aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/compiler-rt/lib/scudo/standalone/combined.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/compiler-rt/lib/scudo/standalone/combined.h')
-rw-r--r--contrib/llvm-project/compiler-rt/lib/scudo/standalone/combined.h1736
1 files changed, 1736 insertions, 0 deletions
diff --git a/contrib/llvm-project/compiler-rt/lib/scudo/standalone/combined.h b/contrib/llvm-project/compiler-rt/lib/scudo/standalone/combined.h
new file mode 100644
index 000000000000..fcf65652c5fc
--- /dev/null
+++ b/contrib/llvm-project/compiler-rt/lib/scudo/standalone/combined.h
@@ -0,0 +1,1736 @@
+//===-- combined.h ----------------------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SCUDO_COMBINED_H_
+#define SCUDO_COMBINED_H_
+
+#include "allocator_config_wrapper.h"
+#include "atomic_helpers.h"
+#include "chunk.h"
+#include "common.h"
+#include "flags.h"
+#include "flags_parser.h"
+#include "local_cache.h"
+#include "mem_map.h"
+#include "memtag.h"
+#include "mutex.h"
+#include "options.h"
+#include "quarantine.h"
+#include "report.h"
+#include "secondary.h"
+#include "stack_depot.h"
+#include "string_utils.h"
+#include "tsd.h"
+
+#include "scudo/interface.h"
+
+#ifdef GWP_ASAN_HOOKS
+#include "gwp_asan/guarded_pool_allocator.h"
+#include "gwp_asan/optional/backtrace.h"
+#include "gwp_asan/optional/segv_handler.h"
+#endif // GWP_ASAN_HOOKS
+
+extern "C" inline void EmptyCallback() {}
+
+#ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
+// This function is not part of the NDK so it does not appear in any public
+// header files. We only declare/use it when targeting the platform.
+extern "C" size_t android_unsafe_frame_pointer_chase(scudo::uptr *buf,
+ size_t num_entries);
+#endif
+
+namespace scudo {
+
+template <class Config, void (*PostInitCallback)(void) = EmptyCallback>
+class Allocator {
+public:
+ using AllocatorConfig = BaseConfig<Config>;
+ using PrimaryT =
+ typename AllocatorConfig::template PrimaryT<PrimaryConfig<Config>>;
+ using SecondaryT =
+ typename AllocatorConfig::template SecondaryT<SecondaryConfig<Config>>;
+ using CacheT = typename PrimaryT::CacheT;
+ typedef Allocator<Config, PostInitCallback> ThisT;
+ typedef typename AllocatorConfig::template TSDRegistryT<ThisT> TSDRegistryT;
+
+ void callPostInitCallback() {
+ pthread_once(&PostInitNonce, PostInitCallback);
+ }
+
+ struct QuarantineCallback {
+ explicit QuarantineCallback(ThisT &Instance, CacheT &LocalCache)
+ : Allocator(Instance), Cache(LocalCache) {}
+
+ // Chunk recycling function, returns a quarantined chunk to the backend,
+ // first making sure it hasn't been tampered with.
+ void recycle(void *Ptr) {
+ Chunk::UnpackedHeader Header;
+ Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
+ if (UNLIKELY(Header.State != Chunk::State::Quarantined))
+ reportInvalidChunkState(AllocatorAction::Recycling, Ptr);
+
+ Header.State = Chunk::State::Available;
+ Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);
+
+ if (allocatorSupportsMemoryTagging<AllocatorConfig>())
+ Ptr = untagPointer(Ptr);
+ void *BlockBegin = Allocator::getBlockBegin(Ptr, &Header);
+ Cache.deallocate(Header.ClassId, BlockBegin);
+ }
+
+ // We take a shortcut when allocating a quarantine batch by working with the
+ // appropriate class ID instead of using Size. The compiler should optimize
+ // the class ID computation and work with the associated cache directly.
+ void *allocate(UNUSED uptr Size) {
+ const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
+ sizeof(QuarantineBatch) + Chunk::getHeaderSize());
+ void *Ptr = Cache.allocate(QuarantineClassId);
+ // Quarantine batch allocation failure is fatal.
+ if (UNLIKELY(!Ptr))
+ reportOutOfMemory(SizeClassMap::getSizeByClassId(QuarantineClassId));
+
+ Ptr = reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) +
+ Chunk::getHeaderSize());
+ Chunk::UnpackedHeader Header = {};
+ Header.ClassId = QuarantineClassId & Chunk::ClassIdMask;
+ Header.SizeOrUnusedBytes = sizeof(QuarantineBatch);
+ Header.State = Chunk::State::Allocated;
+ Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);
+
+ // Reset tag to 0 as this chunk may have been previously used for a tagged
+ // user allocation.
+ if (UNLIKELY(useMemoryTagging<AllocatorConfig>(
+ Allocator.Primary.Options.load())))
+ storeTags(reinterpret_cast<uptr>(Ptr),
+ reinterpret_cast<uptr>(Ptr) + sizeof(QuarantineBatch));
+
+ return Ptr;
+ }
+
+ void deallocate(void *Ptr) {
+ const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
+ sizeof(QuarantineBatch) + Chunk::getHeaderSize());
+ Chunk::UnpackedHeader Header;
+ Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
+
+ if (UNLIKELY(Header.State != Chunk::State::Allocated))
+ reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
+ DCHECK_EQ(Header.ClassId, QuarantineClassId);
+ DCHECK_EQ(Header.Offset, 0);
+ DCHECK_EQ(Header.SizeOrUnusedBytes, sizeof(QuarantineBatch));
+
+ Header.State = Chunk::State::Available;
+ Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);
+ Cache.deallocate(QuarantineClassId,
+ reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
+ Chunk::getHeaderSize()));
+ }
+
+ private:
+ ThisT &Allocator;
+ CacheT &Cache;
+ };
+
+ typedef GlobalQuarantine<QuarantineCallback, void> QuarantineT;
+ typedef typename QuarantineT::CacheT QuarantineCacheT;
+
+ void init() {
+ performSanityChecks();
+
+ // Check if hardware CRC32 is supported in the binary and by the platform,
+ // if so, opt for the CRC32 hardware version of the checksum.
+ if (&computeHardwareCRC32 && hasHardwareCRC32())
+ HashAlgorithm = Checksum::HardwareCRC32;
+
+ if (UNLIKELY(!getRandom(&Cookie, sizeof(Cookie))))
+ Cookie = static_cast<u32>(getMonotonicTime() ^
+ (reinterpret_cast<uptr>(this) >> 4));
+
+ initFlags();
+ reportUnrecognizedFlags();
+
+ // Store some flags locally.
+ if (getFlags()->may_return_null)
+ Primary.Options.set(OptionBit::MayReturnNull);
+ if (getFlags()->zero_contents)
+ Primary.Options.setFillContentsMode(ZeroFill);
+ else if (getFlags()->pattern_fill_contents)
+ Primary.Options.setFillContentsMode(PatternOrZeroFill);
+ if (getFlags()->dealloc_type_mismatch)
+ Primary.Options.set(OptionBit::DeallocTypeMismatch);
+ if (getFlags()->delete_size_mismatch)
+ Primary.Options.set(OptionBit::DeleteSizeMismatch);
+ if (allocatorSupportsMemoryTagging<AllocatorConfig>() &&
+ systemSupportsMemoryTagging())
+ Primary.Options.set(OptionBit::UseMemoryTagging);
+
+ QuarantineMaxChunkSize =
+ static_cast<u32>(getFlags()->quarantine_max_chunk_size);
+
+ Stats.init();
+ // TODO(chiahungduan): Given that we support setting the default value in
+ // the PrimaryConfig and CacheConfig, consider to deprecate the use of
+ // `release_to_os_interval_ms` flag.
+ const s32 ReleaseToOsIntervalMs = getFlags()->release_to_os_interval_ms;
+ Primary.init(ReleaseToOsIntervalMs);
+ Secondary.init(&Stats, ReleaseToOsIntervalMs);
+ Quarantine.init(
+ static_cast<uptr>(getFlags()->quarantine_size_kb << 10),
+ static_cast<uptr>(getFlags()->thread_local_quarantine_size_kb << 10));
+ }
+
+ void enableRingBuffer() NO_THREAD_SAFETY_ANALYSIS {
+ AllocationRingBuffer *RB = getRingBuffer();
+ if (RB)
+ RB->Depot->enable();
+ RingBufferInitLock.unlock();
+ }
+
+ void disableRingBuffer() NO_THREAD_SAFETY_ANALYSIS {
+ RingBufferInitLock.lock();
+ AllocationRingBuffer *RB = getRingBuffer();
+ if (RB)
+ RB->Depot->disable();
+ }
+
+ // Initialize the embedded GWP-ASan instance. Requires the main allocator to
+ // be functional, best called from PostInitCallback.
+ void initGwpAsan() {
+#ifdef GWP_ASAN_HOOKS
+ gwp_asan::options::Options Opt;
+ Opt.Enabled = getFlags()->GWP_ASAN_Enabled;
+ Opt.MaxSimultaneousAllocations =
+ getFlags()->GWP_ASAN_MaxSimultaneousAllocations;
+ Opt.SampleRate = getFlags()->GWP_ASAN_SampleRate;
+ Opt.InstallSignalHandlers = getFlags()->GWP_ASAN_InstallSignalHandlers;
+ Opt.Recoverable = getFlags()->GWP_ASAN_Recoverable;
+ // Embedded GWP-ASan is locked through the Scudo atfork handler (via
+ // Allocator::disable calling GWPASan.disable). Disable GWP-ASan's atfork
+ // handler.
