aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/compiler-rt/lib/scudo/standalone/primary32.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/compiler-rt/lib/scudo/standalone/primary32.h')
-rw-r--r--contrib/llvm-project/compiler-rt/lib/scudo/standalone/primary32.h1177
1 files changed, 1177 insertions, 0 deletions
diff --git a/contrib/llvm-project/compiler-rt/lib/scudo/standalone/primary32.h b/contrib/llvm-project/compiler-rt/lib/scudo/standalone/primary32.h
new file mode 100644
index 000000000000..ebfb8dfe0a31
--- /dev/null
+++ b/contrib/llvm-project/compiler-rt/lib/scudo/standalone/primary32.h
@@ -0,0 +1,1177 @@
+//===-- primary32.h ---------------------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SCUDO_PRIMARY32_H_
+#define SCUDO_PRIMARY32_H_
+
+#include "allocator_common.h"
+#include "bytemap.h"
+#include "common.h"
+#include "list.h"
+#include "local_cache.h"
+#include "options.h"
+#include "release.h"
+#include "report.h"
+#include "stats.h"
+#include "string_utils.h"
+#include "thread_annotations.h"
+
+namespace scudo {
+
+// SizeClassAllocator32 is an allocator for 32 or 64-bit address space.
+//
+// It maps Regions of 2^RegionSizeLog bytes aligned on a 2^RegionSizeLog bytes
+// boundary, and keeps a bytemap of the mappable address space to track the size
+// class they are associated with.
+//
+// Mapped regions are split into equally sized Blocks according to the size
+// class they belong to, and the associated pointers are shuffled to prevent any
+// predictable address pattern (the predictability increases with the block
+// size).
+//
+// Regions for size class 0 are special and used to hold TransferBatches, which
+// allow to transfer arrays of pointers from the global size class freelist to
+// the thread specific freelist for said class, and back.
+//
+// Memory used by this allocator is never unmapped but can be partially
+// reclaimed if the platform allows for it.
+
+template <typename Config> class SizeClassAllocator32 {
+public:
+ typedef typename Config::CompactPtrT CompactPtrT;
+ typedef typename Config::SizeClassMap SizeClassMap;
+ static const uptr GroupSizeLog = Config::getGroupSizeLog();
+ // The bytemap can only track UINT8_MAX - 1 classes.
+ static_assert(SizeClassMap::LargestClassId <= (UINT8_MAX - 1), "");
+ // Regions should be large enough to hold the largest Block.
+ static_assert((1UL << Config::getRegionSizeLog()) >= SizeClassMap::MaxSize,
+ "");
+ typedef SizeClassAllocator32<Config> ThisT;
+ typedef SizeClassAllocatorLocalCache<ThisT> CacheT;
+ typedef TransferBatch<ThisT> TransferBatchT;
+ typedef BatchGroup<ThisT> BatchGroupT;
+
+ static_assert(sizeof(BatchGroupT) <= sizeof(TransferBatchT),
+ "BatchGroupT uses the same class size as TransferBatchT");
+
+ static uptr getSizeByClassId(uptr ClassId) {
+ return (ClassId == SizeClassMap::BatchClassId)
+ ? sizeof(TransferBatchT)
+ : SizeClassMap::getSizeByClassId(ClassId);
+ }
+
+ static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; }
+
+ void init(s32 ReleaseToOsInterval) NO_THREAD_SAFETY_ANALYSIS {
+ if (SCUDO_FUCHSIA)
+ reportError("SizeClassAllocator32 is not supported on Fuchsia");
+
+ if (SCUDO_TRUSTY)
+ reportError("SizeClassAllocator32 is not supported on Trusty");
+
+ DCHECK(isAligned(reinterpret_cast<uptr>(this), alignof(ThisT)));
+ PossibleRegions.init();
+ u32 Seed;
+ const u64 Time = getMonotonicTimeFast();
+ if (!getRandom(reinterpret_cast<void *>(&Seed), sizeof(Seed)))
+ Seed = static_cast<u32>(
+ Time ^ (reinterpret_cast<uptr>(SizeClassInfoArray) >> 6));
+ for (uptr I = 0; I < NumClasses; I++) {
+ SizeClassInfo *Sci = getSizeClassInfo(I);
+ Sci->RandState = getRandomU32(&Seed);
+ // Sci->MaxRegionIndex is already initialized to 0.
+ Sci->MinRegionIndex = NumRegions;
+ Sci->ReleaseInfo.LastReleaseAtNs = Time;
+ }
+
+ // The default value in the primary config has the higher priority.
+ if (Config::getDefaultReleaseToOsIntervalMs() != INT32_MIN)
+ ReleaseToOsInterval = Config::getDefaultReleaseToOsIntervalMs();
+ setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval));
+ }
+
+ void unmapTestOnly() {
+ {
+ ScopedLock L(RegionsStashMutex);
+ while (NumberOfStashedRegions > 0) {
+ unmap(reinterpret_cast<void *>(RegionsStash[--NumberOfStashedRegions]),
+ RegionSize);
+ }
+ }
+
+ uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0;
+ for (uptr I = 0; I < NumClasses; I++) {
+ SizeClassInfo *Sci = getSizeClassInfo(I);
+ ScopedLock L(Sci->Mutex);
+ if (Sci->MinRegionIndex < MinRegionIndex)
+ MinRegionIndex = Sci->MinRegionIndex;
+ if (Sci->MaxRegionIndex > MaxRegionIndex)
+ MaxRegionIndex = Sci->MaxRegionIndex;
+ *Sci = {};
+ }
+
+ ScopedLock L(ByteMapMutex);
+ for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++)
+ if (PossibleRegions[I])
+ unmap(reinterpret_cast<void *>(I * RegionSize), RegionSize);
+ PossibleRegions.unmapTestOnly();
+ }
+
+ // When all blocks are freed, it has to be the same size as `AllocatedUser`.
+ void verifyAllBlocksAreReleasedTestOnly() {
+ // `BatchGroup` and `TransferBatch` also use the blocks from BatchClass.
+ uptr BatchClassUsedInFreeLists = 0;
+ for (uptr I = 0; I < NumClasses; I++) {
+ // We have to count BatchClassUsedInFreeLists in other regions first.
+ if (I == SizeClassMap::BatchClassId)
+ continue;
+ SizeClassInfo *Sci = getSizeClassInfo(I);
+ ScopedLock L1(Sci->Mutex);
+ uptr TotalBlocks = 0;
+ for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) {
+ // `BG::Batches` are `TransferBatches`. +1 for `BatchGroup`.
