_FloatingComplexToIntegralComplex: {
+ assert(CE->getType()->isAnyComplexType());
+ assert(SubExpr->getType()->isAnyComplexType());
+ if (DiscardResult)
+ return this->discard(SubExpr);
+
+ if (!Initializing) {
+ std::optional<unsigned> LocalIndex = allocateLocal(CE);
+ if (!LocalIndex)
+ return false;
+ if (!this->emitGetPtrLocal(*LocalIndex, CE))
+ return false;
+ }
+
+ // Location for the SubExpr.
+ // Since SubExpr is of complex type, visiting it results in a pointer
+ // anyway, so we just create a temporary pointer variable.
+ unsigned SubExprOffset = allocateLocalPrimitive(
+ SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
+ if (!this->visit(SubExpr))
+ return false;
+ if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE))
+ return false;
+
+ PrimType SourceElemT = classifyComplexElementType(SubExpr->getType());
+ QualType DestElemType =
+ CE->getType()->getAs<ComplexType>()->getElementType();
+ PrimType DestElemT = classifyPrim(DestElemType);
+ // Cast both elements individually.
+ for (unsigned I = 0; I != 2; ++I) {
+ if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE))
+ return false;
+ if (!this->emitArrayElemPop(SourceElemT, I, CE))
+ return false;
+
+ // Do the cast.
+ if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE))
+ return false;
+
+ // Save the value.
+ if (!this->emitInitElem(DestElemT, I, CE))
+ return false;
+ }
+ return true;
+ }
+
+ case CK_VectorSplat: {
+ assert(!classify(CE->getType()));
+ assert(classify(SubExpr->getType()));
+ assert(CE->getType()->isVectorType());
+
+ if (DiscardResult)
+ return this->discard(SubExpr);
+
+ if (!Initializing) {
+ std::optional<unsigned> LocalIndex = allocateLocal(CE);
+ if (!LocalIndex)
+ return false;
+ if (!this->emitGetPtrLocal(*LocalIndex, CE))
+ return false;
+ }
+
+ const auto *VT = CE->getType()->getAs<VectorType>();
+ PrimType ElemT = classifyPrim(SubExpr->getType());
+ unsigned ElemOffset = allocateLocalPrimitive(
+ SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false);
+
+ // Prepare a local variable for the scalar value.
+ if (!this->visit(SubExpr))
+ return false;
+ if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE))
+ return false;
+
+ if (!this->emitSetLocal(ElemT, ElemOffset, CE))
+ return false;
+
+ for (unsigned I = 0; I != VT->getNumElements(); ++I) {
+ if (!this->emitGetLocal(ElemT, ElemOffset, CE))
+ return false;
+ if (!this->emitInitElem(ElemT, I, CE))
+ return false;
+ }
+
+ return true;
+ }
+
+ case CK_ToVoid:
+ return discard(SubExpr);
+
+ default:
+ return this->emitInvalid(CE);
+ }
+ llvm_unreachable("Unhandled clang::CastKind enum");
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
+ if (DiscardResult)
+ return true;
+
+ return this->emitConst(LE->getValue(), LE);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) {
+ if (DiscardResult)
+ return true;
+
+ return this->emitConstFloat(E->getValue(), E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
+ assert(E->getType()->isAnyComplexType());
+ if (DiscardResult)
+ return true;
+
+ if (!Initializing) {
+ std::optional<unsigned> LocalIndex = allocateLocal(E);
+ if (!LocalIndex)
+ return false;
+ if (!this->emitGetPtrLocal(*LocalIndex, E))
+ return false;
+ }
+
+ const Expr *SubExpr = E->getSubExpr();
+ PrimType SubExprT = classifyPrim(SubExpr->getType());
+
+ if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr))
+ return false;
+ if (!this->emitInitElem(SubExprT, 0, SubExpr))
+ return false;
+ return this->visitArrayElemInit(1, SubExpr);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) {
+ return this->delegate(E->getSubExpr());
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
+ // Need short-circuiting for these.
+ if (BO->isLogicalOp())
+ return this->VisitLogicalBinOp(BO);
+
+ const Expr *LHS = BO->getLHS();
+ const Expr *RHS = BO->getRHS();
+
+ // Handle comma operators. Just discard the LHS
+ // and delegate to RHS.
+ if (BO->isCommaOp()) {
+ if (!this->discard(LHS))
+ return false;
+ if (RHS->getType()->isVoidType())
+ return this->discard(RHS);
+
+ return this->delegate(RHS);
+ }
+
+ if (BO->getType()->isAnyComplexType())
+ return this->VisitComplexBinOp(BO);
+ if ((LHS->getType()->isAnyComplexType() ||
+ RHS->getType()->isAnyComplexType()) &&
+ BO->isComparisonOp())
+ return this->emitComplexComparison(LHS, RHS, BO);
+
+ if (BO->isPtrMemOp()) {
+ if (!this->visit(LHS))
+ return false;
+
+ if (!this->visit(RHS))
+ return false;
+
+ if (!this->emitToMemberPtr(BO))
+ return false;
+
+ if (classifyPrim(BO) == PT_MemberPtr)
+ return true;
+
+ if (!this->emitCastMemberPtrPtr(BO))
+ return false;
+ return DiscardResult ? this->emitPopPtr(BO) : true;
+ }
+
+ // Typecheck the args.
+ std::optional<PrimType> LT = classify(LHS->getType());
+ std::optional<PrimType> RT = classify(RHS->getType());
+ std::optional<PrimType> T = classify(BO->getType());
+
+ // Special case for C++'s three-way/spaceship operator <=>, which
+ // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't
+ // have a PrimType).
+ if (!T && BO->getOpcode() == BO_Cmp) {
+ if (DiscardResult)
+ return true;
+ const ComparisonCategoryInfo *CmpInfo =
+ Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType());
+ assert(CmpInfo);
+
+ // We need a temporary variable holding our return value.
+ if (!Initializing) {
+ std::optional<unsigned> ResultIndex = this->allocateLocal(BO);
+ if (!this->emitGetPtrLocal(*ResultIndex, BO))
+ return false;
+ }
+
+ if (!visit(LHS) || !visit(RHS))
+ return false;
+
+ return this->emitCMP3(*LT, CmpInfo, BO);
+ }
+
+ if (!LT || !RT || !T)
+ return false;
+
+ // Pointer arithmetic special case.
+ if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
+ if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT)))
+ return this->VisitPointerArithBinOp(BO);
+ }
+
+ if (!visit(LHS) || !visit(RHS))
+ return false;
+
+ // For languages such as C, cast the result of one
+ // of our comparision opcodes to T (which is usually int).
+ auto MaybeCastToBool = [this, T, BO](bool Result) {
+ if (!Result)
+ return false;
+ if (DiscardResult)
+ return this->emitPop(*T, BO);
+ if (T != PT_Bool)
+ return this->emitCast(PT_Bool, *T, BO);
+ return true;
+ };
+
+ auto Discard = [this, T, BO](bool Result) {
+ if (!Result)
+ return false;
+ return DiscardResult ? this->emitPop(*T, BO) : true;
+ };
+
+ switch (BO->getOpcode()) {
+ case BO_EQ:
+ return MaybeCastToBool(this->emitEQ(*LT, BO));
+ case BO_NE:
+ return MaybeCastToBool(this->emitNE(*LT, BO));
+ case BO_LT:
+ return MaybeCastToBool(this->emitLT(*LT, BO));
+ case BO_LE:
+ return MaybeCastToBool(this->emitLE(*LT, BO));
+ case BO_GT:
+ return MaybeCastToBool(this->emitGT(*LT, BO));
+ case BO_GE:
+ return MaybeCastToBool(this->emitGE(*LT, BO));
+ case BO_Sub:
+ if (BO->getType()->isFloatingType())
+ return Discard(this->emitSubf(getRoundingMode(BO), BO));
+ return Discard(this->emitSub(*T, BO));
+ case BO_Add:
+ if (BO->getType()->isFloatingType())
+ return Discard(this->emitAddf(getRoundingMode(BO), BO));
+ return Discard(this->emitAdd(*T, BO));
+ case BO_Mul:
+ if (BO->getType()->isFloatingType())
+ return Discard(this->emitMulf(getRoundingMode(BO), BO));
+ return Discard(this->emitMul(*T, BO));
+ case BO_Rem:
+ return Discard(this->emitRem(*T, BO));
+ case BO_Div:
+ if (BO->getType()->isFloatingType())
+ return Discard(this->emitDivf(getRoundingMode(BO), BO));
+ return Discard(this->emitDiv(*T, BO));
+ case BO_Assign:
+ if (DiscardResult)
+ return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO)
+ : this->emitStorePop(*T, BO);
+ if (LHS->refersToBitField()) {
+ if (!this->emitStoreBitField(*T, BO))
+ return false;
+ } else {
+ if (!this->emitStore(*T, BO))
+ return false;
+ }
+ // Assignments aren't necessarily lvalues in C.
+ // Load from them in that case.
+ if (!BO->isLValue())
+ return this->emitLoadPop(*T, BO);
+ return true;
+ case BO_And:
+ return Discard(this->emitBitAnd(*T, BO));
+ case BO_Or:
+ return Discard(this->emitBitOr(*T, BO));
+ case BO_Shl:
+ return Discard(this->emitShl(*LT, *RT, BO));
+ case BO_Shr:
+ return Discard(this->emitShr(*LT, *RT, BO));
+ case BO_Xor:
+ return Discard(this->emitBitXor(*T, BO));
+ case BO_LOr:
+ case BO_LAnd:
+ llvm_unreachable("Already handled earlier");
+ default:
+ return false;
+ }
+
+ llvm_unreachable("Unhandled binary op");
+}
+
+/// Perform addition/subtraction of a pointer and an integer or
+/// subtraction of two pointers.
+template <class Emitter>
+bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
+ BinaryOperatorKind Op = E->getOpcode();
+ const Expr *LHS = E->getLHS();
+ const Expr *RHS = E->getRHS();
+
+ if ((Op != BO_Add && Op != BO_Sub) ||
+ (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
+ return false;
+
+ std::optional<PrimType> LT = classify(LHS);
+ std::optional<PrimType> RT = classify(RHS);
+
+ if (!LT || !RT)
+ return false;
+
+ if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
+ if (Op != BO_Sub)
+ return false;
+
+ assert(E->getType()->isIntegerType());
+ if (!visit(RHS) || !visit(LHS))
+ return false;
+
+ return this->emitSubPtr(classifyPrim(E->getType()), E);
+ }
+
+ PrimType OffsetType;
+ if (LHS->getType()->isIntegerType()) {
+ if (!visit(RHS) || !visit(LHS))
+ return false;
+ OffsetType = *LT;
+ } else if (RHS->getType()->isIntegerType()) {
+ if (!visit(LHS) || !visit(RHS))
+ return false;
+ OffsetType = *RT;
+ } else {
+ return false;
+ }
+
+ if (Op == BO_Add)
+ return this->emitAddOffset(OffsetType, E);
+ else if (Op == BO_Sub)
+ return this->emitSubOffset(OffsetType, E);
+
+ return false;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) {
+ assert(E->isLogicalOp());
+ BinaryOperatorKind Op = E->getOpcode();
+ const Expr *LHS = E->getLHS();
+ const Expr *RHS = E->getRHS();
+ std::optional<PrimType> T = classify(E->getType());
+
+ if (Op == BO_LOr) {
+ // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE.
+ LabelTy LabelTrue = this->getLabel();
+ LabelTy LabelEnd = this->getLabel();
+
+ if (!this->visitBool(LHS))
+ return false;
+ if (!this->jumpTrue(LabelTrue))
+ return false;
+
+ if (!this->visitBool(RHS))
+ return false;
+ if (!this->jump(LabelEnd))
+ return false;
+
+ this->emitLabel(LabelTrue);
+ this->emitConstBool(true, E);
+ this->fallthrough(LabelEnd);
+ this->emitLabel(LabelEnd);
+
+ } else {
+ assert(Op == BO_LAnd);
+ // Logical AND.
+ // Visit LHS. Only visit RHS if LHS was TRUE.
+ LabelTy LabelFalse = this->getLabel();
+ LabelTy LabelEnd = this->getLabel();
+
+ if (!this->visitBool(LHS))
+ return false;
+ if (!this->jumpFalse(LabelFalse))
+ return false;
+
+ if (!this->visitBool(RHS))
+ return false;
+ if (!this->jump(LabelEnd))
+ return false;
+
+ this->emitLabel(LabelFalse);
+ this->emitConstBool(false, E);
+ this->fallthrough(LabelEnd);
+ this->emitLabel(LabelEnd);
+ }
+
+ if (DiscardResult)
+ return this->emitPopBool(E);
+
+ // For C, cast back to integer type.
+ assert(T);
+ if (T != PT_Bool)
+ return this->emitCast(PT_Bool, *T, E);
+ return true;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
+ // Prepare storage for result.
+ if (!Initializing) {
+ std::optional<unsigned> LocalIndex = allocateLocal(E);
+ if (!LocalIndex)
+ return false;
+ if (!this->emitGetPtrLocal(*LocalIndex, E))
+ return false;
+ }
+
+ // Both LHS and RHS might _not_ be of complex type, but one of them
+ // needs to be.
+ const Expr *LHS = E->getLHS();
+ const Expr *RHS = E->getRHS();
+
+ PrimType ResultElemT = this->classifyComplexElementType(E->getType());
+ unsigned ResultOffset = ~0u;
+ if (!DiscardResult)
+ ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false);
+
+ // Save result pointer in ResultOffset
+ if (!this->DiscardResult) {
+ if (!this->emitDupPtr(E))
+ return false;
+ if (!this->emitSetLocal(PT_Ptr, ResultOffset, E))
+ return false;
+ }
+ QualType LHSType = LHS->getType();
+ if (const auto *AT = LHSType->getAs<AtomicType>())
+ LHSType = AT->getValueType();
+ QualType RHSType = RHS->getType();
+ if (const auto *AT = RHSType->getAs<AtomicType>())
+ RHSType = AT->getValueType();
+
+ bool LHSIsComplex = LHSType->isAnyComplexType();
+ unsigned LHSOffset;
+ bool RHSIsComplex = RHSType->isAnyComplexType();
+
+ // For ComplexComplex Mul, we have special ops to make their implementation
+ // easier.
+ BinaryOperatorKind Op = E->getOpcode();
+ if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) {
+ assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) ==
+ classifyPrim(RHSType->getAs<ComplexType>()->getElementType()));
+ PrimType ElemT =
+ classifyPrim(LHSType->getAs<ComplexType>()->getElementType());
+ if (!this->visit(LHS))
+ return false;
+ if (!this->visit(RHS))
+ return false;
+ return this->emitMulc(ElemT, E);
+ }
+
+ if (Op == BO_Div && RHSIsComplex) {
+ QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType();
+ PrimType ElemT = classifyPrim(ElemQT);
+ // If the LHS is not complex, we still need to do the full complex
+ // division, so just stub create a complex value and stub it out with
+ // the LHS and a zero.
+
+ if (!LHSIsComplex) {
+ // This is using the RHS type for the fake-complex LHS.
+ if (auto LHSO = allocateLocal(RHS))
+ LHSOffset = *LHSO;
+ else
+ return false;
+
+ if (!this->emitGetPtrLocal(LHSOffset, E))
+ return false;
+
+ if (!this->visit(LHS))
+ return false;
+ // real is LHS
+ if (!this->emitInitElem(ElemT, 0, E))
+ return false;
+ // imag is zero
+ if (!this->visitZeroInitializer(ElemT, ElemQT, E))
+ return false;
+ if (!this->emitInitElem(ElemT, 1, E))
+ return false;
+ } else {
+ if (!this->visit(LHS))
+ return false;
+ }
+
+ if (!this->visit(RHS))
+ return false;
+ return this->emitDivc(ElemT, E);
+ }
+
+ // Evaluate LHS and save value to LHSOffset.
+ if (LHSType->isAnyComplexType()) {
+ LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
+ if (!this->visit(LHS))
+ return false;
+ if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
+ return false;
+ } else {
+ PrimType LHST = classifyPrim(LHSType);
+ LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
+ if (!this->visit(LHS))
+ return false;
+ if (!this->emitSetLocal(LHST, LHSOffset, E))
+ return false;
+ }
+
+ // Same with RHS.
+ unsigned RHSOffset;
+ if (RHSType->isAnyComplexType()) {
+ RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
+ if (!this->visit(RHS))
+ return false;
+ if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
+ return false;
+ } else {
+ PrimType RHST = classifyPrim(RHSType);
+ RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
+ if (!this->visit(RHS))
+ return false;
+ if (!this->emitSetLocal(RHST, RHSOffset, E))
+ return false;
+ }
+
+ // For both LHS and RHS, either load the value from the complex pointer, or
+ // directly from the local variable. For index 1 (i.e. the imaginary part),
+ // just load 0 and do the operation anyway.
+ auto loadComplexValue = [this](bool IsComplex, bool LoadZero,
+ unsigned ElemIndex, unsigned Offset,
+ const Expr *E) -> bool {
+ if (IsComplex) {
+ if (!this->emitGetLocal(PT_Ptr, Offset, E))
+ return false;
+ return this->emitArrayElemPop(classifyComplexElementType(E->getType()),
+ ElemIndex, E);
+ }
+ if (ElemIndex == 0 || !LoadZero)
+ return this->emitGetLocal(classifyPrim(E->getType()), Offset, E);
+ return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(),
+ E);
+ };
+
+ // Now we can get pointers to the LHS and RHS from the offsets above.
+ for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) {
+ // Result pointer for the store later.
+ if (!this->DiscardResult) {
+ if (!this->emitGetLocal(PT_Ptr, ResultOffset, E))
+ return false;
+ }
+
+ // The actual operation.