+ Opt.InstallForkHandlers = false;
+ Opt.Backtrace = gwp_asan::backtrace::getBacktraceFunction();
+ GuardedAlloc.init(Opt);
+
+ if (Opt.InstallSignalHandlers)
+ gwp_asan::segv_handler::installSignalHandlers(
+ &GuardedAlloc, Printf,
+ gwp_asan::backtrace::getPrintBacktraceFunction(),
+ gwp_asan::backtrace::getSegvBacktraceFunction(),
+ Opt.Recoverable);
+
+ GuardedAllocSlotSize =
+ GuardedAlloc.getAllocatorState()->maximumAllocationSize();
+ Stats.add(StatFree, static_cast<uptr>(Opt.MaxSimultaneousAllocations) *
+ GuardedAllocSlotSize);
+#endif // GWP_ASAN_HOOKS
+ }
+
+#ifdef GWP_ASAN_HOOKS
+ const gwp_asan::AllocationMetadata *getGwpAsanAllocationMetadata() {
+ return GuardedAlloc.getMetadataRegion();
+ }
+
+ const gwp_asan::AllocatorState *getGwpAsanAllocatorState() {
+ return GuardedAlloc.getAllocatorState();
+ }
+#endif // GWP_ASAN_HOOKS
+
+ ALWAYS_INLINE void initThreadMaybe(bool MinimalInit = false) {
+ TSDRegistry.initThreadMaybe(this, MinimalInit);
+ }
+
+ void unmapTestOnly() {
+ unmapRingBuffer();
+ TSDRegistry.unmapTestOnly(this);
+ Primary.unmapTestOnly();
+ Secondary.unmapTestOnly();
+#ifdef GWP_ASAN_HOOKS
+ if (getFlags()->GWP_ASAN_InstallSignalHandlers)
+ gwp_asan::segv_handler::uninstallSignalHandlers();
+ GuardedAlloc.uninitTestOnly();
+#endif // GWP_ASAN_HOOKS
+ }
+
+ TSDRegistryT *getTSDRegistry() { return &TSDRegistry; }
+ QuarantineT *getQuarantine() { return &Quarantine; }
+
+ // The Cache must be provided zero-initialized.
+ void initCache(CacheT *Cache) { Cache->init(&Stats, &Primary); }
+
+ // Release the resources used by a TSD, which involves:
+ // - draining the local quarantine cache to the global quarantine;
+ // - releasing the cached pointers back to the Primary;
+ // - unlinking the local stats from the global ones (destroying the cache does
+ // the last two items).
+ void commitBack(TSD<ThisT> *TSD) {
+ TSD->assertLocked(/*BypassCheck=*/true);
+ Quarantine.drain(&TSD->getQuarantineCache(),
+ QuarantineCallback(*this, TSD->getCache()));
+ TSD->getCache().destroy(&Stats);
+ }
+
+ void drainCache(TSD<ThisT> *TSD) {
+ TSD->assertLocked(/*BypassCheck=*/true);
+ Quarantine.drainAndRecycle(&TSD->getQuarantineCache(),
+ QuarantineCallback(*this, TSD->getCache()));
+ TSD->getCache().drain();
+ }
+ void drainCaches() { TSDRegistry.drainCaches(this); }
+
+ ALWAYS_INLINE void *getHeaderTaggedPointer(void *Ptr) {
+ if (!allocatorSupportsMemoryTagging<AllocatorConfig>())
+ return Ptr;
+ auto UntaggedPtr = untagPointer(Ptr);
+ if (UntaggedPtr != Ptr)
+ return UntaggedPtr;
+ // Secondary, or pointer allocated while memory tagging is unsupported or
+ // disabled. The tag mismatch is okay in the latter case because tags will
+ // not be checked.
+ return addHeaderTag(Ptr);
+ }
+
+ ALWAYS_INLINE uptr addHeaderTag(uptr Ptr) {
+ if (!allocatorSupportsMemoryTagging<AllocatorConfig>())
+ return Ptr;
+ return addFixedTag(Ptr, 2);
+ }
+
+ ALWAYS_INLINE void *addHeaderTag(void *Ptr) {
+ return reinterpret_cast<void *>(addHeaderTag(reinterpret_cast<uptr>(Ptr)));
+ }
+
+ NOINLINE u32 collectStackTrace(UNUSED StackDepot *Depot) {
+#ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
+ // Discard collectStackTrace() frame and allocator function frame.
+ constexpr uptr DiscardFrames = 2;
+ uptr Stack[MaxTraceSize + DiscardFrames];
+ uptr Size =
+ android_unsafe_frame_pointer_chase(Stack, MaxTraceSize + DiscardFrames);
+ Size = Min<uptr>(Size, MaxTraceSize + DiscardFrames);
+ return Depot->insert(Stack + Min<uptr>(DiscardFrames, Size), Stack + Size);
+#else
+ return 0;
+#endif
+ }
+
+ uptr computeOddEvenMaskForPointerMaybe(const Options &Options, uptr Ptr,
+ uptr ClassId) {
+ if (!Options.get(OptionBit::UseOddEvenTags))
+ return 0;
+
+ // If a chunk's tag is odd, we want the tags of the surrounding blocks to be
+ // even, and vice versa. Blocks are laid out Size bytes apart, and adding
+ // Size to Ptr will flip the least significant set bit of Size in Ptr, so
+ // that bit will have the pattern 010101... for consecutive blocks, which we
+ // can use to determine which tag mask to use.
+ return 0x5555U << ((Ptr >> SizeClassMap::getSizeLSBByClassId(ClassId)) & 1);
+ }
+
+ NOINLINE void *allocate(uptr Size, Chunk::Origin Origin,
+ uptr Alignment = MinAlignment,
+ bool ZeroContents = false) NO_THREAD_SAFETY_ANALYSIS {
+ initThreadMaybe();
+
+ const Options Options = Primary.Options.load();
+ if (UNLIKELY(Alignment > MaxAlignment)) {
+ if (Options.get(OptionBit::MayReturnNull))
+ return nullptr;
+ reportAlignmentTooBig(Alignment, MaxAlignment);
+ }
+ if (Alignment < MinAlignment)
+ Alignment = MinAlignment;
+
+#ifdef GWP_ASAN_HOOKS
+ if (UNLIKELY(GuardedAlloc.shouldSample())) {
+ if (void *Ptr = GuardedAlloc.allocate(Size, Alignment)) {
+ Stats.lock();
+ Stats.add(StatAllocated, GuardedAllocSlotSize);
+ Stats.sub(StatFree, GuardedAllocSlotSize);
+ Stats.unlock();
+ return Ptr;
+ }
+ }
+#endif // GWP_ASAN_HOOKS
+
+ const FillContentsMode FillContents = ZeroContents ? ZeroFill
+ : TSDRegistry.getDisableMemInit()
+ ? NoFill
+ : Options.getFillContentsMode();
+
+ // If the requested size happens to be 0 (more common than you might think),
+ // allocate MinAlignment bytes on top of the header. Then add the extra
+ // bytes required to fulfill the alignment requirements: we allocate enough
+ // to be sure that there will be an address in the block that will satisfy
+ // the alignment.
+ const uptr NeededSize =
+ roundUp(Size, MinAlignment) +
+ ((Alignment > MinAlignment) ? Alignment : Chunk::getHeaderSize());
+
+ // Takes care of extravagantly large sizes as well as integer overflows.
+ static_assert(MaxAllowedMallocSize < UINTPTR_MAX - MaxAlignment, "");
+ if (UNLIKELY(Size >= MaxAllowedMallocSize)) {
+ if (Options.get(OptionBit::MayReturnNull))
+ return nullptr;
+ reportAllocationSizeTooBig(Size, NeededSize, MaxAllowedMallocSize);
+ }
+ DCHECK_LE(Size, NeededSize);
+
+ void *Block = nullptr;
+ uptr ClassId = 0;
+ uptr SecondaryBlockEnd = 0;
+ if (LIKELY(PrimaryT::canAllocate(NeededSize))) {
+ ClassId = SizeClassMap::getClassIdBySize(NeededSize);
+ DCHECK_NE(ClassId, 0U);
+ typename TSDRegistryT::ScopedTSD TSD(TSDRegistry);
+ Block = TSD->getCache().allocate(ClassId);
+ // If the allocation failed, retry in each successively larger class until
+ // it fits. If it fails to fit in the largest class, fallback to the
+ // Secondary.
+ if (UNLIKELY(!Block)) {
+ while (ClassId < SizeClassMap::LargestClassId && !Block)
+ Block = TSD->getCache().allocate(++ClassId);
+ if (!Block)
+ ClassId = 0;
+ }
+ }
+ if (UNLIKELY(ClassId == 0)) {
+ Block = Secondary.allocate(Options, Size, Alignment, &SecondaryBlockEnd,
+ FillContents);
+ }
+
+ if (UNLIKELY(!Block)) {
+ if (Options.get(OptionBit::MayReturnNull))
+ return nullptr;
+ printStats();
+ reportOutOfMemory(NeededSize);
+ }
+
+ const uptr UserPtr = roundUp(
+ reinterpret_cast<uptr>(Block) + Chunk::getHeaderSize(), Alignment);
+ const uptr SizeOrUnusedBytes =
+ ClassId ? Size : SecondaryBlockEnd - (UserPtr + Size);
+
+ if (LIKELY(!useMemoryTagging<AllocatorConfig>(Options))) {
+ return initChunk(ClassId, Origin, Block, UserPtr, SizeOrUnusedBytes,
+ FillContents);
+ }
+
+ return initChunkWithMemoryTagging(ClassId, Origin, Block, UserPtr, Size,
+ SizeOrUnusedBytes, FillContents);
+ }
+
+ NOINLINE void deallocate(void *Ptr, Chunk::Origin Origin, uptr DeleteSize = 0,
+ UNUSED uptr Alignment = MinAlignment) {
+ if (UNLIKELY(!Ptr))
+ return;
+
+ // For a deallocation, we only ensure minimal initialization, meaning thread
+ // local data will be left uninitialized for now (when using ELF TLS). The
+ // fallback cache will be used instead. This is a workaround for a situation
+ // where the only heap operation performed in a thread would be a free past
+ // the TLS destructors, ending up in initialized thread specific data never
+ // being destroyed properly. Any other heap operation will do a full init.