+ BatchClassUsedInFreeLists += BG.Batches.size() + 1;
+ for (const auto &It : BG.Batches)
+ TotalBlocks += It.getCount();
+ }
+
+ const uptr BlockSize = getSizeByClassId(I);
+ DCHECK_EQ(TotalBlocks, Sci->AllocatedUser / BlockSize);
+ DCHECK_EQ(Sci->FreeListInfo.PushedBlocks, Sci->FreeListInfo.PoppedBlocks);
+ }
+
+ SizeClassInfo *Sci = getSizeClassInfo(SizeClassMap::BatchClassId);
+ ScopedLock L1(Sci->Mutex);
+ uptr TotalBlocks = 0;
+ for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) {
+ if (LIKELY(!BG.Batches.empty())) {
+ for (const auto &It : BG.Batches)
+ TotalBlocks += It.getCount();
+ } else {
+ // `BatchGroup` with empty freelist doesn't have `TransferBatch` record
+ // itself.
+ ++TotalBlocks;
+ }
+ }
+
+ const uptr BlockSize = getSizeByClassId(SizeClassMap::BatchClassId);
+ DCHECK_EQ(TotalBlocks + BatchClassUsedInFreeLists,
+ Sci->AllocatedUser / BlockSize);
+ const uptr BlocksInUse =
+ Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks;
+ DCHECK_EQ(BlocksInUse, BatchClassUsedInFreeLists);
+ }
+
+ CompactPtrT compactPtr(UNUSED uptr ClassId, uptr Ptr) const {
+ return static_cast<CompactPtrT>(Ptr);
+ }
+
+ void *decompactPtr(UNUSED uptr ClassId, CompactPtrT CompactPtr) const {
+ return reinterpret_cast<void *>(static_cast<uptr>(CompactPtr));
+ }
+
+ uptr compactPtrGroupBase(CompactPtrT CompactPtr) {
+ const uptr Mask = (static_cast<uptr>(1) << GroupSizeLog) - 1;
+ return CompactPtr & ~Mask;
+ }
+
+ uptr decompactGroupBase(uptr CompactPtrGroupBase) {
+ return CompactPtrGroupBase;
+ }
+
+ ALWAYS_INLINE static bool isSmallBlock(uptr BlockSize) {
+ const uptr PageSize = getPageSizeCached();
+ return BlockSize < PageSize / 16U;
+ }
+
+ ALWAYS_INLINE static bool isLargeBlock(uptr BlockSize) {
+ const uptr PageSize = getPageSizeCached();
+ return BlockSize > PageSize;
+ }
+
+ u16 popBlocks(CacheT *C, uptr ClassId, CompactPtrT *ToArray,
+ const u16 MaxBlockCount) {
+ DCHECK_LT(ClassId, NumClasses);
+ SizeClassInfo *Sci = getSizeClassInfo(ClassId);
+ ScopedLock L(Sci->Mutex);
+
+ u16 PopCount = popBlocksImpl(C, ClassId, Sci, ToArray, MaxBlockCount);
+ if (UNLIKELY(PopCount == 0)) {
+ if (UNLIKELY(!populateFreeList(C, ClassId, Sci)))
+ return 0U;
+ PopCount = popBlocksImpl(C, ClassId, Sci, ToArray, MaxBlockCount);
+ DCHECK_NE(PopCount, 0U);
+ }
+
+ return PopCount;
+ }
+
+ // Push the array of free blocks to the designated batch group.
+ void pushBlocks(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size) {
+ DCHECK_LT(ClassId, NumClasses);
+ DCHECK_GT(Size, 0);
+
+ SizeClassInfo *Sci = getSizeClassInfo(ClassId);
+ if (ClassId == SizeClassMap::BatchClassId) {
+ ScopedLock L(Sci->Mutex);
+ pushBatchClassBlocks(Sci, Array, Size);
+ return;
+ }
+
+ // TODO(chiahungduan): Consider not doing grouping if the group size is not
+ // greater than the block size with a certain scale.
+
+ // Sort the blocks so that blocks belonging to the same group can be pushed
+ // together.
+ bool SameGroup = true;
+ for (u32 I = 1; I < Size; ++I) {
+ if (compactPtrGroupBase(Array[I - 1]) != compactPtrGroupBase(Array[I]))
+ SameGroup = false;
+ CompactPtrT Cur = Array[I];
+ u32 J = I;
+ while (J > 0 &&
+ compactPtrGroupBase(Cur) < compactPtrGroupBase(Array[J - 1])) {
+ Array[J] = Array[J - 1];
+ --J;
+ }
+ Array[J] = Cur;
+ }
+
+ ScopedLock L(Sci->Mutex);
+ pushBlocksImpl(C, ClassId, Sci, Array, Size, SameGroup);
+ }
+
+ void disable() NO_THREAD_SAFETY_ANALYSIS {
+ // The BatchClassId must be locked last since other classes can use it.
+ for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) {
+ if (static_cast<uptr>(I) == SizeClassMap::BatchClassId)
+ continue;
+ getSizeClassInfo(static_cast<uptr>(I))->Mutex.lock();
+ }
+ getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.lock();
+ RegionsStashMutex.lock();
+ ByteMapMutex.lock();
+ }
+
+ void enable() NO_THREAD_SAFETY_ANALYSIS {
+ ByteMapMutex.unlock();
+ RegionsStashMutex.unlock();
+ getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.unlock();
+ for (uptr I = 0; I < NumClasses; I++) {
+ if (I == SizeClassMap::BatchClassId)
+ continue;
+ getSizeClassInfo(I)->Mutex.unlock();
+ }
+ }
+
+ template <typename F> void iterateOverBlocks(F Callback) {
+ uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0;
+ for (uptr I = 0; I < NumClasses; I++) {
+ SizeClassInfo *Sci = getSizeClassInfo(I);
+ // TODO: The call of `iterateOverBlocks` requires disabling
+ // SizeClassAllocator32. We may consider locking each region on demand
+ // only.
+ Sci->Mutex.assertHeld();
+ if (Sci->MinRegionIndex < MinRegionIndex)
+ MinRegionIndex = Sci->MinRegionIndex;
+ if (Sci->MaxRegionIndex > MaxRegionIndex)
+ MaxRegionIndex = Sci->MaxRegionIndex;
+ }
+
+ // SizeClassAllocator32 is disabled, i.e., ByteMapMutex is held.
+ ByteMapMutex.assertHeld();
+
+ for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++) {
+ if (PossibleRegions[I] &&
+ (PossibleRegions[I] - 1U) != SizeClassMap::BatchClassId) {
+ const uptr BlockSize = getSizeByClassId(PossibleRegions[I] - 1U);
+ const uptr From = I * RegionSize;
+ const uptr To = From + (RegionSize / BlockSize) * BlockSize;
+ for (uptr Block = From; Block < To; Block += BlockSize)
+ Callback(Block);
+ }
+ }
+ }
+
+ void getStats(ScopedString *Str) {
+ // TODO(kostyak): get the RSS per region.
