aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/compiler-rt/lib/scudo/standalone/primary64.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/compiler-rt/lib/scudo/standalone/primary64.h')
-rw-r--r--contrib/llvm-project/compiler-rt/lib/scudo/standalone/primary64.h1737
1 files changed, 1737 insertions, 0 deletions
diff --git a/contrib/llvm-project/compiler-rt/lib/scudo/standalone/primary64.h b/contrib/llvm-project/compiler-rt/lib/scudo/standalone/primary64.h
new file mode 100644
index 000000000000..8a583bacb4a9
--- /dev/null
+++ b/contrib/llvm-project/compiler-rt/lib/scudo/standalone/primary64.h
@@ -0,0 +1,1737 @@
+//===-- primary64.h ---------------------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SCUDO_PRIMARY64_H_
+#define SCUDO_PRIMARY64_H_
+
+#include "allocator_common.h"
+#include "bytemap.h"
+#include "common.h"
+#include "condition_variable.h"
+#include "list.h"
+#include "local_cache.h"
+#include "mem_map.h"
+#include "memtag.h"
+#include "options.h"
+#include "release.h"
+#include "stats.h"
+#include "string_utils.h"
+#include "thread_annotations.h"
+
+namespace scudo {
+
+// SizeClassAllocator64 is an allocator tuned for 64-bit address space.
+//
+// It starts by reserving NumClasses * 2^RegionSizeLog bytes, equally divided in
+// Regions, specific to each size class. Note that the base of that mapping is
+// random (based to the platform specific map() capabilities). If
+// PrimaryEnableRandomOffset is set, each Region actually starts at a random
+// offset from its base.
+//
+// Regions are mapped incrementally on demand to fulfill allocation requests,
+// those mappings being split into equally sized Blocks based on the size class
+// they belong to. The Blocks created are shuffled to prevent predictable
+// address patterns (the predictability increases with the size of the Blocks).
+//
+// The 1st Region (for size class 0) holds the TransferBatches. This is a
+// structure used to transfer arrays of available pointers from the class size
+// freelist to the thread specific freelist, and back.
+//
+// The memory used by this allocator is never unmapped, but can be partially
+// released if the platform allows for it.
+
+template <typename Config> class SizeClassAllocator64 {
+public:
+ typedef typename Config::CompactPtrT CompactPtrT;
+ typedef typename Config::SizeClassMap SizeClassMap;
+ typedef typename Config::ConditionVariableT ConditionVariableT;
+ static const uptr CompactPtrScale = Config::getCompactPtrScale();
+ static const uptr RegionSizeLog = Config::getRegionSizeLog();
+ static const uptr GroupSizeLog = Config::getGroupSizeLog();
+ static_assert(RegionSizeLog >= GroupSizeLog,
+ "Group size shouldn't be greater than the region size");
+ static const uptr GroupScale = GroupSizeLog - CompactPtrScale;
+ typedef SizeClassAllocator64<Config> ThisT;
+ typedef SizeClassAllocatorLocalCache<ThisT> CacheT;
+ typedef TransferBatch<ThisT> TransferBatchT;
+ typedef BatchGroup<ThisT> BatchGroupT;
+
+ static_assert(sizeof(BatchGroupT) <= sizeof(TransferBatchT),
+ "BatchGroupT uses the same class size as TransferBatchT");
+
+ static uptr getSizeByClassId(uptr ClassId) {
+ return (ClassId == SizeClassMap::BatchClassId)
+ ? roundUp(sizeof(TransferBatchT), 1U << CompactPtrScale)
+ : SizeClassMap::getSizeByClassId(ClassId);
+ }
+
+ static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; }
+
+ static bool conditionVariableEnabled() {
+ return Config::hasConditionVariableT();
+ }
+
+ void init(s32 ReleaseToOsInterval) NO_THREAD_SAFETY_ANALYSIS {
+ DCHECK(isAligned(reinterpret_cast<uptr>(this), alignof(ThisT)));
+
+ const uptr PageSize = getPageSizeCached();
+ const uptr GroupSize = (1UL << GroupSizeLog);
+ const uptr PagesInGroup = GroupSize / PageSize;
+ const uptr MinSizeClass = getSizeByClassId(1);
+ // When trying to release pages back to memory, visiting smaller size
+ // classes is expensive. Therefore, we only try to release smaller size
+ // classes when the amount of free blocks goes over a certain threshold (See
+ // the comment in releaseToOSMaybe() for more details). For example, for
+ // size class 32, we only do the release when the size of free blocks is
+ // greater than 97% of pages in a group. However, this may introduce another
+ // issue that if the number of free blocks is bouncing between 97% ~ 100%.
+ // Which means we may try many page releases but only release very few of
+ // them (less than 3% in a group). Even though we have
+ // `&ReleaseToOsIntervalMs` which slightly reduce the frequency of these
+ // calls but it will be better to have another guard to mitigate this issue.
+ //
+ // Here we add another constraint on the minimum size requirement. The
+ // constraint is determined by the size of in-use blocks in the minimal size
+ // class. Take size class 32 as an example,
+ //
+ // +- one memory group -+
+ // +----------------------+------+
+ // | 97% of free blocks | |
+ // +----------------------+------+
+ // \ /
+ // 3% in-use blocks
+ //
+ // * The release size threshold is 97%.
+ //
+ // The 3% size in a group is about 7 pages. For two consecutive
+ // releaseToOSMaybe(), we require the difference between `PushedBlocks`
+ // should be greater than 7 pages. This mitigates the page releasing
+ // thrashing which is caused by memory usage bouncing around the threshold.
+ // The smallest size class takes longest time to do the page release so we
+ // use its size of in-use blocks as a heuristic.
+ SmallerBlockReleasePageDelta =
+ PagesInGroup * (1 + MinSizeClass / 16U) / 100;
+
+ u32 Seed;
+ const u64 Time = getMonotonicTimeFast();
+ if (!getRandom(reinterpret_cast<void *>(&Seed), sizeof(Seed)))
+ Seed = static_cast<u32>(Time ^ (reinterpret_cast<uptr>(&Seed) >> 12));
+
+ for (uptr I = 0; I < NumClasses; I++)
+ getRegionInfo(I)->RandState = getRandomU32(&Seed);
+
+ if (Config::getEnableContiguousRegions()) {
+ ReservedMemoryT ReservedMemory = {};
+ // Reserve the space required for the Primary.
+ CHECK(ReservedMemory.create(/*Addr=*/0U, RegionSize * NumClasses,
+ "scudo:primary_reserve"));
+ const uptr PrimaryBase = ReservedMemory.getBase();
+
+ for (uptr I = 0; I < NumClasses; I++) {
+ MemMapT RegionMemMap = ReservedMemory.dispatch(
+ PrimaryBase + (I << RegionSizeLog), RegionSize);
+ RegionInfo *Region = getRegionInfo(I);
+
+ initRegion(Region, I, RegionMemMap, Config::getEnableRandomOffset());
+ }
+ shuffle(RegionInfoArray, NumClasses, &Seed);
+ }
+
+ // The binding should be done after region shuffling so that it won't bind
+ // the FLLock from the wrong region.
+ for (uptr I = 0; I < NumClasses; I++)
+ getRegionInfo(I)->FLLockCV.bindTestOnly(getRegionInfo(I)->FLLock);
+
+ // The default value in the primary config has the higher priority.
+ if (Config::getDefaultReleaseToOsIntervalMs() != INT32_MIN)
+ ReleaseToOsInterval = Config::getDefaultReleaseToOsIntervalMs();
+ setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval));
+ }
+
+ void unmapTestOnly() {
+ for (uptr I = 0; I < NumClasses; I++) {
+ RegionInfo *Region = getRegionInfo(I);
+ {
+ ScopedLock ML(Region->MMLock);
+ MemMapT MemMap = Region->MemMapInfo.MemMap;
+ if (MemMap.isAllocated())
+ MemMap.unmap(MemMap.getBase(), MemMap.getCapacity());
+ }
+ *Region = {};
+ }
+ }
+
+ // When all blocks are freed, it has to be the same size as `AllocatedUser`.
+ void verifyAllBlocksAreReleasedTestOnly() {
+ // `BatchGroup` and `TransferBatch` also use the blocks from BatchClass.
+ uptr BatchClassUsedInFreeLists = 0;
+ for (uptr I = 0; I < NumClasses; I++) {
+ // We have to count BatchClassUsedInFreeLists in other regions first.
+ if (I == SizeClassMap::BatchClassId)
+ continue;
+ RegionInfo *Region = getRegionInfo(I);
+ ScopedLock ML(Region->MMLock);
+ ScopedLock FL(Region->FLLock);
+ const uptr BlockSize = getSizeByClassId(I);
+ uptr TotalBlocks = 0;
+ for (BatchGroupT &BG : Region->FreeListInfo.BlockList) {
+ // `BG::Batches` are `TransferBatches`. +1 for `BatchGroup`.
+ BatchClassUsedInFreeLists += BG.Batches.size() + 1;
+ for (const auto &It : BG.Batches)
+ TotalBlocks += It.getCount();
+ }
+
+ DCHECK_EQ(TotalBlocks, Region->MemMapInfo.AllocatedUser / BlockSize);
+ DCHECK_EQ(Region->FreeListInfo.PushedBlocks,
+ Region->FreeListInfo.PoppedBlocks);
+ }
+
+ RegionInfo *Region = getRegionInfo(SizeClassMap::BatchClassId);
+ ScopedLock ML(Region->MMLock);
+ ScopedLock FL(Region->FLLock);
+ const uptr BlockSize = getSizeByClassId(SizeClassMap::BatchClassId);
+ uptr TotalBlocks = 0;
+ for (BatchGroupT &BG : Region->FreeListInfo.BlockList) {
+ if (LIKELY(!BG.Batches.empty())) {
+ for (const auto &It : BG.Batches)
+ TotalBlocks += It.getCount();
+ } else {
+ // `BatchGroup` with empty freelist doesn't have `TransferBatch` record
+ // itself.