+ switch (Op) {
+ case BO_Add:
+ if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
+ return false;
+
+ if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
+ return false;
+ if (ResultElemT == PT_Float) {
+ if (!this->emitAddf(getRoundingMode(E), E))
+ return false;
+ } else {
+ if (!this->emitAdd(ResultElemT, E))
+ return false;
+ }
+ break;
+ case BO_Sub:
+ if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
+ return false;
+
+ if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
+ return false;
+ if (ResultElemT == PT_Float) {
+ if (!this->emitSubf(getRoundingMode(E), E))
+ return false;
+ } else {
+ if (!this->emitSub(ResultElemT, E))
+ return false;
+ }
+ break;
+ case BO_Mul:
+ if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
+ return false;
+
+ if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
+ return false;
+
+ if (ResultElemT == PT_Float) {
+ if (!this->emitMulf(getRoundingMode(E), E))
+ return false;
+ } else {
+ if (!this->emitMul(ResultElemT, E))
+ return false;
+ }
+ break;
+ case BO_Div:
+ assert(!RHSIsComplex);
+ if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
+ return false;
+
+ if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
+ return false;
+
+ if (ResultElemT == PT_Float) {
+ if (!this->emitDivf(getRoundingMode(E), E))
+ return false;
+ } else {
+ if (!this->emitDiv(ResultElemT, E))
+ return false;
+ }
+ break;
+
+ default:
+ return false;
+ }
+
+ if (!this->DiscardResult) {
+ // Initialize array element with the value we just computed.
+ if (!this->emitInitElemPop(ResultElemT, ElemIndex, E))
+ return false;
+ } else {
+ if (!this->emitPop(ResultElemT, E))
+ return false;
+ }
+ }
+ return true;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitImplicitValueInitExpr(
+ const ImplicitValueInitExpr *E) {
+ QualType QT = E->getType();
+
+ if (std::optional<PrimType> T = classify(QT))
+ return this->visitZeroInitializer(*T, QT, E);
+
+ if (QT->isRecordType()) {
+ const RecordDecl *RD = QT->getAsRecordDecl();
+ assert(RD);
+ if (RD->isInvalidDecl())
+ return false;
+ if (RD->isUnion()) {
+ // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
+ // object's first non-static named data member is zero-initialized
+ // FIXME
+ return false;
+ }
+
+ if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
+ CXXRD && CXXRD->getNumVBases() > 0) {
+ // TODO: Diagnose.
+ return false;
+ }
+
+ const Record *R = getRecord(QT);
+ if (!R)
+ return false;
+
+ assert(Initializing);
+ return this->visitZeroRecordInitializer(R, E);
+ }
+
+ if (QT->isIncompleteArrayType())
+ return true;
+
+ if (QT->isArrayType()) {
+ const ArrayType *AT = QT->getAsArrayTypeUnsafe();
+ assert(AT);
+ const auto *CAT = cast<ConstantArrayType>(AT);
+ size_t NumElems = CAT->getZExtSize();
+ PrimType ElemT = classifyPrim(CAT->getElementType());
+
+ for (size_t I = 0; I != NumElems; ++I) {
+ if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E))
+ return false;
+ if (!this->emitInitElem(ElemT, I, E))
+ return false;
+ }
+
+ return true;
+ }
+
+ if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) {
+ assert(Initializing);
+ QualType ElemQT = ComplexTy->getElementType();
+ PrimType ElemT = classifyPrim(ElemQT);
+ for (unsigned I = 0; I < 2; ++I) {
+ if (!this->visitZeroInitializer(ElemT, ElemQT, E))
+ return false;
+ if (!this->emitInitElem(ElemT, I, E))
+ return false;
+ }
+ return true;
+ }
+
+ if (const auto *VecT = E->getType()->getAs<VectorType>()) {
+ unsigned NumVecElements = VecT->getNumElements();
+ QualType ElemQT = VecT->getElementType();
+ PrimType ElemT = classifyPrim(ElemQT);
+
+ for (unsigned I = 0; I < NumVecElements; ++I) {
+ if (!this->visitZeroInitializer(ElemT, ElemQT, E))
+ return false;
+ if (!this->emitInitElem(ElemT, I, E))
+ return false;
+ }
+ return true;
+ }
+
+ return false;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
+ const Expr *Base = E->getBase();
+ const Expr *Index = E->getIdx();
+
+ if (DiscardResult)
+ return this->discard(Base) && this->discard(Index);
+
+ // Take pointer of LHS, add offset from RHS.
+ // What's left on the stack after this is a pointer.
+ if (!this->visit(Base))
+ return false;
+
+ if (!this->visit(Index))
+ return false;
+
+ PrimType IndexT = classifyPrim(Index->getType());
+ return this->emitArrayElemPtrPop(IndexT, E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits,
+ const Expr *ArrayFiller, const Expr *E) {
+
+ QualType QT = E->getType();
+
+ if (const auto *AT = QT->getAs<AtomicType>())
+ QT = AT->getValueType();
+
+ if (QT->isVoidType())
+ return this->emitInvalid(E);
+
+ // Handle discarding first.
+ if (DiscardResult) {
+ for (const Expr *Init : Inits) {
+ if (!this->discard(Init))
+ return false;
+ }
+ return true;
+ }
+
+ // Primitive values.
+ if (std::optional<PrimType> T = classify(QT)) {
+ assert(!DiscardResult);
+ if (Inits.size() == 0)
+ return this->visitZeroInitializer(*T, QT, E);
+ assert(Inits.size() == 1);
+ return this->delegate(Inits[0]);
+ }
+
+ if (QT->isRecordType()) {
+ const Record *R = getRecord(QT);
+
+ if (Inits.size() == 1 && E->getType() == Inits[0]->getType())
+ return this->delegate(Inits[0]);
+
+ auto initPrimitiveField = [=](const Record::Field *FieldToInit,
+ const Expr *Init, PrimType T) -> bool {
+ InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
+ if (!this->visit(Init))
+ return false;
+
+ if (FieldToInit->isBitField())
+ return this->emitInitBitField(T, FieldToInit, E);
+ return this->emitInitField(T, FieldToInit->Offset, E);
+ };
+
+ auto initCompositeField = [=](const Record::Field *FieldToInit,
+ const Expr *Init) -> bool {
+ InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
+ InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset));
+ // Non-primitive case. Get a pointer to the field-to-initialize
+ // on the stack and recurse into visitInitializer().
+ if (!this->emitGetPtrField(FieldToInit->Offset, Init))
+ return false;
+ if (!this->visitInitializer(Init))
+ return false;
+ return this->emitPopPtr(E);
+ };
+
+ if (R->isUnion()) {
+ if (Inits.size() == 0) {
+ // Zero-initialize the first union field.
+ if (R->getNumFields() == 0)
+ return this->emitFinishInit(E);
+ const Record::Field *FieldToInit = R->getField(0u);
+ QualType FieldType = FieldToInit->Desc->getType();
+ if (std::optional<PrimType> T = classify(FieldType)) {
+ if (!this->visitZeroInitializer(*T, FieldType, E))
+ return false;
+ if (!this->emitInitField(*T, FieldToInit->Offset, E))
+ return false;
+ }
+ // FIXME: Non-primitive case?
+ } else {
+ const Expr *Init = Inits[0];
+ const FieldDecl *FToInit = nullptr;
+ if (const auto *ILE = dyn_cast<InitListExpr>(E))
+ FToInit = ILE->getInitializedFieldInUnion();
+ else
+ FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion();
+
+ const Record::Field *FieldToInit = R->getField(FToInit);
+ if (std::optional<PrimType> T = classify(Init)) {
+ if (!initPrimitiveField(FieldToInit, Init, *T))
+ return false;
+ } else {
+ if (!initCompositeField(FieldToInit, Init))
+ return false;
+ }
+ }
+ return this->emitFinishInit(E);
+ }
+
+ assert(!R->isUnion());
+ unsigned InitIndex = 0;
+ for (const Expr *Init : Inits) {
+ // Skip unnamed bitfields.
+ while (InitIndex < R->getNumFields() &&
+ R->getField(InitIndex)->Decl->isUnnamedBitField())
+ ++InitIndex;
+
+ if (std::optional<PrimType> T = classify(Init)) {
+ const Record::Field *FieldToInit = R->getField(InitIndex);
+ if (!initPrimitiveField(FieldToInit, Init, *T))
+ return false;
+ ++InitIndex;
+ } else {
+ // Initializer for a direct base class.
+ if (const Record::Base *B = R->getBase(Init->getType())) {
+ if (!this->emitGetPtrBase(B->Offset, Init))
+ return false;
+
+ if (!this->visitInitializer(Init))
+ return false;
+
+ if (!this->emitFinishInitPop(E))
+ return false;
+ // Base initializers don't increase InitIndex, since they don't count
+ // into the Record's fields.
+ } else {
+ const Record::Field *FieldToInit = R->getField(InitIndex);
+ if (!initCompositeField(FieldToInit, Init))
+ return false;
+ ++InitIndex;
+ }
+ }
+ }
+ return this->emitFinishInit(E);
+ }
+
+ if (QT->isArrayType()) {
+ if (Inits.size() == 1 && QT == Inits[0]->getType())
+ return this->delegate(Inits[0]);
+
+ unsigned ElementIndex = 0;
+ for (const Expr *Init : Inits) {
+ if (const auto *EmbedS =
+ dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
+ PrimType TargetT = classifyPrim(Init->getType());
+
+ auto Eval = [&](const Expr *Init, unsigned ElemIndex) {
+ PrimType InitT = classifyPrim(Init->getType());
+ if (!this->visit(Init))
+ return false;
+ if (InitT != TargetT) {
+ if (!this->emitCast(InitT, TargetT, E))
+ return false;
+ }
+ return this->emitInitElem(TargetT, ElemIndex, Init);
+ };
+ if (!EmbedS->doForEachDataElement(Eval, ElementIndex))
+ return false;
+ } else {
+ if (!this->visitArrayElemInit(ElementIndex, Init))
+ return false;
+ ++ElementIndex;
+ }
+ }
+
+ // Expand the filler expression.
+ // FIXME: This should go away.
+ if (ArrayFiller) {
+ const ConstantArrayType *CAT =
+ Ctx.getASTContext().getAsConstantArrayType(QT);
+ uint64_t NumElems = CAT->getZExtSize();
+
+ for (; ElementIndex != NumElems; ++ElementIndex) {
+ if (!this->visitArrayElemInit(ElementIndex, ArrayFiller))
+ return false;
+ }
+ }
+
+ return this->emitFinishInit(E);
+ }
+
+ if (const auto *ComplexTy = QT->getAs<ComplexType>()) {
+ unsigned NumInits = Inits.size();
+
+ if (NumInits == 1)
+ return this->delegate(Inits[0]);
+
+ QualType ElemQT = ComplexTy->getElementType();
+ PrimType ElemT = classifyPrim(ElemQT);
+ if (NumInits == 0) {
+ // Zero-initialize both elements.
+ for (unsigned I = 0; I < 2; ++I) {
+ if (!this->visitZeroInitializer(ElemT, ElemQT, E))
+ return false;
+ if (!this->emitInitElem(ElemT, I, E))
+ return false;
+ }
+ } else if (NumInits == 2) {
+ unsigned InitIndex = 0;
+ for (const Expr *Init : Inits) {
+ if (!this->visit(Init))
+ return false;
+
+ if (!this->emitInitElem(ElemT, InitIndex, E))
+ return false;
+ ++InitIndex;
+ }
+ }
+ return true;
+ }
+
+ if (const auto *VecT = QT->getAs<VectorType>()) {
+ unsigned NumVecElements = VecT->getNumElements();
+ assert(NumVecElements >= Inits.size());
+
+ QualType ElemQT = VecT->getElementType();
+ PrimType ElemT = classifyPrim(ElemQT);
+
+ // All initializer elements.
+ unsigned InitIndex = 0;
+ for (const Expr *Init : Inits) {
+ if (!this->visit(Init))
+ return false;
+
+ // If the initializer is of vector type itself, we have to deconstruct
+ // that and initialize all the target fields from the initializer fields.
+ if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) {
+ if (!this->emitCopyArray(ElemT, 0, InitIndex,
+ InitVecT->getNumElements(), E))
+ return false;
+ InitIndex += InitVecT->getNumElements();
+ } else {
+ if (!this->emitInitElem(ElemT, InitIndex, E))
+ return false;
+ ++InitIndex;
+ }
+ }
+
+ assert(InitIndex <= NumVecElements);
+
+ // Fill the rest with zeroes.
+ for (; InitIndex != NumVecElements; ++InitIndex) {
+ if (!this->visitZeroInitializer(ElemT, ElemQT, E))
+ return false;
+ if (!this->emitInitElem(ElemT, InitIndex, E))
+ return false;
+ }
+ return true;
+ }
+
+ return false;
+}
+
+/// Pointer to the array(not the element!) must be on the stack when calling
+/// this.
+template <class Emitter>
+bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex,
+ const Expr *Init) {
+ if (std::optional<PrimType> T = classify(Init->getType())) {
+ // Visit the primitive element like normal.
+ if (!this->visit(Init))
+ return false;
+ return this->emitInitElem(*T, ElemIndex, Init);
+ }
+
+ // Advance the pointer currently on the stack to the given
+ // dimension.
+ if (!this->emitConstUint32(ElemIndex, Init))
+ return false;
+ if (!this->emitArrayElemPtrUint32(Init))
+ return false;
+ if (!this->visitInitializer(Init))
+ return false;
+ return this->emitFinishInitPop(Init);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) {
+ return this->visitInitList(E->inits(), E->getArrayFiller(), E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitCXXParenListInitExpr(
+ const CXXParenListInitExpr *E) {
+ return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr(
+ const SubstNonTypeTemplateParmExpr *E) {
+ return this->delegate(E->getReplacement());
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
+ std::optional<PrimType> T = classify(E->getType());
+ if (T && E->hasAPValueResult()) {
+ // Try to emit the APValue directly, without visiting the subexpr.
+ // This will only fail if we can't emit the APValue, so won't emit any
+ // diagnostics or any double values.
+ if (DiscardResult)
+ return true;
+
+ if (this->visitAPValue(E->getAPValueResult(), *T, E))
+ return true;
+ }
+ return this->delegate(E->getSubExpr());
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) {
+ auto It = E->begin();
+ return this->visit(*It);
+}
+
+static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
+ UnaryExprOrTypeTrait Kind) {
+ bool AlignOfReturnsPreferred =
+ ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
+
+ // C++ [expr.alignof]p3:
+ // When alignof is applied to a reference type, the result is the
+ // alignment of the referenced type.
+ if (const auto *Ref = T->getAs<ReferenceType>())
+ T = Ref->getPointeeType();
+
+ if (T.getQualifiers().hasUnaligned())
+ return CharUnits::One();
+
+ // __alignof is defined to return the preferred alignment.
+ // Before 8, clang returned the preferred alignment for alignof and
+ // _Alignof as well.
+ if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
+ return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));
+
+ return ASTCtx.getTypeAlignInChars(T);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr(
+ const UnaryExprOrTypeTraitExpr *E) {
+ UnaryExprOrTypeTrait Kind = E->getKind();
+ const ASTContext &ASTCtx = Ctx.getASTContext();
+
+ if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
+ QualType ArgType = E->getTypeOfArgument();
+
+ // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
+ // the result is the size of the referenced type."
+ if (const auto *Ref = ArgType->getAs<ReferenceType>())
+ ArgType = Ref->getPointeeType();
+
+ CharUnits Size;
+ if (ArgType->isVoidType() || ArgType->isFunctionType())
+ Size = CharUnits::One();
+ else {
+ if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
+ return false;
+
+ if (Kind == UETT_SizeOf)
+ Size = ASTCtx.getTypeSizeInChars(ArgType);
+ else
+ Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width;
+ }
+
+ if (DiscardResult)
+ return true;
+
+ return this->emitConst(Size.getQuantity(), E);
+ }
+
+ if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
+ CharUnits Size;
+
+ if (E->isArgumentType()) {
+ QualType ArgType = E->getTypeOfArgument();
+
+ Size = AlignOfType(ArgType, ASTCtx, Kind);
+ } else {
+ // Argument is an expression, not a type.
+ const Expr *Arg = E->getArgumentExpr()->IgnoreParens();
+
+ // The kinds of expressions that we have special-case logic here for
+ // should be kept up to date with the special checks for those
+ // expressions in Sema.
+
+ // alignof decl is always accepted, even if it doesn't make sense: we
+ // default to 1 in those cases.
+ if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
+ Size = ASTCtx.getDeclAlign(DRE->getDecl(),
+ /*RefAsPointee*/ true);
+ else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
+ Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
+ /*RefAsPointee*/ true);
+ else
+ Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
+ }
+
+ if (DiscardResult)
+ return true;
+
+ return this->emitConst(Size.getQuantity(), E);
+ }
+
+ if (Kind == UETT_VectorElements) {
+ if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>())
+ return this->emitConst(VT->getNumElements(), E);
+ assert(E->getTypeOfArgument()->isSizelessVectorType());
+ return this->emitSizelessVectorElementSize(E);
+ }
+
+ if (Kind == UETT_VecStep) {
+ if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) {
+ unsigned N = VT->getNumElements();
+
+ // The vec_step built-in functions that take a 3-component
+ // vector return 4. (OpenCL 1.1 spec 6.11.12)
+ if (N == 3)
+ N = 4;
+
+ return this->emitConst(N, E);
+ }
+ return this->emitConst(1, E);
+ }
+
+ return false;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) {
+ // 'Base.Member'
+ const Expr *Base = E->getBase();
+ const ValueDecl *Member = E->getMemberDecl();
+
+ if (DiscardResult)
+ return this->discard(Base);
+
+ // MemberExprs are almost always lvalues, in which case we don't need to
+ // do the load. But sometimes they aren't.
+ const auto maybeLoadValue = [&]() -> bool {
+ if (E->isGLValue())
+ return true;
+ if (std::optional<PrimType> T = classify(E))
+ return this->emitLoadPop(*T, E);
+ return false;
+ };
+
+ if (const auto *VD = dyn_cast<VarDecl>(Member)) {
+ // I am almost confident in saying that a var decl must be static
+ // and therefore registered as a global variable. But this will probably
+ // turn out to be wrong some time in the future, as always.
+ if (auto GlobalIndex = P.getGlobal(VD))
+ return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue();
+ return false;
+ }
+
+ if (!isa<FieldDecl>(Member))
+ return this->discard(Base) && this->visitDeclRef(Member, E);
+
+ if (Initializing) {
+ if (!this->delegate(Base))
+ return false;
+ } else {
+ if (!this->visit(Base))
+ return false;
+ }
+
+ // Base above gives us a pointer on the stack.
+ const auto *FD = cast<FieldDecl>(Member);
+ const RecordDecl *RD = FD->getParent();
+ const Record *R = getRecord(RD);
+ if (!R)
+ return false;
+ const Record::Field *F = R->getField(FD);
+ // Leave a pointer to the field on the stack.