+ uptr TotalMapped = 0;
+ uptr PoppedBlocks = 0;
+ uptr PushedBlocks = 0;
+ for (uptr I = 0; I < NumClasses; I++) {
+ SizeClassInfo *Sci = getSizeClassInfo(I);
+ ScopedLock L(Sci->Mutex);
+ TotalMapped += Sci->AllocatedUser;
+ PoppedBlocks += Sci->FreeListInfo.PoppedBlocks;
+ PushedBlocks += Sci->FreeListInfo.PushedBlocks;
+ }
+ Str->append("Stats: SizeClassAllocator32: %zuM mapped in %zu allocations; "
+ "remains %zu\n",
+ TotalMapped >> 20, PoppedBlocks, PoppedBlocks - PushedBlocks);
+ for (uptr I = 0; I < NumClasses; I++) {
+ SizeClassInfo *Sci = getSizeClassInfo(I);
+ ScopedLock L(Sci->Mutex);
+ getStats(Str, I, Sci);
+ }
+ }
+
+ void getFragmentationInfo(ScopedString *Str) {
+ Str->append(
+ "Fragmentation Stats: SizeClassAllocator32: page size = %zu bytes\n",
+ getPageSizeCached());
+
+ for (uptr I = 1; I < NumClasses; I++) {
+ SizeClassInfo *Sci = getSizeClassInfo(I);
+ ScopedLock L(Sci->Mutex);
+ getSizeClassFragmentationInfo(Sci, I, Str);
+ }
+ }
+
+ bool setOption(Option O, sptr Value) {
+ if (O == Option::ReleaseInterval) {
+ const s32 Interval = Max(
+ Min(static_cast<s32>(Value), Config::getMaxReleaseToOsIntervalMs()),
+ Config::getMinReleaseToOsIntervalMs());
+ atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval);
+ return true;
+ }
+ // Not supported by the Primary, but not an error either.
+ return true;
+ }
+
+ uptr tryReleaseToOS(uptr ClassId, ReleaseToOS ReleaseType) {
+ SizeClassInfo *Sci = getSizeClassInfo(ClassId);
+ // TODO: Once we have separate locks like primary64, we may consider using
+ // tryLock() as well.
+ ScopedLock L(Sci->Mutex);
+ return releaseToOSMaybe(Sci, ClassId, ReleaseType);
+ }
+
+ uptr releaseToOS(ReleaseToOS ReleaseType) {
+ uptr TotalReleasedBytes = 0;
+ for (uptr I = 0; I < NumClasses; I++) {
+ if (I == SizeClassMap::BatchClassId)
+ continue;
+ SizeClassInfo *Sci = getSizeClassInfo(I);
+ ScopedLock L(Sci->Mutex);
+ TotalReleasedBytes += releaseToOSMaybe(Sci, I, ReleaseType);
+ }
+ return TotalReleasedBytes;
+ }
+
+ const char *getRegionInfoArrayAddress() const { return nullptr; }
+ static uptr getRegionInfoArraySize() { return 0; }
+
+ static BlockInfo findNearestBlock(UNUSED const char *RegionInfoData,
+ UNUSED uptr Ptr) {
+ return {};
+ }
+
+ AtomicOptions Options;
+
+private:
+ static const uptr NumClasses = SizeClassMap::NumClasses;
+ static const uptr RegionSize = 1UL << Config::getRegionSizeLog();
+ static const uptr NumRegions = SCUDO_MMAP_RANGE_SIZE >>
+ Config::getRegionSizeLog();
+ static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U;
+ typedef FlatByteMap<NumRegions> ByteMap;
+
+ struct ReleaseToOsInfo {
+ uptr BytesInFreeListAtLastCheckpoint;
+ uptr RangesReleased;
+ uptr LastReleasedBytes;
+ u64 LastReleaseAtNs;
+ };
+
+ struct BlocksInfo {
+ SinglyLinkedList<BatchGroupT> BlockList = {};
+ uptr PoppedBlocks = 0;
+ uptr PushedBlocks = 0;
+ };
+
+ struct alignas(SCUDO_CACHE_LINE_SIZE) SizeClassInfo {
+ HybridMutex Mutex;
+ BlocksInfo FreeListInfo GUARDED_BY(Mutex);
+ uptr CurrentRegion GUARDED_BY(Mutex);
+ uptr CurrentRegionAllocated GUARDED_BY(Mutex);
+ u32 RandState;
+ uptr AllocatedUser GUARDED_BY(Mutex);
+ // Lowest & highest region index allocated for this size class, to avoid
+ // looping through the whole NumRegions.
+ uptr MinRegionIndex GUARDED_BY(Mutex);
+ uptr MaxRegionIndex GUARDED_BY(Mutex);
+ ReleaseToOsInfo ReleaseInfo GUARDED_BY(Mutex);
+ };
+ static_assert(sizeof(SizeClassInfo) % SCUDO_CACHE_LINE_SIZE == 0, "");
+
+ uptr computeRegionId(uptr Mem) {
+ const uptr Id = Mem >> Config::getRegionSizeLog();
+ CHECK_LT(Id, NumRegions);
+ return Id;
+ }
+
+ uptr allocateRegionSlow() {
+ uptr MapSize = 2 * RegionSize;
+ const uptr MapBase = reinterpret_cast<uptr>(
+ map(nullptr, MapSize, "scudo:primary", MAP_ALLOWNOMEM));
+ if (!MapBase)
+ return 0;
+ const uptr MapEnd = MapBase + MapSize;
+ uptr Region = MapBase;
+ if (isAligned(Region, RegionSize)) {
+ ScopedLock L(RegionsStashMutex);
+ if (NumberOfStashedRegions < MaxStashedRegions)
+ RegionsStash[NumberOfStashedRegions++] = MapBase + RegionSize;
+ else
+ MapSize = RegionSize;
+ } else {
+ Region = roundUp(MapBase, RegionSize);
+ unmap(reinterpret_cast<void *>(MapBase), Region - MapBase);
+ MapSize = RegionSize;
+ }
+ const uptr End = Region + MapSize;
+ if (End != MapEnd)
+ unmap(reinterpret_cast<void *>(End), MapEnd - End);
+
+ DCHECK_EQ(Region % RegionSize, 0U);
+ static_assert(Config::getRegionSizeLog() == GroupSizeLog,
+ "Memory group should be the same size as Region");
+
+ return Region;
+ }
+
+ uptr allocateRegion(SizeClassInfo *Sci, uptr ClassId) REQUIRES(Sci->Mutex) {
+ DCHECK_LT(ClassId, NumClasses);
+ uptr Region = 0;
+ {
+ ScopedLock L(RegionsStashMutex);
+ if (NumberOfStashedRegions > 0)
+ Region = RegionsStash[--NumberOfStashedRegions];
+ }
+ if (!Region)
+ Region = allocateRegionSlow();
+ if (LIKELY(Region)) {
+ // Sci->Mutex is held by the caller, updating the Min/Max is safe.