+ initThreadMaybe(/*MinimalInit=*/true);
+
+#ifdef GWP_ASAN_HOOKS
+ if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) {
+ GuardedAlloc.deallocate(Ptr);
+ Stats.lock();
+ Stats.add(StatFree, GuardedAllocSlotSize);
+ Stats.sub(StatAllocated, GuardedAllocSlotSize);
+ Stats.unlock();
+ return;
+ }
+#endif // GWP_ASAN_HOOKS
+
+ if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment)))
+ reportMisalignedPointer(AllocatorAction::Deallocating, Ptr);
+
+ void *TaggedPtr = Ptr;
+ Ptr = getHeaderTaggedPointer(Ptr);
+
+ Chunk::UnpackedHeader Header;
+ Chunk::loadHeader(Cookie, Ptr, &Header);
+
+ if (UNLIKELY(Header.State != Chunk::State::Allocated))
+ reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
+
+ const Options Options = Primary.Options.load();
+ if (Options.get(OptionBit::DeallocTypeMismatch)) {
+ if (UNLIKELY(Header.OriginOrWasZeroed != Origin)) {
+ // With the exception of memalign'd chunks, that can be still be free'd.
+ if (Header.OriginOrWasZeroed != Chunk::Origin::Memalign ||
+ Origin != Chunk::Origin::Malloc)
+ reportDeallocTypeMismatch(AllocatorAction::Deallocating, Ptr,
+ Header.OriginOrWasZeroed, Origin);
+ }
+ }
+
+ const uptr Size = getSize(Ptr, &Header);
+ if (DeleteSize && Options.get(OptionBit::DeleteSizeMismatch)) {
+ if (UNLIKELY(DeleteSize != Size))
+ reportDeleteSizeMismatch(Ptr, DeleteSize, Size);
+ }
+
+ quarantineOrDeallocateChunk(Options, TaggedPtr, &Header, Size);
+ }
+
+ void *reallocate(void *OldPtr, uptr NewSize, uptr Alignment = MinAlignment) {
+ initThreadMaybe();
+
+ const Options Options = Primary.Options.load();
+ if (UNLIKELY(NewSize >= MaxAllowedMallocSize)) {
+ if (Options.get(OptionBit::MayReturnNull))
+ return nullptr;
+ reportAllocationSizeTooBig(NewSize, 0, MaxAllowedMallocSize);
+ }
+
+ // The following cases are handled by the C wrappers.
+ DCHECK_NE(OldPtr, nullptr);
+ DCHECK_NE(NewSize, 0);
+
+#ifdef GWP_ASAN_HOOKS
+ if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) {
+ uptr OldSize = GuardedAlloc.getSize(OldPtr);
+ void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
+ if (NewPtr)
+ memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize);
+ GuardedAlloc.deallocate(OldPtr);
+ Stats.lock();
+ Stats.add(StatFree, GuardedAllocSlotSize);
+ Stats.sub(StatAllocated, GuardedAllocSlotSize);
+ Stats.unlock();
+ return NewPtr;
+ }
+#endif // GWP_ASAN_HOOKS
+
+ void *OldTaggedPtr = OldPtr;
+ OldPtr = getHeaderTaggedPointer(OldPtr);
+
+ if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(OldPtr), MinAlignment)))
+ reportMisalignedPointer(AllocatorAction::Reallocating, OldPtr);
+
+ Chunk::UnpackedHeader Header;
+ Chunk::loadHeader(Cookie, OldPtr, &Header);
+
+ if (UNLIKELY(Header.State != Chunk::State::Allocated))
+ reportInvalidChunkState(AllocatorAction::Reallocating, OldPtr);
+
+ // Pointer has to be allocated with a malloc-type function. Some
+ // applications think that it is OK to realloc a memalign'ed pointer, which
+ // will trigger this check. It really isn't.
+ if (Options.get(OptionBit::DeallocTypeMismatch)) {
+ if (UNLIKELY(Header.OriginOrWasZeroed != Chunk::Origin::Malloc))
+ reportDeallocTypeMismatch(AllocatorAction::Reallocating, OldPtr,
+ Header.OriginOrWasZeroed,
+ Chunk::Origin::Malloc);
+ }
+
+ void *BlockBegin = getBlockBegin(OldTaggedPtr, &Header);
+ uptr BlockEnd;
+ uptr OldSize;
+ const uptr ClassId = Header.ClassId;
+ if (LIKELY(ClassId)) {
+ BlockEnd = reinterpret_cast<uptr>(BlockBegin) +
+ SizeClassMap::getSizeByClassId(ClassId);
+ OldSize = Header.SizeOrUnusedBytes;
+ } else {
+ BlockEnd = SecondaryT::getBlockEnd(BlockBegin);
+ OldSize = BlockEnd - (reinterpret_cast<uptr>(OldTaggedPtr) +
+ Header.SizeOrUnusedBytes);
+ }
+ // If the new chunk still fits in the previously allocated block (with a
+ // reasonable delta), we just keep the old block, and update the chunk
+ // header to reflect the size change.
+ if (reinterpret_cast<uptr>(OldTaggedPtr) + NewSize <= BlockEnd) {
+ if (NewSize > OldSize || (OldSize - NewSize) < getPageSizeCached()) {
+ // If we have reduced the size, set the extra bytes to the fill value
+ // so that we are ready to grow it again in the future.
+ if (NewSize < OldSize) {
+ const FillContentsMode FillContents =
+ TSDRegistry.getDisableMemInit() ? NoFill
+ : Options.getFillContentsMode();
+ if (FillContents != NoFill) {
+ memset(reinterpret_cast<char *>(OldTaggedPtr) + NewSize,
+ FillContents == ZeroFill ? 0 : PatternFillByte,
+ OldSize - NewSize);
+ }
+ }
+
+ Header.SizeOrUnusedBytes =
+ (ClassId ? NewSize
+ : BlockEnd -
+ (reinterpret_cast<uptr>(OldTaggedPtr) + NewSize)) &
+ Chunk::SizeOrUnusedBytesMask;
+ Chunk::storeHeader(Cookie, OldPtr, &Header);
+ if (UNLIKELY(useMemoryTagging<AllocatorConfig>(Options))) {
+ if (ClassId) {
+ resizeTaggedChunk(reinterpret_cast<uptr>(OldTaggedPtr) + OldSize,
+ reinterpret_cast<uptr>(OldTaggedPtr) + NewSize,
+ NewSize, untagPointer(BlockEnd));
+ storePrimaryAllocationStackMaybe(Options, OldPtr);
+ } else {
+ storeSecondaryAllocationStackMaybe(Options, OldPtr, NewSize);
+ }
+ }
+ return OldTaggedPtr;
+ }
+ }
+
+ // Otherwise we allocate a new one, and deallocate the old one. Some
+ // allocators will allocate an even larger chunk (by a fixed factor) to
+ // allow for potential further in-place realloc. The gains of such a trick
+ // are currently unclear.
+ void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
+ if (LIKELY(NewPtr)) {
+ memcpy(NewPtr, OldTaggedPtr, Min(NewSize, OldSize));
+ quarantineOrDeallocateChunk(Options, OldTaggedPtr, &Header, OldSize);
+ }
+ return NewPtr;
+ }
+
+ // TODO(kostyak): disable() is currently best-effort. There are some small
+ // windows of time when an allocation could still succeed after
+ // this function finishes. We will revisit that later.
+ void disable() NO_THREAD_SAFETY_ANALYSIS {
+ initThreadMaybe();
+#ifdef GWP_ASAN_HOOKS
+ GuardedAlloc.disable();
+#endif
+ TSDRegistry.disable();
+ Stats.disable();
+ Quarantine.disable();
+ Primary.disable();
+ Secondary.disable();
+ disableRingBuffer();
+ }
+
+ void enable() NO_THREAD_SAFETY_ANALYSIS {
+ initThreadMaybe();
+ enableRingBuffer();
+ Secondary.enable();
+ Primary.enable();
+ Quarantine.enable();
+ Stats.enable();
+ TSDRegistry.enable();
+#ifdef GWP_ASAN_HOOKS
+ GuardedAlloc.enable();
+#endif
+ }
+
+ // The function returns the amount of bytes required to store the statistics,
+ // which might be larger than the amount of bytes provided. Note that the
+ // statistics buffer is not necessarily constant between calls to this
+ // function. This can be called with a null buffer or zero size for buffer
+ // sizing purposes.
+ uptr getStats(char *Buffer, uptr Size) {
+ ScopedString Str;
+ const uptr Length = getStats(&Str) + 1;
+ if (Length < Size)
+ Size = Length;
+ if (Buffer && Size) {
+ memcpy(Buffer, Str.data(), Size);
+ Buffer[Size - 1] = '\0';
+ }
+ return Length;
+ }
+
+ void printStats() {
+ ScopedString Str;
+ getStats(&Str);
+ Str.output();
+ }
+
+ void printFragmentationInfo() {
+ ScopedString Str;
+ Primary.getFragmentationInfo(&Str);
+ // Secondary allocator dumps the fragmentation data in getStats().
+ Str.output();
+ }
+
+ void releaseToOS(ReleaseToOS ReleaseType) {
+ initThreadMaybe();
+ if (ReleaseType == ReleaseToOS::ForceAll)
+ drainCaches();
+ Primary.releaseToOS(ReleaseType);
+ Secondary.releaseToOS();
+ }
+
+ // Iterate over all chunks and call a callback for all busy chunks located
+ // within the provided memory range. Said callback must not use this allocator
+ // or a deadlock can ensue. This fits Android's malloc_iterate() needs.
