diff options
Diffstat (limited to 'contrib/llvm-project/compiler-rt/lib/xray/xray_x86_64.cpp')
-rw-r--r-- | contrib/llvm-project/compiler-rt/lib/xray/xray_x86_64.cpp | 334 |
1 files changed, 334 insertions, 0 deletions
diff --git a/contrib/llvm-project/compiler-rt/lib/xray/xray_x86_64.cpp b/contrib/llvm-project/compiler-rt/lib/xray/xray_x86_64.cpp new file mode 100644 index 000000000000..b9666a40861d --- /dev/null +++ b/contrib/llvm-project/compiler-rt/lib/xray/xray_x86_64.cpp @@ -0,0 +1,334 @@ +#include "cpuid.h" +#include "sanitizer_common/sanitizer_common.h" +#if !SANITIZER_FUCHSIA +#include "sanitizer_common/sanitizer_posix.h" +#endif +#include "xray_defs.h" +#include "xray_interface_internal.h" + +#if SANITIZER_FREEBSD || SANITIZER_NETBSD || SANITIZER_APPLE +#include <sys/types.h> +#include <sys/sysctl.h> +#elif SANITIZER_FUCHSIA +#include <zircon/syscalls.h> +#endif + +#include <atomic> +#include <cstdint> +#include <errno.h> +#include <fcntl.h> +#include <iterator> +#include <limits> +#include <tuple> +#include <unistd.h> + +namespace __xray { + +#if SANITIZER_LINUX +static std::pair<ssize_t, bool> +retryingReadSome(int Fd, char *Begin, char *End) XRAY_NEVER_INSTRUMENT { + auto BytesToRead = std::distance(Begin, End); + ssize_t BytesRead; + ssize_t TotalBytesRead = 0; + while (BytesToRead && (BytesRead = read(Fd, Begin, BytesToRead))) { + if (BytesRead == -1) { + if (errno == EINTR) + continue; + Report("Read error; errno = %d\n", errno); + return std::make_pair(TotalBytesRead, false); + } + + TotalBytesRead += BytesRead; + BytesToRead -= BytesRead; + Begin += BytesRead; + } + return std::make_pair(TotalBytesRead, true); +} + +static bool readValueFromFile(const char *Filename, + long long *Value) XRAY_NEVER_INSTRUMENT { + int Fd = open(Filename, O_RDONLY | O_CLOEXEC); + if (Fd == -1) + return false; + static constexpr size_t BufSize = 256; + char Line[BufSize] = {}; + ssize_t BytesRead; + bool Success; + std::tie(BytesRead, Success) = retryingReadSome(Fd, Line, Line + BufSize); + close(Fd); + if (!Success) + return false; + const char *End = nullptr; + long long Tmp = internal_simple_strtoll(Line, &End, 10); + bool Result = false; + if (Line[0] != '\0' && (*End == '\n' || *End == '\0')) { + *Value = Tmp; + Result = true; + } + return Result; +} + +uint64_t getTSCFrequency() XRAY_NEVER_INSTRUMENT { + long long TSCFrequency = -1; + if (readValueFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz", + &TSCFrequency)) { + TSCFrequency *= 1000; + } else if (readValueFromFile( + "/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq", + &TSCFrequency)) { + TSCFrequency *= 1000; + } else { + Report("Unable to determine CPU frequency for TSC accounting.\n"); + } + return TSCFrequency == -1 ? 0 : static_cast<uint64_t>(TSCFrequency); +} +#elif SANITIZER_FREEBSD || SANITIZER_NETBSD || SANITIZER_APPLE +uint64_t getTSCFrequency() XRAY_NEVER_INSTRUMENT { + long long TSCFrequency = -1; + size_t tscfreqsz = sizeof(TSCFrequency); +#if SANITIZER_APPLE + if (internal_sysctlbyname("machdep.tsc.frequency", &TSCFrequency, + &tscfreqsz, NULL, 0) != -1) { + +#else + if (internal_sysctlbyname("machdep.tsc_freq", &TSCFrequency, &tscfreqsz, + NULL, 0) != -1) { +#endif + return static_cast<uint64_t>(TSCFrequency); + } else { + Report("Unable to determine CPU frequency for TSC accounting.