+ const uptr RegionIndex = computeRegionId(Region);
+ if (RegionIndex < Sci->MinRegionIndex)
+ Sci->MinRegionIndex = RegionIndex;
+ if (RegionIndex > Sci->MaxRegionIndex)
+ Sci->MaxRegionIndex = RegionIndex;
+ ScopedLock L(ByteMapMutex);
+ PossibleRegions.set(RegionIndex, static_cast<u8>(ClassId + 1U));
+ }
+ return Region;
+ }
+
+ SizeClassInfo *getSizeClassInfo(uptr ClassId) {
+ DCHECK_LT(ClassId, NumClasses);
+ return &SizeClassInfoArray[ClassId];
+ }
+
+ void pushBatchClassBlocks(SizeClassInfo *Sci, CompactPtrT *Array, u32 Size)
+ REQUIRES(Sci->Mutex) {
+ DCHECK_EQ(Sci, getSizeClassInfo(SizeClassMap::BatchClassId));
+
+ // Free blocks are recorded by TransferBatch in freelist for all
+ // size-classes. In addition, TransferBatch is allocated from BatchClassId.
+ // In order not to use additional block to record the free blocks in
+ // BatchClassId, they are self-contained. I.e., A TransferBatch records the
+ // block address of itself. See the figure below:
+ //
+ // TransferBatch at 0xABCD
+ // +----------------------------+
+ // | Free blocks' addr |
+ // | +------+------+------+ |
+ // | |0xABCD|... |... | |
+ // | +------+------+------+ |
+ // +----------------------------+
+ //
+ // When we allocate all the free blocks in the TransferBatch, the block used
+ // by TransferBatch is also free for use. We don't need to recycle the
+ // TransferBatch. Note that the correctness is maintained by the invariant,
+ //
+ // Each popBlocks() request returns the entire TransferBatch. Returning
+ // part of the blocks in a TransferBatch is invalid.
+ //
+ // This ensures that TransferBatch won't leak the address itself while it's
+ // still holding other valid data.
+ //
+ // Besides, BatchGroup is also allocated from BatchClassId and has its
+ // address recorded in the TransferBatch too. To maintain the correctness,
+ //
+ // The address of BatchGroup is always recorded in the last TransferBatch
+ // in the freelist (also imply that the freelist should only be
+ // updated with push_front). Once the last TransferBatch is popped,
+ // the block used by BatchGroup is also free for use.
+ //
+ // With this approach, the blocks used by BatchGroup and TransferBatch are
+ // reusable and don't need additional space for them.
+
+ Sci->FreeListInfo.PushedBlocks += Size;
+ BatchGroupT *BG = Sci->FreeListInfo.BlockList.front();
+
+ if (BG == nullptr) {
+ // Construct `BatchGroup` on the last element.
+ BG = reinterpret_cast<BatchGroupT *>(
+ decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
+ --Size;
+ BG->Batches.clear();
+ // BatchClass hasn't enabled memory group. Use `0` to indicate there's no
+ // memory group here.
+ BG->CompactPtrGroupBase = 0;
+ // `BG` is also the block of BatchClassId. Note that this is different
+ // from `CreateGroup` in `pushBlocksImpl`
+ BG->PushedBlocks = 1;
+ BG->BytesInBGAtLastCheckpoint = 0;
+ BG->MaxCachedPerBatch =
+ CacheT::getMaxCached(getSizeByClassId(SizeClassMap::BatchClassId));
+
+ Sci->FreeListInfo.BlockList.push_front(BG);
+ }
+
+ if (UNLIKELY(Size == 0))
+ return;
+
+ // This happens under 2 cases.
+ // 1. just allocated a new `BatchGroup`.
+ // 2. Only 1 block is pushed when the freelist is empty.
+ if (BG->Batches.empty()) {
+ // Construct the `TransferBatch` on the last element.
+ TransferBatchT *TB = reinterpret_cast<TransferBatchT *>(
+ decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
+ TB->clear();
+ // As mentioned above, addresses of `TransferBatch` and `BatchGroup` are
+ // recorded in the TransferBatch.
+ TB->add(Array[Size - 1]);
+ TB->add(
+ compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(BG)));
+ --Size;
+ DCHECK_EQ(BG->PushedBlocks, 1U);
+ // `TB` is also the block of BatchClassId.
+ BG->PushedBlocks += 1;
+ BG->Batches.push_front(TB);
+ }
+
+ TransferBatchT *CurBatch = BG->Batches.front();
+ DCHECK_NE(CurBatch, nullptr);
+
+ for (u32 I = 0; I < Size;) {
+ u16 UnusedSlots =
+ static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
+ if (UnusedSlots == 0) {
+ CurBatch = reinterpret_cast<TransferBatchT *>(
+ decompactPtr(SizeClassMap::BatchClassId, Array[I]));
+ CurBatch->clear();
+ // Self-contained
+ CurBatch->add(Array[I]);
+ ++I;
+ // TODO(chiahungduan): Avoid the use of push_back() in `Batches` of
+ // BatchClassId.
+ BG->Batches.push_front(CurBatch);
+ UnusedSlots = static_cast<u16>(BG->MaxCachedPerBatch - 1);
+ }
+ // `UnusedSlots` is u16 so the result will be also fit in u16.
+ const u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
+ CurBatch->appendFromArray(&Array[I], AppendSize);
+ I += AppendSize;
+ }
+
+ BG->PushedBlocks += Size;
+ }
+ // Push the blocks to their batch group. The layout will be like,
+ //
+ // FreeListInfo.BlockList - > BG -> BG -> BG
+ // | | |
+ // v v v
+ // TB TB TB
+ // |
+ // v
+ // TB
+ //
+ // Each BlockGroup(BG) will associate with unique group id and the free blocks
+ // are managed by a list of TransferBatch(TB). To reduce the time of inserting
+ // blocks, BGs are sorted and the input `Array` are supposed to be sorted so
+ // that we can get better performance of maintaining sorted property.