+ ++TotalBlocks;
+ }
+ }
+ DCHECK_EQ(TotalBlocks + BatchClassUsedInFreeLists,
+ Region->MemMapInfo.AllocatedUser / BlockSize);
+ DCHECK_GE(Region->FreeListInfo.PoppedBlocks,
+ Region->FreeListInfo.PushedBlocks);
+ const uptr BlocksInUse =
+ Region->FreeListInfo.PoppedBlocks - Region->FreeListInfo.PushedBlocks;
+ DCHECK_EQ(BlocksInUse, BatchClassUsedInFreeLists);
+ }
+
+ u16 popBlocks(CacheT *C, uptr ClassId, CompactPtrT *ToArray,
+ const u16 MaxBlockCount) {
+ DCHECK_LT(ClassId, NumClasses);
+ RegionInfo *Region = getRegionInfo(ClassId);
+ u16 PopCount = 0;
+
+ {
+ ScopedLock L(Region->FLLock);
+ PopCount = popBlocksImpl(C, ClassId, Region, ToArray, MaxBlockCount);
+ if (PopCount != 0U)
+ return PopCount;
+ }
+
+ bool ReportRegionExhausted = false;
+
+ if (conditionVariableEnabled()) {
+ PopCount = popBlocksWithCV(C, ClassId, Region, ToArray, MaxBlockCount,
+ ReportRegionExhausted);
+ } else {
+ while (true) {
+ // When two threads compete for `Region->MMLock`, we only want one of
+ // them to call populateFreeListAndPopBatch(). To avoid both of them
+ // doing that, always check the freelist before mapping new pages.
+ ScopedLock ML(Region->MMLock);
+ {
+ ScopedLock FL(Region->FLLock);
+ PopCount = popBlocksImpl(C, ClassId, Region, ToArray, MaxBlockCount);
+ if (PopCount != 0U)
+ return PopCount;
+ }
+
+ const bool RegionIsExhausted = Region->Exhausted;
+ if (!RegionIsExhausted) {
+ PopCount = populateFreeListAndPopBlocks(C, ClassId, Region, ToArray,
+ MaxBlockCount);
+ }
+ ReportRegionExhausted = !RegionIsExhausted && Region->Exhausted;
+ break;
+ }
+ }
+
+ if (UNLIKELY(ReportRegionExhausted)) {
+ Printf("Can't populate more pages for size class %zu.\n",
+ getSizeByClassId(ClassId));
+
+ // Theoretically, BatchClass shouldn't be used up. Abort immediately when
+ // it happens.
+ if (ClassId == SizeClassMap::BatchClassId)
+ reportOutOfBatchClass();
+ }
+
+ return PopCount;
+ }
+
+ // Push the array of free blocks to the designated batch group.
+ void pushBlocks(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size) {
+ DCHECK_LT(ClassId, NumClasses);
+ DCHECK_GT(Size, 0);
+
+ RegionInfo *Region = getRegionInfo(ClassId);
+ if (ClassId == SizeClassMap::BatchClassId) {
+ ScopedLock L(Region->FLLock);
+ pushBatchClassBlocks(Region, Array, Size);
+ if (conditionVariableEnabled())
+ Region->FLLockCV.notifyAll(Region->FLLock);
+ return;
+ }
+
+ // TODO(chiahungduan): Consider not doing grouping if the group size is not
+ // greater than the block size with a certain scale.
+
+ bool SameGroup = true;
+ if (GroupSizeLog < RegionSizeLog) {
+ // Sort the blocks so that blocks belonging to the same group can be
+ // pushed together.
+ for (u32 I = 1; I < Size; ++I) {
+ if (compactPtrGroup(Array[I - 1]) != compactPtrGroup(Array[I]))
+ SameGroup = false;
+ CompactPtrT Cur = Array[I];
+ u32 J = I;
+ while (J > 0 && compactPtrGroup(Cur) < compactPtrGroup(Array[J - 1])) {
+ Array[J] = Array[J - 1];
+ --J;
+ }
+ Array[J] = Cur;
+ }
+ }
+
+ {
+ ScopedLock L(Region->FLLock);
+ pushBlocksImpl(C, ClassId, Region, Array, Size, SameGroup);
+ if (conditionVariableEnabled())
+ Region->FLLockCV.notifyAll(Region->FLLock);
+ }
+ }
+
+ void disable() NO_THREAD_SAFETY_ANALYSIS {
+ // The BatchClassId must be locked last since other classes can use it.
+ for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) {
+ if (static_cast<uptr>(I) == SizeClassMap::BatchClassId)
+ continue;
+ getRegionInfo(static_cast<uptr>(I))->MMLock.lock();
+ getRegionInfo(static_cast<uptr>(I))->FLLock.lock();
+ }
+ getRegionInfo(SizeClassMap::BatchClassId)->MMLock.lock();
+ getRegionInfo(SizeClassMap::BatchClassId)->FLLock.lock();
+ }
+
+ void enable() NO_THREAD_SAFETY_ANALYSIS {
+ getRegionInfo(SizeClassMap::BatchClassId)->FLLock.unlock();
+ getRegionInfo(SizeClassMap::BatchClassId)->MMLock.unlock();
+ for (uptr I = 0; I < NumClasses; I++) {
+ if (I == SizeClassMap::BatchClassId)
+ continue;
+ getRegionInfo(I)->FLLock.unlock();
+ getRegionInfo(I)->MMLock.unlock();
+ }
+ }
+
+ template <typename F> void iterateOverBlocks(F Callback) {
+ for (uptr I = 0; I < NumClasses; I++) {
+ if (I == SizeClassMap::BatchClassId)
+ continue;
+ RegionInfo *Region = getRegionInfo(I);
+ // TODO: The call of `iterateOverBlocks` requires disabling
+ // SizeClassAllocator64. We may consider locking each region on demand
+ // only.
+ Region->FLLock.assertHeld();
+ Region->MMLock.assertHeld();
+ const uptr BlockSize = getSizeByClassId(I);
+ const uptr From = Region->RegionBeg;
+ const uptr To = From + Region->MemMapInfo.AllocatedUser;
+ for (uptr Block = From; Block < To; Block += BlockSize)
+ Callback(Block);
+ }
+ }
+
+ void getStats(ScopedString *Str) {
+ // TODO(kostyak): get the RSS per region.
+ uptr TotalMapped = 0;
+ uptr PoppedBlocks = 0;
+ uptr PushedBlocks = 0;
+ for (uptr I = 0; I < NumClasses; I++) {
+ RegionInfo *Region = getRegionInfo(I);
+ {
+ ScopedLock L(Region->MMLock);
+ TotalMapped += Region->MemMapInfo.MappedUser;
+ }
+ {
+ ScopedLock L(Region->FLLock);
+ PoppedBlocks += Region->FreeListInfo.PoppedBlocks;
+ PushedBlocks += Region->FreeListInfo.PushedBlocks;
+ }
+ }
+ const s32 IntervalMs = atomic_load_relaxed(&ReleaseToOsIntervalMs);
+ Str->append("Stats: SizeClassAllocator64: %zuM mapped (%uM rss) in %zu "
+ "allocations; remains %zu; ReleaseToOsIntervalMs = %d\n",
+ TotalMapped >> 20, 0U, PoppedBlocks,
+ PoppedBlocks - PushedBlocks, IntervalMs >= 0 ? IntervalMs : -1);
+
+ for (uptr I = 0; I < NumClasses; I++) {
+ RegionInfo *Region = getRegionInfo(I);
+ ScopedLock L1(Region->MMLock);
+ ScopedLock L2(Region->FLLock);
+ getStats(Str, I, Region);
+ }
+ }
+
+ void getFragmentationInfo(ScopedString *Str) {
+ Str->append(
+ "Fragmentation Stats: SizeClassAllocator64: page size = %zu bytes\n",
+ getPageSizeCached());
+
+ for (uptr I = 1; I < NumClasses; I++) {
+ RegionInfo *Region = getRegionInfo(I);
+ ScopedLock L(Region->MMLock);
+ getRegionFragmentationInfo(Region, I, Str);
+ }
+ }
+
+ bool setOption(Option O, sptr Value) {
+ if (O == Option::ReleaseInterval) {
+ const s32 Interval = Max(
+ Min(static_cast<s32>(Value), Config::getMaxReleaseToOsIntervalMs()),
+ Config::getMinReleaseToOsIntervalMs());
+ atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval);
+ return true;
+ }
+ // Not supported by the Primary, but not an error either.
+ return true;
+ }
+
+ uptr tryReleaseToOS(uptr ClassId, ReleaseToOS ReleaseType) {
+ RegionInfo *Region = getRegionInfo(ClassId);
+ // Note that the tryLock() may fail spuriously, given that it should rarely
+ // happen and page releasing is fine to skip, we don't take certain
+ // approaches to ensure one page release is done.