+ void iterateOverChunks(uptr Base, uptr Size, iterate_callback Callback,
+ void *Arg) {
+ initThreadMaybe();
+ if (archSupportsMemoryTagging())
+ Base = untagPointer(Base);
+ const uptr From = Base;
+ const uptr To = Base + Size;
+ bool MayHaveTaggedPrimary =
+ allocatorSupportsMemoryTagging<AllocatorConfig>() &&
+ systemSupportsMemoryTagging();
+ auto Lambda = [this, From, To, MayHaveTaggedPrimary, Callback,
+ Arg](uptr Block) {
+ if (Block < From || Block >= To)
+ return;
+ uptr Chunk;
+ Chunk::UnpackedHeader Header;
+ if (MayHaveTaggedPrimary) {
+ // A chunk header can either have a zero tag (tagged primary) or the
+ // header tag (secondary, or untagged primary). We don't know which so
+ // try both.
+ ScopedDisableMemoryTagChecks x;
+ if (!getChunkFromBlock(Block, &Chunk, &Header) &&
+ !getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header))
+ return;
+ } else {
+ if (!getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header))
+ return;
+ }
+ if (Header.State == Chunk::State::Allocated) {
+ uptr TaggedChunk = Chunk;
+ if (allocatorSupportsMemoryTagging<AllocatorConfig>())
+ TaggedChunk = untagPointer(TaggedChunk);
+ if (useMemoryTagging<AllocatorConfig>(Primary.Options.load()))
+ TaggedChunk = loadTag(Chunk);
+ Callback(TaggedChunk, getSize(reinterpret_cast<void *>(Chunk), &Header),
+ Arg);
+ }
+ };
+ Primary.iterateOverBlocks(Lambda);
+ Secondary.iterateOverBlocks(Lambda);
+#ifdef GWP_ASAN_HOOKS
+ GuardedAlloc.iterate(reinterpret_cast<void *>(Base), Size, Callback, Arg);
+#endif
+ }
+
+ bool canReturnNull() {
+ initThreadMaybe();
+ return Primary.Options.load().get(OptionBit::MayReturnNull);
+ }
+
+ bool setOption(Option O, sptr Value) {
+ initThreadMaybe();
+ if (O == Option::MemtagTuning) {
+ // Enabling odd/even tags involves a tradeoff between use-after-free
+ // detection and buffer overflow detection. Odd/even tags make it more
+ // likely for buffer overflows to be detected by increasing the size of
+ // the guaranteed "red zone" around the allocation, but on the other hand
+ // use-after-free is less likely to be detected because the tag space for
+ // any particular chunk is cut in half. Therefore we use this tuning
+ // setting to control whether odd/even tags are enabled.
+ if (Value == M_MEMTAG_TUNING_BUFFER_OVERFLOW)
+ Primary.Options.set(OptionBit::UseOddEvenTags);
+ else if (Value == M_MEMTAG_TUNING_UAF)
+ Primary.Options.clear(OptionBit::UseOddEvenTags);
+ return true;
+ } else {
+ // We leave it to the various sub-components to decide whether or not they
+ // want to handle the option, but we do not want to short-circuit
+ // execution if one of the setOption was to return false.
+ const bool PrimaryResult = Primary.setOption(O, Value);
+ const bool SecondaryResult = Secondary.setOption(O, Value);
+ const bool RegistryResult = TSDRegistry.setOption(O, Value);
+ return PrimaryResult && SecondaryResult && RegistryResult;
+ }
+ return false;
+ }
+
+ // Return the usable size for a given chunk. Technically we lie, as we just
+ // report the actual size of a chunk. This is done to counteract code actively
+ // writing past the end of a chunk (like sqlite3) when the usable size allows
+ // for it, which then forces realloc to copy the usable size of a chunk as
+ // opposed to its actual size.
+ uptr getUsableSize(const void *Ptr) {
+ if (UNLIKELY(!Ptr))
+ return 0;
+
+ return getAllocSize(Ptr);
+ }
+
+ uptr getAllocSize(const void *Ptr) {
+ initThreadMaybe();
+
+#ifdef GWP_ASAN_HOOKS
+ if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr)))
+ return GuardedAlloc.getSize(Ptr);
+#endif // GWP_ASAN_HOOKS
+
+ Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr));
+ Chunk::UnpackedHeader Header;
+ Chunk::loadHeader(Cookie, Ptr, &Header);
+
+ // Getting the alloc size of a chunk only makes sense if it's allocated.
+ if (UNLIKELY(Header.State != Chunk::State::Allocated))
+ reportInvalidChunkState(AllocatorAction::Sizing, const_cast<void *>(Ptr));
+
+ return getSize(Ptr, &Header);
+ }
+
+ void getStats(StatCounters S) {
+ initThreadMaybe();
+ Stats.get(S);
+ }
+
+ // Returns true if the pointer provided was allocated by the current
+ // allocator instance, which is compliant with tcmalloc's ownership concept.
+ // A corrupted chunk will not be reported as owned, which is WAI.
+ bool isOwned(const void *Ptr) {
+ initThreadMaybe();
+#ifdef GWP_ASAN_HOOKS
+ if (GuardedAlloc.pointerIsMine(Ptr))
+ return true;
+#endif // GWP_ASAN_HOOKS
+ if (!Ptr || !isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment))
+ return false;
+ Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr));
+ Chunk::UnpackedHeader Header;
+ return Chunk::isValid(Cookie, Ptr, &Header) &&
+ Header.State == Chunk::State::Allocated;
+ }
+
+ bool useMemoryTaggingTestOnly() const {
+ return useMemoryTagging<AllocatorConfig>(Primary.Options.load());
+ }
+ void disableMemoryTagging() {
+ // If we haven't been initialized yet, we need to initialize now in order to
+ // prevent a future call to initThreadMaybe() from enabling memory tagging
+ // based on feature detection. But don't call initThreadMaybe() because it
+ // may end up calling the allocator (via pthread_atfork, via the post-init
+ // callback), which may cause mappings to be created with memory tagging
+ // enabled.
+ TSDRegistry.initOnceMaybe(this);
+ if (allocatorSupportsMemoryTagging<AllocatorConfig>()) {
+ Secondary.disableMemoryTagging();
+ Primary.Options.clear(OptionBit::UseMemoryTagging);
+ }
+ }
+
+ void setTrackAllocationStacks(bool Track) {
+ initThreadMaybe();
+ if (getFlags()->allocation_ring_buffer_size <= 0) {
+ DCHECK(!Primary.Options.load().get(OptionBit::TrackAllocationStacks));
+ return;
+ }
+
+ if (Track) {
+ initRingBufferMaybe();
+ Primary.Options.set(OptionBit::TrackAllocationStacks);
+ } else
+ Primary.Options.clear(OptionBit::TrackAllocationStacks);
+ }
+
+ void setFillContents(FillContentsMode FillContents) {
+ initThreadMaybe();
+ Primary.Options.setFillContentsMode(FillContents);
+ }
+
+ void setAddLargeAllocationSlack(bool AddSlack) {
+ initThreadMaybe();
+ if (AddSlack)
+ Primary.Options.set(OptionBit::AddLargeAllocationSlack);
+ else
+ Primary.Options.clear(OptionBit::AddLargeAllocationSlack);
+ }
+
+ const char *getStackDepotAddress() {
+ initThreadMaybe();
+ AllocationRingBuffer *RB = getRingBuffer();
+ return RB ? reinterpret_cast<char *>(RB->Depot) : nullptr;
+ }
+
+ uptr getStackDepotSize() {
+ initThreadMaybe();
+ AllocationRingBuffer *RB = getRingBuffer();
+ return RB ? RB->StackDepotSize : 0;
+ }
+
+ const char *getRegionInfoArrayAddress() const {
+ return Primary.getRegionInfoArrayAddress();
+ }
+
+ static uptr getRegionInfoArraySize() {
+ return PrimaryT::getRegionInfoArraySize();
+ }
+
+ const char *getRingBufferAddress() {
+ initThreadMaybe();
+ return reinterpret_cast<char *>(getRingBuffer());
+ }
+
+ uptr getRingBufferSize() {
+ initThreadMaybe();
+ AllocationRingBuffer *RB = getRingBuffer();
+ return RB && RB->RingBufferElements
+ ? ringBufferSizeInBytes(RB->RingBufferElements)
+ : 0;
+ }
+
+ static const uptr MaxTraceSize = 64;
+
+ static void collectTraceMaybe(const StackDepot *Depot,
+ uintptr_t (&Trace)[MaxTraceSize], u32 Hash) {
+ uptr RingPos, Size;
+ if (!Depot->find(Hash, &RingPos, &Size))
+ return;
+ for (unsigned I = 0; I != Size && I != MaxTraceSize; ++I)
+ Trace[I] = static_cast<uintptr_t>(Depot->at(RingPos + I));
+ }
+
+ static void getErrorInfo(struct scudo_error_info *ErrorInfo,
+ uintptr_t FaultAddr, const char *DepotPtr,
+ size_t DepotSize, const char *RegionInfoPtr,
+ const char *RingBufferPtr, size_t RingBufferSize,
+ const char *Memory, const char *MemoryTags,
+ uintptr_t MemoryAddr, size_t MemorySize) {
+ // N.B. we need to support corrupted data in any of the buffers here. We get
+ // this information from an external process (the crashing process) that
+ // should not be able to crash the crash dumper (crash_dump on Android).
+ // See also the get_error_info_fuzzer.
+ *ErrorInfo = {};
+ if (!allocatorSupportsMemoryTagging<AllocatorConfig>() ||
+ MemoryAddr + MemorySize < MemoryAddr)
+ return;
+
+ const StackDepot *Depot = nullptr;
+ if (DepotPtr) {
+ // check for corrupted StackDepot. First we need to check whether we can
+ // read the metadata, then whether the metadata matches the size.
+ if (DepotSize < sizeof(*Depot))
+ return;
+ Depot = reinterpret_cast<const StackDepot *>(DepotPtr);
+ if (!Depot->isValid(DepotSize))
+ return;
+ }
+
+ size_t NextErrorReport = 0;
+
+ // Check for OOB in the current block and the two surrounding blocks. Beyond
+ // that, UAF is more likely.