+ // Use `SameGroup=true` to indicate that all blocks in the array are from the
+ // same group then we will skip checking the group id of each block.
+ //
+ // The region mutex needs to be held while calling this method.
+ void pushBlocksImpl(CacheT *C, uptr ClassId, SizeClassInfo *Sci,
+ CompactPtrT *Array, u32 Size, bool SameGroup = false)
+ REQUIRES(Sci->Mutex) {
+ DCHECK_NE(ClassId, SizeClassMap::BatchClassId);
+ DCHECK_GT(Size, 0U);
+
+ auto CreateGroup = [&](uptr CompactPtrGroupBase) {
+ BatchGroupT *BG =
+ reinterpret_cast<BatchGroupT *>(C->getBatchClassBlock());
+ BG->Batches.clear();
+ TransferBatchT *TB =
+ reinterpret_cast<TransferBatchT *>(C->getBatchClassBlock());
+ TB->clear();
+
+ BG->CompactPtrGroupBase = CompactPtrGroupBase;
+ BG->Batches.push_front(TB);
+ BG->PushedBlocks = 0;
+ BG->BytesInBGAtLastCheckpoint = 0;
+ BG->MaxCachedPerBatch = TransferBatchT::MaxNumCached;
+
+ return BG;
+ };
+
+ auto InsertBlocks = [&](BatchGroupT *BG, CompactPtrT *Array, u32 Size) {
+ SinglyLinkedList<TransferBatchT> &Batches = BG->Batches;
+ TransferBatchT *CurBatch = Batches.front();
+ DCHECK_NE(CurBatch, nullptr);
+
+ for (u32 I = 0; I < Size;) {
+ DCHECK_GE(BG->MaxCachedPerBatch, CurBatch->getCount());
+ u16 UnusedSlots =
+ static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
+ if (UnusedSlots == 0) {
+ CurBatch =
+ reinterpret_cast<TransferBatchT *>(C->getBatchClassBlock());
+ CurBatch->clear();
+ Batches.push_front(CurBatch);
+ UnusedSlots = BG->MaxCachedPerBatch;
+ }
+ // `UnusedSlots` is u16 so the result will be also fit in u16.
+ u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
+ CurBatch->appendFromArray(&Array[I], AppendSize);
+ I += AppendSize;
+ }
+
+ BG->PushedBlocks += Size;
+ };
+
+ Sci->FreeListInfo.PushedBlocks += Size;
+ BatchGroupT *Cur = Sci->FreeListInfo.BlockList.front();
+
+ // In the following, `Cur` always points to the BatchGroup for blocks that
+ // will be pushed next. `Prev` is the element right before `Cur`.
+ BatchGroupT *Prev = nullptr;
+
+ while (Cur != nullptr &&
+ compactPtrGroupBase(Array[0]) > Cur->CompactPtrGroupBase) {
+ Prev = Cur;
+ Cur = Cur->Next;
+ }
+
+ if (Cur == nullptr ||
+ compactPtrGroupBase(Array[0]) != Cur->CompactPtrGroupBase) {
+ Cur = CreateGroup(compactPtrGroupBase(Array[0]));
+ if (Prev == nullptr)
+ Sci->FreeListInfo.BlockList.push_front(Cur);
+ else
+ Sci->FreeListInfo.BlockList.insert(Prev, Cur);
+ }
+
+ // All the blocks are from the same group, just push without checking group
+ // id.
+ if (SameGroup) {
+ for (u32 I = 0; I < Size; ++I)
+ DCHECK_EQ(compactPtrGroupBase(Array[I]), Cur->CompactPtrGroupBase);
+
+ InsertBlocks(Cur, Array, Size);
+ return;
+ }
+
+ // The blocks are sorted by group id. Determine the segment of group and
+ // push them to their group together.
+ u32 Count = 1;
+ for (u32 I = 1; I < Size; ++I) {
+ if (compactPtrGroupBase(Array[I - 1]) != compactPtrGroupBase(Array[I])) {
+ DCHECK_EQ(compactPtrGroupBase(Array[I - 1]), Cur->CompactPtrGroupBase);
+ InsertBlocks(Cur, Array + I - Count, Count);
+
+ while (Cur != nullptr &&
+ compactPtrGroupBase(Array[I]) > Cur->CompactPtrGroupBase) {
+ Prev = Cur;
+ Cur = Cur->Next;
+ }
+
+ if (Cur == nullptr ||
+ compactPtrGroupBase(Array[I]) != Cur->CompactPtrGroupBase) {
+ Cur = CreateGroup(compactPtrGroupBase(Array[I]));
+ DCHECK_NE(Prev, nullptr);
+ Sci->FreeListInfo.BlockList.insert(Prev, Cur);
+ }
+
+ Count = 1;
+ } else {
+ ++Count;
+ }
+ }
+
+ InsertBlocks(Cur, Array + Size - Count, Count);
+ }
+
+ u16 popBlocksImpl(CacheT *C, uptr ClassId, SizeClassInfo *Sci,
+ CompactPtrT *ToArray, const u16 MaxBlockCount)
+ REQUIRES(Sci->Mutex) {
+ if (Sci->FreeListInfo.BlockList.empty())
+ return 0U;
+
+ SinglyLinkedList<TransferBatchT> &Batches =
+ Sci->FreeListInfo.BlockList.front()->Batches;
+
+ if (Batches.empty()) {
+ DCHECK_EQ(ClassId, SizeClassMap::BatchClassId);
+ BatchGroupT *BG = Sci->FreeListInfo.BlockList.front();
+ Sci->FreeListInfo.BlockList.pop_front();
+
+ // Block used by `BatchGroup` is from BatchClassId. Turn the block into
+ // `TransferBatch` with single block.
+ TransferBatchT *TB = reinterpret_cast<TransferBatchT *>(BG);
+ ToArray[0] =
+ compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(TB));
+ Sci->FreeListInfo.PoppedBlocks += 1;
+ return 1U;
+ }
+
+ // So far, instead of always filling the blocks to `MaxBlockCount`, we only
+ // examine single `TransferBatch` to minimize the time spent on the primary
+ // allocator. Besides, the sizes of `TransferBatch` and
+ // `CacheT::getMaxCached()` may also impact the time spent on accessing the
+ // primary allocator.
+ // TODO(chiahungduan): Evaluate if we want to always prepare `MaxBlockCount`
+ // blocks and/or adjust the size of `TransferBatch` according to
+ // `CacheT::getMaxCached()`.
+ TransferBatchT *B = Batches.front();
+ DCHECK_NE(B, nullptr);
+ DCHECK_GT(B->getCount(), 0U);
+
+ // BachClassId should always take all blocks in the TransferBatch. Read the
+ // comment in `pushBatchClassBlocks()` for more details.