+ if (Region->MMLock.tryLock()) {
+ uptr BytesReleased = releaseToOSMaybe(Region, ClassId, ReleaseType);
+ Region->MMLock.unlock();
+ return BytesReleased;
+ }
+ return 0;
+ }
+
+ uptr releaseToOS(ReleaseToOS ReleaseType) {
+ uptr TotalReleasedBytes = 0;
+ for (uptr I = 0; I < NumClasses; I++) {
+ if (I == SizeClassMap::BatchClassId)
+ continue;
+ RegionInfo *Region = getRegionInfo(I);
+ ScopedLock L(Region->MMLock);
+ TotalReleasedBytes += releaseToOSMaybe(Region, I, ReleaseType);
+ }
+ return TotalReleasedBytes;
+ }
+
+ const char *getRegionInfoArrayAddress() const {
+ return reinterpret_cast<const char *>(RegionInfoArray);
+ }
+
+ static uptr getRegionInfoArraySize() { return sizeof(RegionInfoArray); }
+
+ uptr getCompactPtrBaseByClassId(uptr ClassId) {
+ return getRegionInfo(ClassId)->RegionBeg;
+ }
+
+ CompactPtrT compactPtr(uptr ClassId, uptr Ptr) {
+ DCHECK_LE(ClassId, SizeClassMap::LargestClassId);
+ return compactPtrInternal(getCompactPtrBaseByClassId(ClassId), Ptr);
+ }
+
+ void *decompactPtr(uptr ClassId, CompactPtrT CompactPtr) {
+ DCHECK_LE(ClassId, SizeClassMap::LargestClassId);
+ return reinterpret_cast<void *>(
+ decompactPtrInternal(getCompactPtrBaseByClassId(ClassId), CompactPtr));
+ }
+
+ static BlockInfo findNearestBlock(const char *RegionInfoData,
+ uptr Ptr) NO_THREAD_SAFETY_ANALYSIS {
+ const RegionInfo *RegionInfoArray =
+ reinterpret_cast<const RegionInfo *>(RegionInfoData);
+
+ uptr ClassId;
+ uptr MinDistance = -1UL;
+ for (uptr I = 0; I != NumClasses; ++I) {
+ if (I == SizeClassMap::BatchClassId)
+ continue;
+ uptr Begin = RegionInfoArray[I].RegionBeg;
+ // TODO(chiahungduan): In fact, We need to lock the RegionInfo::MMLock.
+ // However, the RegionInfoData is passed with const qualifier and lock the
+ // mutex requires modifying RegionInfoData, which means we need to remove
+ // the const qualifier. This may lead to another undefined behavior (The
+ // first one is accessing `AllocatedUser` without locking. It's better to
+ // pass `RegionInfoData` as `void *` then we can lock the mutex properly.
+ uptr End = Begin + RegionInfoArray[I].MemMapInfo.AllocatedUser;
+ if (Begin > End || End - Begin < SizeClassMap::getSizeByClassId(I))
+ continue;
+ uptr RegionDistance;
+ if (Begin <= Ptr) {
+ if (Ptr < End)
+ RegionDistance = 0;
+ else
+ RegionDistance = Ptr - End;
+ } else {
+ RegionDistance = Begin - Ptr;
+ }
+
+ if (RegionDistance < MinDistance) {
+ MinDistance = RegionDistance;
+ ClassId = I;
+ }
+ }
+
+ BlockInfo B = {};
+ if (MinDistance <= 8192) {
+ B.RegionBegin = RegionInfoArray[ClassId].RegionBeg;
+ B.RegionEnd =
+ B.RegionBegin + RegionInfoArray[ClassId].MemMapInfo.AllocatedUser;
+ B.BlockSize = SizeClassMap::getSizeByClassId(ClassId);
+ B.BlockBegin =
+ B.RegionBegin + uptr(sptr(Ptr - B.RegionBegin) / sptr(B.BlockSize) *
+ sptr(B.BlockSize));
+ while (B.BlockBegin < B.RegionBegin)
+ B.BlockBegin += B.BlockSize;
+ while (B.RegionEnd < B.BlockBegin + B.BlockSize)
+ B.BlockBegin -= B.BlockSize;
+ }
+ return B;
+ }
+
+ AtomicOptions Options;
+
+private:
+ static const uptr RegionSize = 1UL << RegionSizeLog;
+ static const uptr NumClasses = SizeClassMap::NumClasses;
+
+ static const uptr MapSizeIncrement = Config::getMapSizeIncrement();
+ // Fill at most this number of batches from the newly map'd memory.
+ static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U;
+
+ struct ReleaseToOsInfo {
+ uptr BytesInFreeListAtLastCheckpoint;
+ uptr RangesReleased;
+ uptr LastReleasedBytes;
+ u64 LastReleaseAtNs;
+ };
+
+ struct BlocksInfo {
+ SinglyLinkedList<BatchGroupT> BlockList = {};
+ uptr PoppedBlocks = 0;
+ uptr PushedBlocks = 0;
+ };
+
+ struct PagesInfo {
+ MemMapT MemMap = {};
+ // Bytes mapped for user memory.
+ uptr MappedUser = 0;
+ // Bytes allocated for user memory.
+ uptr AllocatedUser = 0;
+ };
+
+ struct UnpaddedRegionInfo {
+ // Mutex for operations on freelist
+ HybridMutex FLLock;
+ ConditionVariableT FLLockCV GUARDED_BY(FLLock);
+ // Mutex for memmap operations
+ HybridMutex MMLock ACQUIRED_BEFORE(FLLock);
+ // `RegionBeg` is initialized before thread creation and won't be changed.
+ uptr RegionBeg = 0;
+ u32 RandState GUARDED_BY(MMLock) = 0;
+ BlocksInfo FreeListInfo GUARDED_BY(FLLock);
+ PagesInfo MemMapInfo GUARDED_BY(MMLock);
+ // The minimum size of pushed blocks to trigger page release.
+ uptr TryReleaseThreshold GUARDED_BY(MMLock) = 0;
+ ReleaseToOsInfo ReleaseInfo GUARDED_BY(MMLock) = {};
+ bool Exhausted GUARDED_BY(MMLock) = false;
+ bool isPopulatingFreeList GUARDED_BY(FLLock) = false;
+ };
+ struct RegionInfo : UnpaddedRegionInfo {
+ char Padding[SCUDO_CACHE_LINE_SIZE -
+ (sizeof(UnpaddedRegionInfo) % SCUDO_CACHE_LINE_SIZE)] = {};
+ };
+ static_assert(sizeof(RegionInfo) % SCUDO_CACHE_LINE_SIZE == 0, "");
+
+ RegionInfo *getRegionInfo(uptr ClassId) {
+ DCHECK_LT(ClassId, NumClasses);
+ return &RegionInfoArray[ClassId];
+ }
+
+ uptr getRegionBaseByClassId(uptr ClassId) {
+ RegionInfo *Region = getRegionInfo(ClassId);
+ Region->MMLock.assertHeld();
+
+ if (!Config::getEnableContiguousRegions() &&
+ !Region->MemMapInfo.MemMap.isAllocated()) {
+ return 0U;
+ }
+ return Region->MemMapInfo.MemMap.getBase();
+ }
+
+ static CompactPtrT compactPtrInternal(uptr Base, uptr Ptr) {
+ return static_cast<CompactPtrT>((Ptr - Base) >> CompactPtrScale);
+ }
+
+ static uptr decompactPtrInternal(uptr Base, CompactPtrT CompactPtr) {
+ return Base + (static_cast<uptr>(CompactPtr) << CompactPtrScale);
+ }
+
+ static uptr compactPtrGroup(CompactPtrT CompactPtr) {
+ const uptr Mask = (static_cast<uptr>(1) << GroupScale) - 1;
+ return static_cast<uptr>(CompactPtr) & ~Mask;
+ }
+ static uptr decompactGroupBase(uptr Base, uptr CompactPtrGroupBase) {
+ DCHECK_EQ(CompactPtrGroupBase % (static_cast<uptr>(1) << (GroupScale)), 0U);
+ return Base + (CompactPtrGroupBase << CompactPtrScale);
+ }
+
+ ALWAYS_INLINE static bool isSmallBlock(uptr BlockSize) {
+ const uptr PageSize = getPageSizeCached();
+ return BlockSize < PageSize / 16U;
+ }
+
+ ALWAYS_INLINE static bool isLargeBlock(uptr BlockSize) {
+ const uptr PageSize = getPageSizeCached();
+ return BlockSize > PageSize;
+ }
+
+ ALWAYS_INLINE void initRegion(RegionInfo *Region, uptr ClassId,
+ MemMapT MemMap, bool EnableRandomOffset)
+ REQUIRES(Region->MMLock) {
+ DCHECK(!Region->MemMapInfo.MemMap.isAllocated());
+ DCHECK(MemMap.isAllocated());
+
+ const uptr PageSize = getPageSizeCached();
+
+ Region->MemMapInfo.MemMap = MemMap;
+
+ Region->RegionBeg = MemMap.getBase();
+ if (EnableRandomOffset) {
+ Region->RegionBeg +=
+ (getRandomModN(&Region->RandState, 16) + 1) * PageSize;
+ }
+
+ // Releasing small blocks is expensive, set a higher threshold to avoid
+ // frequent page releases.
+ if (isSmallBlock(getSizeByClassId(ClassId)))
+ Region->TryReleaseThreshold = PageSize * SmallerBlockReleasePageDelta;
+ else
+ Region->TryReleaseThreshold = PageSize;
+ }
+
+ void pushBatchClassBlocks(RegionInfo *Region, CompactPtrT *Array, u32 Size)
+ REQUIRES(Region->FLLock) {
+ DCHECK_EQ(Region, getRegionInfo(SizeClassMap::BatchClassId));
+
+ // Free blocks are recorded by TransferBatch in freelist for all
+ // size-classes. In addition, TransferBatch is allocated from BatchClassId.
+ // In order not to use additional block to record the free blocks in
+ // BatchClassId, they are self-contained. I.e., A TransferBatch records the
+ // block address of itself. See the figure below:
+ //
+ // TransferBatch at 0xABCD
+ // +----------------------------+
+ // | Free blocks' addr |
+ // | +------+------+------+ |
+ // | |0xABCD|... |... | |
+ // | +------+------+------+ |
+ // +----------------------------+
+ //
+ // When we allocate all the free blocks in the TransferBatch, the block used
+ // by TransferBatch is also free for use. We don't need to recycle the
+ // TransferBatch. Note that the correctness is maintained by the invariant,
+ //
+ // Each popBlocks() request returns the entire TransferBatch. Returning
+ // part of the blocks in a TransferBatch is invalid.