+ if (F->Decl->getType()->isReferenceType())
+ return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue();
+ return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue();
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
+ // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
+ // stand-alone, e.g. via EvaluateAsInt().
+ if (!ArrayIndex)
+ return false;
+ return this->emitConst(*ArrayIndex, E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
+ assert(Initializing);
+ assert(!DiscardResult);
+
+ // We visit the common opaque expression here once so we have its value
+ // cached.
+ if (!this->discard(E->getCommonExpr()))
+ return false;
+
+ // TODO: This compiles to quite a lot of bytecode if the array is larger.
+ // Investigate compiling this to a loop.
+ const Expr *SubExpr = E->getSubExpr();
+ size_t Size = E->getArraySize().getZExtValue();
+
+ // So, every iteration, we execute an assignment here
+ // where the LHS is on the stack (the target array)
+ // and the RHS is our SubExpr.
+ for (size_t I = 0; I != Size; ++I) {
+ ArrayIndexScope<Emitter> IndexScope(this, I);
+ BlockScope<Emitter> BS(this);
+
+ if (!this->visitArrayElemInit(I, SubExpr))
+ return false;
+ if (!BS.destroyLocals())
+ return false;
+ }
+ return true;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
+ const Expr *SourceExpr = E->getSourceExpr();
+ if (!SourceExpr)
+ return false;
+
+ if (Initializing)
+ return this->visitInitializer(SourceExpr);
+
+ PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr);
+ if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end())
+ return this->emitGetLocal(SubExprT, It->second, E);
+
+ if (!this->visit(SourceExpr))
+ return false;
+
+ // At this point we either have the evaluated source expression or a pointer
+ // to an object on the stack. We want to create a local variable that stores
+ // this value.
+ unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true);
+ if (!this->emitSetLocal(SubExprT, LocalIndex, E))
+ return false;
+
+ // Here the local variable is created but the value is removed from the stack,
+ // so we put it back if the caller needs it.
+ if (!DiscardResult) {
+ if (!this->emitGetLocal(SubExprT, LocalIndex, E))
+ return false;
+ }
+
+ // This is cleaned up when the local variable is destroyed.
+ OpaqueExprs.insert({E, LocalIndex});
+
+ return true;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitAbstractConditionalOperator(
+ const AbstractConditionalOperator *E) {
+ const Expr *Condition = E->getCond();
+ const Expr *TrueExpr = E->getTrueExpr();
+ const Expr *FalseExpr = E->getFalseExpr();
+
+ LabelTy LabelEnd = this->getLabel(); // Label after the operator.
+ LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
+
+ if (!this->visitBool(Condition))
+ return false;
+
+ if (!this->jumpFalse(LabelFalse))
+ return false;
+
+ if (!this->delegate(TrueExpr))
+ return false;
+ if (!this->jump(LabelEnd))
+ return false;
+
+ this->emitLabel(LabelFalse);
+
+ if (!this->delegate(FalseExpr))
+ return false;
+
+ this->fallthrough(LabelEnd);
+ this->emitLabel(LabelEnd);
+
+ return true;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) {
+ if (DiscardResult)
+ return true;
+
+ if (!Initializing) {
+ unsigned StringIndex = P.createGlobalString(E);
+ return this->emitGetPtrGlobal(StringIndex, E);
+ }
+
+ // We are initializing an array on the stack.
+ const ConstantArrayType *CAT =
+ Ctx.getASTContext().getAsConstantArrayType(E->getType());
+ assert(CAT && "a string literal that's not a constant array?");
+
+ // If the initializer string is too long, a diagnostic has already been
+ // emitted. Read only the array length from the string literal.
+ unsigned ArraySize = CAT->getZExtSize();
+ unsigned N = std::min(ArraySize, E->getLength());
+ size_t CharWidth = E->getCharByteWidth();
+
+ for (unsigned I = 0; I != N; ++I) {
+ uint32_t CodeUnit = E->getCodeUnit(I);
+
+ if (CharWidth == 1) {
+ this->emitConstSint8(CodeUnit, E);
+ this->emitInitElemSint8(I, E);
+ } else if (CharWidth == 2) {
+ this->emitConstUint16(CodeUnit, E);
+ this->emitInitElemUint16(I, E);
+ } else if (CharWidth == 4) {
+ this->emitConstUint32(CodeUnit, E);
+ this->emitInitElemUint32(I, E);
+ } else {
+ llvm_unreachable("unsupported character width");
+ }
+ }
+
+ // Fill up the rest of the char array with NUL bytes.
+ for (unsigned I = N; I != ArraySize; ++I) {
+ if (CharWidth == 1) {
+ this->emitConstSint8(0, E);
+ this->emitInitElemSint8(I, E);
+ } else if (CharWidth == 2) {
+ this->emitConstUint16(0, E);
+ this->emitInitElemUint16(I, E);
+ } else if (CharWidth == 4) {
+ this->emitConstUint32(0, E);
+ this->emitInitElemUint32(I, E);
+ } else {
+ llvm_unreachable("unsupported character width");
+ }
+ }
+
+ return true;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
+ return this->delegate(E->getString());
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
+ auto &A = Ctx.getASTContext();
+ std::string Str;
+ A.getObjCEncodingForType(E->getEncodedType(), Str);
+ StringLiteral *SL =
+ StringLiteral::Create(A, Str, StringLiteralKind::Ordinary,
+ /*Pascal=*/false, E->getType(), E->getAtLoc());
+ return this->delegate(SL);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr(
+ const SYCLUniqueStableNameExpr *E) {
+ if (DiscardResult)
+ return true;
+
+ assert(!Initializing);
+
+ auto &A = Ctx.getASTContext();
+ std::string ResultStr = E->ComputeName(A);
+
+ QualType CharTy = A.CharTy.withConst();
+ APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1);
+ QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr,
+ ArraySizeModifier::Normal, 0);
+
+ StringLiteral *SL =
+ StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary,
+ /*Pascal=*/false, ArrayTy, E->getLocation());
+
+ unsigned StringIndex = P.createGlobalString(SL);
+ return this->emitGetPtrGlobal(StringIndex, E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) {
+ if (DiscardResult)
+ return true;
+ return this->emitConst(E->getValue(), E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitFloatCompoundAssignOperator(
+ const CompoundAssignOperator *E) {
+
+ const Expr *LHS = E->getLHS();
+ const Expr *RHS = E->getRHS();
+ QualType LHSType = LHS->getType();
+ QualType LHSComputationType = E->getComputationLHSType();
+ QualType ResultType = E->getComputationResultType();
+ std::optional<PrimType> LT = classify(LHSComputationType);
+ std::optional<PrimType> RT = classify(ResultType);
+
+ assert(ResultType->isFloatingType());
+
+ if (!LT || !RT)
+ return false;
+
+ PrimType LHST = classifyPrim(LHSType);
+
+ // C++17 onwards require that we evaluate the RHS first.
+ // Compute RHS and save it in a temporary variable so we can
+ // load it again later.
+ if (!visit(RHS))
+ return false;
+
+ unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
+ if (!this->emitSetLocal(*RT, TempOffset, E))
+ return false;
+
+ // First, visit LHS.
+ if (!visit(LHS))
+ return false;
+ if (!this->emitLoad(LHST, E))
+ return false;
+
+ // If necessary, convert LHS to its computation type.
+ if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType),
+ LHSComputationType, E))
+ return false;
+
+ // Now load RHS.
+ if (!this->emitGetLocal(*RT, TempOffset, E))
+ return false;
+
+ llvm::RoundingMode RM = getRoundingMode(E);
+ switch (E->getOpcode()) {
+ case BO_AddAssign:
+ if (!this->emitAddf(RM, E))
+ return false;
+ break;
+ case BO_SubAssign:
+ if (!this->emitSubf(RM, E))
+ return false;
+ break;
+ case BO_MulAssign:
+ if (!this->emitMulf(RM, E))
+ return false;
+ break;
+ case BO_DivAssign:
+ if (!this->emitDivf(RM, E))
+ return false;
+ break;
+ default:
+ return false;
+ }
+
+ if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E))
+ return false;
+
+ if (DiscardResult)
+ return this->emitStorePop(LHST, E);
+ return this->emitStore(LHST, E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitPointerCompoundAssignOperator(
+ const CompoundAssignOperator *E) {
+ BinaryOperatorKind Op = E->getOpcode();
+ const Expr *LHS = E->getLHS();
+ const Expr *RHS = E->getRHS();
+ std::optional<PrimType> LT = classify(LHS->getType());
+ std::optional<PrimType> RT = classify(RHS->getType());
+
+ if (Op != BO_AddAssign && Op != BO_SubAssign)
+ return false;
+
+ if (!LT || !RT)
+ return false;
+
+ if (!visit(LHS))
+ return false;
+
+ if (!this->emitLoad(*LT, LHS))
+ return false;
+
+ if (!visit(RHS))
+ return false;
+
+ if (Op == BO_AddAssign) {
+ if (!this->emitAddOffset(*RT, E))
+ return false;
+ } else {
+ if (!this->emitSubOffset(*RT, E))
+ return false;
+ }
+
+ if (DiscardResult)
+ return this->emitStorePopPtr(E);
+ return this->emitStorePtr(E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitCompoundAssignOperator(
+ const CompoundAssignOperator *E) {
+
+ const Expr *LHS = E->getLHS();
+ const Expr *RHS = E->getRHS();
+ std::optional<PrimType> LHSComputationT =
+ classify(E->getComputationLHSType());
+ std::optional<PrimType> LT = classify(LHS->getType());
+ std::optional<PrimType> RT = classify(RHS->getType());
+ std::optional<PrimType> ResultT = classify(E->getType());
+
+ if (!Ctx.getLangOpts().CPlusPlus14)
+ return this->visit(RHS) && this->visit(LHS) && this->emitError(E);
+
+ if (!LT || !RT || !ResultT || !LHSComputationT)
+ return false;
+
+ // Handle floating point operations separately here, since they
+ // require special care.
+
+ if (ResultT == PT_Float || RT == PT_Float)
+ return VisitFloatCompoundAssignOperator(E);
+
+ if (E->getType()->isPointerType())
+ return VisitPointerCompoundAssignOperator(E);
+
+ assert(!E->getType()->isPointerType() && "Handled above");
+ assert(!E->getType()->isFloatingType() && "Handled above");
+
+ // C++17 onwards require that we evaluate the RHS first.
+ // Compute RHS and save it in a temporary variable so we can
+ // load it again later.
+ // FIXME: Compound assignments are unsequenced in C, so we might
+ // have to figure out how to reject them.
+ if (!visit(RHS))
+ return false;
+
+ unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
+
+ if (!this->emitSetLocal(*RT, TempOffset, E))
+ return false;
+
+ // Get LHS pointer, load its value and cast it to the
+ // computation type if necessary.
+ if (!visit(LHS))
+ return false;
+ if (!this->emitLoad(*LT, E))
+ return false;
+ if (LT != LHSComputationT) {
+ if (!this->emitCast(*LT, *LHSComputationT, E))
+ return false;
+ }
+
+ // Get the RHS value on the stack.
+ if (!this->emitGetLocal(*RT, TempOffset, E))
+ return false;
+
+ // Perform operation.
+ switch (E->getOpcode()) {
+ case BO_AddAssign:
+ if (!this->emitAdd(*LHSComputationT, E))
+ return false;
+ break;
+ case BO_SubAssign:
+ if (!this->emitSub(*LHSComputationT, E))
+ return false;
+ break;
+ case BO_MulAssign:
+ if (!this->emitMul(*LHSComputationT, E))
+ return false;
+ break;
+ case BO_DivAssign:
+ if (!this->emitDiv(*LHSComputationT, E))
+ return false;
+ break;
+ case BO_RemAssign:
+ if (!this->emitRem(*LHSComputationT, E))
+ return false;
+ break;
+ case BO_ShlAssign:
+ if (!this->emitShl(*LHSComputationT, *RT, E))
+ return false;
+ break;
+ case BO_ShrAssign:
+ if (!this->emitShr(*LHSComputationT, *RT, E))
+ return false;
+ break;
+ case BO_AndAssign:
+ if (!this->emitBitAnd(*LHSComputationT, E))
+ return false;
+ break;
+ case BO_XorAssign:
+ if (!this->emitBitXor(*LHSComputationT, E))
+ return false;
+ break;
+ case BO_OrAssign:
+ if (!this->emitBitOr(*LHSComputationT, E))
+ return false;
+ break;
+ default:
+ llvm_unreachable("Unimplemented compound assign operator");
+ }
+
+ // And now cast from LHSComputationT to ResultT.
+ if (ResultT != LHSComputationT) {
+ if (!this->emitCast(*LHSComputationT, *ResultT, E))
+ return false;
+ }
+
+ // And store the result in LHS.
+ if (DiscardResult) {
+ if (LHS->refersToBitField())
+ return this->emitStoreBitFieldPop(*ResultT, E);
+ return this->emitStorePop(*ResultT, E);
+ }
+ if (LHS->refersToBitField())
+ return this->emitStoreBitField(*ResultT, E);
+ return this->emitStore(*ResultT, E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) {
+ LocalScope<Emitter> ES(this);
+ const Expr *SubExpr = E->getSubExpr();
+
+ assert(E->getNumObjects() == 0 && "TODO: Implement cleanups");
+
+ return this->delegate(SubExpr) && ES.destroyLocals();
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitMaterializeTemporaryExpr(
+ const MaterializeTemporaryExpr *E) {
+ const Expr *SubExpr = E->getSubExpr();
+
+ if (Initializing) {
+ // We already have a value, just initialize that.
+ return this->delegate(SubExpr);
+ }
+ // If we don't end up using the materialized temporary anyway, don't
+ // bother creating it.
+ if (DiscardResult)
+ return this->discard(SubExpr);
+
+ // When we're initializing a global variable *or* the storage duration of
+ // the temporary is explicitly static, create a global variable.
+ std::optional<PrimType> SubExprT = classify(SubExpr);
+ bool IsStatic = E->getStorageDuration() == SD_Static;
+ if (GlobalDecl || IsStatic) {
+ std::optional<unsigned> GlobalIndex = P.createGlobal(E);
+ if (!GlobalIndex)
+ return false;
+
+ const LifetimeExtendedTemporaryDecl *TempDecl =
+ E->getLifetimeExtendedTemporaryDecl();
+ if (IsStatic)
+ assert(TempDecl);
+
+ if (SubExprT) {
+ if (!this->visit(SubExpr))
+ return false;
+ if (IsStatic) {
+ if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E))
+ return false;
+ } else {
+ if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E))
+ return false;
+ }
+ return this->emitGetPtrGlobal(*GlobalIndex, E);
+ }
+
+ // Non-primitive values.
+ if (!this->emitGetPtrGlobal(*GlobalIndex, E))
+ return false;
+ if (!this->visitInitializer(SubExpr))
+ return false;
+ if (IsStatic)
+ return this->emitInitGlobalTempComp(TempDecl, E);
+ return true;
+ }
+
+ // For everyhing else, use local variables.
+ if (SubExprT) {
+ unsigned LocalIndex = allocateLocalPrimitive(
+ SubExpr, *SubExprT, /*IsConst=*/true, /*IsExtended=*/true);
+ if (!this->visit(SubExpr))
+ return false;
+ if (!this->emitSetLocal(*SubExprT, LocalIndex, E))
+ return false;
+ return this->emitGetPtrLocal(LocalIndex, E);
+ } else {
+ const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
+ if (std::optional<unsigned> LocalIndex =
+ allocateLocal(Inner, E->getExtendingDecl())) {
+ InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex));
+ if (!this->emitGetPtrLocal(*LocalIndex, E))
+ return false;
+ return this->visitInitializer(SubExpr);
+ }
+ }
+ return false;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitCXXBindTemporaryExpr(
+ const CXXBindTemporaryExpr *E) {
+ return this->delegate(E->getSubExpr());
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
+ const Expr *Init = E->getInitializer();
+ if (Initializing) {
+ // We already have a value, just initialize that.
+ return this->visitInitializer(Init) && this->emitFinishInit(E);
+ }
+
+ std::optional<PrimType> T = classify(E->getType());
+ if (E->isFileScope()) {
+ // Avoid creating a variable if this is a primitive RValue anyway.
+ if (T && !E->isLValue())
+ return this->delegate(Init);
+
+ if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
+ if (!this->emitGetPtrGlobal(*GlobalIndex, E))
+ return false;
+
+ if (T) {
+ if (!this->visit(Init))
+ return false;
+ return this->emitInitGlobal(*T, *GlobalIndex, E);
+ }
+
+ return this->visitInitializer(Init) && this->emitFinishInit(E);
+ }
+
+ return false;
+ }
+
+ // Otherwise, use a local variable.
+ if (T && !E->isLValue()) {
+ // For primitive types, we just visit the initializer.
+ return this->delegate(Init);
+ } else {
+ unsigned LocalIndex;
+
+ if (T)
+ LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false);
+ else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init))
+ LocalIndex = *MaybeIndex;
+ else
+ return false;
+
+ if (!this->emitGetPtrLocal(LocalIndex, E))
+ return false;
+
+ if (T) {
+ if (!this->visit(Init)) {
+ return false;
+ }
+ return this->emitInit(*T, E);
+ } else {
+ if (!this->visitInitializer(Init) || !this->emitFinishInit(E))
+ return false;
+ }
+
+ if (DiscardResult)
+ return this->emitPopPtr(E);
+ return true;
+ }
+
+ return false;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) {
+ if (DiscardResult)
+ return true;
+ if (E->getType()->isBooleanType())
+ return this->emitConstBool(E->getValue(), E);
+ return this->emitConst(E->getValue(), E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
+ if (DiscardResult)
+ return true;
+ return this->emitConst(E->getValue(), E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) {
+ if (DiscardResult)
+ return true;
+
+ assert(Initializing);
+ const Record *R = P.getOrCreateRecord(E->getLambdaClass());
+
+ auto *CaptureInitIt = E->capture_init_begin();
+ // Initialize all fields (which represent lambda captures) of the
+ // record with their initializers.
