diff options
Diffstat (limited to 'contrib/llvm-project/compiler-rt/lib/builtins/fp_add_impl.inc')
-rw-r--r-- | contrib/llvm-project/compiler-rt/lib/builtins/fp_add_impl.inc | 172 |
1 files changed, 172 insertions, 0 deletions
diff --git a/contrib/llvm-project/compiler-rt/lib/builtins/fp_add_impl.inc b/contrib/llvm-project/compiler-rt/lib/builtins/fp_add_impl.inc new file mode 100644 index 000000000000..d20599921e7d --- /dev/null +++ b/contrib/llvm-project/compiler-rt/lib/builtins/fp_add_impl.inc @@ -0,0 +1,172 @@ +//===----- lib/fp_add_impl.inc - floaing point addition -----------*- C -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements soft-float addition with the IEEE-754 default rounding +// (to nearest, ties to even). +// +//===----------------------------------------------------------------------===// + +#include "fp_lib.h" +#include "fp_mode.h" + +static __inline fp_t __addXf3__(fp_t a, fp_t b) { + rep_t aRep = toRep(a); + rep_t bRep = toRep(b); + const rep_t aAbs = aRep & absMask; + const rep_t bAbs = bRep & absMask; + + // Detect if a or b is zero, infinity, or NaN. + if (aAbs - REP_C(1) >= infRep - REP_C(1) || + bAbs - REP_C(1) >= infRep - REP_C(1)) { + // NaN + anything = qNaN + if (aAbs > infRep) + return fromRep(toRep(a) | quietBit); + // anything + NaN = qNaN + if (bAbs > infRep) + return fromRep(toRep(b) | quietBit); + + if (aAbs == infRep) { + // +/-infinity + -/+infinity = qNaN + if ((toRep(a) ^ toRep(b)) == signBit) + return fromRep(qnanRep); + // +/-infinity + anything remaining = +/- infinity + else + return a; + } + + // anything remaining + +/-infinity = +/-infinity + if (bAbs == infRep) + return b; + + // zero + anything = anything + if (!aAbs) { + // We need to get the sign right for zero + zero. + if (!bAbs) + return fromRep(toRep(a) & toRep(b)); + else + return b; + } + + // anything + zero = anything + if (!bAbs) + return a; + } + + // Swap a and b if necessary so that a has the larger absolute value. + if (bAbs > aAbs) { + const rep_t temp = aRep; + aRep = bRep; + bRep = temp; + } + + // Extract the exponent and significand from the (possibly swapped) a and b. + int aExponent = aRep >> significandBits & maxExponent; + int bExponent = bRep >> significandBits & maxExponent; + rep_t aSignificand = aRep & significandMask; + rep_t bSignificand = bRep & significandMask; + + // Normalize any denormals, and adjust the exponent accordingly. + if (aExponent == 0) + aExponent = normalize(&aSignificand); + if (bExponent == 0) + bExponent = normalize(&bSignificand); + + // The sign of the result is the sign of the larger operand, a. If they + // have opposite signs, we are performing a subtraction. Otherwise, we + // perform addition. + const rep_t resultSign = aRep & signBit; + const bool subtraction = (aRep ^ bRep) & signBit; + + // Shift the significands to give us round, guard and sticky, and set the + // implicit significand bit. If we fell through from the denormal path it + // was already set by normalize( ), but setting it twice won't hurt + // anything. + aSignificand = (aSignificand | implicitBit) << 3; + bSignificand = (bSignificand | implicitBit) << 3; + + // Shift the significand of b by the difference in exponents, with a sticky + // bottom bit to get rounding correct. + const unsigned int align = (unsigned int)(aExponent - bExponent); + if (align) { + if (align < typeWidth) { + const bool sticky = (bSignificand << (typeWidth - align)) != 0; + bSignificand = bSignificand >> align | sticky; + } else { + bSignificand = 1; // Set the sticky bit. b is known to be non-zero. + } + } + if (subtraction) { + aSignificand -= bSignificand; + // If a == -b, return +zero. + if (aSignificand == 0) + return fromRep(0); + + // If partial cancellation occured, we need to left-shift the result + // and adjust the exponent. + if (aSignificand < implicitBit << 3) { + const int shift = rep_clz(aSignificand) - rep_clz(implicitBit << 3); + aSignificand <<= shift; + aExponent -= shift; + } + } else /* addition */ { + aSignificand += bSignificand; + + // If the addition carried up, we need to right-shift the result and + // adjust the exponent. + if (aSignificand & implicitBit << 4) { + const bool sticky = aSignificand & 1; + aSignificand = aSignificand >> 1 | sticky; + aExponent += 1; + } + } + + // If we have overflowed the type, return +/- infinity. + if (aExponent >= maxExponent) + return fromRep(infRep | resultSign); + + if (aExponent <= 0) { + // The result is denormal before rounding. The exponent is zero and we + // need to shift the significand. + const int shift = 1 - aExponent; + const bool sticky = (aSignificand << (typeWidth - shift)) != 0; + aSignificand = aSignificand >> shift | sticky; + aExponent = 0; + } + + // Low three bits are round, guard, and sticky. + const int roundGuardSticky = aSignificand & 0x7; + + // Shift the significand into place, and mask off the implicit bit. + rep_t result = aSignificand >> 3 & significandMask; + + // Insert the exponent and sign. + result |= (rep_t)aExponent << significandBits; + result |= resultSign; + + // Perform the final rounding. The result may overflow to infinity, but + // that is the correct result in that case. + switch (__fe_getround()) { + case CRT_FE_TONEAREST: + if (roundGuardSticky > 0x4) + result++; + if (roundGuardSticky == 0x4) + result += result & 1; + break; + case CRT_FE_DOWNWARD: + if (resultSign && roundGuardSticky) result++; + break; + case CRT_FE_UPWARD: + if (!resultSign && roundGuardSticky) result++; + break; + case CRT_FE_TOWARDZERO: + break; + } + if (roundGuardSticky) + __fe_raise_inexact(); + return fromRep(result); +} |