+ if (extractTag(FaultAddr) != 0)
+ getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
+ RegionInfoPtr, Memory, MemoryTags, MemoryAddr,
+ MemorySize, 0, 2);
+
+ // Check the ring buffer. For primary allocations this will only find UAF;
+ // for secondary allocations we can find either UAF or OOB.
+ getRingBufferErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
+ RingBufferPtr, RingBufferSize);
+
+ // Check for OOB in the 28 blocks surrounding the 3 we checked earlier.
+ // Beyond that we are likely to hit false positives.
+ if (extractTag(FaultAddr) != 0)
+ getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
+ RegionInfoPtr, Memory, MemoryTags, MemoryAddr,
+ MemorySize, 2, 16);
+ }
+
+private:
+ typedef typename PrimaryT::SizeClassMap SizeClassMap;
+
+ static const uptr MinAlignmentLog = SCUDO_MIN_ALIGNMENT_LOG;
+ static const uptr MaxAlignmentLog = 24U; // 16 MB seems reasonable.
+ static const uptr MinAlignment = 1UL << MinAlignmentLog;
+ static const uptr MaxAlignment = 1UL << MaxAlignmentLog;
+ static const uptr MaxAllowedMallocSize =
+ FIRST_32_SECOND_64(1UL << 31, 1ULL << 40);
+
+ static_assert(MinAlignment >= sizeof(Chunk::PackedHeader),
+ "Minimal alignment must at least cover a chunk header.");
+ static_assert(!allocatorSupportsMemoryTagging<AllocatorConfig>() ||
+ MinAlignment >= archMemoryTagGranuleSize(),
+ "");
+
+ static const u32 BlockMarker = 0x44554353U;
+
+ // These are indexes into an "array" of 32-bit values that store information
+ // inline with a chunk that is relevant to diagnosing memory tag faults, where
+ // 0 corresponds to the address of the user memory. This means that only
+ // negative indexes may be used. The smallest index that may be used is -2,
+ // which corresponds to 8 bytes before the user memory, because the chunk
+ // header size is 8 bytes and in allocators that support memory tagging the
+ // minimum alignment is at least the tag granule size (16 on aarch64).
+ static const sptr MemTagAllocationTraceIndex = -2;
+ static const sptr MemTagAllocationTidIndex = -1;
+
+ u32 Cookie = 0;
+ u32 QuarantineMaxChunkSize = 0;
+
+ GlobalStats Stats;
+ PrimaryT Primary;
+ SecondaryT Secondary;
+ QuarantineT Quarantine;
+ TSDRegistryT TSDRegistry;
+ pthread_once_t PostInitNonce = PTHREAD_ONCE_INIT;
+
+#ifdef GWP_ASAN_HOOKS
+ gwp_asan::GuardedPoolAllocator GuardedAlloc;
+ uptr GuardedAllocSlotSize = 0;
+#endif // GWP_ASAN_HOOKS
+
+ struct AllocationRingBuffer {
+ struct Entry {
+ atomic_uptr Ptr;
+ atomic_uptr AllocationSize;
+ atomic_u32 AllocationTrace;
+ atomic_u32 AllocationTid;
+ atomic_u32 DeallocationTrace;
+ atomic_u32 DeallocationTid;
+ };
+ StackDepot *Depot = nullptr;
+ uptr StackDepotSize = 0;
+ MemMapT RawRingBufferMap;
+ MemMapT RawStackDepotMap;
+ u32 RingBufferElements = 0;
+ atomic_uptr Pos;
+ // An array of Size (at least one) elements of type Entry is immediately
+ // following to this struct.
+ };
+ static_assert(sizeof(AllocationRingBuffer) %
+ alignof(typename AllocationRingBuffer::Entry) ==
+ 0,
+ "invalid alignment");
+
+ // Lock to initialize the RingBuffer
+ HybridMutex RingBufferInitLock;
+
+ // Pointer to memory mapped area starting with AllocationRingBuffer struct,
+ // and immediately followed by Size elements of type Entry.
+ atomic_uptr RingBufferAddress = {};
+
+ AllocationRingBuffer *getRingBuffer() {
+ return reinterpret_cast<AllocationRingBuffer *>(
+ atomic_load(&RingBufferAddress, memory_order_acquire));
+ }
+
+ // The following might get optimized out by the compiler.
+ NOINLINE void performSanityChecks() {
+ // Verify that the header offset field can hold the maximum offset. In the
+ // case of the Secondary allocator, it takes care of alignment and the
+ // offset will always be small. In the case of the Primary, the worst case
+ // scenario happens in the last size class, when the backend allocation
+ // would already be aligned on the requested alignment, which would happen
+ // to be the maximum alignment that would fit in that size class. As a
+ // result, the maximum offset will be at most the maximum alignment for the
+ // last size class minus the header size, in multiples of MinAlignment.
+ Chunk::UnpackedHeader Header = {};
+ const uptr MaxPrimaryAlignment = 1UL << getMostSignificantSetBitIndex(
+ SizeClassMap::MaxSize - MinAlignment);
+ const uptr MaxOffset =
+ (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog;
+ Header.Offset = MaxOffset & Chunk::OffsetMask;
+ if (UNLIKELY(Header.Offset != MaxOffset))
+ reportSanityCheckError("offset");
+
+ // Verify that we can fit the maximum size or amount of unused bytes in the
+ // header. Given that the Secondary fits the allocation to a page, the worst
+ // case scenario happens in the Primary. It will depend on the second to
+ // last and last class sizes, as well as the dynamic base for the Primary.
+ // The following is an over-approximation that works for our needs.
+ const uptr MaxSizeOrUnusedBytes = SizeClassMap::MaxSize - 1;
+ Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
+ if (UNLIKELY(Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes))
+ reportSanityCheckError("size (or unused bytes)");
+
+ const uptr LargestClassId = SizeClassMap::LargestClassId;
+ Header.ClassId = LargestClassId;
+ if (UNLIKELY(Header.ClassId != LargestClassId))
+ reportSanityCheckError("class ID");
+ }
+
+ static inline void *getBlockBegin(const void *Ptr,
+ Chunk::UnpackedHeader *Header) {
+ return reinterpret_cast<void *>(
+ reinterpret_cast<uptr>(Ptr) - Chunk::getHeaderSize() -
+ (static_cast<uptr>(Header->Offset) << MinAlignmentLog));
+ }
+
+ // Return the size of a chunk as requested during its allocation.
+ inline uptr getSize(const void *Ptr, Chunk::UnpackedHeader *Header) {
+ const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes;
+ if (LIKELY(Header->ClassId))
+ return SizeOrUnusedBytes;
+ if (allocatorSupportsMemoryTagging<AllocatorConfig>())
+ Ptr = untagPointer(const_cast<void *>(Ptr));
+ return SecondaryT::getBlockEnd(getBlockBegin(Ptr, Header)) -
+ reinterpret_cast<uptr>(Ptr) - SizeOrUnusedBytes;
+ }
+
+ ALWAYS_INLINE void *initChunk(const uptr ClassId, const Chunk::Origin Origin,
+ void *Block, const uptr UserPtr,
+ const uptr SizeOrUnusedBytes,
+ const FillContentsMode FillContents) {
+ // Compute the default pointer before adding the header tag
+ const uptr DefaultAlignedPtr =
+ reinterpret_cast<uptr>(Block) + Chunk::getHeaderSize();
+
+ Block = addHeaderTag(Block);
+ // Only do content fill when it's from primary allocator because secondary
+ // allocator has filled the content.
+ if (ClassId != 0 && UNLIKELY(FillContents != NoFill)) {
+ // This condition is not necessarily unlikely, but since memset is
+ // costly, we might as well mark it as such.
+ memset(Block, FillContents == ZeroFill ? 0 : PatternFillByte,
+ PrimaryT::getSizeByClassId(ClassId));
+ }
+
+ Chunk::UnpackedHeader Header = {};
+
+ if (UNLIKELY(DefaultAlignedPtr != UserPtr)) {
+ const uptr Offset = UserPtr - DefaultAlignedPtr;
+ DCHECK_GE(Offset, 2 * sizeof(u32));
+ // The BlockMarker has no security purpose, but is specifically meant for
+ // the chunk iteration function that can be used in debugging situations.
+ // It is the only situation where we have to locate the start of a chunk
+ // based on its block address.
+ reinterpret_cast<u32 *>(Block)[0] = BlockMarker;
+ reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset);
+ Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask;
+ }
+
+ Header.ClassId = ClassId & Chunk::ClassIdMask;
+ Header.State = Chunk::State::Allocated;
+ Header.OriginOrWasZeroed = Origin & Chunk::OriginMask;
+ Header.SizeOrUnusedBytes = SizeOrUnusedBytes & Chunk::SizeOrUnusedBytesMask;
+ Chunk::storeHeader(Cookie, reinterpret_cast<void *>(addHeaderTag(UserPtr)),
+ &Header);
+
+ return reinterpret_cast<void *>(UserPtr);
+ }
+
+ NOINLINE void *
+ initChunkWithMemoryTagging(const uptr ClassId, const Chunk::Origin Origin,
+ void *Block, const uptr UserPtr, const uptr Size,
+ const uptr SizeOrUnusedBytes,
+ const FillContentsMode FillContents) {
+ const Options Options = Primary.Options.load();
+ DCHECK(useMemoryTagging<AllocatorConfig>(Options));
+
+ // Compute the default pointer before adding the header tag
+ const uptr DefaultAlignedPtr =
+ reinterpret_cast<uptr>(Block) + Chunk::getHeaderSize();
+
+ void *Ptr = reinterpret_cast<void *>(UserPtr);
+ void *TaggedPtr = Ptr;
+
+ if (LIKELY(ClassId)) {
+ // Init the primary chunk.