\n"); + } + + return 0; +} +#elif !SANITIZER_FUCHSIA +uint64_t getTSCFrequency() XRAY_NEVER_INSTRUMENT { + /* Not supported */ + return 0; +} +#endif + +static constexpr uint8_t CallOpCode = 0xe8; +static constexpr uint16_t MovR10Seq = 0xba41; +static constexpr uint16_t Jmp9Seq = 0x09eb; +static constexpr uint16_t Jmp20Seq = 0x14eb; +static constexpr uint16_t Jmp15Seq = 0x0feb; +static constexpr uint8_t JmpOpCode = 0xe9; +static constexpr uint8_t RetOpCode = 0xc3; +static constexpr uint16_t NopwSeq = 0x9066; + +static constexpr int64_t MinOffset{std::numeric_limits<int32_t>::min()}; +static constexpr int64_t MaxOffset{std::numeric_limits<int32_t>::max()}; + +bool patchFunctionEntry(const bool Enable, const uint32_t FuncId, + const XRaySledEntry &Sled, + void (*Trampoline)()) XRAY_NEVER_INSTRUMENT { + // Here we do the dance of replacing the following sled: + // + // xray_sled_n: + // jmp +9 + // <9 byte nop> + // + // With the following: + // + // mov r10d, <function id> + // call <relative 32bit offset to entry trampoline> + // + // We need to do this in the following order: + // + // 1. Put the function id first, 2 bytes from the start of the sled (just + // after the 2-byte jmp instruction). + // 2. Put the call opcode 6 bytes from the start of the sled. + // 3. Put the relative offset 7 bytes from the start of the sled. + // 4. Do an atomic write over the jmp instruction for the "mov r10d" + // opcode and first operand. + // + // Prerequisite is to compute the relative offset to the trampoline's address. + const uint64_t Address = Sled.address(); + int64_t TrampolineOffset = reinterpret_cast<int64_t>(Trampoline) - + (static_cast<int64_t>(Address) + 11); + if (TrampolineOffset < MinOffset || TrampolineOffset > MaxOffset) { + Report("XRay Entry trampoline (%p) too far from sled (%p)\n", + reinterpret_cast<void *>(Trampoline), + reinterpret_cast<void *>(Address)); + return false; + } + if (Enable) { + *reinterpret_cast<uint32_t *>(Address + 2) = FuncId; + *reinterpret_cast<uint8_t *>(Address + 6) = CallOpCode; + *reinterpret_cast<uint32_t *>(Address + 7) = TrampolineOffset; + std::atomic_store_explicit( + reinterpret_cast<std::atomic<uint16_t> *>(Address), MovR10Seq, + std::memory_order_release); + } else { + std::atomic_store_explicit( + reinterpret_cast<std::atomic<uint16_t> *>(Address), Jmp9Seq, + std::memory_order_release); + // FIXME: Write out the nops still? + } + return true; +} + +bool patchFunctionExit(const bool Enable, const uint32_t FuncId, + const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT { + // Here we do the dance of replacing the following sled: + // + // xray_sled_n: + // ret + // <10 byte nop> + // + // With the following: + // + // mov r10d, <function id> + // jmp <relative 32bit offset to exit trampoline> + // + // 1. Put the function id first, 2 bytes from the start of the sled (just + // after the 1-byte ret instruction). + // 2. Put the jmp opcode 6 bytes from the start of the sled. + // 3. Put the relative offset 7 bytes from the start of the sled. + // 4. Do an atomic write over the jmp instruction for the "mov r10d" + // opcode and first operand. + // + // Prerequisite is to compute the relative offset fo the + // __xray_FunctionExit function's address. + const uint64_t Address = Sled.address(); + int64_t TrampolineOffset = reinterpret_cast<int64_t>(__xray_FunctionExit) - + (static_cast<int64_t>(Address) + 11); + if (TrampolineOffset < MinOffset || TrampolineOffset > MaxOffset) { + Report("XRay Exit trampoline (%p) too far from sled (%p)\n", + reinterpret_cast<void *>(__xray_FunctionExit), + reinterpret_cast<void *>(Address)); + return false; + } + if (Enable) { + *reinterpret_cast<uint32_t *>(Address + 2) = FuncId; + *reinterpret_cast<uint8_t *>(Address + 6) = JmpOpCode; + *reinterpret_cast<uint32_t *>(Address + 7) = TrampolineOffset; + std::atomic_store_explicit( + reinterpret_cast<std::atomic<uint16_t> *>(Address), MovR10Seq, + std::memory_order_release); + } else { + std::atomic_store_explicit( + reinterpret_cast<std::atomic<uint8_t> *>(Address), RetOpCode, + std::memory_order_release); + // FIXME: Write out the nops still? + } + return true; +} + +bool patchFunctionTailExit(const bool Enable, const