+ for (const Record::Field &F : R->fields()) {
+ const Expr *Init = *CaptureInitIt;
+ ++CaptureInitIt;
+
+ if (!Init)
+ continue;
+
+ if (std::optional<PrimType> T = classify(Init)) {
+ if (!this->visit(Init))
+ return false;
+
+ if (!this->emitInitField(*T, F.Offset, E))
+ return false;
+ } else {
+ if (!this->emitGetPtrField(F.Offset, E))
+ return false;
+
+ if (!this->visitInitializer(Init))
+ return false;
+
+ if (!this->emitPopPtr(E))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) {
+ if (DiscardResult)
+ return true;
+
+ return this->delegate(E->getFunctionName());
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) {
+ if (E->getSubExpr() && !this->discard(E->getSubExpr()))
+ return false;
+
+ return this->emitInvalid(E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitCXXReinterpretCastExpr(
+ const CXXReinterpretCastExpr *E) {
+ if (!this->discard(E->getSubExpr()))
+ return false;
+
+ return this->emitInvalidCast(CastKind::Reinterpret, E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
+ assert(E->getType()->isBooleanType());
+
+ if (DiscardResult)
+ return true;
+ return this->emitConstBool(E->getValue(), E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) {
+ QualType T = E->getType();
+ assert(!classify(T));
+
+ if (T->isRecordType()) {
+ const CXXConstructorDecl *Ctor = E->getConstructor();
+
+ // Trivial copy/move constructor. Avoid copy.
+ if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() &&
+ Ctor->isTrivial() &&
+ E->getArg(0)->isTemporaryObject(Ctx.getASTContext(),
+ T->getAsCXXRecordDecl()))
+ return this->visitInitializer(E->getArg(0));
+
+ // If we're discarding a construct expression, we still need
+ // to allocate a variable and call the constructor and destructor.
+ if (DiscardResult) {
+ if (Ctor->isTrivial())
+ return true;
+ assert(!Initializing);
+ std::optional<unsigned> LocalIndex = allocateLocal(E);
+
+ if (!LocalIndex)
+ return false;
+
+ if (!this->emitGetPtrLocal(*LocalIndex, E))
+ return false;
+ }
+
+ // Zero initialization.
+ if (E->requiresZeroInitialization()) {
+ const Record *R = getRecord(E->getType());
+
+ if (!this->visitZeroRecordInitializer(R, E))
+ return false;
+
+ // If the constructor is trivial anyway, we're done.
+ if (Ctor->isTrivial())
+ return true;
+ }
+
+ const Function *Func = getFunction(Ctor);
+
+ if (!Func)
+ return false;
+
+ assert(Func->hasThisPointer());
+ assert(!Func->hasRVO());
+
+ // The This pointer is already on the stack because this is an initializer,
+ // but we need to dup() so the call() below has its own copy.
+ if (!this->emitDupPtr(E))
+ return false;
+
+ // Constructor arguments.
+ for (const auto *Arg : E->arguments()) {
+ if (!this->visit(Arg))
+ return false;
+ }
+
+ if (Func->isVariadic()) {
+ uint32_t VarArgSize = 0;
+ unsigned NumParams = Func->getNumWrittenParams();
+ for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) {
+ VarArgSize +=
+ align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr)));
+ }
+ if (!this->emitCallVar(Func, VarArgSize, E))
+ return false;
+ } else {
+ if (!this->emitCall(Func, 0, E))
+ return false;
+ }
+
+ // Immediately call the destructor if we have to.
+ if (DiscardResult) {
+ if (!this->emitRecordDestruction(getRecord(E->getType())))
+ return false;
+ if (!this->emitPopPtr(E))
+ return false;
+ }
+ return true;
+ }
+
+ if (T->isArrayType()) {
+ const ConstantArrayType *CAT =
+ Ctx.getASTContext().getAsConstantArrayType(E->getType());
+ if (!CAT)
+ return false;
+
+ size_t NumElems = CAT->getZExtSize();
+ const Function *Func = getFunction(E->getConstructor());
+ if (!Func || !Func->isConstexpr())
+ return false;
+
+ // FIXME(perf): We're calling the constructor once per array element here,
+ // in the old intepreter we had a special-case for trivial constructors.
+ for (size_t I = 0; I != NumElems; ++I) {
+ if (!this->emitConstUint64(I, E))
+ return false;
+ if (!this->emitArrayElemPtrUint64(E))
+ return false;
+
+ // Constructor arguments.
+ for (const auto *Arg : E->arguments()) {
+ if (!this->visit(Arg))
+ return false;
+ }
+
+ if (!this->emitCall(Func, 0, E))
+ return false;
+ }
+ return true;
+ }
+
+ return false;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) {
+ if (DiscardResult)
+ return true;
+
+ const APValue Val =
+ E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr);
+
+ // Things like __builtin_LINE().
+ if (E->getType()->isIntegerType()) {
+ assert(Val.isInt());
+ const APSInt &I = Val.getInt();
+ return this->emitConst(I, E);
+ }
+ // Otherwise, the APValue is an LValue, with only one element.
+ // Theoretically, we don't need the APValue at all of course.
+ assert(E->getType()->isPointerType());
+ assert(Val.isLValue());
+ const APValue::LValueBase &Base = Val.getLValueBase();
+ if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>())
+ return this->visit(LValueExpr);
+
+ // Otherwise, we have a decl (which is the case for
+ // __builtin_source_location).
+ assert(Base.is<const ValueDecl *>());
+ assert(Val.getLValuePath().size() == 0);
+ const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>();
+ assert(BaseDecl);
+
+ auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl);
+
+ std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD);
+ if (!GlobalIndex)
+ return false;
+
+ if (!this->emitGetPtrGlobal(*GlobalIndex, E))
+ return false;
+
+ const Record *R = getRecord(E->getType());
+ const APValue &V = UGCD->getValue();
+ for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) {
+ const Record::Field *F = R->getField(I);
+ const APValue &FieldValue = V.getStructField(I);
+
+ PrimType FieldT = classifyPrim(F->Decl->getType());
+
+ if (!this->visitAPValue(FieldValue, FieldT, E))
+ return false;
+ if (!this->emitInitField(FieldT, F->Offset, E))
+ return false;
+ }
+
+ // Leave the pointer to the global on the stack.
+ return true;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) {
+ unsigned N = E->getNumComponents();
+ if (N == 0)
+ return false;
+
+ for (unsigned I = 0; I != N; ++I) {
+ const OffsetOfNode &Node = E->getComponent(I);
+ if (Node.getKind() == OffsetOfNode::Array) {
+ const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex());
+ PrimType IndexT = classifyPrim(ArrayIndexExpr->getType());
+
+ if (DiscardResult) {
+ if (!this->discard(ArrayIndexExpr))
+ return false;
+ continue;
+ }
+
+ if (!this->visit(ArrayIndexExpr))
+ return false;
+ // Cast to Sint64.
+ if (IndexT != PT_Sint64) {
+ if (!this->emitCast(IndexT, PT_Sint64, E))
+ return false;
+ }
+ }
+ }
+
+ if (DiscardResult)
+ return true;
+
+ PrimType T = classifyPrim(E->getType());
+ return this->emitOffsetOf(T, E, E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitCXXScalarValueInitExpr(
+ const CXXScalarValueInitExpr *E) {
+ QualType Ty = E->getType();
+
+ if (DiscardResult || Ty->isVoidType())
+ return true;
+
+ if (std::optional<PrimType> T = classify(Ty))
+ return this->visitZeroInitializer(*T, Ty, E);
+
+ if (const auto *CT = Ty->getAs<ComplexType>()) {
+ if (!Initializing) {
+ std::optional<unsigned> LocalIndex = allocateLocal(E);
+ if (!LocalIndex)
+ return false;
+ if (!this->emitGetPtrLocal(*LocalIndex, E))
+ return false;
+ }
+
+ // Initialize both fields to 0.
+ QualType ElemQT = CT->getElementType();
+ PrimType ElemT = classifyPrim(ElemQT);
+
+ for (unsigned I = 0; I != 2; ++I) {
+ if (!this->visitZeroInitializer(ElemT, ElemQT, E))
+ return false;
+ if (!this->emitInitElem(ElemT, I, E))
+ return false;
+ }
+ return true;
+ }
+
+ if (const auto *VT = Ty->getAs<VectorType>()) {
+ // FIXME: Code duplication with the _Complex case above.
+ if (!Initializing) {
+ std::optional<unsigned> LocalIndex = allocateLocal(E);
+ if (!LocalIndex)
+ return false;
+ if (!this->emitGetPtrLocal(*LocalIndex, E))
+ return false;
+ }
+
+ // Initialize all fields to 0.
+ QualType ElemQT = VT->getElementType();
+ PrimType ElemT = classifyPrim(ElemQT);
+
+ for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) {
+ if (!this->visitZeroInitializer(ElemT, ElemQT, E))
+ return false;
+ if (!this->emitInitElem(ElemT, I, E))
+ return false;
+ }
+ return true;
+ }
+
+ return false;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
+ return this->emitConst(E->getPackLength(), E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitGenericSelectionExpr(
+ const GenericSelectionExpr *E) {
+ return this->delegate(E->getResultExpr());
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) {
+ return this->delegate(E->getChosenSubExpr());
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
+ if (DiscardResult)
+ return true;
+
+ return this->emitConst(E->getValue(), E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr(
+ const CXXInheritedCtorInitExpr *E) {
+ const CXXConstructorDecl *Ctor = E->getConstructor();
+ assert(!Ctor->isTrivial() &&
+ "Trivial CXXInheritedCtorInitExpr, implement. (possible?)");
+ const Function *F = this->getFunction(Ctor);
+ assert(F);
+ assert(!F->hasRVO());
+ assert(F->hasThisPointer());
+
+ if (!this->emitDupPtr(SourceInfo{}))
+ return false;
+
+ // Forward all arguments of the current function (which should be a
+ // constructor itself) to the inherited ctor.
+ // This is necessary because the calling code has pushed the pointer
+ // of the correct base for us already, but the arguments need
+ // to come after.
+ unsigned Offset = align(primSize(PT_Ptr)); // instance pointer.
+ for (const ParmVarDecl *PD : Ctor->parameters()) {
+ PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr);
+
+ if (!this->emitGetParam(PT, Offset, E))
+ return false;
+ Offset += align(primSize(PT));
+ }
+
+ return this->emitCall(F, 0, E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) {
+ assert(classifyPrim(E->getType()) == PT_Ptr);
+ const Expr *Init = E->getInitializer();
+ QualType ElementType = E->getAllocatedType();
+ std::optional<PrimType> ElemT = classify(ElementType);
+ unsigned PlacementArgs = E->getNumPlacementArgs();
+ bool IsNoThrow = false;
+
+ // FIXME: Better diagnostic. diag::note_constexpr_new_placement
+ if (PlacementArgs != 0) {
+ // The only new-placement list we support is of the form (std::nothrow).
+ //
+ // FIXME: There is no restriction on this, but it's not clear that any
+ // other form makes any sense. We get here for cases such as:
+ //
+ // new (std::align_val_t{N}) X(int)
+ //
+ // (which should presumably be valid only if N is a multiple of
+ // alignof(int), and in any case can't be deallocated unless N is
+ // alignof(X) and X has new-extended alignment).
+ if (PlacementArgs != 1 || !E->getPlacementArg(0)->getType()->isNothrowT())
+ return this->emitInvalid(E);
+
+ if (!this->discard(E->getPlacementArg(0)))
+ return false;
+ IsNoThrow = true;
+ }
+
+ const Descriptor *Desc;
+ if (ElemT) {
+ if (E->isArray())
+ Desc = nullptr; // We're not going to use it in this case.
+ else
+ Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD,
+ /*IsConst=*/false, /*IsTemporary=*/false,
+ /*IsMutable=*/false);
+ } else {
+ Desc = P.createDescriptor(
+ E, ElementType.getTypePtr(),
+ E->isArray() ? std::nullopt : Descriptor::InlineDescMD,
+ /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init);
+ }
+
+ if (E->isArray()) {
+ std::optional<const Expr *> ArraySizeExpr = E->getArraySize();
+ if (!ArraySizeExpr)
+ return false;
+
+ const Expr *Stripped = *ArraySizeExpr;
+ for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
+ Stripped = ICE->getSubExpr())
+ if (ICE->getCastKind() != CK_NoOp &&
+ ICE->getCastKind() != CK_IntegralCast)
+ break;
+
+ PrimType SizeT = classifyPrim(Stripped->getType());
+
+ if (!this->visit(Stripped))
+ return false;
+
+ if (ElemT) {
+ // N primitive elements.
+ if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E))
+ return false;
+ } else {
+ // N Composite elements.
+ if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E))
+ return false;
+ }
+
+ if (Init && !this->visitInitializer(Init))
+ return false;
+
+ } else {
+ // Allocate just one element.
+ if (!this->emitAlloc(Desc, E))
+ return false;
+
+ if (Init) {
+ if (ElemT) {
+ if (!this->visit(Init))
+ return false;
+
+ if (!this->emitInit(*ElemT, E))
+ return false;
+ } else {
+ // Composite.
+ if (!this->visitInitializer(Init))
+ return false;
+ }
+ }
+ }
+
+ if (DiscardResult)
+ return this->emitPopPtr(E);
+
+ return true;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
+ const Expr *Arg = E->getArgument();
+
+ // Arg must be an lvalue.
+ if (!this->visit(Arg))
+ return false;
+
+ return this->emitFree(E->isArrayForm(), E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
+ assert(Ctx.getLangOpts().CPlusPlus);
+ return this->emitConstBool(E->getValue(), E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
+ if (DiscardResult)
+ return true;
+ assert(!Initializing);
+
+ const MSGuidDecl *GuidDecl = E->getGuidDecl();
+ const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl();
+ assert(RD);
+ // If the definiton of the result type is incomplete, just return a dummy.
+ // If (and when) that is read from, we will fail, but not now.
+ if (!RD->isCompleteDefinition()) {
+ if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl))
+ return this->emitGetPtrGlobal(*I, E);
+ return false;
+ }
+
+ std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl);
+ if (!GlobalIndex)
+ return false;
+ if (!this->emitGetPtrGlobal(*GlobalIndex, E))
+ return false;
+
+ assert(this->getRecord(E->getType()));
+
+ const APValue &V = GuidDecl->getAsAPValue();
+ if (V.getKind() == APValue::None)
+ return true;
+
+ assert(V.isStruct());
+ assert(V.getStructNumBases() == 0);
+ if (!this->visitAPValueInitializer(V, E))
+ return false;
+
+ return this->emitFinishInit(E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) {
+ assert(classifyPrim(E->getType()) == PT_Bool);
+ if (DiscardResult)
+ return true;
+ return this->emitConstBool(E->isSatisfied(), E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitConceptSpecializationExpr(
+ const ConceptSpecializationExpr *E) {
+ assert(classifyPrim(E->getType()) == PT_Bool);
+ if (DiscardResult)
+ return true;
+ return this->emitConstBool(E->isSatisfied(), E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator(
+ const CXXRewrittenBinaryOperator *E) {
+ return this->delegate(E->getSemanticForm());
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
+
+ for (const Expr *SemE : E->semantics()) {
+ if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
+ if (SemE == E->getResultExpr())
+ return false;
+
+ if (OVE->isUnique())
+ continue;
+
+ if (!this->discard(OVE))
+ return false;
+ } else if (SemE == E->getResultExpr()) {
+ if (!this->delegate(SemE))
+ return false;
+ } else {
+ if (!this->discard(SemE))
+ return false;
+ }
+ }
+ return true;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) {
+ return this->delegate(E->getSelectedExpr());
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) {
+ return this->emitError(E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) {
+ assert(E->getType()->isVoidPointerType());
+
+ unsigned Offset = allocateLocalPrimitive(
+ E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
+
+ return this->emitGetLocal(PT_Ptr, Offset, E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) {
+ assert(Initializing);
+ const auto *VT = E->getType()->castAs<VectorType>();
+ QualType ElemType = VT->getElementType();
+ PrimType ElemT = classifyPrim(ElemType);
+ const Expr *Src = E->getSrcExpr();
+ PrimType SrcElemT =
+ classifyPrim(Src->getType()->castAs<VectorType>()->getElementType());
+
+ unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false);
+ if (!this->visit(Src))
+ return false;
+ if (!this->emitSetLocal(PT_Ptr, SrcOffset, E))
+ return false;
+
+ for (unsigned I = 0; I != VT->getNumElements(); ++I) {
+ if (!this->emitGetLocal(PT_Ptr, SrcOffset, E))
+ return false;
+ if (!this->emitArrayElemPop(SrcElemT, I, E))
+ return false;
+ if (SrcElemT != ElemT) {
+ if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E))
+ return false;
+ }
+ if (!this->emitInitElem(ElemT, I, E))
+ return false;
+ }
+
+ return true;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) {
+ assert(Initializing);
+ assert(E->getNumSubExprs() > 2);
+
+ const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)};
+ const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>();
+ PrimType ElemT = classifyPrim(VT->getElementType());
+ unsigned NumInputElems = VT->getNumElements();
+ unsigned NumOutputElems = E->getNumSubExprs() - 2;
+ assert(NumOutputElems > 0);
+
+ // Save both input vectors to a local variable.
+ unsigned VectorOffsets[2];
+ for (unsigned I = 0; I != 2; ++I) {
+ VectorOffsets[I] = this->allocateLocalPrimitive(
+ Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
+ if (!this->visit(Vecs[I]))
+ return false;
+ if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E))
+ return false;
+ }
+ for (unsigned I = 0; I != NumOutputElems; ++I) {
+ APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I);
+ if (ShuffleIndex == -1)
+ return this->emitInvalid(E); // FIXME: Better diagnostic.
+
+ assert(ShuffleIndex < (NumInputElems * 2));
+ if (!this->emitGetLocal(PT_Ptr,
+ VectorOffsets[ShuffleIndex >= NumInputElems], E))
+ return false;
+ unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems;
+ if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E))
+ return false;
+
+ if (!this->emitInitElem(ElemT, I, E))
+ return false;
+ }
+
+ return true;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitExtVectorElementExpr(
+ const ExtVectorElementExpr *E) {
+ const Expr *Base = E->getBase();
+ assert(
+ Base->getType()->isVectorType() ||
+ Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType());
+
+ SmallVector<uint32_t, 4> Indices;
+ E->getEncodedElementAccess(Indices);
+
+ if (Indices.size() == 1) {
+ if (!this->visit(Base))
+ return false;
+
+ if (E->isGLValue()) {
+ if (!this->emitConstUint32(Indices[0], E))
+ return false;
+ return this->emitArrayElemPtrPop(PT_Uint32, E);
+ }
+ // Else, also load the value.
+ return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E);
+ }
+
+ // Create a local variable for the base.
+ unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true,
+ /*IsExtended=*/false);
+ if (!this->visit(Base))
+ return false;
+ if (!this->emitSetLocal(PT_Ptr, BaseOffset, E))
+ return false;
+
+ // Now the vector variable for the return value.
+ if (!Initializing) {
+ std::optional<unsigned> ResultIndex;
+ ResultIndex = allocateLocal(E);
+ if (!ResultIndex)
+ return false;
+ if (!this->emitGetPtrLocal(*ResultIndex, E))
+ return false;
+ }
+
+ assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements());
+
+ PrimType ElemT =
+ classifyPrim(E->getType()->getAs<VectorType>()->getElementType());
+ uint32_t DstIndex = 0;
+ for (uint32_t I : Indices) {
+ if (!this->emitGetLocal(PT_Ptr, BaseOffset, E))
+ return false;
+ if (!this->emitArrayElemPop(ElemT, I, E))
+ return false;
+ if (!this->emitInitElem(ElemT, DstIndex, E))
+ return false;
+ ++DstIndex;
+ }
+
+ // Leave the result pointer on the stack.
+ assert(!DiscardResult);
+ return true;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
+ if (!E->isExpressibleAsConstantInitializer())
+ return this->emitInvalid(E);
+
+ return this->delegate(E->getSubExpr());
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitCXXStdInitializerListExpr(
+ const CXXStdInitializerListExpr *E) {
+ const Expr *SubExpr = E->getSubExpr();
+ const ConstantArrayType *ArrayType =
+ Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType());
+ const Record *R = getRecord(E->getType());
+ assert(Initializing);
+ assert(SubExpr->isGLValue());
+
+ if (!this->visit(SubExpr))
+ return false;
+ if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E))
+ return false;
+
+ PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType());
+ if (isIntegralType(SecondFieldT)) {
+ if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()),
+ SecondFieldT, E))
+ return false;
+ return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E);
+ }
+ assert(SecondFieldT == PT_Ptr);
+
+ if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E))
+ return false;
+ if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E))
+ return false;
+ if (!this->emitArrayElemPtrPop(PT_Uint64, E))
+ return false;
+ return this->emitInitFieldPtr(R->getField(1u)->Offset, E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) {
+ BlockScope<Emitter> BS(this);
+ StmtExprScope<Emitter> SS(this);
+
+ const CompoundStmt *CS = E->getSubStmt();
+ const Stmt *Result = CS->getStmtExprResult();
+ for (const Stmt *S : CS->body()) {
+ if (S != Result) {
+ if (!this->visitStmt(S))
+ return false;
+ continue;
+ }
+
+ assert(S == Result);
+ if (const Expr *ResultExpr = dyn_cast<Expr>(S)) {
+ if (DiscardResult)
+ return this->discard(ResultExpr);
+ return this->delegate(ResultExpr);
+ }
+
+ return this->visitStmt(S);
+ }
+
+ return BS.destroyLocals();
+}
+
+template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) {
+ OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true,
+ /*NewInitializing=*/false);
+ return this->Visit(E);
+}
+
+template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) {
+ if (E->containsErrors())
+ return this->emitError(E);
+
+ // We're basically doing:
+ // OptionScope<Emitter> Scope(this, DicardResult, Initializing);
+ // but that's unnecessary of course.
+ return this->Visit(E);
+}
+
+template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) {
+ if (E->getType().isNull())
+ return false;
+
+ if (E->getType()->isVoidType())
+ return this->discard(E);
+
+ // Create local variable to hold the return value.
+ if (!E->isGLValue() && !E->getType()->isAnyComplexType() &&
+ !classify(E->getType())) {
+ std::optional<unsigned> LocalIndex = allocateLocal(E);
+ if (!LocalIndex)
+ return false;
+
+ if (!this->emitGetPtrLocal(*LocalIndex, E))
+ return false;
+ return this->visitInitializer(E);
+ }
+
+ // Otherwise,we have a primitive return value, produce the value directly
+ // and push it on the stack.
+ OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
+ /*NewInitializing=*/false);
+ return this->Visit(E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::visitInitializer(const Expr *E) {
+ assert(!classify(E->getType()));
+
+ if (E->containsErrors())
+ return this->emitError(E);
+
+ OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
+ /*NewInitializing=*/true);
+ return this->Visit(E);
+}
+
+template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) {
+ std::optional<PrimType> T = classify(E->getType());
+ if (!T) {
+ // Convert complex values to bool.
+ if (E->getType()->isAnyComplexType()) {
+ if (!this->visit(E))
+ return false;
+ return this->emitComplexBoolCast(E);
+ }
+ return false;
+ }
+
+ if (!this->visit(E))
+ return false;
+
+ if (T == PT_Bool)
+ return true;
+
+ // Convert pointers to bool.
+ if (T == PT_Ptr || T == PT_FnPtr) {
+ if (!this->emitNull(*T, nullptr, E))
+ return false;
+ return this->emitNE(*T, E);
+ }
+
+ // Or Floats.
+ if (T == PT_Float)
+ return this->emitCastFloatingIntegralBool(E);
+
+ // Or anything else we can.
+ return this->emitCast(*T, PT_Bool, E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT,
+ const Expr *E) {
+ switch (T) {
+ case PT_Bool:
+ return this->emitZeroBool(E);
+ case PT_Sint8:
+ return this->emitZeroSint8(E);
+ case PT_Uint8:
+ return this->emitZeroUint8(E);
+ case PT_Sint16:
+ return this->emitZeroSint16(E);
+ case PT_Uint16:
+ return this->emitZeroUint16(E);
+ case PT_Sint32:
+ return this->emitZeroSint32(E);
+ case PT_Uint32:
+ return this->emitZeroUint32(E);
+ case PT_Sint64:
+ return this->emitZeroSint64(E);
+ case PT_Uint64:
+ return this->emitZeroUint64(E);
+ case PT_IntAP:
+ return this->emitZeroIntAP(Ctx.getBitWidth(QT), E);
+ case PT_IntAPS:
+ return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E);
+ case PT_Ptr:
+ return this->emitNullPtr(nullptr, E);
+ case PT_FnPtr:
+ return this->emitNullFnPtr(nullptr, E);
+ case PT_MemberPtr:
+ return this->emitNullMemberPtr(nullptr, E);
+ case PT_Float: {
+ return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E);
+ }
+ }
+ llvm_unreachable("unknown primitive type");
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R,
+ const Expr *E) {
+ assert(E);
+ assert(R);
+ // Fields
+ for (const Record::Field &Field : R->fields()) {
+ const Descriptor *D = Field.Desc;
+ if (D->isPrimitive()) {
+ QualType QT = D->getType();
+ PrimType T = classifyPrim(D->getType());
+ if (!this->visitZeroInitializer(T, QT, E))
+ return false;
+ if (!this->emitInitField(T, Field.Offset, E))
+ return false;
+ continue;
+ }
+
+ if (!this->emitGetPtrField(Field.Offset, E))
+ return false;
+
+ if (D->isPrimitiveArray()) {
+ QualType ET = D->getElemQualType();
+ PrimType T = classifyPrim(ET);
+ for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
+ if (!this->visitZeroInitializer(T, ET, E))
+ return false;
+ if (!this->emitInitElem(T, I, E))
+ return false;
+ }
+ } else if (D->isCompositeArray()) {
+ const Record *ElemRecord = D->ElemDesc->ElemRecord;
+ assert(D->ElemDesc->ElemRecord);
+ for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
+ if (!this->emitConstUint32(I, E))
+ return false;
+ if (!this->emitArrayElemPtr(PT_Uint32, E))
+ return false;
+ if (!this->visitZeroRecordInitializer(ElemRecord, E))
+ return false;
+ if (!this->emitPopPtr(E))
+ return false;
+ }
+ } else if (D->isRecord()) {
+ if (!this->visitZeroRecordInitializer(D->ElemRecord, E))
+ return false;
+ } else {
+ assert(false);
+ }
+
+ if (!this->emitPopPtr(E))
+ return false;
+ }
+
+ for (const Record::Base &B : R->bases()) {
+ if (!this->emitGetPtrBase(B.Offset, E))
+ return false;
+ if (!this->visitZeroRecordInitializer(B.R, E))
+ return false;
+ if (!this->emitFinishInitPop(E))
+ return false;
+ }
+
+ // FIXME: Virtual bases.
+
+ return true;
+}
+
+template <class Emitter>
+template <typename T>
+bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) {
+ switch (Ty) {
+ case PT_Sint8:
+ return this->emitConstSint8(Value, E);
+ case PT_Uint8:
+ return this->emitConstUint8(Value, E);
+ case PT_Sint16:
+ return this->emitConstSint16(Value, E);
+ case PT_Uint16:
+ return this->emitConstUint16(Value, E);
+ case PT_Sint32:
+ return this->emitConstSint32(Value, E);
+ case PT_Uint32:
+ return this->emitConstUint32(Value, E);
+ case PT_Sint64:
+ return this->emitConstSint64(Value, E);
+ case PT_Uint64:
+ return this->emitConstUint64(Value, E);
+ case PT_Bool:
+ return this->emitConstBool(Value, E);
+ case PT_Ptr:
+ case PT_FnPtr:
+ case PT_MemberPtr:
+ case PT_Float:
+ case PT_IntAP:
+ case PT_IntAPS:
+ llvm_unreachable("Invalid integral type");
+ break;
+ }
+ llvm_unreachable("unknown primitive type");
+}
+
+template <class Emitter>
+template <typename T>
+bool Compiler<Emitter>::emitConst(T Value, const Expr *E) {
+ return this->emitConst(Value, classifyPrim(E->getType()), E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty,
+ const Expr *E) {
+ if (Ty == PT_IntAPS)
+ return this->emitConstIntAPS(Value, E);
+ if (Ty == PT_IntAP)
+ return this->emitConstIntAP(Value, E);
+
+ if (Value.isSigned())
+ return this->emitConst(Value.getSExtValue(), Ty, E);
+ return this->emitConst(Value.getZExtValue(), Ty, E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
+ return this->emitConst(Value, classifyPrim(E->getType()), E);
+}
+
+template <class Emitter>
+unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty,
+ bool IsConst,
+ bool IsExtended) {
+ // Make sure we don't accidentally register the same decl twice.
+ if (const auto *VD =
+ dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
+ assert(!P.getGlobal(VD));
+ assert(!Locals.contains(VD));
+ (void)VD;
+ }
+
+ // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
+ // (int){12} in C. Consider using Expr::isTemporaryObject() instead
+ // or isa<MaterializeTemporaryExpr>().
+ Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst,
+ Src.is<const Expr *>());
+ Scope::Local Local = this->createLocal(D);
+ if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>()))
+ Locals.insert({VD, Local});
+ VarScope->add(Local, IsExtended);
+ return Local.Offset;
+}
+
+template <class Emitter>
+std::optional<unsigned>
+Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) {
+ // Make sure we don't accidentally register the same decl twice.
+ if ([[maybe_unused]] const auto *VD =
+ dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
+ assert(!P.getGlobal(VD));
+ assert(!Locals.contains(VD));
+ }
+
+ QualType Ty;
+ const ValueDecl *Key = nullptr;
+ const Expr *Init = nullptr;
+ bool IsTemporary = false;
+ if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
+ Key = VD;
+ Ty = VD->getType();
+
+ if (const auto *VarD = dyn_cast<VarDecl>(VD))
+ Init = VarD->getInit();
+ }
+ if (auto *E = Src.dyn_cast<const Expr *>()) {
+ IsTemporary = true;
+ Ty = E->getType();
+ }
+
+ Descriptor *D = P.createDescriptor(
+ Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
+ IsTemporary, /*IsMutable=*/false, Init);
+ if (!D)
+ return std::nullopt;
+
+ Scope::Local Local = this->createLocal(D);
+ if (Key)
+ Locals.insert({Key, Local});
+ if (ExtendingDecl)
+ VarScope->addExtended(Local, ExtendingDecl);
+ else
+ VarScope->add(Local, false);
+ return Local.Offset;
+}
+
+template <class Emitter>
+const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) {
+ if (const PointerType *PT = dyn_cast<PointerType>(Ty))
+ return PT->getPointeeType()->getAs<RecordType>();
+ return Ty->getAs<RecordType>();
+}
+
+template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) {
+ if (const auto *RecordTy = getRecordTy(Ty))
+ return getRecord(RecordTy->getDecl());
+ return nullptr;
+}
+
+template <class Emitter>
+Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) {
+ return P.getOrCreateRecord(RD);
+}
+
+template <class Emitter>
+const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) {
+ return Ctx.getOrCreateFunction(FD);
+}
+
+template <class Emitter> bool Compiler<Emitter>::visitExpr(const Expr *E) {
+ LocalScope<Emitter> RootScope(this);
+ // Void expressions.
+ if (E->getType()->isVoidType()) {
+ if (!visit(E))
+ return false;
+ return this->emitRetVoid(E) && RootScope.destroyLocals();
+ }
+
+ // Expressions with a primitive return type.
+ if (std::optional<PrimType> T = classify(E)) {
+ if (!visit(E))
+ return false;
+ return this->emitRet(*T, E) && RootScope.destroyLocals();
+ }
+
+ // Expressions with a composite return type.
+ // For us, that means everything we don't
+ // have a PrimType for.
+ if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) {
+ if (!this->emitGetPtrLocal(*LocalOffset, E))
+ return false;
+
+ if (!visitInitializer(E))
+ return false;
+
+ if (!this->emitFinishInit(E))
+ return false;
+ // We are destroying the locals AFTER the Ret op.
+ // The Ret op needs to copy the (alive) values, but the
+ // destructors may still turn the entire expression invalid.
+ return this->emitRetValue(E) && RootScope.destroyLocals();
+ }
+
+ RootScope.destroyLocals();
+ return false;
+}
+
+template <class Emitter>
+VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) {
+
+ auto R = this->visitVarDecl(VD, /*Toplevel=*/true);
+
+ if (R.notCreated())
+ return R;
+
+ if (R)
+ return true;
+
+ if (!R && Context::shouldBeGloballyIndexed(VD)) {
+ if (auto GlobalIndex = P.getGlobal(VD)) {
+ Block *GlobalBlock = P.getGlobal(*GlobalIndex);
+ GlobalInlineDescriptor &GD =
+ *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
+
+ GD.InitState = GlobalInitState::InitializerFailed;
+ GlobalBlock->invokeDtor();
+ }
+ }
+
+ return R;
+}
+
+/// Toplevel visitDeclAndReturn().
+/// We get here from evaluateAsInitializer().
+/// We need to evaluate the initializer and return its value.
+template <class Emitter>
+bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD,
+ bool ConstantContext) {
+ std::optional<PrimType> VarT = classify(VD->getType());
+
+ // We only create variables if we're evaluating in a constant context.
+ // Otherwise, just evaluate the initializer and return it.
+ if (!ConstantContext) {
+ DeclScope<Emitter> LS(this, VD);
+ if (!this->visit(VD->getAnyInitializer()))
+ return false;
+ return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals();
+ }
+
+ LocalScope<Emitter> VDScope(this, VD);
+ if (!this->visitVarDecl(VD, /*Toplevel=*/true))
+ return false;
+
+ if (Context::shouldBeGloballyIndexed(VD)) {
+ auto GlobalIndex = P.getGlobal(VD);
+ assert(GlobalIndex); // visitVarDecl() didn't return false.
+ if (VarT) {
+ if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD))
+ return false;
+ } else {
+ if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
+ return false;
+ }
+ } else {
+ auto Local = Locals.find(VD);
+ assert(Local != Locals.end()); // Same here.
+ if (VarT) {
+ if (!this->emitGetLocal(*VarT, Local->second.Offset, VD))
+ return false;
+ } else {
+ if (!this->emitGetPtrLocal(Local->second.Offset, VD))
+ return false;
+ }
+ }
+
+ // Return the value.
+ if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) {
+ // If the Ret above failed and this is a global variable, mark it as
+ // uninitialized, even everything else succeeded.
+ if (Context::shouldBeGloballyIndexed(VD)) {
+ auto GlobalIndex = P.getGlobal(VD);
+ assert(GlobalIndex);
+ Block *GlobalBlock = P.getGlobal(*GlobalIndex);
+ GlobalInlineDescriptor &GD =
+ *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
+
+ GD.InitState = GlobalInitState::InitializerFailed;
+ GlobalBlock->invokeDtor();
+ }
+ return false;
+ }
+
+ return VDScope.destroyLocals();
+}
+
+template <class Emitter>
+VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD, bool Toplevel) {
+ // We don't know what to do with these, so just return false.
+ if (VD->getType().isNull())
+ return false;
+
+ // This case is EvalEmitter-only. If we won't create any instructions for the
+ // initializer anyway, don't bother creating the variable in the first place.
+ if (!this->isActive())
+ return VarCreationState::NotCreated();
+
+ const Expr *Init = VD->getInit();
+ std::optional<PrimType> VarT = classify(VD->getType());
+
+ if (Context::shouldBeGloballyIndexed(VD)) {
+ auto checkDecl = [&]() -> bool {
+ bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal();
+ return !NeedsOp || this->emitCheckDecl(VD, VD);
+ };
+
+ auto initGlobal = [&](unsigned GlobalIndex) -> bool {
+ assert(Init);
+ DeclScope<Emitter> LocalScope(this, VD);
+
+ if (VarT) {
+ if (!this->visit(Init))
+ return checkDecl() && false;
+
+ return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD);
+ }
+
+ if (!checkDecl())
+ return false;
+
+ if (!this->emitGetPtrGlobal(GlobalIndex, Init))
+ return false;
+
+ if (!visitInitializer(Init))
+ return false;
+
+ if (!this->emitFinishInit(Init))
+ return false;
+
+ return this->emitPopPtr(Init);
+ };
+
+ // We've already seen and initialized this global.
+ if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) {
+ if (P.getPtrGlobal(*GlobalIndex).isInitialized())
+ return checkDecl();
+
+ // The previous attempt at initialization might've been unsuccessful,
+ // so let's try this one.
+ return Init && checkDecl() && initGlobal(*GlobalIndex);
+ }
+
+ std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init);
+
+ if (!GlobalIndex)
+ return false;
+
+ return !Init || (checkDecl() && initGlobal(*GlobalIndex));
+ } else {
+ InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD));
+
+ if (VarT) {
+ unsigned Offset = this->allocateLocalPrimitive(
+ VD, *VarT, VD->getType().isConstQualified());
+ if (Init) {
+ // If this is a toplevel declaration, create a scope for the
+ // initializer.