+ //
+ // This ensures that TransferBatch won't leak the address itself while it's
+ // still holding other valid data.
+ //
+ // Besides, BatchGroup is also allocated from BatchClassId and has its
+ // address recorded in the TransferBatch too. To maintain the correctness,
+ //
+ // The address of BatchGroup is always recorded in the last TransferBatch
+ // in the freelist (also imply that the freelist should only be
+ // updated with push_front). Once the last TransferBatch is popped,
+ // the block used by BatchGroup is also free for use.
+ //
+ // With this approach, the blocks used by BatchGroup and TransferBatch are
+ // reusable and don't need additional space for them.
+
+ Region->FreeListInfo.PushedBlocks += Size;
+ BatchGroupT *BG = Region->FreeListInfo.BlockList.front();
+
+ if (BG == nullptr) {
+ // Construct `BatchGroup` on the last element.
+ BG = reinterpret_cast<BatchGroupT *>(
+ decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
+ --Size;
+ BG->Batches.clear();
+ // BatchClass hasn't enabled memory group. Use `0` to indicate there's no
+ // memory group here.
+ BG->CompactPtrGroupBase = 0;
+ // `BG` is also the block of BatchClassId. Note that this is different
+ // from `CreateGroup` in `pushBlocksImpl`
+ BG->PushedBlocks = 1;
+ BG->BytesInBGAtLastCheckpoint = 0;
+ BG->MaxCachedPerBatch =
+ CacheT::getMaxCached(getSizeByClassId(SizeClassMap::BatchClassId));
+
+ Region->FreeListInfo.BlockList.push_front(BG);
+ }
+
+ if (UNLIKELY(Size == 0))
+ return;
+
+ // This happens under 2 cases.
+ // 1. just allocated a new `BatchGroup`.
+ // 2. Only 1 block is pushed when the freelist is empty.
+ if (BG->Batches.empty()) {
+ // Construct the `TransferBatch` on the last element.
+ TransferBatchT *TB = reinterpret_cast<TransferBatchT *>(
+ decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
+ TB->clear();
+ // As mentioned above, addresses of `TransferBatch` and `BatchGroup` are
+ // recorded in the TransferBatch.
+ TB->add(Array[Size - 1]);
+ TB->add(
+ compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(BG)));
+ --Size;
+ DCHECK_EQ(BG->PushedBlocks, 1U);
+ // `TB` is also the block of BatchClassId.
+ BG->PushedBlocks += 1;
+ BG->Batches.push_front(TB);
+ }
+
+ TransferBatchT *CurBatch = BG->Batches.front();
+ DCHECK_NE(CurBatch, nullptr);
+
+ for (u32 I = 0; I < Size;) {
+ u16 UnusedSlots =
+ static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
+ if (UnusedSlots == 0) {
+ CurBatch = reinterpret_cast<TransferBatchT *>(
+ decompactPtr(SizeClassMap::BatchClassId, Array[I]));
+ CurBatch->clear();
+ // Self-contained
+ CurBatch->add(Array[I]);
+ ++I;
+ // TODO(chiahungduan): Avoid the use of push_back() in `Batches` of
+ // BatchClassId.
+ BG->Batches.push_front(CurBatch);
+ UnusedSlots = static_cast<u16>(BG->MaxCachedPerBatch - 1);
+ }
+ // `UnusedSlots` is u16 so the result will be also fit in u16.
+ const u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
+ CurBatch->appendFromArray(&Array[I], AppendSize);
+ I += AppendSize;
+ }
+
+ BG->PushedBlocks += Size;
+ }
+
+ // Push the blocks to their batch group. The layout will be like,
+ //
+ // FreeListInfo.BlockList - > BG -> BG -> BG
+ // | | |
+ // v v v
+ // TB TB TB
+ // |
+ // v
+ // TB
+ //
+ // Each BlockGroup(BG) will associate with unique group id and the free blocks
+ // are managed by a list of TransferBatch(TB). To reduce the time of inserting
+ // blocks, BGs are sorted and the input `Array` are supposed to be sorted so
+ // that we can get better performance of maintaining sorted property.
+ // Use `SameGroup=true` to indicate that all blocks in the array are from the
+ // same group then we will skip checking the group id of each block.
+ void pushBlocksImpl(CacheT *C, uptr ClassId, RegionInfo *Region,
+ CompactPtrT *Array, u32 Size, bool SameGroup = false)
+ REQUIRES(Region->FLLock) {
+ DCHECK_NE(ClassId, SizeClassMap::BatchClassId);
+ DCHECK_GT(Size, 0U);
+
+ auto CreateGroup = [&](uptr CompactPtrGroupBase) {
+ BatchGroupT *BG =
+ reinterpret_cast<BatchGroupT *>(C->getBatchClassBlock());
+ BG->Batches.clear();
+ TransferBatchT *TB =
+ reinterpret_cast<TransferBatchT *>(C->getBatchClassBlock());
+ TB->clear();
+
+ BG->CompactPtrGroupBase = CompactPtrGroupBase;
+ BG->Batches.push_front(TB);
+ BG->PushedBlocks = 0;
+ BG->BytesInBGAtLastCheckpoint = 0;
+ BG->MaxCachedPerBatch = TransferBatchT::MaxNumCached;
+
+ return BG;
+ };
+
+ auto InsertBlocks = [&](BatchGroupT *BG, CompactPtrT *Array, u32 Size) {
+ SinglyLinkedList<TransferBatchT> &Batches = BG->Batches;
+ TransferBatchT *CurBatch = Batches.front();
+ DCHECK_NE(CurBatch, nullptr);
+
+ for (u32 I = 0; I < Size;) {
+ DCHECK_GE(BG->MaxCachedPerBatch, CurBatch->getCount());
+ u16 UnusedSlots =
+ static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
+ if (UnusedSlots == 0) {
+ CurBatch =
+ reinterpret_cast<TransferBatchT *>(C->getBatchClassBlock());
+ CurBatch->clear();
+ Batches.push_front(CurBatch);
+ UnusedSlots = BG->MaxCachedPerBatch;
+ }
+ // `UnusedSlots` is u16 so the result will be also fit in u16.
+ u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
+ CurBatch->appendFromArray(&Array[I], AppendSize);
+ I += AppendSize;
+ }
+
+ BG->PushedBlocks += Size;
+ };
+
+ Region->FreeListInfo.PushedBlocks += Size;
+ BatchGroupT *Cur = Region->FreeListInfo.BlockList.front();
+
+ // In the following, `Cur` always points to the BatchGroup for blocks that
+ // will be pushed next. `Prev` is the element right before `Cur`.
+ BatchGroupT *Prev = nullptr;
+
+ while (Cur != nullptr &&
+ compactPtrGroup(Array[0]) > Cur->CompactPtrGroupBase) {
+ Prev = Cur;
+ Cur = Cur->Next;
+ }
+
+ if (Cur == nullptr ||
+ compactPtrGroup(Array[0]) != Cur->CompactPtrGroupBase) {
+ Cur = CreateGroup(compactPtrGroup(Array[0]));
+ if (Prev == nullptr)
+ Region->FreeListInfo.BlockList.push_front(Cur);
+ else
+ Region->FreeListInfo.BlockList.insert(Prev, Cur);
+ }
+
+ // All the blocks are from the same group, just push without checking group
+ // id.
+ if (SameGroup) {
+ for (u32 I = 0; I < Size; ++I)
+ DCHECK_EQ(compactPtrGroup(Array[I]), Cur->CompactPtrGroupBase);
+
+ InsertBlocks(Cur, Array, Size);
+ return;
+ }
+
+ // The blocks are sorted by group id. Determine the segment of group and
+ // push them to their group together.
+ u32 Count = 1;
+ for (u32 I = 1; I < Size; ++I) {
+ if (compactPtrGroup(Array[I - 1]) != compactPtrGroup(Array[I])) {
+ DCHECK_EQ(compactPtrGroup(Array[I - 1]), Cur->CompactPtrGroupBase);
+ InsertBlocks(Cur, Array + I - Count, Count);
+
+ while (Cur != nullptr &&
+ compactPtrGroup(Array[I]) > Cur->CompactPtrGroupBase) {
+ Prev = Cur;
+ Cur = Cur->Next;
+ }
+
+ if (Cur == nullptr ||
+ compactPtrGroup(Array[I]) != Cur->CompactPtrGroupBase) {
+ Cur = CreateGroup(compactPtrGroup(Array[I]));
+ DCHECK_NE(Prev, nullptr);
+ Region->FreeListInfo.BlockList.insert(Prev, Cur);
+ }
+
+ Count = 1;
+ } else {
+ ++Count;
+ }
+ }
+
+ InsertBlocks(Cur, Array + Size - Count, Count);
+ }
+
+ u16 popBlocksWithCV(CacheT *C, uptr ClassId, RegionInfo *Region,
+ CompactPtrT *ToArray, const u16 MaxBlockCount,
+ bool &ReportRegionExhausted) {
+ u16 PopCount = 0;
+
+ while (true) {
+ // We only expect one thread doing the freelist refillment and other
+ // threads will be waiting for either the completion of the
+ // `populateFreeListAndPopBatch()` or `pushBlocks()` called by other
+ // threads.
+ bool PopulateFreeList = false;
+ {
+ ScopedLock FL(Region->FLLock);
+ if (!Region->isPopulatingFreeList) {
+ Region->isPopulatingFreeList = true;
+ PopulateFreeList = true;
+ }
+ }
+
+ if (PopulateFreeList) {
+ ScopedLock ML(Region->MMLock);
+
+ const bool RegionIsExhausted = Region->Exhausted;
+ if (!RegionIsExhausted) {
+ PopCount = populateFreeListAndPopBlocks(C, ClassId, Region, ToArray,
+ MaxBlockCount);
+ }
+ ReportRegionExhausted = !RegionIsExhausted && Region->Exhausted;
+
+ {
+ // Before reacquiring the `FLLock`, the freelist may be used up again
+ // and some threads are waiting for the freelist refillment by the
+ // current thread. It's important to set
+ // `Region->isPopulatingFreeList` to false so the threads about to
+ // sleep will notice the status change.