+ const u16 PopCount = ClassId == SizeClassMap::BatchClassId
+ ? B->getCount()
+ : Min(MaxBlockCount, B->getCount());
+ B->moveNToArray(ToArray, PopCount);
+
+ // TODO(chiahungduan): The deallocation of unused BatchClassId blocks can be
+ // done without holding `Mutex`.
+ if (B->empty()) {
+ Batches.pop_front();
+ // `TransferBatch` of BatchClassId is self-contained, no need to
+ // deallocate. Read the comment in `pushBatchClassBlocks()` for more
+ // details.
+ if (ClassId != SizeClassMap::BatchClassId)
+ C->deallocate(SizeClassMap::BatchClassId, B);
+
+ if (Batches.empty()) {
+ BatchGroupT *BG = Sci->FreeListInfo.BlockList.front();
+ Sci->FreeListInfo.BlockList.pop_front();
+
+ // We don't keep BatchGroup with zero blocks to avoid empty-checking
+ // while allocating. Note that block used for constructing BatchGroup is
+ // recorded as free blocks in the last element of BatchGroup::Batches.
+ // Which means, once we pop the last TransferBatch, the block is
+ // implicitly deallocated.
+ if (ClassId != SizeClassMap::BatchClassId)
+ C->deallocate(SizeClassMap::BatchClassId, BG);
+ }
+ }
+
+ Sci->FreeListInfo.PoppedBlocks += PopCount;
+ return PopCount;
+ }
+
+ NOINLINE bool populateFreeList(CacheT *C, uptr ClassId, SizeClassInfo *Sci)
+ REQUIRES(Sci->Mutex) {
+ uptr Region;
+ uptr Offset;
+ // If the size-class currently has a region associated to it, use it. The
+ // newly created blocks will be located after the currently allocated memory
+ // for that region (up to RegionSize). Otherwise, create a new region, where
+ // the new blocks will be carved from the beginning.
+ if (Sci->CurrentRegion) {
+ Region = Sci->CurrentRegion;
+ DCHECK_GT(Sci->CurrentRegionAllocated, 0U);
+ Offset = Sci->CurrentRegionAllocated;
+ } else {
+ DCHECK_EQ(Sci->CurrentRegionAllocated, 0U);
+ Region = allocateRegion(Sci, ClassId);
+ if (UNLIKELY(!Region))
+ return false;
+ C->getStats().add(StatMapped, RegionSize);
+ Sci->CurrentRegion = Region;
+ Offset = 0;
+ }
+
+ const uptr Size = getSizeByClassId(ClassId);
+ const u16 MaxCount = CacheT::getMaxCached(Size);
+ DCHECK_GT(MaxCount, 0U);
+ // The maximum number of blocks we should carve in the region is dictated
+ // by the maximum number of batches we want to fill, and the amount of
+ // memory left in the current region (we use the lowest of the two). This
+ // will not be 0 as we ensure that a region can at least hold one block (via
+ // static_assert and at the end of this function).
+ const u32 NumberOfBlocks =
+ Min(MaxNumBatches * MaxCount,
+ static_cast<u32>((RegionSize - Offset) / Size));
+ DCHECK_GT(NumberOfBlocks, 0U);
+
+ constexpr u32 ShuffleArraySize =
+ MaxNumBatches * TransferBatchT::MaxNumCached;
+ // Fill the transfer batches and put them in the size-class freelist. We
+ // need to randomize the blocks for security purposes, so we first fill a
+ // local array that we then shuffle before populating the batches.
+ CompactPtrT ShuffleArray[ShuffleArraySize];
+ DCHECK_LE(NumberOfBlocks, ShuffleArraySize);
+
+ uptr P = Region + Offset;
+ for (u32 I = 0; I < NumberOfBlocks; I++, P += Size)
+ ShuffleArray[I] = reinterpret_cast<CompactPtrT>(P);
+
+ if (ClassId != SizeClassMap::BatchClassId) {
+ u32 N = 1;
+ uptr CurGroup = compactPtrGroupBase(ShuffleArray[0]);
+ for (u32 I = 1; I < NumberOfBlocks; I++) {
+ if (UNLIKELY(compactPtrGroupBase(ShuffleArray[I]) != CurGroup)) {
+ shuffle(ShuffleArray + I - N, N, &Sci->RandState);
+ pushBlocksImpl(C, ClassId, Sci, ShuffleArray + I - N, N,
+ /*SameGroup=*/true);
+ N = 1;
+ CurGroup = compactPtrGroupBase(ShuffleArray[I]);
+ } else {
+ ++N;
+ }
+ }
+
+ shuffle(ShuffleArray + NumberOfBlocks - N, N, &Sci->RandState);
+ pushBlocksImpl(C, ClassId, Sci, &ShuffleArray[NumberOfBlocks - N], N,
+ /*SameGroup=*/true);
+ } else {
+ pushBatchClassBlocks(Sci, ShuffleArray, NumberOfBlocks);
+ }
+
+ // Note that `PushedBlocks` and `PoppedBlocks` are supposed to only record
+ // the requests from `PushBlocks` and `PopBatch` which are external
+ // interfaces. `populateFreeList` is the internal interface so we should set
+ // the values back to avoid incorrectly setting the stats.
+ Sci->FreeListInfo.PushedBlocks -= NumberOfBlocks;
+
+ const uptr AllocatedUser = Size * NumberOfBlocks;
+ C->getStats().add(StatFree, AllocatedUser);
+ DCHECK_LE(Sci->CurrentRegionAllocated + AllocatedUser, RegionSize);
+ // If there is not enough room in the region currently associated to fit
+ // more blocks, we deassociate the region by resetting CurrentRegion and
+ // CurrentRegionAllocated. Otherwise, update the allocated amount.