+ if (Toplevel) {
+ LocalScope<Emitter> Scope(this);
+ if (!this->visit(Init))
+ return false;
+ return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals();
+ } else {
+ if (!this->visit(Init))
+ return false;
+ return this->emitSetLocal(*VarT, Offset, VD);
+ }
+ }
+ } else {
+ if (std::optional<unsigned> Offset = this->allocateLocal(VD)) {
+ if (!Init)
+ return true;
+
+ if (!this->emitGetPtrLocal(*Offset, Init))
+ return false;
+
+ if (!visitInitializer(Init))
+ return false;
+
+ if (!this->emitFinishInit(Init))
+ return false;
+
+ return this->emitPopPtr(Init);
+ }
+ return false;
+ }
+ return true;
+ }
+
+ return false;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType,
+ const Expr *E) {
+ assert(!DiscardResult);
+ if (Val.isInt())
+ return this->emitConst(Val.getInt(), ValType, E);
+ else if (Val.isFloat())
+ return this->emitConstFloat(Val.getFloat(), E);
+
+ if (Val.isLValue()) {
+ if (Val.isNullPointer())
+ return this->emitNull(ValType, nullptr, E);
+ APValue::LValueBase Base = Val.getLValueBase();
+ if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>())
+ return this->visit(BaseExpr);
+ else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) {
+ return this->visitDeclRef(VD, E);
+ }
+ } else if (Val.isMemberPointer()) {
+ if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl())
+ return this->emitGetMemberPtr(MemberDecl, E);
+ return this->emitNullMemberPtr(nullptr, E);
+ }
+
+ return false;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val,
+ const Expr *E) {
+
+ if (Val.isStruct()) {
+ const Record *R = this->getRecord(E->getType());
+ assert(R);
+ for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) {
+ const APValue &F = Val.getStructField(I);
+ const Record::Field *RF = R->getField(I);
+
+ if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) {
+ PrimType T = classifyPrim(RF->Decl->getType());
+ if (!this->visitAPValue(F, T, E))
+ return false;
+ if (!this->emitInitField(T, RF->Offset, E))
+ return false;
+ } else if (F.isArray()) {
+ assert(RF->Desc->isPrimitiveArray());
+ const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe();
+ PrimType ElemT = classifyPrim(ArrType->getElementType());
+ assert(ArrType);
+
+ if (!this->emitGetPtrField(RF->Offset, E))
+ return false;
+
+ for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) {
+ if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E))
+ return false;
+ if (!this->emitInitElem(ElemT, A, E))
+ return false;
+ }
+
+ if (!this->emitPopPtr(E))
+ return false;
+ } else if (F.isStruct() || F.isUnion()) {
+ if (!this->emitGetPtrField(RF->Offset, E))
+ return false;
+ if (!this->visitAPValueInitializer(F, E))
+ return false;
+ if (!this->emitPopPtr(E))
+ return false;
+ } else {
+ assert(false && "I don't think this should be possible");
+ }
+ }
+ return true;
+ } else if (Val.isUnion()) {
+ const FieldDecl *UnionField = Val.getUnionField();
+ const Record *R = this->getRecord(UnionField->getParent());
+ assert(R);
+ const APValue &F = Val.getUnionValue();
+ const Record::Field *RF = R->getField(UnionField);
+ PrimType T = classifyPrim(RF->Decl->getType());
+ if (!this->visitAPValue(F, T, E))
+ return false;
+ return this->emitInitField(T, RF->Offset, E);
+ }
+ // TODO: Other types.
+
+ return false;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E) {
+ const Function *Func = getFunction(E->getDirectCallee());
+ if (!Func)
+ return false;
+
+ // For these, we're expected to ultimately return an APValue pointing
+ // to the CallExpr. This is needed to get the correct codegen.
+ unsigned Builtin = E->getBuiltinCallee();
+ if (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
+ Builtin == Builtin::BI__builtin___NSStringMakeConstantString ||
+ Builtin == Builtin::BI__builtin_ptrauth_sign_constant ||
+ Builtin == Builtin::BI__builtin_function_start) {
+ if (std::optional<unsigned> GlobalOffset = P.createGlobal(E)) {
+ if (!this->emitGetPtrGlobal(*GlobalOffset, E))
+ return false;
+
+ if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT))
+ return this->emitDecayPtr(PT_Ptr, PT, E);
+ return true;
+ }
+ return false;
+ }
+
+ QualType ReturnType = E->getType();
+ std::optional<PrimType> ReturnT = classify(E);
+
+ // Non-primitive return type. Prepare storage.
+ if (!Initializing && !ReturnT && !ReturnType->isVoidType()) {
+ std::optional<unsigned> LocalIndex = allocateLocal(E);
+ if (!LocalIndex)
+ return false;
+ if (!this->emitGetPtrLocal(*LocalIndex, E))
+ return false;
+ }
+
+ if (!Func->isUnevaluatedBuiltin()) {
+ // Put arguments on the stack.
+ for (const auto *Arg : E->arguments()) {
+ if (!this->visit(Arg))
+ return false;
+ }
+ }
+
+ if (!this->emitCallBI(Func, E, E))
+ return false;
+
+ if (DiscardResult && !ReturnType->isVoidType()) {
+ assert(ReturnT);
+ return this->emitPop(*ReturnT, E);
+ }
+
+ return true;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) {
+ if (E->getBuiltinCallee())
+ return VisitBuiltinCallExpr(E);
+
+ QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
+ std::optional<PrimType> T = classify(ReturnType);
+ bool HasRVO = !ReturnType->isVoidType() && !T;
+ const FunctionDecl *FuncDecl = E->getDirectCallee();
+
+ if (HasRVO) {
+ if (DiscardResult) {
+ // If we need to discard the return value but the function returns its
+ // value via an RVO pointer, we need to create one such pointer just
+ // for this call.
+ if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
+ if (!this->emitGetPtrLocal(*LocalIndex, E))
+ return false;
+ }
+ } else {
+ // We need the result. Prepare a pointer to return or
+ // dup the current one.
+ if (!Initializing) {
+ if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
+ if (!this->emitGetPtrLocal(*LocalIndex, E))
+ return false;
+ }
+ }
+ if (!this->emitDupPtr(E))
+ return false;
+ }
+ }
+
+ auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs());
+ // Calling a static operator will still
+ // pass the instance, but we don't need it.
+ // Discard it here.
+ if (isa<CXXOperatorCallExpr>(E)) {
+ if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl);
+ MD && MD->isStatic()) {
+ if (!this->discard(E->getArg(0)))
+ return false;
+ Args = Args.drop_front();
+ }
+ }
+
+ std::optional<unsigned> CalleeOffset;
+ // Add the (optional, implicit) This pointer.
+ if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) {
+ if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) {
+ // If we end up creating a CallPtr op for this, we need the base of the
+ // member pointer as the instance pointer, and later extract the function
+ // decl as the function pointer.
+ const Expr *Callee = E->getCallee();
+ CalleeOffset =
+ this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false);
+ if (!this->visit(Callee))
+ return false;
+ if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E))
+ return false;
+ if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
+ return false;
+ if (!this->emitGetMemberPtrBase(E))
+ return false;
+ } else if (!this->visit(MC->getImplicitObjectArgument())) {
+ return false;
+ }
+ }
+
+ llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args);
+ // Put arguments on the stack.
+ unsigned ArgIndex = 0;
+ for (const auto *Arg : Args) {
+ if (!this->visit(Arg))
+ return false;
+
+ // If we know the callee already, check the known parametrs for nullability.
+ if (FuncDecl && NonNullArgs[ArgIndex]) {
+ PrimType ArgT = classify(Arg).value_or(PT_Ptr);
+ if (ArgT == PT_Ptr || ArgT == PT_FnPtr) {
+ if (!this->emitCheckNonNullArg(ArgT, Arg))
+ return false;
+ }
+ }
+ ++ArgIndex;
+ }
+
+ if (FuncDecl) {
+ const Function *Func = getFunction(FuncDecl);
+ if (!Func)
+ return false;
+ assert(HasRVO == Func->hasRVO());
+
+ bool HasQualifier = false;
+ if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee()))
+ HasQualifier = ME->hasQualifier();
+
+ bool IsVirtual = false;
+ if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl))
+ IsVirtual = MD->isVirtual();
+
+ // In any case call the function. The return value will end up on the stack
+ // and if the function has RVO, we already have the pointer on the stack to
+ // write the result into.
+ if (IsVirtual && !HasQualifier) {
+ uint32_t VarArgSize = 0;
+ unsigned NumParams =
+ Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
+ for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
+ VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
+
+ if (!this->emitCallVirt(Func, VarArgSize, E))
+ return false;
+ } else if (Func->isVariadic()) {
+ uint32_t VarArgSize = 0;
+ unsigned NumParams =
+ Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
+ for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
+ VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
+ if (!this->emitCallVar(Func, VarArgSize, E))
+ return false;
+ } else {
+ if (!this->emitCall(Func, 0, E))
+ return false;
+ }
+ } else {
+ // Indirect call. Visit the callee, which will leave a FunctionPointer on
+ // the stack. Cleanup of the returned value if necessary will be done after
+ // the function call completed.
+
+ // Sum the size of all args from the call expr.
+ uint32_t ArgSize = 0;
+ for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
+ ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
+
+ // Get the callee, either from a member pointer saved in CalleeOffset,
+ // or by just visiting the Callee expr.
+ if (CalleeOffset) {
+ if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
+ return false;
+ if (!this->emitGetMemberPtrDecl(E))
+ return false;
+ if (!this->emitCallPtr(ArgSize, E, E))
+ return false;
+ } else {
+ if (!this->visit(E->getCallee()))
+ return false;
+
+ if (!this->emitCallPtr(ArgSize, E, E))
+ return false;
+ }
+ }
+
+ // Cleanup for discarded return values.
+ if (DiscardResult && !ReturnType->isVoidType() && T)
+ return this->emitPop(*T, E);
+
+ return true;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
+ SourceLocScope<Emitter> SLS(this, E);
+
+ return this->delegate(E->getExpr());
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
+ SourceLocScope<Emitter> SLS(this, E);
+
+ const Expr *SubExpr = E->getExpr();
+ if (std::optional<PrimType> T = classify(E->getExpr()))
+ return this->visit(SubExpr);
+
+ assert(Initializing);
+ return this->visitInitializer(SubExpr);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
+ if (DiscardResult)
+ return true;
+
+ return this->emitConstBool(E->getValue(), E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr(
+ const CXXNullPtrLiteralExpr *E) {
+ if (DiscardResult)
+ return true;
+
+ return this->emitNullPtr(nullptr, E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) {
+ if (DiscardResult)
+ return true;
+
+ assert(E->getType()->isIntegerType());
+
+ PrimType T = classifyPrim(E->getType());
+ return this->emitZero(T, E);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
+ if (DiscardResult)
+ return true;
+
+ if (this->LambdaThisCapture.Offset > 0) {
+ if (this->LambdaThisCapture.IsPtr)
+ return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E);
+ return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E);
+ }
+
+ // In some circumstances, the 'this' pointer does not actually refer to the
+ // instance pointer of the current function frame, but e.g. to the declaration
+ // currently being initialized. Here we emit the necessary instruction(s) for
+ // this scenario.
+ if (!InitStackActive || !E->isImplicit())
+ return this->emitThis(E);
+
+ if (InitStackActive && !InitStack.empty()) {
+ unsigned StartIndex = 0;
+ for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) {
+ if (InitStack[StartIndex].Kind != InitLink::K_Field)
+ break;
+ }
+
+ for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) {
+ if (!InitStack[I].template emit<Emitter>(this, E))
+ return false;
+ }
+ return true;
+ }
+ return this->emitThis(E);
+}
+
+template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) {
+ switch (S->getStmtClass()) {
+ case Stmt::CompoundStmtClass:
+ return visitCompoundStmt(cast<CompoundStmt>(S));
+ case Stmt::DeclStmtClass:
+ return visitDeclStmt(cast<DeclStmt>(S));
+ case Stmt::ReturnStmtClass:
+ return visitReturnStmt(cast<ReturnStmt>(S));
+ case Stmt::IfStmtClass:
+ return visitIfStmt(cast<IfStmt>(S));
+ case Stmt::WhileStmtClass:
+ return visitWhileStmt(cast<WhileStmt>(S));
+ case Stmt::DoStmtClass:
+ return visitDoStmt(cast<DoStmt>(S));
+ case Stmt::ForStmtClass:
+ return visitForStmt(cast<ForStmt>(S));
+ case Stmt::CXXForRangeStmtClass:
+ return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
+ case Stmt::BreakStmtClass:
+ return visitBreakStmt(cast<BreakStmt>(S));
+ case Stmt::ContinueStmtClass:
+ return visitContinueStmt(cast<ContinueStmt>(S));
+ case Stmt::SwitchStmtClass:
+ return visitSwitchStmt(cast<SwitchStmt>(S));
+ case Stmt::CaseStmtClass:
+ return visitCaseStmt(cast<CaseStmt>(S));
+ case Stmt::DefaultStmtClass:
+ return visitDefaultStmt(cast<DefaultStmt>(S));
+ case Stmt::AttributedStmtClass:
+ return visitAttributedStmt(cast<AttributedStmt>(S));
+ case Stmt::CXXTryStmtClass:
+ return visitCXXTryStmt(cast<CXXTryStmt>(S));
+ case Stmt::NullStmtClass:
+ return true;
+ // Always invalid statements.
+ case Stmt::GCCAsmStmtClass:
+ case Stmt::MSAsmStmtClass:
+ case Stmt::GotoStmtClass:
+ return this->emitInvalid(S);
+ case Stmt::LabelStmtClass:
+ return this->visitStmt(cast<LabelStmt>(S)->getSubStmt());
+ default: {
+ if (const auto *E = dyn_cast<Expr>(S))
+ return this->discard(E);
+ return false;
+ }
+ }
+}
+
+/// Visits the given statment without creating a variable
+/// scope for it in case it is a compound statement.
+template <class Emitter> bool Compiler<Emitter>::visitLoopBody(const Stmt *S) {
+ if (isa<NullStmt>(S))
+ return true;
+
+ if (const auto *CS = dyn_cast<CompoundStmt>(S)) {
+ for (const auto *InnerStmt : CS->body())
+ if (!visitStmt(InnerStmt))
+ return false;
+ return true;
+ }
+
+ return this->visitStmt(S);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) {
+ BlockScope<Emitter> Scope(this);
+ for (const auto *InnerStmt : S->body())
+ if (!visitStmt(InnerStmt))
+ return false;
+ return Scope.destroyLocals();
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) {
+ for (const auto *D : DS->decls()) {
+ if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl,
+ FunctionDecl>(D))
+ continue;
+
+ const auto *VD = dyn_cast<VarDecl>(D);
+ if (!VD)
+ return false;
+ if (!this->visitVarDecl(VD))
+ return false;
+ }
+
+ return true;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) {
+ if (this->InStmtExpr)
+ return this->emitUnsupported(RS);
+
+ if (const Expr *RE = RS->getRetValue()) {
+ LocalScope<Emitter> RetScope(this);
+ if (ReturnType) {
+ // Primitive types are simply returned.
+ if (!this->visit(RE))
+ return false;
+ this->emitCleanup();
+ return this->emitRet(*ReturnType, RS);
+ } else if (RE->getType()->isVoidType()) {
+ if (!this->visit(RE))
+ return false;
+ } else {
+ // RVO - construct the value in the return location.
+ if (!this->emitRVOPtr(RE))
+ return false;
+ if (!this->visitInitializer(RE))
+ return false;
+ if (!this->emitPopPtr(RE))
+ return false;
+
+ this->emitCleanup();
+ return this->emitRetVoid(RS);
+ }
+ }
+
+ // Void return.
+ this->emitCleanup();
+ return this->emitRetVoid(RS);
+}
+
+template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) {
+ BlockScope<Emitter> IfScope(this);
+
+ if (IS->isNonNegatedConsteval())
+ return visitStmt(IS->getThen());
+ if (IS->isNegatedConsteval())
+ return IS->getElse() ? visitStmt(IS->getElse()) : true;
+
+ if (auto *CondInit = IS->getInit())
+ if (!visitStmt(CondInit))
+ return false;
+
+ if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt())
+ if (!visitDeclStmt(CondDecl))
+ return false;
+
+ if (!this->visitBool(IS->getCond()))
+ return false;
+
+ if (const Stmt *Else = IS->getElse()) {
+ LabelTy LabelElse = this->getLabel();
+ LabelTy LabelEnd = this->getLabel();
+ if (!this->jumpFalse(LabelElse))
+ return false;
+ if (!visitStmt(IS->getThen()))
+ return false;
+ if (!this->jump(LabelEnd))
+ return false;
+ this->emitLabel(LabelElse);
+ if (!visitStmt(Else))
+ return false;
+ this->emitLabel(LabelEnd);
+ } else {
+ LabelTy LabelEnd = this->getLabel();
+ if (!this->jumpFalse(LabelEnd))
+ return false;
+ if (!visitStmt(IS->getThen()))
+ return false;
+ this->emitLabel(LabelEnd);
+ }
+
+ return IfScope.destroyLocals();
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) {
+ const Expr *Cond = S->getCond();
+ const Stmt *Body = S->getBody();
+
+ LabelTy CondLabel = this->getLabel(); // Label before the condition.
+ LabelTy EndLabel = this->getLabel(); // Label after the loop.