+ ScopedLock FL(Region->FLLock);
+ Region->isPopulatingFreeList = false;
+ Region->FLLockCV.notifyAll(Region->FLLock);
+ }
+
+ break;
+ }
+
+ // At here, there are two preconditions to be met before waiting,
+ // 1. The freelist is empty.
+ // 2. Region->isPopulatingFreeList == true, i.e, someone is still doing
+ // `populateFreeListAndPopBatch()`.
+ //
+ // Note that it has the chance that freelist is empty but
+ // Region->isPopulatingFreeList == false because all the new populated
+ // blocks were used up right after the refillment. Therefore, we have to
+ // check if someone is still populating the freelist.
+ ScopedLock FL(Region->FLLock);
+ PopCount = popBlocksImpl(C, ClassId, Region, ToArray, MaxBlockCount);
+ if (PopCount != 0U)
+ break;
+
+ if (!Region->isPopulatingFreeList)
+ continue;
+
+ // Now the freelist is empty and someone's doing the refillment. We will
+ // wait until anyone refills the freelist or someone finishes doing
+ // `populateFreeListAndPopBatch()`. The refillment can be done by
+ // `populateFreeListAndPopBatch()`, `pushBlocks()`,
+ // `pushBatchClassBlocks()` and `mergeGroupsToReleaseBack()`.
+ Region->FLLockCV.wait(Region->FLLock);
+
+ PopCount = popBlocksImpl(C, ClassId, Region, ToArray, MaxBlockCount);
+ if (PopCount != 0U)
+ break;
+ }
+
+ return PopCount;
+ }
+
+ u16 popBlocksImpl(CacheT *C, uptr ClassId, RegionInfo *Region,
+ CompactPtrT *ToArray, const u16 MaxBlockCount)
+ REQUIRES(Region->FLLock) {
+ if (Region->FreeListInfo.BlockList.empty())
+ return 0U;
+
+ SinglyLinkedList<TransferBatchT> &Batches =
+ Region->FreeListInfo.BlockList.front()->Batches;
+
+ if (Batches.empty()) {
+ DCHECK_EQ(ClassId, SizeClassMap::BatchClassId);
+ BatchGroupT *BG = Region->FreeListInfo.BlockList.front();
+ Region->FreeListInfo.BlockList.pop_front();
+
+ // Block used by `BatchGroup` is from BatchClassId. Turn the block into
+ // `TransferBatch` with single block.
+ TransferBatchT *TB = reinterpret_cast<TransferBatchT *>(BG);
+ ToArray[0] =
+ compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(TB));
+ Region->FreeListInfo.PoppedBlocks += 1;
+ return 1U;
+ }
+
+ // So far, instead of always filling blocks to `MaxBlockCount`, we only
+ // examine single `TransferBatch` to minimize the time spent in the primary
+ // allocator. Besides, the sizes of `TransferBatch` and
+ // `CacheT::getMaxCached()` may also impact the time spent on accessing the
+ // primary allocator.
+ // TODO(chiahungduan): Evaluate if we want to always prepare `MaxBlockCount`
+ // blocks and/or adjust the size of `TransferBatch` according to
+ // `CacheT::getMaxCached()`.
+ TransferBatchT *B = Batches.front();
+ DCHECK_NE(B, nullptr);
+ DCHECK_GT(B->getCount(), 0U);
+
+ // BachClassId should always take all blocks in the TransferBatch. Read the
+ // comment in `pushBatchClassBlocks()` for more details.
+ const u16 PopCount = ClassId == SizeClassMap::BatchClassId
+ ? B->getCount()
+ : Min(MaxBlockCount, B->getCount());
+ B->moveNToArray(ToArray, PopCount);
+
+ // TODO(chiahungduan): The deallocation of unused BatchClassId blocks can be
+ // done without holding `FLLock`.
+ if (B->empty()) {
+ Batches.pop_front();
+ // `TransferBatch` of BatchClassId is self-contained, no need to
+ // deallocate. Read the comment in `pushBatchClassBlocks()` for more
+ // details.
+ if (ClassId != SizeClassMap::BatchClassId)
+ C->deallocate(SizeClassMap::BatchClassId, B);
+
+ if (Batches.empty()) {
+ BatchGroupT *BG = Region->FreeListInfo.BlockList.front();
+ Region->FreeListInfo.BlockList.pop_front();
+
+ // We don't keep BatchGroup with zero blocks to avoid empty-checking
+ // while allocating. Note that block used for constructing BatchGroup is
+ // recorded as free blocks in the last element of BatchGroup::Batches.
+ // Which means, once we pop the last TransferBatch, the block is
+ // implicitly deallocated.
+ if (ClassId != SizeClassMap::BatchClassId)
+ C->deallocate(SizeClassMap::BatchClassId, BG);
+ }
+ }
+
+ Region->FreeListInfo.PoppedBlocks += PopCount;
+
+ return PopCount;
+ }
+
+ NOINLINE u16 populateFreeListAndPopBlocks(CacheT *C, uptr ClassId,
+ RegionInfo *Region,
+ CompactPtrT *ToArray,
+ const u16 MaxBlockCount)
+ REQUIRES(Region->MMLock) EXCLUDES(Region->FLLock) {
+ if (!Config::getEnableContiguousRegions() &&
+ !Region->MemMapInfo.MemMap.isAllocated()) {
+ ReservedMemoryT ReservedMemory;
+ if (UNLIKELY(!ReservedMemory.create(/*Addr=*/0U, RegionSize,
+ "scudo:primary_reserve",
+ MAP_ALLOWNOMEM))) {
+ Printf("Can't reserve pages for size class %zu.\n",
+ getSizeByClassId(ClassId));
+ return 0U;
+ }
+ initRegion(Region, ClassId,
+ ReservedMemory.dispatch(ReservedMemory.getBase(),
+ ReservedMemory.getCapacity()),
+ /*EnableRandomOffset=*/false);
+ }
+
+ DCHECK(Region->MemMapInfo.MemMap.isAllocated());
+ const uptr Size = getSizeByClassId(ClassId);
+ const u16 MaxCount = CacheT::getMaxCached(Size);
+ const uptr RegionBeg = Region->RegionBeg;
+ const uptr MappedUser = Region->MemMapInfo.MappedUser;
+ const uptr TotalUserBytes =
+ Region->MemMapInfo.AllocatedUser + MaxCount * Size;
+ // Map more space for blocks, if necessary.
+ if (TotalUserBytes > MappedUser) {
+ // Do the mmap for the user memory.
+ const uptr MapSize =
+ roundUp(TotalUserBytes - MappedUser, MapSizeIncrement);
+ const uptr RegionBase = RegionBeg - getRegionBaseByClassId(ClassId);
+ if (UNLIKELY(RegionBase + MappedUser + MapSize > RegionSize)) {
+ Region->Exhausted = true;
+ return 0U;
+ }
+
+ if (UNLIKELY(!Region->MemMapInfo.MemMap.remap(
+ RegionBeg + MappedUser, MapSize, "scudo:primary",
+ MAP_ALLOWNOMEM | MAP_RESIZABLE |
+ (useMemoryTagging<Config>(Options.load()) ? MAP_MEMTAG
+ : 0)))) {
+ return 0U;
+ }
+ Region->MemMapInfo.MappedUser += MapSize;
+ C->getStats().add(StatMapped, MapSize);
+ }
+
+ const u32 NumberOfBlocks =
+ Min(MaxNumBatches * MaxCount,
+ static_cast<u32>((Region->MemMapInfo.MappedUser -
+ Region->MemMapInfo.AllocatedUser) /
+ Size));
+ DCHECK_GT(NumberOfBlocks, 0);
+
+ constexpr u32 ShuffleArraySize =
+ MaxNumBatches * TransferBatchT::MaxNumCached;
+ CompactPtrT ShuffleArray[ShuffleArraySize];
+ DCHECK_LE(NumberOfBlocks, ShuffleArraySize);
+
+ const uptr CompactPtrBase = getCompactPtrBaseByClassId(ClassId);
+ uptr P = RegionBeg + Region->MemMapInfo.AllocatedUser;
+ for (u32 I = 0; I < NumberOfBlocks; I++, P += Size)
+ ShuffleArray[I] = compactPtrInternal(CompactPtrBase, P);
+
+ ScopedLock L(Region->FLLock);
+
+ if (ClassId != SizeClassMap::BatchClassId) {
+ u32 N = 1;
+ uptr CurGroup = compactPtrGroup(ShuffleArray[0]);
+ for (u32 I = 1; I < NumberOfBlocks; I++) {
+ if (UNLIKELY(compactPtrGroup(ShuffleArray[I]) != CurGroup)) {
+ shuffle(ShuffleArray + I - N, N, &Region->RandState);
+ pushBlocksImpl(C, ClassId, Region, ShuffleArray + I - N, N,
+ /*SameGroup=*/true);
+ N = 1;
+ CurGroup = compactPtrGroup(ShuffleArray[I]);
+ } else {
+ ++N;
+ }
+ }
+
+ shuffle(ShuffleArray + NumberOfBlocks - N, N, &Region->RandState);
+ pushBlocksImpl(C, ClassId, Region, &ShuffleArray[NumberOfBlocks - N], N,
+ /*SameGroup=*/true);
+ } else {
+ pushBatchClassBlocks(Region, ShuffleArray, NumberOfBlocks);
+ }
+
+ const u16 PopCount =
+ popBlocksImpl(C, ClassId, Region, ToArray, MaxBlockCount);
+ DCHECK_NE(PopCount, 0U);
+
+ // Note that `PushedBlocks` and `PoppedBlocks` are supposed to only record
+ // the requests from `PushBlocks` and `PopBatch` which are external
+ // interfaces. `populateFreeListAndPopBatch` is the internal interface so we
+ // should set the values back to avoid incorrectly setting the stats.