+ //
+ // We only need to zero or tag the contents for Primary backed
+ // allocations. We only set tags for primary allocations in order to avoid
+ // faulting potentially large numbers of pages for large secondary
+ // allocations. We assume that guard pages are enough to protect these
+ // allocations.
+ //
+ // FIXME: When the kernel provides a way to set the background tag of a
+ // mapping, we should be able to tag secondary allocations as well.
+ //
+ // When memory tagging is enabled, zeroing the contents is done as part of
+ // setting the tag.
+
+ Chunk::UnpackedHeader Header;
+ const uptr BlockSize = PrimaryT::getSizeByClassId(ClassId);
+ const uptr BlockUptr = reinterpret_cast<uptr>(Block);
+ const uptr BlockEnd = BlockUptr + BlockSize;
+ // If possible, try to reuse the UAF tag that was set by deallocate().
+ // For simplicity, only reuse tags if we have the same start address as
+ // the previous allocation. This handles the majority of cases since
+ // most allocations will not be more aligned than the minimum alignment.
+ //
+ // We need to handle situations involving reclaimed chunks, and retag
+ // the reclaimed portions if necessary. In the case where the chunk is
+ // fully reclaimed, the chunk's header will be zero, which will trigger
+ // the code path for new mappings and invalid chunks that prepares the
+ // chunk from scratch. There are three possibilities for partial
+ // reclaiming:
+ //
+ // (1) Header was reclaimed, data was partially reclaimed.
+ // (2) Header was not reclaimed, all data was reclaimed (e.g. because
+ // data started on a page boundary).
+ // (3) Header was not reclaimed, data was partially reclaimed.
+ //
+ // Case (1) will be handled in the same way as for full reclaiming,
+ // since the header will be zero.
+ //
+ // We can detect case (2) by loading the tag from the start
+ // of the chunk. If it is zero, it means that either all data was
+ // reclaimed (since we never use zero as the chunk tag), or that the
+ // previous allocation was of size zero. Either way, we need to prepare
+ // a new chunk from scratch.
+ //
+ // We can detect case (3) by moving to the next page (if covered by the
+ // chunk) and loading the tag of its first granule. If it is zero, it
+ // means that all following pages may need to be retagged. On the other
+ // hand, if it is nonzero, we can assume that all following pages are
+ // still tagged, according to the logic that if any of the pages
+ // following the next page were reclaimed, the next page would have been
+ // reclaimed as well.
+ uptr TaggedUserPtr;
+ uptr PrevUserPtr;
+ if (getChunkFromBlock(BlockUptr, &PrevUserPtr, &Header) &&
+ PrevUserPtr == UserPtr &&
+ (TaggedUserPtr = loadTag(UserPtr)) != UserPtr) {
+ uptr PrevEnd = TaggedUserPtr + Header.SizeOrUnusedBytes;
+ const uptr NextPage = roundUp(TaggedUserPtr, getPageSizeCached());
+ if (NextPage < PrevEnd && loadTag(NextPage) != NextPage)
+ PrevEnd = NextPage;
+ TaggedPtr = reinterpret_cast<void *>(TaggedUserPtr);
+ resizeTaggedChunk(PrevEnd, TaggedUserPtr + Size, Size, BlockEnd);
+ if (UNLIKELY(FillContents != NoFill && !Header.OriginOrWasZeroed)) {
+ // If an allocation needs to be zeroed (i.e. calloc) we can normally
+ // avoid zeroing the memory now since we can rely on memory having
+ // been zeroed on free, as this is normally done while setting the
+ // UAF tag. But if tagging was disabled per-thread when the memory
+ // was freed, it would not have been retagged and thus zeroed, and
+ // therefore it needs to be zeroed now.
+ memset(TaggedPtr, 0,
+ Min(Size, roundUp(PrevEnd - TaggedUserPtr,
+ archMemoryTagGranuleSize())));
+ } else if (Size) {
+ // Clear any stack metadata that may have previously been stored in
+ // the chunk data.
+ memset(TaggedPtr, 0, archMemoryTagGranuleSize());
+ }
+ } else {
+ const uptr OddEvenMask =
+ computeOddEvenMaskForPointerMaybe(Options, BlockUptr, ClassId);
+ TaggedPtr = prepareTaggedChunk(Ptr, Size, OddEvenMask, BlockEnd);
+ }
+ storePrimaryAllocationStackMaybe(Options, Ptr);
+ } else {
+ // Init the secondary chunk.
+
+ Block = addHeaderTag(Block);
+ Ptr = addHeaderTag(Ptr);
+ storeTags(reinterpret_cast<uptr>(Block), reinterpret_cast<uptr>(Ptr));
+ storeSecondaryAllocationStackMaybe(Options, Ptr, Size);
+ }
+
+ Chunk::UnpackedHeader Header = {};
+
+ if (UNLIKELY(DefaultAlignedPtr != UserPtr)) {
+ const uptr Offset = UserPtr - DefaultAlignedPtr;
+ DCHECK_GE(Offset, 2 * sizeof(u32));
+ // The BlockMarker has no security purpose, but is specifically meant for
+ // the chunk iteration function that can be used in debugging situations.
+ // It is the only situation where we have to locate the start of a chunk
+ // based on its block address.
+ reinterpret_cast<u32 *>(Block)[0] = BlockMarker;
+ reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset);
+ Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask;
+ }
+
+ Header.ClassId = ClassId & Chunk::ClassIdMask;
+ Header.State = Chunk::State::Allocated;
+ Header.OriginOrWasZeroed = Origin & Chunk::OriginMask;
+ Header.SizeOrUnusedBytes = SizeOrUnusedBytes & Chunk::SizeOrUnusedBytesMask;
+ Chunk::storeHeader(Cookie, Ptr, &Header);
+
+ return TaggedPtr;
+ }
+
+ void quarantineOrDeallocateChunk(const Options &Options, void *TaggedPtr,
+ Chunk::UnpackedHeader *Header,
+ uptr Size) NO_THREAD_SAFETY_ANALYSIS {
+ void *Ptr = getHeaderTaggedPointer(TaggedPtr);
+ // If the quarantine is disabled, the actual size of a chunk is 0 or larger
+ // than the maximum allowed, we return a chunk directly to the backend.
+ // This purposefully underflows for Size == 0.
+ const bool BypassQuarantine = !Quarantine.getCacheSize() ||
+ ((Size - 1) >= QuarantineMaxChunkSize) ||
+ !Header->ClassId;
+ if (BypassQuarantine)
+ Header->State = Chunk::State::Available;
+ else
+ Header->State = Chunk::State::Quarantined;
+
+ void *BlockBegin;
+ if (LIKELY(!useMemoryTagging<AllocatorConfig>(Options))) {
+ Header->OriginOrWasZeroed = 0U;
+ if (BypassQuarantine && allocatorSupportsMemoryTagging<AllocatorConfig>())
+ Ptr = untagPointer(Ptr);
+ BlockBegin = getBlockBegin(Ptr, Header);
+ } else {
+ Header->OriginOrWasZeroed =
+ Header->ClassId && !TSDRegistry.getDisableMemInit();
+ BlockBegin =
+ retagBlock(Options, TaggedPtr, Ptr, Header, Size, BypassQuarantine);
+ }
+
+ Chunk::storeHeader(Cookie, Ptr, Header);
+
+ if (BypassQuarantine) {
+ const uptr ClassId = Header->ClassId;
+ if (LIKELY(ClassId)) {
+ bool CacheDrained;
+ {
+ typename TSDRegistryT::ScopedTSD TSD(TSDRegistry);
+ CacheDrained = TSD->getCache().deallocate(ClassId, BlockBegin);
+ }
+ // When we have drained some blocks back to the Primary from TSD, that
+ // implies that we may have the chance to release some pages as well.
+ // Note that in order not to block other thread's accessing the TSD,
+ // release the TSD first then try the page release.
+ if (CacheDrained)
+ Primary.tryReleaseToOS(ClassId, ReleaseToOS::Normal);
+ } else {
+ Secondary.deallocate(Options, BlockBegin);
+ }
+ } else {
+ typename TSDRegistryT::ScopedTSD TSD(TSDRegistry);
+ Quarantine.put(&TSD->getQuarantineCache(),
+ QuarantineCallback(*this, TSD->getCache()), Ptr, Size);
+ }
+ }
+
+ NOINLINE void *retagBlock(const Options &Options, void *TaggedPtr, void *&Ptr,
+ Chunk::UnpackedHeader *Header, const uptr Size,
+ bool BypassQuarantine) {
+ DCHECK(useMemoryTagging<AllocatorConfig>(Options));
+
+ const u8 PrevTag = extractTag(reinterpret_cast<uptr>(TaggedPtr));
+ storeDeallocationStackMaybe(Options, Ptr, PrevTag, Size);
+ if (Header->ClassId && !TSDRegistry.getDisableMemInit()) {
+ uptr TaggedBegin, TaggedEnd;
+ const uptr OddEvenMask = computeOddEvenMaskForPointerMaybe(
+ Options, reinterpret_cast<uptr>(getBlockBegin(Ptr, Header)),
+ Header->ClassId);
+ // Exclude the previous tag so that immediate use after free is
+ // detected 100% of the time.