+ if (RegionSize - (Sci->CurrentRegionAllocated + AllocatedUser) < Size) {
+ Sci->CurrentRegion = 0;
+ Sci->CurrentRegionAllocated = 0;
+ } else {
+ Sci->CurrentRegionAllocated += AllocatedUser;
+ }
+ Sci->AllocatedUser += AllocatedUser;
+
+ return true;
+ }
+
+ void getStats(ScopedString *Str, uptr ClassId, SizeClassInfo *Sci)
+ REQUIRES(Sci->Mutex) {
+ if (Sci->AllocatedUser == 0)
+ return;
+ const uptr BlockSize = getSizeByClassId(ClassId);
+ const uptr InUse =
+ Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks;
+ const uptr BytesInFreeList = Sci->AllocatedUser - InUse * BlockSize;
+ uptr PushedBytesDelta = 0;
+ if (BytesInFreeList >= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint) {
+ PushedBytesDelta =
+ BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
+ }
+ const uptr AvailableChunks = Sci->AllocatedUser / BlockSize;
+ Str->append(" %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu "
+ "inuse: %6zu avail: %6zu releases: %6zu last released: %6zuK "
+ "latest pushed bytes: %6zuK\n",
+ ClassId, getSizeByClassId(ClassId), Sci->AllocatedUser >> 10,
+ Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks,
+ InUse, AvailableChunks, Sci->ReleaseInfo.RangesReleased,
+ Sci->ReleaseInfo.LastReleasedBytes >> 10,
+ PushedBytesDelta >> 10);
+ }
+
+ void getSizeClassFragmentationInfo(SizeClassInfo *Sci, uptr ClassId,
+ ScopedString *Str) REQUIRES(Sci->Mutex) {
+ const uptr BlockSize = getSizeByClassId(ClassId);
+ const uptr First = Sci->MinRegionIndex;
+ const uptr Last = Sci->MaxRegionIndex;
+ const uptr Base = First * RegionSize;
+ const uptr NumberOfRegions = Last - First + 1U;
+ auto SkipRegion = [this, First, ClassId](uptr RegionIndex) {
+ ScopedLock L(ByteMapMutex);
+ return (PossibleRegions[First + RegionIndex] - 1U) != ClassId;
+ };
+
+ FragmentationRecorder Recorder;
+ if (!Sci->FreeListInfo.BlockList.empty()) {
+ PageReleaseContext Context =
+ markFreeBlocks(Sci, ClassId, BlockSize, Base, NumberOfRegions,
+ ReleaseToOS::ForceAll);
+ releaseFreeMemoryToOS(Context, Recorder, SkipRegion);
+ }
+
+ const uptr PageSize = getPageSizeCached();
+ const uptr TotalBlocks = Sci->AllocatedUser / BlockSize;
+ const uptr InUseBlocks =
+ Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks;
+ uptr AllocatedPagesCount = 0;
+ if (TotalBlocks != 0U) {
+ for (uptr I = 0; I < NumberOfRegions; ++I) {
+ if (SkipRegion(I))
+ continue;
+ AllocatedPagesCount += RegionSize / PageSize;
+ }
+
+ DCHECK_NE(AllocatedPagesCount, 0U);
+ }
+
+ DCHECK_GE(AllocatedPagesCount, Recorder.getReleasedPagesCount());
+ const uptr InUsePages =
+ AllocatedPagesCount - Recorder.getReleasedPagesCount();
+ const uptr InUseBytes = InUsePages * PageSize;
+
+ uptr Integral;
+ uptr Fractional;
+ computePercentage(BlockSize * InUseBlocks, InUsePages * PageSize, &Integral,
+ &Fractional);
+ Str->append(" %02zu (%6zu): inuse/total blocks: %6zu/%6zu inuse/total "
+ "pages: %6zu/%6zu inuse bytes: %6zuK util: %3zu.%02zu%%\n",
+ ClassId, BlockSize, InUseBlocks, TotalBlocks, InUsePages,
+ AllocatedPagesCount, InUseBytes >> 10, Integral, Fractional);
+ }
+
+ NOINLINE uptr releaseToOSMaybe(SizeClassInfo *Sci, uptr ClassId,
+ ReleaseToOS ReleaseType = ReleaseToOS::Normal)
+ REQUIRES(Sci->Mutex) {
+ const uptr BlockSize = getSizeByClassId(ClassId);
+
+ DCHECK_GE(Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks);
+ const uptr BytesInFreeList =
+ Sci->AllocatedUser -
+ (Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks) *
+ BlockSize;
+
+ if (UNLIKELY(BytesInFreeList == 0))
+ return 0;
+
+ // ====================================================================== //
+ // 1. Check if we have enough free blocks and if it's worth doing a page
+ // release.
+ // ====================================================================== //
+ if (ReleaseType != ReleaseToOS::ForceAll &&
+ !hasChanceToReleasePages(Sci, BlockSize, BytesInFreeList,
+ ReleaseType)) {
+ return 0;
+ }
+
+ const uptr First = Sci->MinRegionIndex;
+ const uptr Last = Sci->MaxRegionIndex;
+ DCHECK_NE(Last, 0U);
+ DCHECK_LE(First, Last);
+ uptr TotalReleasedBytes = 0;
+ const uptr Base = First * RegionSize;
+ const uptr NumberOfRegions = Last - First + 1U;
+
+ // ==================================================================== //
+ // 2. Mark the free blocks and we can tell which pages are in-use by
+ // querying `PageReleaseContext`.
+ // ==================================================================== //
+ PageReleaseContext Context = markFreeBlocks(Sci, ClassId, BlockSize, Base,
+ NumberOfRegions, ReleaseType);
+ if (!Context.hasBlockMarked())
+ return 0;
+
+ // ==================================================================== //
+ // 3. Release the unused physical pages back to the OS.
+ // ==================================================================== //
+ ReleaseRecorder Recorder(Base);
+ auto SkipRegion = [this, First, ClassId](uptr RegionIndex) {
+ ScopedLock L(ByteMapMutex);
+ return (PossibleRegions[First + RegionIndex] - 1U) != ClassId;
+ };
+ releaseFreeMemoryToOS(Context, Recorder, SkipRegion);
+
+ if (Recorder.getReleasedRangesCount() > 0) {
+ Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
+ Sci->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount();
+ Sci->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes();
+ TotalReleasedBytes += Sci->ReleaseInfo.LastReleasedBytes;
+ }
+ Sci->ReleaseInfo.LastReleaseAtNs = getMonotonicTimeFast();
+
+ return TotalReleasedBytes;
+ }
+
+ bool hasChanceToReleasePages(SizeClassInfo *Sci, uptr BlockSize,
+ uptr BytesInFreeList, ReleaseToOS ReleaseType)
+ REQUIRES(Sci->Mutex) {
+ DCHECK_GE(Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks);
+ const uptr PageSize = getPageSizeCached();
+
+ if (BytesInFreeList <= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint)
+ Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
+
+ // Always update `BytesInFreeListAtLastCheckpoint` with the smallest value
+ // so that we won't underestimate the releasable pages. For example, the
+ // following is the region usage,
+ //
+ // BytesInFreeListAtLastCheckpoint AllocatedUser
+ // v v
+ // |--------------------------------------->
+ // ^ ^
+ // BytesInFreeList ReleaseThreshold
+ //
+ // In general, if we have collected enough bytes and the amount of free
+ // bytes meets the ReleaseThreshold, we will try to do page release. If we
+ // don't update `BytesInFreeListAtLastCheckpoint` when the current
+ // `BytesInFreeList` is smaller, we may take longer time to wait for enough
+ // freed blocks because we miss the bytes between
+ // (BytesInFreeListAtLastCheckpoint - BytesInFreeList).