uint32_t FuncId, + const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT { + // Here we do the dance of replacing the tail call sled with a similar + // sequence as the entry sled, but calls the tail exit sled instead. + const uint64_t Address = Sled.address(); + int64_t TrampolineOffset = + reinterpret_cast<int64_t>(__xray_FunctionTailExit) - + (static_cast<int64_t>(Address) + 11); + if (TrampolineOffset < MinOffset || TrampolineOffset > MaxOffset) { + Report("XRay Tail Exit trampoline (%p) too far from sled (%p)\n", + reinterpret_cast<void *>(__xray_FunctionTailExit), + reinterpret_cast<void *>(Address)); + return false; + } + if (Enable) { + *reinterpret_cast<uint32_t *>(Address + 2) = FuncId; + *reinterpret_cast<uint8_t *>(Address + 6) = CallOpCode; + *reinterpret_cast<uint32_t *>(Address + 7) = TrampolineOffset; + std::atomic_store_explicit( + reinterpret_cast<std::atomic<uint16_t> *>(Address), MovR10Seq, + std::memory_order_release); + } else { + std::atomic_store_explicit( + reinterpret_cast<std::atomic<uint16_t> *>(Address), Jmp9Seq, + std::memory_order_release); + // FIXME: Write out the nops still? + } + return true; +} + +bool patchCustomEvent(const bool Enable, const uint32_t FuncId, + const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT { + // Here we do the dance of replacing the following sled: + // + // xray_sled_n: + // jmp +15 // 2 bytes + // ... + // + // With the following: + // + // nopw // 2 bytes* + // ... + // + // + // The "unpatch" should just turn the 'nopw' back to a 'jmp +15'. + const uint64_t Address = Sled.address(); + if (Enable) { + std::atomic_store_explicit( + reinterpret_cast<std::atomic<uint16_t> *>(Address), NopwSeq, + std::memory_order_release); + } else { + std::atomic_store_explicit( + reinterpret_cast<std::atomic<uint16_t> *>(Address), Jmp15Seq, + std::memory_order_release); + } + return false; +} + +bool patchTypedEvent(const bool Enable, const uint32_t FuncId, + const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT { + // Here we do the dance of replacing the following sled: + // + // xray_sled_n: + // jmp +20 // 2 byte instruction + // ... + // + // With the following: + // + // nopw // 2 bytes + // ... + // + // + // The "unpatch" should just turn the 'nopw' back to a 'jmp +20'. + // The 20 byte sled stashes three argument registers, calls the trampoline, + // unstashes the registers and returns. If the arguments are already in + // the correct registers, the stashing and unstashing become equivalently + // sized nops. + const uint64_t Address = Sled.address(); + if (Enable) { + std::atomic_store_explicit( + reinterpret_cast<std::atomic<uint16_t> *>(Address), NopwSeq, + std::memory_order_release); + } else { + std::atomic_store_explicit( + reinterpret_cast<std::atomic<uint16_t> *>(Address), Jmp20Seq, + std::memory_order_release); + } + return false; +} + +#if !SANITIZER_FUCHSIA +// We determine whether the CPU we're running on has the correct features we +// need. In x86_64 this will be rdtscp support. +bool probeRequiredCPUFeatures() XRAY_NEVER_INSTRUMENT { + unsigned int EAX, EBX, ECX, EDX; + + // We check whether rdtscp support is enabled. According to the x86_64 manual, + // level should be set at 0x80000001, and we should have a look at bit 27 in + // EDX. That's 0x8000000 (or 1u << 27). + __asm__ __volatile__("cpuid" : "=a"(EAX), "=b"(EBX), "=c"(ECX), "=d"(EDX) + : "0"(0x80000001)); + if (!(EDX & (1u << 27))) { + Report("Missing rdtscp support.\n"); + return false; + } + // Also check whether we can determine the CPU frequency, since if we cannot, + // we should use the emulated TSC instead. + if (!getTSCFrequency()) { + Report("Unable to determine CPU frequency.\n"); + return false; + } + return true; +} +#endif + +} // namespace __xray |