+ Region->FreeListInfo.PushedBlocks -= NumberOfBlocks;
+
+ const uptr AllocatedUser = Size * NumberOfBlocks;
+ C->getStats().add(StatFree, AllocatedUser);
+ Region->MemMapInfo.AllocatedUser += AllocatedUser;
+
+ return PopCount;
+ }
+
+ void getStats(ScopedString *Str, uptr ClassId, RegionInfo *Region)
+ REQUIRES(Region->MMLock, Region->FLLock) {
+ if (Region->MemMapInfo.MappedUser == 0)
+ return;
+ const uptr BlockSize = getSizeByClassId(ClassId);
+ const uptr InUseBlocks =
+ Region->FreeListInfo.PoppedBlocks - Region->FreeListInfo.PushedBlocks;
+ const uptr BytesInFreeList =
+ Region->MemMapInfo.AllocatedUser - InUseBlocks * BlockSize;
+ uptr RegionPushedBytesDelta = 0;
+ if (BytesInFreeList >=
+ Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint) {
+ RegionPushedBytesDelta =
+ BytesInFreeList - Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
+ }
+ const uptr TotalChunks = Region->MemMapInfo.AllocatedUser / BlockSize;
+ Str->append(
+ "%s %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu "
+ "inuse: %6zu total: %6zu releases: %6zu last "
+ "released: %6zuK latest pushed bytes: %6zuK region: 0x%zx (0x%zx)\n",
+ Region->Exhausted ? "E" : " ", ClassId, getSizeByClassId(ClassId),
+ Region->MemMapInfo.MappedUser >> 10, Region->FreeListInfo.PoppedBlocks,
+ Region->FreeListInfo.PushedBlocks, InUseBlocks, TotalChunks,
+ Region->ReleaseInfo.RangesReleased,
+ Region->ReleaseInfo.LastReleasedBytes >> 10,
+ RegionPushedBytesDelta >> 10, Region->RegionBeg,
+ getRegionBaseByClassId(ClassId));
+ }
+
+ void getRegionFragmentationInfo(RegionInfo *Region, uptr ClassId,
+ ScopedString *Str) REQUIRES(Region->MMLock) {
+ const uptr BlockSize = getSizeByClassId(ClassId);
+ const uptr AllocatedUserEnd =
+ Region->MemMapInfo.AllocatedUser + Region->RegionBeg;
+
+ SinglyLinkedList<BatchGroupT> GroupsToRelease;
+ {
+ ScopedLock L(Region->FLLock);
+ GroupsToRelease = Region->FreeListInfo.BlockList;
+ Region->FreeListInfo.BlockList.clear();
+ }
+
+ FragmentationRecorder Recorder;
+ if (!GroupsToRelease.empty()) {
+ PageReleaseContext Context =
+ markFreeBlocks(Region, BlockSize, AllocatedUserEnd,
+ getCompactPtrBaseByClassId(ClassId), GroupsToRelease);
+ auto SkipRegion = [](UNUSED uptr RegionIndex) { return false; };
+ releaseFreeMemoryToOS(Context, Recorder, SkipRegion);
+
+ mergeGroupsToReleaseBack(Region, GroupsToRelease);
+ }
+
+ ScopedLock L(Region->FLLock);
+ const uptr PageSize = getPageSizeCached();
+ const uptr TotalBlocks = Region->MemMapInfo.AllocatedUser / BlockSize;
+ const uptr InUseBlocks =
+ Region->FreeListInfo.PoppedBlocks - Region->FreeListInfo.PushedBlocks;
+ const uptr AllocatedPagesCount =
+ roundUp(Region->MemMapInfo.AllocatedUser, PageSize) / PageSize;
+ DCHECK_GE(AllocatedPagesCount, Recorder.getReleasedPagesCount());
+ const uptr InUsePages =
+ AllocatedPagesCount - Recorder.getReleasedPagesCount();
+ const uptr InUseBytes = InUsePages * PageSize;
+
+ uptr Integral;
+ uptr Fractional;
+ computePercentage(BlockSize * InUseBlocks, InUsePages * PageSize, &Integral,
+ &Fractional);
+ Str->append(" %02zu (%6zu): inuse/total blocks: %6zu/%6zu inuse/total "
+ "pages: %6zu/%6zu inuse bytes: %6zuK util: %3zu.%02zu%%\n",
+ ClassId, BlockSize, InUseBlocks, TotalBlocks, InUsePages,
+ AllocatedPagesCount, InUseBytes >> 10, Integral, Fractional);
+ }
+
+ NOINLINE uptr releaseToOSMaybe(RegionInfo *Region, uptr ClassId,
+ ReleaseToOS ReleaseType = ReleaseToOS::Normal)
+ REQUIRES(Region->MMLock) EXCLUDES(Region->FLLock) {
+ const uptr BlockSize = getSizeByClassId(ClassId);
+ uptr BytesInFreeList;
+ const uptr AllocatedUserEnd =
+ Region->MemMapInfo.AllocatedUser + Region->RegionBeg;
+ SinglyLinkedList<BatchGroupT> GroupsToRelease;
+
+ {
+ ScopedLock L(Region->FLLock);
+
+ BytesInFreeList = Region->MemMapInfo.AllocatedUser -
+ (Region->FreeListInfo.PoppedBlocks -
+ Region->FreeListInfo.PushedBlocks) *
+ BlockSize;
+ if (UNLIKELY(BytesInFreeList == 0))
+ return false;
+
+ // ==================================================================== //
+ // 1. Check if we have enough free blocks and if it's worth doing a page
+ // release.
+ // ==================================================================== //
+ if (ReleaseType != ReleaseToOS::ForceAll &&
+ !hasChanceToReleasePages(Region, BlockSize, BytesInFreeList,
+ ReleaseType)) {
+ return 0;
+ }
+
+ // ==================================================================== //
+ // 2. Determine which groups can release the pages. Use a heuristic to
+ // gather groups that are candidates for doing a release.
+ // ==================================================================== //
+ if (ReleaseType == ReleaseToOS::ForceAll) {
+ GroupsToRelease = Region->FreeListInfo.BlockList;
+ Region->FreeListInfo.BlockList.clear();
+ } else {
+ GroupsToRelease =
+ collectGroupsToRelease(Region, BlockSize, AllocatedUserEnd,
+ getCompactPtrBaseByClassId(ClassId));
+ }
+ if (GroupsToRelease.empty())
+ return 0;
+ }
+
+ // Note that we have extracted the `GroupsToRelease` from region freelist.
+ // It's safe to let pushBlocks()/popBlocks() access the remaining region
+ // freelist. In the steps 3 and 4, we will temporarily release the FLLock
+ // and lock it again before step 5.
+
+ // ==================================================================== //
+ // 3. Mark the free blocks in `GroupsToRelease` in the `PageReleaseContext`.
+ // Then we can tell which pages are in-use by querying
+ // `PageReleaseContext`.
+ // ==================================================================== //
+ PageReleaseContext Context =
+ markFreeBlocks(Region, BlockSize, AllocatedUserEnd,
+ getCompactPtrBaseByClassId(ClassId), GroupsToRelease);
+ if (UNLIKELY(!Context.hasBlockMarked())) {
+ mergeGroupsToReleaseBack(Region, GroupsToRelease);
+ return 0;
+ }
+
+ // ==================================================================== //
+ // 4. Release the unused physical pages back to the OS.
+ // ==================================================================== //
+ RegionReleaseRecorder<MemMapT> Recorder(&Region->MemMapInfo.MemMap,
+ Region->RegionBeg,
+ Context.getReleaseOffset());
+ auto SkipRegion = [](UNUSED uptr RegionIndex) { return false; };
+ releaseFreeMemoryToOS(Context, Recorder, SkipRegion);
+ if (Recorder.getReleasedRangesCount() > 0) {
+ Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
+ Region->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount();
+ Region->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes();
+ }
+ Region->ReleaseInfo.LastReleaseAtNs = getMonotonicTimeFast();
+
+ // ====================================================================== //
+ // 5. Merge the `GroupsToRelease` back to the freelist.
+ // ====================================================================== //
+ mergeGroupsToReleaseBack(Region, GroupsToRelease);
+
+ return Recorder.getReleasedBytes();
+ }
+
+ bool hasChanceToReleasePages(RegionInfo *Region, uptr BlockSize,
+ uptr BytesInFreeList, ReleaseToOS ReleaseType)
+ REQUIRES(Region->MMLock, Region->FLLock) {
+ DCHECK_GE(Region->FreeListInfo.PoppedBlocks,
+ Region->FreeListInfo.PushedBlocks);
+ const uptr PageSize = getPageSizeCached();
+
+ // Always update `BytesInFreeListAtLastCheckpoint` with the smallest value
+ // so that we won't underestimate the releasable pages. For example, the
+ // following is the region usage,
+ //
+ // BytesInFreeListAtLastCheckpoint AllocatedUser
+ // v v
+ // |--------------------------------------->
+ // ^ ^
+ // BytesInFreeList ReleaseThreshold
+ //
+ // In general, if we have collected enough bytes and the amount of free
+ // bytes meets the ReleaseThreshold, we will try to do page release. If we
+ // don't update `BytesInFreeListAtLastCheckpoint` when the current
+ // `BytesInFreeList` is smaller, we may take longer time to wait for enough
+ // freed blocks because we miss the bytes between
+ // (BytesInFreeListAtLastCheckpoint - BytesInFreeList).