+ const uptr PushedBytesDelta =
+ BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
+ if (PushedBytesDelta < PageSize)
+ return false;
+
+ // Releasing smaller blocks is expensive, so we want to make sure that a
+ // significant amount of bytes are free, and that there has been a good
+ // amount of batches pushed to the freelist before attempting to release.
+ if (isSmallBlock(BlockSize) && ReleaseType == ReleaseToOS::Normal)
+ if (PushedBytesDelta < Sci->AllocatedUser / 16U)
+ return false;
+
+ if (ReleaseType == ReleaseToOS::Normal) {
+ const s32 IntervalMs = atomic_load_relaxed(&ReleaseToOsIntervalMs);
+ if (IntervalMs < 0)
+ return false;
+
+ // The constant 8 here is selected from profiling some apps and the number
+ // of unreleased pages in the large size classes is around 16 pages or
+ // more. Choose half of it as a heuristic and which also avoids page
+ // release every time for every pushBlocks() attempt by large blocks.
+ const bool ByPassReleaseInterval =
+ isLargeBlock(BlockSize) && PushedBytesDelta > 8 * PageSize;
+ if (!ByPassReleaseInterval) {
+ if (Sci->ReleaseInfo.LastReleaseAtNs +
+ static_cast<u64>(IntervalMs) * 1000000 >
+ getMonotonicTimeFast()) {
+ // Memory was returned recently.
+ return false;
+ }
+ }
+ } // if (ReleaseType == ReleaseToOS::Normal)
+
+ return true;
+ }
+
+ PageReleaseContext markFreeBlocks(SizeClassInfo *Sci, const uptr ClassId,
+ const uptr BlockSize, const uptr Base,
+ const uptr NumberOfRegions,
+ ReleaseToOS ReleaseType)
+ REQUIRES(Sci->Mutex) {
+ const uptr PageSize = getPageSizeCached();
+ const uptr GroupSize = (1UL << GroupSizeLog);
+ const uptr CurGroupBase =
+ compactPtrGroupBase(compactPtr(ClassId, Sci->CurrentRegion));
+
+ PageReleaseContext Context(BlockSize, NumberOfRegions,
+ /*ReleaseSize=*/RegionSize);
+
+ auto DecompactPtr = [](CompactPtrT CompactPtr) {
+ return reinterpret_cast<uptr>(CompactPtr);
+ };
+ for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) {
+ const uptr GroupBase = decompactGroupBase(BG.CompactPtrGroupBase);
+ // The `GroupSize` may not be divided by `BlockSize`, which means there is
+ // an unused space at the end of Region. Exclude that space to avoid
+ // unused page map entry.
+ uptr AllocatedGroupSize = GroupBase == CurGroupBase
+ ? Sci->CurrentRegionAllocated
+ : roundDownSlow(GroupSize, BlockSize);
+ if (AllocatedGroupSize == 0)
+ continue;
+
+ // TransferBatches are pushed in front of BG.Batches. The first one may
+ // not have all caches used.
+ const uptr NumBlocks = (BG.Batches.size() - 1) * BG.MaxCachedPerBatch +
+ BG.Batches.front()->getCount();
+ const uptr BytesInBG = NumBlocks * BlockSize;
+
+ if (ReleaseType != ReleaseToOS::ForceAll) {
+ if (BytesInBG <= BG.BytesInBGAtLastCheckpoint) {
+ BG.BytesInBGAtLastCheckpoint = BytesInBG;
+ continue;
+ }
+
+ const uptr PushedBytesDelta = BytesInBG - BG.BytesInBGAtLastCheckpoint;
+ if (PushedBytesDelta < PageSize)
+ continue;
+
+ // Given the randomness property, we try to release the pages only if
+ // the bytes used by free blocks exceed certain proportion of allocated
+ // spaces.
+ if (isSmallBlock(BlockSize) && (BytesInBG * 100U) / AllocatedGroupSize <
+ (100U - 1U - BlockSize / 16U)) {
+ continue;
+ }
+ }
+
+ // TODO: Consider updating this after page release if `ReleaseRecorder`
+ // can tell the released bytes in each group.
+ BG.BytesInBGAtLastCheckpoint = BytesInBG;
+
+ const uptr MaxContainedBlocks = AllocatedGroupSize / BlockSize;
+ const uptr RegionIndex = (GroupBase - Base) / RegionSize;
+
+ if (NumBlocks == MaxContainedBlocks) {
+ for (const auto &It : BG.Batches)
+ for (u16 I = 0; I < It.getCount(); ++I)
+ DCHECK_EQ(compactPtrGroupBase(It.get(I)), BG.CompactPtrGroupBase);
+
+ const uptr To = GroupBase + AllocatedGroupSize;
+ Context.markRangeAsAllCounted(GroupBase, To, GroupBase, RegionIndex,
+ AllocatedGroupSize);
+ } else {
+ DCHECK_LT(NumBlocks, MaxContainedBlocks);
+
+ // Note that we don't always visit blocks in each BatchGroup so that we
+ // may miss the chance of releasing certain pages that cross
+ // BatchGroups.
+ Context.markFreeBlocksInRegion(BG.Batches, DecompactPtr, GroupBase,
+ RegionIndex, AllocatedGroupSize,
+ /*MayContainLastBlockInRegion=*/true);
+ }
+
+ // We may not be able to do the page release In a rare case that we may
+ // fail on PageMap allocation.
+ if (UNLIKELY(!Context.hasBlockMarked()))
+ break;
+ }
+
+ return Context;
+ }
+
+ SizeClassInfo SizeClassInfoArray[NumClasses] = {};
+
+ HybridMutex ByteMapMutex;
+ // Track the regions in use, 0 is unused, otherwise store ClassId + 1.
+ ByteMap PossibleRegions GUARDED_BY(ByteMapMutex) = {};
+ atomic_s32 ReleaseToOsIntervalMs = {};
+ // Unless several threads request regions simultaneously from different size
+ // classes, the stash rarely contains more than 1 entry.
+ static constexpr uptr MaxStashedRegions = 4;
+ HybridMutex RegionsStashMutex;
+ uptr NumberOfStashedRegions GUARDED_BY(RegionsStashMutex) = 0;
+ uptr RegionsStash[MaxStashedRegions] GUARDED_BY(RegionsStashMutex) = {};
+};
+
+} // namespace scudo
+
+#endif // SCUDO_PRIMARY32_H_