+ setRandomTag(Ptr, Size, OddEvenMask | (1UL << PrevTag), &TaggedBegin,
+ &TaggedEnd);
+ }
+
+ Ptr = untagPointer(Ptr);
+ void *BlockBegin = getBlockBegin(Ptr, Header);
+ if (BypassQuarantine && !Header->ClassId) {
+ storeTags(reinterpret_cast<uptr>(BlockBegin),
+ reinterpret_cast<uptr>(Ptr));
+ }
+
+ return BlockBegin;
+ }
+
+ bool getChunkFromBlock(uptr Block, uptr *Chunk,
+ Chunk::UnpackedHeader *Header) {
+ *Chunk =
+ Block + getChunkOffsetFromBlock(reinterpret_cast<const char *>(Block));
+ return Chunk::isValid(Cookie, reinterpret_cast<void *>(*Chunk), Header);
+ }
+
+ static uptr getChunkOffsetFromBlock(const char *Block) {
+ u32 Offset = 0;
+ if (reinterpret_cast<const u32 *>(Block)[0] == BlockMarker)
+ Offset = reinterpret_cast<const u32 *>(Block)[1];
+ return Offset + Chunk::getHeaderSize();
+ }
+
+ // Set the tag of the granule past the end of the allocation to 0, to catch
+ // linear overflows even if a previous larger allocation used the same block
+ // and tag. Only do this if the granule past the end is in our block, because
+ // this would otherwise lead to a SEGV if the allocation covers the entire
+ // block and our block is at the end of a mapping. The tag of the next block's
+ // header granule will be set to 0, so it will serve the purpose of catching
+ // linear overflows in this case.
+ //
+ // For allocations of size 0 we do not end up storing the address tag to the
+ // memory tag space, which getInlineErrorInfo() normally relies on to match
+ // address tags against chunks. To allow matching in this case we store the
+ // address tag in the first byte of the chunk.
+ void storeEndMarker(uptr End, uptr Size, uptr BlockEnd) {
+ DCHECK_EQ(BlockEnd, untagPointer(BlockEnd));
+ uptr UntaggedEnd = untagPointer(End);
+ if (UntaggedEnd != BlockEnd) {
+ storeTag(UntaggedEnd);
+ if (Size == 0)
+ *reinterpret_cast<u8 *>(UntaggedEnd) = extractTag(End);
+ }
+ }
+
+ void *prepareTaggedChunk(void *Ptr, uptr Size, uptr ExcludeMask,
+ uptr BlockEnd) {
+ // Prepare the granule before the chunk to store the chunk header by setting
+ // its tag to 0. Normally its tag will already be 0, but in the case where a
+ // chunk holding a low alignment allocation is reused for a higher alignment
+ // allocation, the chunk may already have a non-zero tag from the previous
+ // allocation.
+ storeTag(reinterpret_cast<uptr>(Ptr) - archMemoryTagGranuleSize());
+
+ uptr TaggedBegin, TaggedEnd;
+ setRandomTag(Ptr, Size, ExcludeMask, &TaggedBegin, &TaggedEnd);
+
+ storeEndMarker(TaggedEnd, Size, BlockEnd);
+ return reinterpret_cast<void *>(TaggedBegin);
+ }
+
+ void resizeTaggedChunk(uptr OldPtr, uptr NewPtr, uptr NewSize,
+ uptr BlockEnd) {
+ uptr RoundOldPtr = roundUp(OldPtr, archMemoryTagGranuleSize());
+ uptr RoundNewPtr;
+ if (RoundOldPtr >= NewPtr) {
+ // If the allocation is shrinking we just need to set the tag past the end
+ // of the allocation to 0. See explanation in storeEndMarker() above.
+ RoundNewPtr = roundUp(NewPtr, archMemoryTagGranuleSize());
+ } else {
+ // Set the memory tag of the region
+ // [RoundOldPtr, roundUp(NewPtr, archMemoryTagGranuleSize()))
+ // to the pointer tag stored in OldPtr.
+ RoundNewPtr = storeTags(RoundOldPtr, NewPtr);
+ }
+ storeEndMarker(RoundNewPtr, NewSize, BlockEnd);
+ }
+
+ void storePrimaryAllocationStackMaybe(const Options &Options, void *Ptr) {
+ if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
+ return;
+ AllocationRingBuffer *RB = getRingBuffer();
+ if (!RB)
+ return;
+ auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
+ Ptr32[MemTagAllocationTraceIndex] = collectStackTrace(RB->Depot);
+ Ptr32[MemTagAllocationTidIndex] = getThreadID();
+ }
+
+ void storeRingBufferEntry(AllocationRingBuffer *RB, void *Ptr,
+ u32 AllocationTrace, u32 AllocationTid,
+ uptr AllocationSize, u32 DeallocationTrace,
+ u32 DeallocationTid) {
+ uptr Pos = atomic_fetch_add(&RB->Pos, 1, memory_order_relaxed);
+ typename AllocationRingBuffer::Entry *Entry =
+ getRingBufferEntry(RB, Pos % RB->RingBufferElements);
+
+ // First invalidate our entry so that we don't attempt to interpret a
+ // partially written state in getSecondaryErrorInfo(). The fences below
+ // ensure that the compiler does not move the stores to Ptr in between the
+ // stores to the other fields.
+ atomic_store_relaxed(&Entry->Ptr, 0);
+
+ __atomic_signal_fence(__ATOMIC_SEQ_CST);
+ atomic_store_relaxed(&Entry->AllocationTrace, AllocationTrace);
+ atomic_store_relaxed(&Entry->AllocationTid, AllocationTid);
+ atomic_store_relaxed(&Entry->AllocationSize, AllocationSize);
+ atomic_store_relaxed(&Entry->DeallocationTrace, DeallocationTrace);
+ atomic_store_relaxed(&Entry->DeallocationTid, DeallocationTid);
+ __atomic_signal_fence(__ATOMIC_SEQ_CST);
+
+ atomic_store_relaxed(&Entry->Ptr, reinterpret_cast<uptr>(Ptr));
+ }
+
+ void storeSecondaryAllocationStackMaybe(const Options &Options, void *Ptr,
+ uptr Size) {
+ if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
+ return;
+ AllocationRingBuffer *RB = getRingBuffer();
+ if (!RB)
+ return;
+ u32 Trace = collectStackTrace(RB->Depot);
+ u32 Tid = getThreadID();
+
+ auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
+ Ptr32[MemTagAllocationTraceIndex] = Trace;
+ Ptr32[MemTagAllocationTidIndex] = Tid;
+
+ storeRingBufferEntry(RB, untagPointer(Ptr), Trace, Tid, Size, 0, 0);
+ }
+
+ void storeDeallocationStackMaybe(const Options &Options, void *Ptr,
+ u8 PrevTag, uptr Size) {
+ if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
+ return;
+ AllocationRingBuffer *RB = getRingBuffer();
+ if (!RB)
+ return;
+ auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
+ u32 AllocationTrace = Ptr32[MemTagAllocationTraceIndex];
+ u32 AllocationTid = Ptr32[MemTagAllocationTidIndex];
+
+ u32 DeallocationTrace = collectStackTrace(RB->Depot);
+ u32 DeallocationTid = getThreadID();
+
+ storeRingBufferEntry(RB, addFixedTag(untagPointer(Ptr), PrevTag),
+ AllocationTrace, AllocationTid, Size,
+ DeallocationTrace, DeallocationTid);
+ }
+
+ static const size_t NumErrorReports =
+ sizeof(((scudo_error_info *)nullptr)->reports) /
+ sizeof(((scudo_error_info *)nullptr)->reports[0]);
+
+ static void getInlineErrorInfo(struct scudo_error_info *ErrorInfo,
+ size_t &NextErrorReport, uintptr_t FaultAddr,
+ const StackDepot *Depot,
+ const char *RegionInfoPtr, const char *Memory,
+ const char *MemoryTags, uintptr_t MemoryAddr,
+ size_t MemorySize, size_t MinDistance,
+ size_t MaxDistance) {
+ uptr UntaggedFaultAddr = untagPointer(FaultAddr);
+ u8 FaultAddrTag = extractTag(FaultAddr);
+ BlockInfo Info =
+ PrimaryT::findNearestBlock(RegionInfoPtr, UntaggedFaultAddr);
+
+ auto GetGranule = [&](uptr Addr, const char **Data, uint8_t *Tag) -> bool {
+ if (Addr < MemoryAddr || Addr + archMemoryTagGranuleSize() < Addr ||
+ Addr + archMemoryTagGranuleSize() > MemoryAddr + MemorySize)
+ return false;
+ *Data = &Memory[Addr - MemoryAddr];
+ *Tag = static_cast<u8>(
+ MemoryTags[(Addr - MemoryAddr) / archMemoryTagGranuleSize()]);
+ return true;
+ };
+
+ auto ReadBlock = [&](uptr Addr, uptr *ChunkAddr,
+ Chunk::UnpackedHeader *Header, const u32 **Data,
+ u8 *Tag) {
+ const char *BlockBegin;
+ u8 BlockBeginTag;
+ if (!GetGranule(Addr, &BlockBegin, &BlockBeginTag))
+ return false;
+ uptr ChunkOffset = getChunkOffsetFromBlock(BlockBegin);
+ *ChunkAddr = Addr + ChunkOffset;
+
+ const char *ChunkBegin;
+ if (!GetGranule(*ChunkAddr, &ChunkBegin, Tag))
+ return false;
+ *Header = *reinterpret_cast<const Chunk::UnpackedHeader *>(
+ ChunkBegin - Chunk::getHeaderSize());
+ *Data = reinterpret_cast<const u32 *>(ChunkBegin);
+
+ // Allocations of size 0 will have stashed the tag in the first byte of
+ // the chunk, see storeEndMarker().