+ LoopScope<Emitter> LS(this, EndLabel, CondLabel);
+
+ this->fallthrough(CondLabel);
+ this->emitLabel(CondLabel);
+
+ if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
+ if (!visitDeclStmt(CondDecl))
+ return false;
+
+ if (!this->visitBool(Cond))
+ return false;
+ if (!this->jumpFalse(EndLabel))
+ return false;
+
+ LocalScope<Emitter> Scope(this);
+ {
+ DestructorScope<Emitter> DS(Scope);
+ if (!this->visitLoopBody(Body))
+ return false;
+ }
+
+ if (!this->jump(CondLabel))
+ return false;
+ this->emitLabel(EndLabel);
+
+ return true;
+}
+
+template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) {
+ const Expr *Cond = S->getCond();
+ const Stmt *Body = S->getBody();
+
+ LabelTy StartLabel = this->getLabel();
+ LabelTy EndLabel = this->getLabel();
+ LabelTy CondLabel = this->getLabel();
+ LoopScope<Emitter> LS(this, EndLabel, CondLabel);
+ LocalScope<Emitter> Scope(this);
+
+ this->fallthrough(StartLabel);
+ this->emitLabel(StartLabel);
+ {
+ DestructorScope<Emitter> DS(Scope);
+
+ if (!this->visitLoopBody(Body))
+ return false;
+ this->fallthrough(CondLabel);
+ this->emitLabel(CondLabel);
+ if (!this->visitBool(Cond))
+ return false;
+ }
+ if (!this->jumpTrue(StartLabel))
+ return false;
+
+ this->fallthrough(EndLabel);
+ this->emitLabel(EndLabel);
+ return true;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::visitForStmt(const ForStmt *S) {
+ // for (Init; Cond; Inc) { Body }
+ const Stmt *Init = S->getInit();
+ const Expr *Cond = S->getCond();
+ const Expr *Inc = S->getInc();
+ const Stmt *Body = S->getBody();
+
+ LabelTy EndLabel = this->getLabel();
+ LabelTy CondLabel = this->getLabel();
+ LabelTy IncLabel = this->getLabel();
+ LoopScope<Emitter> LS(this, EndLabel, IncLabel);
+ LocalScope<Emitter> Scope(this);
+
+ if (Init && !this->visitStmt(Init))
+ return false;
+ this->fallthrough(CondLabel);
+ this->emitLabel(CondLabel);
+
+ if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
+ if (!visitDeclStmt(CondDecl))
+ return false;
+
+ if (Cond) {
+ if (!this->visitBool(Cond))
+ return false;
+ if (!this->jumpFalse(EndLabel))
+ return false;
+ }
+
+ {
+ DestructorScope<Emitter> DS(Scope);
+
+ if (Body && !this->visitLoopBody(Body))
+ return false;
+ this->fallthrough(IncLabel);
+ this->emitLabel(IncLabel);
+ if (Inc && !this->discard(Inc))
+ return false;
+ }
+
+ if (!this->jump(CondLabel))
+ return false;
+ this->fallthrough(EndLabel);
+ this->emitLabel(EndLabel);
+ return true;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) {
+ const Stmt *Init = S->getInit();
+ const Expr *Cond = S->getCond();
+ const Expr *Inc = S->getInc();
+ const Stmt *Body = S->getBody();
+ const Stmt *BeginStmt = S->getBeginStmt();
+ const Stmt *RangeStmt = S->getRangeStmt();
+ const Stmt *EndStmt = S->getEndStmt();
+ const VarDecl *LoopVar = S->getLoopVariable();
+
+ LabelTy EndLabel = this->getLabel();
+ LabelTy CondLabel = this->getLabel();
+ LabelTy IncLabel = this->getLabel();
+ LoopScope<Emitter> LS(this, EndLabel, IncLabel);
+
+ // Emit declarations needed in the loop.
+ if (Init && !this->visitStmt(Init))
+ return false;
+ if (!this->visitStmt(RangeStmt))
+ return false;
+ if (!this->visitStmt(BeginStmt))
+ return false;
+ if (!this->visitStmt(EndStmt))
+ return false;
+
+ // Now the condition as well as the loop variable assignment.
+ this->fallthrough(CondLabel);
+ this->emitLabel(CondLabel);
+ if (!this->visitBool(Cond))
+ return false;
+ if (!this->jumpFalse(EndLabel))
+ return false;
+
+ if (!this->visitVarDecl(LoopVar))
+ return false;
+
+ // Body.
+ LocalScope<Emitter> Scope(this);
+ {
+ DestructorScope<Emitter> DS(Scope);
+
+ if (!this->visitLoopBody(Body))
+ return false;
+ this->fallthrough(IncLabel);
+ this->emitLabel(IncLabel);
+ if (!this->discard(Inc))
+ return false;
+ }
+
+ if (!this->jump(CondLabel))
+ return false;
+
+ this->fallthrough(EndLabel);
+ this->emitLabel(EndLabel);
+ return true;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) {
+ if (!BreakLabel)
+ return false;
+
+ this->VarScope->emitDestructors();
+ return this->jump(*BreakLabel);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) {
+ if (!ContinueLabel)
+ return false;
+
+ this->VarScope->emitDestructors();
+ return this->jump(*ContinueLabel);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) {
+ const Expr *Cond = S->getCond();
+ PrimType CondT = this->classifyPrim(Cond->getType());
+
+ LabelTy EndLabel = this->getLabel();
+ OptLabelTy DefaultLabel = std::nullopt;
+ unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false);
+
+ if (const auto *CondInit = S->getInit())
+ if (!visitStmt(CondInit))
+ return false;
+
+ if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
+ if (!visitDeclStmt(CondDecl))
+ return false;
+
+ // Initialize condition variable.
+ if (!this->visit(Cond))
+ return false;
+ if (!this->emitSetLocal(CondT, CondVar, S))
+ return false;
+
+ CaseMap CaseLabels;
+ // Create labels and comparison ops for all case statements.
+ for (const SwitchCase *SC = S->getSwitchCaseList(); SC;
+ SC = SC->getNextSwitchCase()) {
+ if (const auto *CS = dyn_cast<CaseStmt>(SC)) {
+ // FIXME: Implement ranges.
+ if (CS->caseStmtIsGNURange())
+ return false;
+ CaseLabels[SC] = this->getLabel();
+
+ const Expr *Value = CS->getLHS();
+ PrimType ValueT = this->classifyPrim(Value->getType());
+
+ // Compare the case statement's value to the switch condition.
+ if (!this->emitGetLocal(CondT, CondVar, CS))
+ return false;
+ if (!this->visit(Value))
+ return false;
+
+ // Compare and jump to the case label.
+ if (!this->emitEQ(ValueT, S))
+ return false;
+ if (!this->jumpTrue(CaseLabels[CS]))
+ return false;
+ } else {
+ assert(!DefaultLabel);
+ DefaultLabel = this->getLabel();
+ }
+ }
+
+ // If none of the conditions above were true, fall through to the default
+ // statement or jump after the switch statement.
+ if (DefaultLabel) {
+ if (!this->jump(*DefaultLabel))
+ return false;
+ } else {
+ if (!this->jump(EndLabel))
+ return false;
+ }
+
+ SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel);
+ if (!this->visitStmt(S->getBody()))
+ return false;
+ this->emitLabel(EndLabel);
+ return true;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) {
+ this->emitLabel(CaseLabels[S]);
+ return this->visitStmt(S->getSubStmt());
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) {
+ this->emitLabel(*DefaultLabel);
+ return this->visitStmt(S->getSubStmt());
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) {
+ if (this->Ctx.getLangOpts().CXXAssumptions &&
+ !this->Ctx.getLangOpts().MSVCCompat) {
+ for (const Attr *A : S->getAttrs()) {
+ auto *AA = dyn_cast<CXXAssumeAttr>(A);
+ if (!AA)
+ continue;
+
+ assert(isa<NullStmt>(S->getSubStmt()));
+
+ const Expr *Assumption = AA->getAssumption();
+ if (Assumption->isValueDependent())
+ return false;
+
+ if (Assumption->HasSideEffects(this->Ctx.getASTContext()))
+ continue;
+
+ // Evaluate assumption.
+ if (!this->visitBool(Assumption))
+ return false;
+
+ if (!this->emitAssume(Assumption))
+ return false;
+ }
+ }
+
+ // Ignore other attributes.
+ return this->visitStmt(S->getSubStmt());
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) {
+ // Ignore all handlers.
+ return this->visitStmt(S->getTryBlock());
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) {
+ assert(MD->isLambdaStaticInvoker());
+ assert(MD->hasBody());
+ assert(cast<CompoundStmt>(MD->getBody())->body_empty());
+
+ const CXXRecordDecl *ClosureClass = MD->getParent();
+ const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator();
+ assert(ClosureClass->captures_begin() == ClosureClass->captures_end());
+ const Function *Func = this->getFunction(LambdaCallOp);
+ if (!Func)
+ return false;
+ assert(Func->hasThisPointer());
+ assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO()));
+
+ if (Func->hasRVO()) {
+ if (!this->emitRVOPtr(MD))
+ return false;
+ }
+
+ // The lambda call operator needs an instance pointer, but we don't have
+ // one here, and we don't need one either because the lambda cannot have
+ // any captures, as verified above. Emit a null pointer. This is then
+ // special-cased when interpreting to not emit any misleading diagnostics.
+ if (!this->emitNullPtr(nullptr, MD))
+ return false;
+
+ // Forward all arguments from the static invoker to the lambda call operator.
+ for (const ParmVarDecl *PVD : MD->parameters()) {
+ auto It = this->Params.find(PVD);
+ assert(It != this->Params.end());
+
+ // We do the lvalue-to-rvalue conversion manually here, so no need
+ // to care about references.
+ PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr);
+ if (!this->emitGetParam(ParamType, It->second.Offset, MD))
+ return false;
+ }
+
+ if (!this->emitCall(Func, 0, LambdaCallOp))
+ return false;
+
+ this->emitCleanup();
+ if (ReturnType)
+ return this->emitRet(*ReturnType, MD);
+
+ // Nothing to do, since we emitted the RVO pointer above.
+ return this->emitRetVoid(MD);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) {
+ // Classify the return type.
+ ReturnType = this->classify(F->getReturnType());
+
+ auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset,
+ const Expr *InitExpr) -> bool {
+ // We don't know what to do with these, so just return false.
+ if (InitExpr->getType().isNull())
+ return false;
+
+ if (std::optional<PrimType> T = this->classify(InitExpr)) {
+ if (!this->visit(InitExpr))
+ return false;
+
+ if (F->isBitField())
+ return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr);
+ return this->emitInitThisField(*T, FieldOffset, InitExpr);
+ }
+ // Non-primitive case. Get a pointer to the field-to-initialize
+ // on the stack and call visitInitialzer() for it.
+ InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset));
+ if (!this->emitGetPtrThisField(FieldOffset, InitExpr))
+ return false;
+
+ if (!this->visitInitializer(InitExpr))
+ return false;
+
+ return this->emitPopPtr(InitExpr);
+ };
+
+ // Emit custom code if this is a lambda static invoker.
+ if (const auto *MD = dyn_cast<CXXMethodDecl>(F);
+ MD && MD->isLambdaStaticInvoker())
+ return this->emitLambdaStaticInvokerBody(MD);
+
+ // Constructor. Set up field initializers.
+ if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F)) {
+ const RecordDecl *RD = Ctor->getParent();
+ const Record *R = this->getRecord(RD);
+ if (!R)
+ return false;
+
+ InitLinkScope<Emitter> InitScope(this, InitLink::This());
+ for (const auto *Init : Ctor->inits()) {
+ // Scope needed for the initializers.
+ BlockScope<Emitter> Scope(this);
+
+ const Expr *InitExpr = Init->getInit();
+ if (const FieldDecl *Member = Init->getMember()) {
+ const Record::Field *F = R->getField(Member);
+
+ if (!emitFieldInitializer(F, F->Offset, InitExpr))
+ return false;
+ } else if (const Type *Base = Init->getBaseClass()) {
+ const auto *BaseDecl = Base->getAsCXXRecordDecl();
+ assert(BaseDecl);
+
+ if (Init->isBaseVirtual()) {
+ assert(R->getVirtualBase(BaseDecl));
+ if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr))
+ return false;
+
+ } else {
+ // Base class initializer.
+ // Get This Base and call initializer on it.
+ const Record::Base *B = R->getBase(BaseDecl);
+ assert(B);
+ if (!this->emitGetPtrThisBase(B->Offset, InitExpr))
+ return false;
+ }
+
+ if (!this->visitInitializer(InitExpr))
+ return false;
+ if (!this->emitFinishInitPop(InitExpr))
+ return false;
+ } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) {
+ assert(IFD->getChainingSize() >= 2);
+
+ unsigned NestedFieldOffset = 0;
+ const Record::Field *NestedField = nullptr;
+ for (const NamedDecl *ND : IFD->chain()) {
+ const auto *FD = cast<FieldDecl>(ND);
+ const Record *FieldRecord =
+ this->P.getOrCreateRecord(FD->getParent());
+ assert(FieldRecord);
+
+ NestedField = FieldRecord->getField(FD);
+ assert(NestedField);
+
+ NestedFieldOffset += NestedField->Offset;
+ }
+ assert(NestedField);
+
+ if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr))
+ return false;
+ } else {
+ assert(Init->isDelegatingInitializer());
+ if (!this->emitThis(InitExpr))
+ return false;
+ if (!this->visitInitializer(Init->getInit()))
+ return false;
+ if (!this->emitPopPtr(InitExpr))
+ return false;
+ }
+
+ if (!Scope.destroyLocals())
+ return false;
+ }
+ }
+
+ if (const auto *Body = F->getBody())
+ if (!visitStmt(Body))
+ return false;
+
+ // Emit a guard return to protect against a code path missing one.
+ if (F->getReturnType()->isVoidType())
+ return this->emitRetVoid(SourceInfo{});
+ return this->emitNoRet(SourceInfo{});
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
+ const Expr *SubExpr = E->getSubExpr();
+ if (SubExpr->getType()->isAnyComplexType())
+ return this->VisitComplexUnaryOperator(E);
+ std::optional<PrimType> T = classify(SubExpr->getType());
+
+ switch (E->getOpcode()) {
+ case UO_PostInc: { // x++
+ if (!Ctx.getLangOpts().CPlusPlus14)
+ return this->emitInvalid(E);
+ if (!T)
+ return this->emitError(E);
+
+ if (!this->visit(SubExpr))
+ return false;
+
+ if (T == PT_Ptr || T == PT_FnPtr) {
+ if (!this->emitIncPtr(E))
+ return false;
+
+ return DiscardResult ? this->emitPopPtr(E) : true;
+ }
+
+ if (T == PT_Float) {
+ return DiscardResult ? this->emitIncfPop(getRoundingMode(E), E)
+ : this->emitIncf(getRoundingMode(E), E);
+ }
+
+ return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E);
+ }
+ case UO_PostDec: { // x--
+ if (!Ctx.getLangOpts().CPlusPlus14)
+ return this->emitInvalid(E);
+ if (!T)
+ return this->emitError(E);
+
+ if (!this->visit(SubExpr))
+ return false;
+
+ if (T == PT_Ptr || T == PT_FnPtr) {
+ if (!this->emitDecPtr(E))
+ return false;
+
+ return DiscardResult ? this->emitPopPtr(E) : true;
+ }
+
+ if (T == PT_Float) {
+ return DiscardResult ? this->emitDecfPop(getRoundingMode(E), E)
+ : this->emitDecf(getRoundingMode(E), E);
+ }
+
+ return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E);
+ }
+ case UO_PreInc: { // ++x
+ if (!Ctx.getLangOpts().CPlusPlus14)
+ return this->emitInvalid(E);
+ if (!T)
+ return this->emitError(E);
+
+ if (!this->visit(SubExpr))
+ return false;
+
+ if (T == PT_Ptr || T == PT_FnPtr) {
+ if (!this->emitLoadPtr(E))
+ return false;
+ if (!this->emitConstUint8(1, E))
+ return false;
+ if (!this->emitAddOffsetUint8(E))
+ return false;
+ return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
+ }
+
+ // Post-inc and pre-inc are the same if the value is to be discarded.
+ if (DiscardResult) {
+ if (T == PT_Float)
+ return this->emitIncfPop(getRoundingMode(E), E);
+ return this->emitIncPop(*T, E);
+ }
+
+ if (T == PT_Float) {
+ const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
+ if (!this->emitLoadFloat(E))
+ return false;
+ if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
+ return false;
+ if (!this->emitAddf(getRoundingMode(E), E))
+ return false;
+ if (!this->emitStoreFloat(E))
+ return false;
+ } else {
+ assert(isIntegralType(*T));
+ if (!this->emitLoad(*T, E))
+ return false;
+ if (!this->emitConst(1, E))
+ return false;
+ if (!this->emitAdd(*T, E))
+ return false;
+ if (!this->emitStore(*T, E))
+ return false;
+ }
+ return E->isGLValue() || this->emitLoadPop(*T, E);
+ }
+ case UO_PreDec: { // --x
+ if (!Ctx.getLangOpts().CPlusPlus14)
+ return this->emitInvalid(E);
+ if (!T)
+ return this->emitError(E);
+
+ if (!this->visit(SubExpr))
+ return false;
+
+ if (T == PT_Ptr || T == PT_FnPtr) {
+ if (!this->emitLoadPtr(E))
+ return false;
+ if (!this->emitConstUint8(1, E))
+ return false;
+ if (!this->emitSubOffsetUint8(E))
+ return false;
+ return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
+ }
+
+ // Post-dec and pre-dec are the same if the value is to be discarded.
+ if (DiscardResult) {
+ if (T == PT_Float)
+ return this->emitDecfPop(getRoundingMode(E), E);
+ return this->emitDecPop(*T, E);
+ }
+
+ if (T == PT_Float) {
+ const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
+ if (!this->emitLoadFloat(E))
+ return false;
+ if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
+ return false;
+ if (!this->emitSubf(getRoundingMode(E), E))
+ return false;
+ if (!this->emitStoreFloat(E))
+ return false;
+ } else {
+ assert(isIntegralType(*T));
+ if (!this->emitLoad(*T, E))
+ return false;
+ if (!this->emitConst(1, E))
+ return false;
+ if (!this->emitSub(*T, E))
+ return false;
+ if (!this->emitStore(*T, E))
+ return false;
+ }
+ return E->isGLValue() || this->emitLoadPop(*T, E);
+ }
+ case UO_LNot: // !x
+ if (!T)
+ return this->emitError(E);
+
+ if (DiscardResult)
+ return this->discard(SubExpr);
+
+ if (!this->visitBool(SubExpr))
+ return false;
+
+ if (!this->emitInvBool(E))
+ return false;
+
+ if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
+ return this->emitCast(PT_Bool, ET, E);
+ return true;
+ case UO_Minus: // -x
+ if (!T)
+ return this->emitError(E);
+
+ if (!this->visit(SubExpr))
+ return false;
+ return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
+ case UO_Plus: // +x
+ if (!T)
+ return this->emitError(E);
+
+ if (!this->visit(SubExpr)) // noop
+ return false;
+ return DiscardResult ? this->emitPop(*T, E) : true;
+ case UO_AddrOf: // &x
+ if (E->getType()->isMemberPointerType()) {
+ // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
+ // member can be formed.
+ return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E);
+ }
+ // We should already have a pointer when we get here.