+ if (BytesInFreeList <=
+ Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint) {
+ Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
+ }
+
+ const uptr RegionPushedBytesDelta =
+ BytesInFreeList - Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
+ if (RegionPushedBytesDelta < PageSize)
+ return false;
+
+ // Releasing smaller blocks is expensive, so we want to make sure that a
+ // significant amount of bytes are free, and that there has been a good
+ // amount of batches pushed to the freelist before attempting to release.
+ if (isSmallBlock(BlockSize) && ReleaseType == ReleaseToOS::Normal)
+ if (RegionPushedBytesDelta < Region->TryReleaseThreshold)
+ return false;
+
+ if (ReleaseType == ReleaseToOS::Normal) {
+ const s32 IntervalMs = atomic_load_relaxed(&ReleaseToOsIntervalMs);
+ if (IntervalMs < 0)
+ return false;
+
+ // The constant 8 here is selected from profiling some apps and the number
+ // of unreleased pages in the large size classes is around 16 pages or
+ // more. Choose half of it as a heuristic and which also avoids page
+ // release every time for every pushBlocks() attempt by large blocks.
+ const bool ByPassReleaseInterval =
+ isLargeBlock(BlockSize) && RegionPushedBytesDelta > 8 * PageSize;
+ if (!ByPassReleaseInterval) {
+ if (Region->ReleaseInfo.LastReleaseAtNs +
+ static_cast<u64>(IntervalMs) * 1000000 >
+ getMonotonicTimeFast()) {
+ // Memory was returned recently.
+ return false;
+ }
+ }
+ } // if (ReleaseType == ReleaseToOS::Normal)
+
+ return true;
+ }
+
+ SinglyLinkedList<BatchGroupT>
+ collectGroupsToRelease(RegionInfo *Region, const uptr BlockSize,
+ const uptr AllocatedUserEnd, const uptr CompactPtrBase)
+ REQUIRES(Region->MMLock, Region->FLLock) {
+ const uptr GroupSize = (1UL << GroupSizeLog);
+ const uptr PageSize = getPageSizeCached();
+ SinglyLinkedList<BatchGroupT> GroupsToRelease;
+
+ // We are examining each group and will take the minimum distance to the
+ // release threshold as the next Region::TryReleaseThreshold(). Note that if
+ // the size of free blocks has reached the release threshold, the distance
+ // to the next release will be PageSize * SmallerBlockReleasePageDelta. See
+ // the comment on `SmallerBlockReleasePageDelta` for more details.
+ uptr MinDistToThreshold = GroupSize;
+
+ for (BatchGroupT *BG = Region->FreeListInfo.BlockList.front(),
+ *Prev = nullptr;
+ BG != nullptr;) {
+ // Group boundary is always GroupSize-aligned from CompactPtr base. The
+ // layout of memory groups is like,
+ //
+ // (CompactPtrBase)
+ // #1 CompactPtrGroupBase #2 CompactPtrGroupBase ...
+ // | | |
+ // v v v
+ // +-----------------------+-----------------------+
+ // \ / \ /
+ // --- GroupSize --- --- GroupSize ---
+ //
+ // After decompacting the CompactPtrGroupBase, we expect the alignment
+ // property is held as well.
+ const uptr BatchGroupBase =
+ decompactGroupBase(CompactPtrBase, BG->CompactPtrGroupBase);
+ DCHECK_LE(Region->RegionBeg, BatchGroupBase);
+ DCHECK_GE(AllocatedUserEnd, BatchGroupBase);
+ DCHECK_EQ((Region->RegionBeg - BatchGroupBase) % GroupSize, 0U);
+ // TransferBatches are pushed in front of BG.Batches. The first one may
+ // not have all caches used.
+ const uptr NumBlocks = (BG->Batches.size() - 1) * BG->MaxCachedPerBatch +
+ BG->Batches.front()->getCount();
+ const uptr BytesInBG = NumBlocks * BlockSize;
+
+ if (BytesInBG <= BG->BytesInBGAtLastCheckpoint) {
+ BG->BytesInBGAtLastCheckpoint = BytesInBG;
+ Prev = BG;
+ BG = BG->Next;
+ continue;
+ }
+
+ const uptr PushedBytesDelta = BytesInBG - BG->BytesInBGAtLastCheckpoint;
+
+ // Given the randomness property, we try to release the pages only if the
+ // bytes used by free blocks exceed certain proportion of group size. Note
+ // that this heuristic only applies when all the spaces in a BatchGroup
+ // are allocated.
+ if (isSmallBlock(BlockSize)) {
+ const uptr BatchGroupEnd = BatchGroupBase + GroupSize;
+ const uptr AllocatedGroupSize = AllocatedUserEnd >= BatchGroupEnd
+ ? GroupSize
+ : AllocatedUserEnd - BatchGroupBase;
+ const uptr ReleaseThreshold =
+ (AllocatedGroupSize * (100 - 1U - BlockSize / 16U)) / 100U;
+ const bool HighDensity = BytesInBG >= ReleaseThreshold;
+ const bool MayHaveReleasedAll = NumBlocks >= (GroupSize / BlockSize);
+ // If all blocks in the group are released, we will do range marking
+ // which is fast. Otherwise, we will wait until we have accumulated
+ // a certain amount of free memory.
+ const bool ReachReleaseDelta =
+ MayHaveReleasedAll
+ ? true
+ : PushedBytesDelta >= PageSize * SmallerBlockReleasePageDelta;
+
+ if (!HighDensity) {
+ DCHECK_LE(BytesInBG, ReleaseThreshold);
+ // The following is the usage of a memroy group,
+ //
+ // BytesInBG ReleaseThreshold
+ // / \ v
+ // +---+---------------------------+-----+
+ // | | | | |
+ // +---+---------------------------+-----+
+ // \ / ^
+ // PushedBytesDelta GroupEnd
+ MinDistToThreshold =
+ Min(MinDistToThreshold,
+ ReleaseThreshold - BytesInBG + PushedBytesDelta);
+ } else {
+ // If it reaches high density at this round, the next time we will try
+ // to release is based on SmallerBlockReleasePageDelta
+ MinDistToThreshold =
+ Min(MinDistToThreshold, PageSize * SmallerBlockReleasePageDelta);
+ }
+
+ if (!HighDensity || !ReachReleaseDelta) {
+ Prev = BG;
+ BG = BG->Next;
+ continue;
+ }
+ }
+
+ // If `BG` is the first BatchGroupT in the list, we only need to advance
+ // `BG` and call FreeListInfo.BlockList::pop_front(). No update is needed
+ // for `Prev`.
+ //
+ // (BG) (BG->Next)
+ // Prev Cur BG
+ // | | |
+ // v v v
+ // nil +--+ +--+
+ // |X | -> | | -> ...
+ // +--+ +--+
+ //
+ // Otherwise, `Prev` will be used to extract the `Cur` from the
+ // `FreeListInfo.BlockList`.
+ //
+ // (BG) (BG->Next)
+ // Prev Cur BG
+ // | | |
+ // v v v
+ // +--+ +--+ +--+
+ // | | -> |X | -> | | -> ...
+ // +--+ +--+ +--+
+ //
+ // After FreeListInfo.BlockList::extract(),
+ //
+ // Prev Cur BG
+ // | | |
+ // v v v
+ // +--+ +--+ +--+
+ // | |-+ |X | +->| | -> ...
+ // +--+ | +--+ | +--+
+ // +--------+
+ //
+ // Note that we need to advance before pushing this BatchGroup to
+ // GroupsToRelease because it's a destructive operation.
+
+ BatchGroupT *Cur = BG;
+ BG = BG->Next;
+
+ // Ideally, we may want to update this only after successful release.
+ // However, for smaller blocks, each block marking is a costly operation.
+ // Therefore, we update it earlier.
+ // TODO: Consider updating this after releasing pages if `ReleaseRecorder`
+ // can tell the released bytes in each group.
+ Cur->BytesInBGAtLastCheckpoint = BytesInBG;
+
+ if (Prev != nullptr)
+ Region->FreeListInfo.BlockList.extract(Prev, Cur);
+ else
+ Region->FreeListInfo.BlockList.pop_front();
+ GroupsToRelease.push_back(Cur);
+ }
+
+ // Only small blocks have the adaptive `TryReleaseThreshold`.
+ if (isSmallBlock(BlockSize)) {
+ // If the MinDistToThreshold is not updated, that means each memory group
+ // may have only pushed less than a page size. In that case, just set it
+ // back to normal.
+ if (MinDistToThreshold == GroupSize)
+ MinDistToThreshold = PageSize * SmallerBlockReleasePageDelta;
+ Region->TryReleaseThreshold = MinDistToThreshold;
+ }
+
+ return GroupsToRelease;
+ }
+
+ PageReleaseContext
+ markFreeBlocks(RegionInfo *Region, const uptr BlockSize,
+ const uptr AllocatedUserEnd, const uptr CompactPtrBase,
+ SinglyLinkedList<BatchGroupT> &GroupsToRelease)
+ REQUIRES(Region->MMLock) EXCLUDES(Region->FLLock) {
+ const uptr GroupSize = (1UL << GroupSizeLog);
+ auto DecompactPtr = [CompactPtrBase](CompactPtrT CompactPtr) {
+ return decompactPtrInternal(CompactPtrBase, CompactPtr);
+ };
+
+ const uptr ReleaseBase = decompactGroupBase(
+ CompactPtrBase, GroupsToRelease.front()->CompactPtrGroupBase);
+ const uptr LastGroupEnd =
+ Min(decompactGroupBase(CompactPtrBase,
+ GroupsToRelease.back()->CompactPtrGroupBase) +
+ GroupSize,
+ AllocatedUserEnd);
+ // The last block may straddle the group boundary. Rounding up to BlockSize
+ // to get the exact range.