+ if (Header->SizeOrUnusedBytes == 0)
+ *Tag = static_cast<u8>(*ChunkBegin);
+
+ return true;
+ };
+
+ if (NextErrorReport == NumErrorReports)
+ return;
+
+ auto CheckOOB = [&](uptr BlockAddr) {
+ if (BlockAddr < Info.RegionBegin || BlockAddr >= Info.RegionEnd)
+ return false;
+
+ uptr ChunkAddr;
+ Chunk::UnpackedHeader Header;
+ const u32 *Data;
+ uint8_t Tag;
+ if (!ReadBlock(BlockAddr, &ChunkAddr, &Header, &Data, &Tag) ||
+ Header.State != Chunk::State::Allocated || Tag != FaultAddrTag)
+ return false;
+
+ auto *R = &ErrorInfo->reports[NextErrorReport++];
+ R->error_type =
+ UntaggedFaultAddr < ChunkAddr ? BUFFER_UNDERFLOW : BUFFER_OVERFLOW;
+ R->allocation_address = ChunkAddr;
+ R->allocation_size = Header.SizeOrUnusedBytes;
+ if (Depot) {
+ collectTraceMaybe(Depot, R->allocation_trace,
+ Data[MemTagAllocationTraceIndex]);
+ }
+ R->allocation_tid = Data[MemTagAllocationTidIndex];
+ return NextErrorReport == NumErrorReports;
+ };
+
+ if (MinDistance == 0 && CheckOOB(Info.BlockBegin))
+ return;
+
+ for (size_t I = Max<size_t>(MinDistance, 1); I != MaxDistance; ++I)
+ if (CheckOOB(Info.BlockBegin + I * Info.BlockSize) ||
+ CheckOOB(Info.BlockBegin - I * Info.BlockSize))
+ return;
+ }
+
+ static void getRingBufferErrorInfo(struct scudo_error_info *ErrorInfo,
+ size_t &NextErrorReport,
+ uintptr_t FaultAddr,
+ const StackDepot *Depot,
+ const char *RingBufferPtr,
+ size_t RingBufferSize) {
+ auto *RingBuffer =
+ reinterpret_cast<const AllocationRingBuffer *>(RingBufferPtr);
+ size_t RingBufferElements = ringBufferElementsFromBytes(RingBufferSize);
+ if (!RingBuffer || RingBufferElements == 0 || !Depot)
+ return;
+ uptr Pos = atomic_load_relaxed(&RingBuffer->Pos);
+
+ for (uptr I = Pos - 1; I != Pos - 1 - RingBufferElements &&
+ NextErrorReport != NumErrorReports;
+ --I) {
+ auto *Entry = getRingBufferEntry(RingBuffer, I % RingBufferElements);
+ uptr EntryPtr = atomic_load_relaxed(&Entry->Ptr);
+ if (!EntryPtr)
+ continue;
+
+ uptr UntaggedEntryPtr = untagPointer(EntryPtr);
+ uptr EntrySize = atomic_load_relaxed(&Entry->AllocationSize);
+ u32 AllocationTrace = atomic_load_relaxed(&Entry->AllocationTrace);
+ u32 AllocationTid = atomic_load_relaxed(&Entry->AllocationTid);
+ u32 DeallocationTrace = atomic_load_relaxed(&Entry->DeallocationTrace);
+ u32 DeallocationTid = atomic_load_relaxed(&Entry->DeallocationTid);
+
+ if (DeallocationTid) {
+ // For UAF we only consider in-bounds fault addresses because
+ // out-of-bounds UAF is rare and attempting to detect it is very likely
+ // to result in false positives.
+ if (FaultAddr < EntryPtr || FaultAddr >= EntryPtr + EntrySize)
+ continue;
+ } else {
+ // Ring buffer OOB is only possible with secondary allocations. In this
+ // case we are guaranteed a guard region of at least a page on either
+ // side of the allocation (guard page on the right, guard page + tagged
+ // region on the left), so ignore any faults outside of that range.
+ if (FaultAddr < EntryPtr - getPageSizeCached() ||
+ FaultAddr >= EntryPtr + EntrySize + getPageSizeCached())
+ continue;
+
+ // For UAF the ring buffer will contain two entries, one for the
+ // allocation and another for the deallocation. Don't report buffer
+ // overflow/underflow using the allocation entry if we have already
+ // collected a report from the deallocation entry.
+ bool Found = false;
+ for (uptr J = 0; J != NextErrorReport; ++J) {
+ if (ErrorInfo->reports[J].allocation_address == UntaggedEntryPtr) {
+ Found = true;
+ break;
+ }
+ }
+ if (Found)
+ continue;
+ }
+
+ auto *R = &ErrorInfo->reports[NextErrorReport++];
+ if (DeallocationTid)
+ R->error_type = USE_AFTER_FREE;
+ else if (FaultAddr < EntryPtr)
+ R->error_type = BUFFER_UNDERFLOW;
+ else
+ R->error_type = BUFFER_OVERFLOW;
+
+ R->allocation_address = UntaggedEntryPtr;
+ R->allocation_size = EntrySize;
+ collectTraceMaybe(Depot, R->allocation_trace, AllocationTrace);
+ R->allocation_tid = AllocationTid;
+ collectTraceMaybe(Depot, R->deallocation_trace, DeallocationTrace);
+ R->deallocation_tid = DeallocationTid;
+ }
+ }
+
+ uptr getStats(ScopedString *Str) {
+ Primary.getStats(Str);
+ Secondary.getStats(Str);
+ Quarantine.getStats(Str);
+ TSDRegistry.getStats(Str);
+ return Str->length();
+ }
+
+ static typename AllocationRingBuffer::Entry *
+ getRingBufferEntry(AllocationRingBuffer *RB, uptr N) {
+ char *RBEntryStart =
+ &reinterpret_cast<char *>(RB)[sizeof(AllocationRingBuffer)];
+ return &reinterpret_cast<typename AllocationRingBuffer::Entry *>(
+ RBEntryStart)[N];
+ }
+ static const typename AllocationRingBuffer::Entry *
+ getRingBufferEntry(const AllocationRingBuffer *RB, uptr N) {
+ const char *RBEntryStart =
+ &reinterpret_cast<const char *>(RB)[sizeof(AllocationRingBuffer)];
+ return &reinterpret_cast<const typename AllocationRingBuffer::Entry *>(
+ RBEntryStart)[N];
+ }
+
+ void initRingBufferMaybe() {
+ ScopedLock L(RingBufferInitLock);
+ if (getRingBuffer() != nullptr)
+ return;
+
+ int ring_buffer_size = getFlags()->allocation_ring_buffer_size;
+ if (ring_buffer_size <= 0)
+ return;
+
+ u32 AllocationRingBufferSize = static_cast<u32>(ring_buffer_size);
+
+ // We store alloc and free stacks for each entry.
+ constexpr u32 kStacksPerRingBufferEntry = 2;
+ constexpr u32 kMaxU32Pow2 = ~(UINT32_MAX >> 1);
+ static_assert(isPowerOfTwo(kMaxU32Pow2));
+ // On Android we always have 3 frames at the bottom: __start_main,
+ // __libc_init, main, and 3 at the top: malloc, scudo_malloc and
+ // Allocator::allocate. This leaves 10 frames for the user app. The next
+ // smallest power of two (8) would only leave 2, which is clearly too
+ // little.
+ constexpr u32 kFramesPerStack = 16;
+ static_assert(isPowerOfTwo(kFramesPerStack));
+
+ if (AllocationRingBufferSize > kMaxU32Pow2 / kStacksPerRingBufferEntry)
+ return;
+ u32 TabSize = static_cast<u32>(roundUpPowerOfTwo(kStacksPerRingBufferEntry *
+ AllocationRingBufferSize));
+ if (TabSize > UINT32_MAX / kFramesPerStack)
+ return;
+ u32 RingSize = static_cast<u32>(TabSize * kFramesPerStack);
+
+ uptr StackDepotSize = sizeof(StackDepot) + sizeof(atomic_u64) * RingSize +
+ sizeof(atomic_u32) * TabSize;
+ MemMapT DepotMap;
+ DepotMap.map(
+ /*Addr=*/0U, roundUp(StackDepotSize, getPageSizeCached()),
+ "scudo:stack_depot");
+ auto *Depot = reinterpret_cast<StackDepot *>(DepotMap.getBase());
+ Depot->init(RingSize, TabSize);
+
+ MemMapT MemMap;
+ MemMap.map(
+ /*Addr=*/0U,
+ roundUp(ringBufferSizeInBytes(AllocationRingBufferSize),
+ getPageSizeCached()),
+ "scudo:ring_buffer");
+ auto *RB = reinterpret_cast<AllocationRingBuffer *>(MemMap.getBase());
+ RB->RawRingBufferMap = MemMap;
+ RB->RingBufferElements = AllocationRingBufferSize;
+ RB->Depot = Depot;
+ RB->StackDepotSize = StackDepotSize;
+ RB->RawStackDepotMap = DepotMap;
+
+ atomic_store(&RingBufferAddress, reinterpret_cast<uptr>(RB),
+ memory_order_release);
+ }
+
+ void unmapRingBuffer() {
+ AllocationRingBuffer *RB = getRingBuffer();
+ if (RB == nullptr)
+ return;
+ // N.B. because RawStackDepotMap is part of RawRingBufferMap, the order
+ // is very important.
+ RB->RawStackDepotMap.unmap(RB->RawStackDepotMap.getBase(),
+ RB->RawStackDepotMap.getCapacity());
+ // Note that the `RB->RawRingBufferMap` is stored on the pages managed by
+ // itself. Take over the ownership before calling unmap() so that any
+ // operation along with unmap() won't touch inaccessible pages.
+ MemMapT RawRingBufferMap = RB->RawRingBufferMap;
+ RawRingBufferMap.unmap(RawRingBufferMap.getBase(),
+ RawRingBufferMap.getCapacity());
+ atomic_store(&RingBufferAddress, 0, memory_order_release);
+ }
+
+ static constexpr size_t ringBufferSizeInBytes(u32 RingBufferElements) {
+ return sizeof(AllocationRingBuffer) +
+ RingBufferElements * sizeof(typename AllocationRingBuffer::Entry);
+ }
+
+ static constexpr size_t ringBufferElementsFromBytes(size_t Bytes) {
+ if (Bytes < sizeof(AllocationRingBuffer)) {
+ return 0;
+ }
+ return (Bytes - sizeof(AllocationRingBuffer)) /
+ sizeof(typename AllocationRingBuffer::Entry);
+ }
+};
+
+} // namespace scudo
+
+#endif // SCUDO_COMBINED_H_