+ return this->delegate(SubExpr);
+ case UO_Deref: // *x
+ if (DiscardResult)
+ return this->discard(SubExpr);
+ return this->visit(SubExpr);
+ case UO_Not: // ~x
+ if (!T)
+ return this->emitError(E);
+
+ if (!this->visit(SubExpr))
+ return false;
+ return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
+ case UO_Real: // __real x
+ assert(T);
+ return this->delegate(SubExpr);
+ case UO_Imag: { // __imag x
+ assert(T);
+ if (!this->discard(SubExpr))
+ return false;
+ return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr);
+ }
+ case UO_Extension:
+ return this->delegate(SubExpr);
+ case UO_Coawait:
+ assert(false && "Unhandled opcode");
+ }
+
+ return false;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) {
+ const Expr *SubExpr = E->getSubExpr();
+ assert(SubExpr->getType()->isAnyComplexType());
+
+ if (DiscardResult)
+ return this->discard(SubExpr);
+
+ std::optional<PrimType> ResT = classify(E);
+ auto prepareResult = [=]() -> bool {
+ if (!ResT && !Initializing) {
+ std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
+ if (!LocalIndex)
+ return false;
+ return this->emitGetPtrLocal(*LocalIndex, E);
+ }
+
+ return true;
+ };
+
+ // The offset of the temporary, if we created one.
+ unsigned SubExprOffset = ~0u;
+ auto createTemp = [=, &SubExprOffset]() -> bool {
+ SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
+ if (!this->visit(SubExpr))
+ return false;
+ return this->emitSetLocal(PT_Ptr, SubExprOffset, E);
+ };
+
+ PrimType ElemT = classifyComplexElementType(SubExpr->getType());
+ auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
+ if (!this->emitGetLocal(PT_Ptr, Offset, E))
+ return false;
+ return this->emitArrayElemPop(ElemT, Index, E);
+ };
+
+ switch (E->getOpcode()) {
+ case UO_Minus:
+ if (!prepareResult())
+ return false;
+ if (!createTemp())
+ return false;
+ for (unsigned I = 0; I != 2; ++I) {
+ if (!getElem(SubExprOffset, I))
+ return false;
+ if (!this->emitNeg(ElemT, E))
+ return false;
+ if (!this->emitInitElem(ElemT, I, E))
+ return false;
+ }
+ break;
+
+ case UO_Plus: // +x
+ case UO_AddrOf: // &x
+ case UO_Deref: // *x
+ return this->delegate(SubExpr);
+
+ case UO_LNot:
+ if (!this->visit(SubExpr))
+ return false;
+ if (!this->emitComplexBoolCast(SubExpr))
+ return false;
+ if (!this->emitInvBool(E))
+ return false;
+ if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
+ return this->emitCast(PT_Bool, ET, E);
+ return true;
+
+ case UO_Real:
+ return this->emitComplexReal(SubExpr);
+
+ case UO_Imag:
+ if (!this->visit(SubExpr))
+ return false;
+
+ if (SubExpr->isLValue()) {
+ if (!this->emitConstUint8(1, E))
+ return false;
+ return this->emitArrayElemPtrPopUint8(E);
+ }
+
+ // Since our _Complex implementation does not map to a primitive type,
+ // we sometimes have to do the lvalue-to-rvalue conversion here manually.
+ return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E);
+
+ case UO_Not: // ~x
+ if (!this->visit(SubExpr))
+ return false;
+ // Negate the imaginary component.
+ if (!this->emitArrayElem(ElemT, 1, E))
+ return false;
+ if (!this->emitNeg(ElemT, E))
+ return false;
+ if (!this->emitInitElem(ElemT, 1, E))
+ return false;
+ return DiscardResult ? this->emitPopPtr(E) : true;
+
+ case UO_Extension:
+ return this->delegate(SubExpr);
+
+ default:
+ return this->emitInvalid(E);
+ }
+
+ return true;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) {
+ if (DiscardResult)
+ return true;
+
+ if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
+ return this->emitConst(ECD->getInitVal(), E);
+ } else if (const auto *BD = dyn_cast<BindingDecl>(D)) {
+ return this->visit(BD->getBinding());
+ } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) {
+ const Function *F = getFunction(FuncDecl);
+ return F && this->emitGetFnPtr(F, E);
+ } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) {
+ if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) {
+ if (!this->emitGetPtrGlobal(*Index, E))
+ return false;
+ if (std::optional<PrimType> T = classify(E->getType())) {
+ if (!this->visitAPValue(TPOD->getValue(), *T, E))
+ return false;
+ return this->emitInitGlobal(*T, *Index, E);
+ }
+ return this->visitAPValueInitializer(TPOD->getValue(), E);
+ }
+ return false;
+ }
+
+ // References are implemented via pointers, so when we see a DeclRefExpr
+ // pointing to a reference, we need to get its value directly (i.e. the
+ // pointer to the actual value) instead of a pointer to the pointer to the
+ // value.
+ bool IsReference = D->getType()->isReferenceType();
+
+ // Check for local/global variables and parameters.
+ if (auto It = Locals.find(D); It != Locals.end()) {
+ const unsigned Offset = It->second.Offset;
+ if (IsReference)
+ return this->emitGetLocal(PT_Ptr, Offset, E);
+ return this->emitGetPtrLocal(Offset, E);
+ } else if (auto GlobalIndex = P.getGlobal(D)) {
+ if (IsReference) {
+ if (!Ctx.getLangOpts().CPlusPlus11)
+ return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E);
+ return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E);
+ }
+
+ return this->emitGetPtrGlobal(*GlobalIndex, E);
+ } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
+ if (auto It = this->Params.find(PVD); It != this->Params.end()) {
+ if (IsReference || !It->second.IsPtr)
+ return this->emitGetParam(classifyPrim(E), It->second.Offset, E);
+
+ return this->emitGetPtrParam(It->second.Offset, E);
+ }
+ }
+
+ // In case we need to re-visit a declaration.
+ auto revisit = [&](const VarDecl *VD) -> bool {
+ auto VarState = this->visitDecl(VD);
+
+ if (VarState.notCreated())
+ return true;
+ if (!VarState)
+ return false;
+ // Retry.
+ return this->visitDeclRef(D, E);
+ };
+
+ // Handle lambda captures.
+ if (auto It = this->LambdaCaptures.find(D);
+ It != this->LambdaCaptures.end()) {
+ auto [Offset, IsPtr] = It->second;
+
+ if (IsPtr)
+ return this->emitGetThisFieldPtr(Offset, E);
+ return this->emitGetPtrThisField(Offset, E);
+ } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E);
+ DRE && DRE->refersToEnclosingVariableOrCapture()) {
+ if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture())
+ return revisit(VD);
+ }
+
+ if (D != InitializingDecl) {
+ // Try to lazily visit (or emit dummy pointers for) declarations
+ // we haven't seen yet.
+ if (Ctx.getLangOpts().CPlusPlus) {
+ if (const auto *VD = dyn_cast<VarDecl>(D)) {
+ const auto typeShouldBeVisited = [&](QualType T) -> bool {
+ if (T.isConstant(Ctx.getASTContext()))
+ return true;
+ if (const auto *RT = T->getAs<ReferenceType>())
+ return RT->getPointeeType().isConstQualified();
+ return false;
+ };
+
+ // Visit local const variables like normal.
+ if ((VD->hasGlobalStorage() || VD->isLocalVarDecl() ||
+ VD->isStaticDataMember()) &&
+ typeShouldBeVisited(VD->getType()))
+ return revisit(VD);
+ }
+ } else {
+ if (const auto *VD = dyn_cast<VarDecl>(D);
+ VD && VD->getAnyInitializer() &&
+ VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak())
+ return revisit(VD);
+ }
+ }
+
+ if (std::optional<unsigned> I = P.getOrCreateDummy(D)) {
+ if (!this->emitGetPtrGlobal(*I, E))
+ return false;
+ if (E->getType()->isVoidType())
+ return true;
+ // Convert the dummy pointer to another pointer type if we have to.
+ if (PrimType PT = classifyPrim(E); PT != PT_Ptr) {
+ if (isPtrType(PT))
+ return this->emitDecayPtr(PT_Ptr, PT, E);
+ return false;
+ }
+ return true;
+ }
+
+ if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
+ return this->emitInvalidDeclRef(DRE, E);
+ return false;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
+ const auto *D = E->getDecl();
+ return this->visitDeclRef(D, E);
+}
+
+template <class Emitter> void Compiler<Emitter>::emitCleanup() {
+ for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
+ C->emitDestruction();
+}
+
+template <class Emitter>
+unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType,
+ const QualType DerivedType) {
+ const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
+ if (const auto *PT = dyn_cast<PointerType>(Ty))
+ return PT->getPointeeType()->getAsCXXRecordDecl();
+ return Ty->getAsCXXRecordDecl();
+ };
+ const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType);
+ const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType);
+
+ return Ctx.collectBaseOffset(BaseDecl, DerivedDecl);
+}
+
+/// Emit casts from a PrimType to another PrimType.
+template <class Emitter>
+bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT,
+ QualType ToQT, const Expr *E) {
+
+ if (FromT == PT_Float) {
+ // Floating to floating.
+ if (ToT == PT_Float) {
+ const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
+ return this->emitCastFP(ToSem, getRoundingMode(E), E);
+ }
+
+ if (ToT == PT_IntAP)
+ return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT), E);
+ if (ToT == PT_IntAPS)
+ return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT), E);
+
+ // Float to integral.
+ if (isIntegralType(ToT) || ToT == PT_Bool)
+ return this->emitCastFloatingIntegral(ToT, E);
+ }
+
+ if (isIntegralType(FromT) || FromT == PT_Bool) {
+ if (ToT == PT_IntAP)
+ return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E);
+ if (ToT == PT_IntAPS)
+ return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E);
+
+ // Integral to integral.
+ if (isIntegralType(ToT) || ToT == PT_Bool)
+ return FromT != ToT ? this->emitCast(FromT, ToT, E) : true;
+
+ if (ToT == PT_Float) {
+ // Integral to floating.
+ const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
+ return this->emitCastIntegralFloating(FromT, ToSem, getRoundingMode(E),
+ E);
+ }
+ }
+
+ return false;
+}
+
+/// Emits __real(SubExpr)
+template <class Emitter>
+bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) {
+ assert(SubExpr->getType()->isAnyComplexType());
+
+ if (DiscardResult)
+ return this->discard(SubExpr);
+
+ if (!this->visit(SubExpr))
+ return false;
+ if (SubExpr->isLValue()) {
+ if (!this->emitConstUint8(0, SubExpr))
+ return false;
+ return this->emitArrayElemPtrPopUint8(SubExpr);
+ }
+
+ // Rvalue, load the actual element.
+ return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()),
+ 0, SubExpr);
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) {
+ assert(!DiscardResult);
+ PrimType ElemT = classifyComplexElementType(E->getType());
+ // We emit the expression (__real(E) != 0 || __imag(E) != 0)
+ // for us, that means (bool)E[0] || (bool)E[1]
+ if (!this->emitArrayElem(ElemT, 0, E))
+ return false;
+ if (ElemT == PT_Float) {
+ if (!this->emitCastFloatingIntegral(PT_Bool, E))
+ return false;
+ } else {
+ if (!this->emitCast(ElemT, PT_Bool, E))
+ return false;
+ }
+
+ // We now have the bool value of E[0] on the stack.
+ LabelTy LabelTrue = this->getLabel();
+ if (!this->jumpTrue(LabelTrue))
+ return false;
+
+ if (!this->emitArrayElemPop(ElemT, 1, E))
+ return false;
+ if (ElemT == PT_Float) {
+ if (!this->emitCastFloatingIntegral(PT_Bool, E))
+ return false;
+ } else {
+ if (!this->emitCast(ElemT, PT_Bool, E))
+ return false;
+ }
+ // Leave the boolean value of E[1] on the stack.
+ LabelTy EndLabel = this->getLabel();
+ this->jump(EndLabel);
+
+ this->emitLabel(LabelTrue);
+ if (!this->emitPopPtr(E))
+ return false;
+ if (!this->emitConstBool(true, E))
+ return false;
+
+ this->fallthrough(EndLabel);
+ this->emitLabel(EndLabel);
+
+ return true;
+}
+
+template <class Emitter>
+bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS,
+ const BinaryOperator *E) {
+ assert(E->isComparisonOp());
+ assert(!Initializing);
+ assert(!DiscardResult);
+
+ PrimType ElemT;
+ bool LHSIsComplex;
+ unsigned LHSOffset;
+ if (LHS->getType()->isAnyComplexType()) {
+ LHSIsComplex = true;
+ ElemT = classifyComplexElementType(LHS->getType());
+ LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true,
+ /*IsExtended=*/false);
+ if (!this->visit(LHS))
+ return false;
+ if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
+ return false;
+ } else {
+ LHSIsComplex = false;
+ PrimType LHST = classifyPrim(LHS->getType());
+ LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
+ if (!this->visit(LHS))
+ return false;
+ if (!this->emitSetLocal(LHST, LHSOffset, E))
+ return false;
+ }
+
+ bool RHSIsComplex;
+ unsigned RHSOffset;
+ if (RHS->getType()->isAnyComplexType()) {
+ RHSIsComplex = true;
+ ElemT = classifyComplexElementType(RHS->getType());
+ RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true,
+ /*IsExtended=*/false);
+ if (!this->visit(RHS))
+ return false;
+ if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
+ return false;
+ } else {
+ RHSIsComplex = false;
+ PrimType RHST = classifyPrim(RHS->getType());
+ RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
+ if (!this->visit(RHS))
+ return false;
+ if (!this->emitSetLocal(RHST, RHSOffset, E))
+ return false;
+ }
+
+ auto getElem = [&](unsigned LocalOffset, unsigned Index,
+ bool IsComplex) -> bool {
+ if (IsComplex) {
+ if (!this->emitGetLocal(PT_Ptr, LocalOffset, E))
+ return false;
+ return this->emitArrayElemPop(ElemT, Index, E);
+ }
+ return this->emitGetLocal(ElemT, LocalOffset, E);
+ };
+
+ for (unsigned I = 0; I != 2; ++I) {
+ // Get both values.
+ if (!getElem(LHSOffset, I, LHSIsComplex))
+ return false;
+ if (!getElem(RHSOffset, I, RHSIsComplex))
+ return false;
+ // And compare them.
+ if (!this->emitEQ(ElemT, E))
+ return false;
+
+ if (!this->emitCastBoolUint8(E))
+ return false;
+ }
+
+ // We now have two bool values on the stack. Compare those.
+ if (!this->emitAddUint8(E))
+ return false;
+ if (!this->emitConstUint8(2, E))
+ return false;
+
+ if (E->getOpcode() == BO_EQ) {
+ if (!this->emitEQUint8(E))
+ return false;
+ } else if (E->getOpcode() == BO_NE) {
+ if (!this->emitNEUint8(E))
+ return false;
+ } else
+ return false;
+
+ // In C, this returns an int.
+ if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool)
+ return this->emitCast(PT_Bool, ResT, E);
+ return true;
+}
+
+/// When calling this, we have a pointer of the local-to-destroy
+/// on the stack.
+/// Emit destruction of record types (or arrays of record types).
+template <class Emitter>
+bool Compiler<Emitter>::emitRecordDestruction(const Record *R) {
+ assert(R);
+ // First, destroy all fields.
+ for (const Record::Field &Field : llvm::reverse(R->fields())) {
+ const Descriptor *D = Field.Desc;
+ if (!D->isPrimitive() && !D->isPrimitiveArray()) {
+ if (!this->emitGetPtrField(Field.Offset, SourceInfo{}))
+ return false;
+ if (!this->emitDestruction(D))
+ return false;
+ if (!this->emitPopPtr(SourceInfo{}))
+ return false;
+ }
+ }
+
+ // FIXME: Unions need to be handled differently here. We don't want to
+ // call the destructor of its members.
+
+ // Now emit the destructor and recurse into base classes.
+ if (const CXXDestructorDecl *Dtor = R->getDestructor();
+ Dtor && !Dtor->isTrivial()) {
+ const Function *DtorFunc = getFunction(Dtor);
+ if (!DtorFunc)
+ return false;
+ assert(DtorFunc->hasThisPointer());
+ assert(DtorFunc->getNumParams() == 1);
+ if (!this->emitDupPtr(SourceInfo{}))
+ return false;
+ if (!this->emitCall(DtorFunc, 0, SourceInfo{}))
+ return false;
+ }
+
+ for (const Record::Base &Base : llvm::reverse(R->bases())) {
+ if (!this->emitGetPtrBase(Base.Offset, SourceInfo{}))
+ return false;
+ if (!this->emitRecordDestruction(Base.R))
+ return false;
+ if (!this->emitPopPtr(SourceInfo{}))
+ return false;
+ }
+
+ // FIXME: Virtual bases.
+ return true;
+}
+/// When calling this, we have a pointer of the local-to-destroy
+/// on the stack.
+/// Emit destruction of record types (or arrays of record types).
+template <class Emitter>
+bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc) {
+ assert(Desc);
+ assert(!Desc->isPrimitive());
+ assert(!Desc->isPrimitiveArray());
+
+ // Arrays.
+ if (Desc->isArray()) {
+ const Descriptor *ElemDesc = Desc->ElemDesc;
+ assert(ElemDesc);
+
+ // Don't need to do anything for these.
+ if (ElemDesc->isPrimitiveArray())
+ return true;
+
+ // If this is an array of record types, check if we need
+ // to call the element destructors at all. If not, try
+ // to save the work.
+ if (const Record *ElemRecord = ElemDesc->ElemRecord) {
+ if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor();
+ !Dtor || Dtor->isTrivial())
+ return true;
+ }
+
+ for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) {
+ if (!this->emitConstUint64(I, SourceInfo{}))
+ return false;
+ if (!this->emitArrayElemPtrUint64(SourceInfo{}))
+ return false;
+ if (!this->emitDestruction(ElemDesc))
+ return false;
+ if (!this->emitPopPtr(SourceInfo{}))
+ return false;
+ }
+ return true;
+ }
+
+ assert(Desc->ElemRecord);
+ return this->emitRecordDestruction(Desc->ElemRecord);
+}
+
+namespace clang {
+namespace interp {
+
+template class Compiler<ByteCodeEmitter>;
+template class Compiler<EvalEmitter>;
+
+} // namespace interp
+} // namespace clang