+ const uptr ReleaseEnd =
+ roundUpSlow(LastGroupEnd - Region->RegionBeg, BlockSize) +
+ Region->RegionBeg;
+ const uptr ReleaseRangeSize = ReleaseEnd - ReleaseBase;
+ const uptr ReleaseOffset = ReleaseBase - Region->RegionBeg;
+
+ PageReleaseContext Context(BlockSize, /*NumberOfRegions=*/1U,
+ ReleaseRangeSize, ReleaseOffset);
+ // We may not be able to do the page release in a rare case that we may
+ // fail on PageMap allocation.
+ if (UNLIKELY(!Context.ensurePageMapAllocated()))
+ return Context;
+
+ for (BatchGroupT &BG : GroupsToRelease) {
+ const uptr BatchGroupBase =
+ decompactGroupBase(CompactPtrBase, BG.CompactPtrGroupBase);
+ const uptr BatchGroupEnd = BatchGroupBase + GroupSize;
+ const uptr AllocatedGroupSize = AllocatedUserEnd >= BatchGroupEnd
+ ? GroupSize
+ : AllocatedUserEnd - BatchGroupBase;
+ const uptr BatchGroupUsedEnd = BatchGroupBase + AllocatedGroupSize;
+ const bool MayContainLastBlockInRegion =
+ BatchGroupUsedEnd == AllocatedUserEnd;
+ const bool BlockAlignedWithUsedEnd =
+ (BatchGroupUsedEnd - Region->RegionBeg) % BlockSize == 0;
+
+ uptr MaxContainedBlocks = AllocatedGroupSize / BlockSize;
+ if (!BlockAlignedWithUsedEnd)
+ ++MaxContainedBlocks;
+
+ const uptr NumBlocks = (BG.Batches.size() - 1) * BG.MaxCachedPerBatch +
+ BG.Batches.front()->getCount();
+
+ if (NumBlocks == MaxContainedBlocks) {
+ for (const auto &It : BG.Batches) {
+ if (&It != BG.Batches.front())
+ DCHECK_EQ(It.getCount(), BG.MaxCachedPerBatch);
+ for (u16 I = 0; I < It.getCount(); ++I)
+ DCHECK_EQ(compactPtrGroup(It.get(I)), BG.CompactPtrGroupBase);
+ }
+
+ Context.markRangeAsAllCounted(BatchGroupBase, BatchGroupUsedEnd,
+ Region->RegionBeg, /*RegionIndex=*/0,
+ Region->MemMapInfo.AllocatedUser);
+ } else {
+ DCHECK_LT(NumBlocks, MaxContainedBlocks);
+ // Note that we don't always visit blocks in each BatchGroup so that we
+ // may miss the chance of releasing certain pages that cross
+ // BatchGroups.
+ Context.markFreeBlocksInRegion(
+ BG.Batches, DecompactPtr, Region->RegionBeg, /*RegionIndex=*/0,
+ Region->MemMapInfo.AllocatedUser, MayContainLastBlockInRegion);
+ }
+ }
+
+ DCHECK(Context.hasBlockMarked());
+
+ return Context;
+ }
+
+ void mergeGroupsToReleaseBack(RegionInfo *Region,
+ SinglyLinkedList<BatchGroupT> &GroupsToRelease)
+ REQUIRES(Region->MMLock) EXCLUDES(Region->FLLock) {
+ ScopedLock L(Region->FLLock);
+
+ // After merging two freelists, we may have redundant `BatchGroup`s that
+ // need to be recycled. The number of unused `BatchGroup`s is expected to be
+ // small. Pick a constant which is inferred from real programs.
+ constexpr uptr MaxUnusedSize = 8;
+ CompactPtrT Blocks[MaxUnusedSize];
+ u32 Idx = 0;
+ RegionInfo *BatchClassRegion = getRegionInfo(SizeClassMap::BatchClassId);
+ // We can't call pushBatchClassBlocks() to recycle the unused `BatchGroup`s
+ // when we are manipulating the freelist of `BatchClassRegion`. Instead, we
+ // should just push it back to the freelist when we merge two `BatchGroup`s.
+ // This logic hasn't been implemented because we haven't supported releasing
+ // pages in `BatchClassRegion`.
+ DCHECK_NE(BatchClassRegion, Region);
+
+ // Merge GroupsToRelease back to the Region::FreeListInfo.BlockList. Note
+ // that both `Region->FreeListInfo.BlockList` and `GroupsToRelease` are
+ // sorted.
+ for (BatchGroupT *BG = Region->FreeListInfo.BlockList.front(),
+ *Prev = nullptr;
+ ;) {
+ if (BG == nullptr || GroupsToRelease.empty()) {
+ if (!GroupsToRelease.empty())
+ Region->FreeListInfo.BlockList.append_back(&GroupsToRelease);
+ break;
+ }
+
+ DCHECK(!BG->Batches.empty());
+
+ if (BG->CompactPtrGroupBase <
+ GroupsToRelease.front()->CompactPtrGroupBase) {
+ Prev = BG;
+ BG = BG->Next;
+ continue;
+ }
+
+ BatchGroupT *Cur = GroupsToRelease.front();
+ TransferBatchT *UnusedTransferBatch = nullptr;
+ GroupsToRelease.pop_front();
+
+ if (BG->CompactPtrGroupBase == Cur->CompactPtrGroupBase) {
+ BG->PushedBlocks += Cur->PushedBlocks;
+ // We have updated `BatchGroup::BytesInBGAtLastCheckpoint` while
+ // collecting the `GroupsToRelease`.
+ BG->BytesInBGAtLastCheckpoint = Cur->BytesInBGAtLastCheckpoint;
+ const uptr MaxCachedPerBatch = BG->MaxCachedPerBatch;
+
+ // Note that the first TransferBatches in both `Batches` may not be
+ // full and only the first TransferBatch can have non-full blocks. Thus
+ // we have to merge them before appending one to another.
+ if (Cur->Batches.front()->getCount() == MaxCachedPerBatch) {
+ BG->Batches.append_back(&Cur->Batches);
+ } else {
+ TransferBatchT *NonFullBatch = Cur->Batches.front();
+ Cur->Batches.pop_front();
+ const u16 NonFullBatchCount = NonFullBatch->getCount();
+ // The remaining Batches in `Cur` are full.
+ BG->Batches.append_back(&Cur->Batches);
+
+ if (BG->Batches.front()->getCount() == MaxCachedPerBatch) {
+ // Only 1 non-full TransferBatch, push it to the front.
+ BG->Batches.push_front(NonFullBatch);
+ } else {
+ const u16 NumBlocksToMove = static_cast<u16>(
+ Min(static_cast<u16>(MaxCachedPerBatch -
+ BG->Batches.front()->getCount()),
+ NonFullBatchCount));
+ BG->Batches.front()->appendFromTransferBatch(NonFullBatch,
+ NumBlocksToMove);
+ if (NonFullBatch->isEmpty())
+ UnusedTransferBatch = NonFullBatch;
+ else
+ BG->Batches.push_front(NonFullBatch);
+ }
+ }
+
+ const u32 NeededSlots = UnusedTransferBatch == nullptr ? 1U : 2U;
+ if (UNLIKELY(Idx + NeededSlots > MaxUnusedSize)) {
+ ScopedLock L(BatchClassRegion->FLLock);
+ pushBatchClassBlocks(BatchClassRegion, Blocks, Idx);
+ if (conditionVariableEnabled())
+ BatchClassRegion->FLLockCV.notifyAll(BatchClassRegion->FLLock);
+ Idx = 0;
+ }
+ Blocks[Idx++] =
+ compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(Cur));
+ if (UnusedTransferBatch) {
+ Blocks[Idx++] =
+ compactPtr(SizeClassMap::BatchClassId,
+ reinterpret_cast<uptr>(UnusedTransferBatch));
+ }
+ Prev = BG;
+ BG = BG->Next;
+ continue;
+ }
+
+ // At here, the `BG` is the first BatchGroup with CompactPtrGroupBase
+ // larger than the first element in `GroupsToRelease`. We need to insert
+ // `GroupsToRelease::front()` (which is `Cur` below) before `BG`.
+ //
+ // 1. If `Prev` is nullptr, we simply push `Cur` to the front of
+ // FreeListInfo.BlockList.
+ // 2. Otherwise, use `insert()` which inserts an element next to `Prev`.
+ //
+ // Afterwards, we don't need to advance `BG` because the order between
+ // `BG` and the new `GroupsToRelease::front()` hasn't been checked.
+ if (Prev == nullptr)
+ Region->FreeListInfo.BlockList.push_front(Cur);
+ else
+ Region->FreeListInfo.BlockList.insert(Prev, Cur);
+ DCHECK_EQ(Cur->Next, BG);
+ Prev = Cur;
+ }
+
+ if (Idx != 0) {
+ ScopedLock L(BatchClassRegion->FLLock);
+ pushBatchClassBlocks(BatchClassRegion, Blocks, Idx);
+ if (conditionVariableEnabled())
+ BatchClassRegion->FLLockCV.notifyAll(BatchClassRegion->FLLock);
+ }
+
+ if (SCUDO_DEBUG) {
+ BatchGroupT *Prev = Region->FreeListInfo.BlockList.front();
+ for (BatchGroupT *Cur = Prev->Next; Cur != nullptr;
+ Prev = Cur, Cur = Cur->Next) {
+ CHECK_LT(Prev->CompactPtrGroupBase, Cur->CompactPtrGroupBase);
+ }
+ }
+
+ if (conditionVariableEnabled())
+ Region->FLLockCV.notifyAll(Region->FLLock);
+ }
+
+ // The minimum size of pushed blocks that we will try to release the pages in
+ // that size class.
+ uptr SmallerBlockReleasePageDelta = 0;
+ atomic_s32 ReleaseToOsIntervalMs = {};
+ alignas(SCUDO_CACHE_LINE_SIZE) RegionInfo RegionInfoArray[NumClasses];
+};
+
+} // namespace scudo
+
+#endif // SCUDO_PRIMARY64_H_