aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/include/llvm/Constants.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/include/llvm/Constants.h')
-rw-r--r--contrib/llvm/include/llvm/Constants.h1154
1 files changed, 0 insertions, 1154 deletions
diff --git a/contrib/llvm/include/llvm/Constants.h b/contrib/llvm/include/llvm/Constants.h
deleted file mode 100644
index 7f94ef464ea4..000000000000
--- a/contrib/llvm/include/llvm/Constants.h
+++ /dev/null
@@ -1,1154 +0,0 @@
-//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-/// @file
-/// This file contains the declarations for the subclasses of Constant,
-/// which represent the different flavors of constant values that live in LLVM.
-/// Note that Constants are immutable (once created they never change) and are
-/// fully shared by structural equivalence. This means that two structurally
-/// equivalent constants will always have the same address. Constant's are
-/// created on demand as needed and never deleted: thus clients don't have to
-/// worry about the lifetime of the objects.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_CONSTANTS_H
-#define LLVM_CONSTANTS_H
-
-#include "llvm/Constant.h"
-#include "llvm/OperandTraits.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/APFloat.h"
-#include "llvm/ADT/ArrayRef.h"
-
-namespace llvm {
-
-class ArrayType;
-class IntegerType;
-class StructType;
-class PointerType;
-class VectorType;
-class SequentialType;
-
-template<class ConstantClass, class TypeClass, class ValType>
-struct ConstantCreator;
-template<class ConstantClass, class TypeClass>
-struct ConstantArrayCreator;
-template<class ConstantClass, class TypeClass>
-struct ConvertConstantType;
-
-//===----------------------------------------------------------------------===//
-/// This is the shared class of boolean and integer constants. This class
-/// represents both boolean and integral constants.
-/// @brief Class for constant integers.
-class ConstantInt : public Constant {
- virtual void anchor();
- void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
- ConstantInt(const ConstantInt &) LLVM_DELETED_FUNCTION;
- ConstantInt(IntegerType *Ty, const APInt& V);
- APInt Val;
-protected:
- // allocate space for exactly zero operands
- void *operator new(size_t s) {
- return User::operator new(s, 0);
- }
-public:
- static ConstantInt *getTrue(LLVMContext &Context);
- static ConstantInt *getFalse(LLVMContext &Context);
- static Constant *getTrue(Type *Ty);
- static Constant *getFalse(Type *Ty);
-
- /// If Ty is a vector type, return a Constant with a splat of the given
- /// value. Otherwise return a ConstantInt for the given value.
- static Constant *get(Type *Ty, uint64_t V, bool isSigned = false);
-
- /// Return a ConstantInt with the specified integer value for the specified
- /// type. If the type is wider than 64 bits, the value will be zero-extended
- /// to fit the type, unless isSigned is true, in which case the value will
- /// be interpreted as a 64-bit signed integer and sign-extended to fit
- /// the type.
- /// @brief Get a ConstantInt for a specific value.
- static ConstantInt *get(IntegerType *Ty, uint64_t V,
- bool isSigned = false);
-
- /// Return a ConstantInt with the specified value for the specified type. The
- /// value V will be canonicalized to a an unsigned APInt. Accessing it with
- /// either getSExtValue() or getZExtValue() will yield a correctly sized and
- /// signed value for the type Ty.
- /// @brief Get a ConstantInt for a specific signed value.
- static ConstantInt *getSigned(IntegerType *Ty, int64_t V);
- static Constant *getSigned(Type *Ty, int64_t V);
-
- /// Return a ConstantInt with the specified value and an implied Type. The
- /// type is the integer type that corresponds to the bit width of the value.
- static ConstantInt *get(LLVMContext &Context, const APInt &V);
-
- /// Return a ConstantInt constructed from the string strStart with the given
- /// radix.
- static ConstantInt *get(IntegerType *Ty, StringRef Str,
- uint8_t radix);
-
- /// If Ty is a vector type, return a Constant with a splat of the given
- /// value. Otherwise return a ConstantInt for the given value.
- static Constant *get(Type* Ty, const APInt& V);
-
- /// Return the constant as an APInt value reference. This allows clients to
- /// obtain a copy of the value, with all its precision in tact.
- /// @brief Return the constant's value.
- inline const APInt &getValue() const {
- return Val;
- }
-
- /// getBitWidth - Return the bitwidth of this constant.
- unsigned getBitWidth() const { return Val.getBitWidth(); }
-
- /// Return the constant as a 64-bit unsigned integer value after it
- /// has been zero extended as appropriate for the type of this constant. Note
- /// that this method can assert if the value does not fit in 64 bits.
- /// @deprecated
- /// @brief Return the zero extended value.
- inline uint64_t getZExtValue() const {
- return Val.getZExtValue();
- }
-
- /// Return the constant as a 64-bit integer value after it has been sign
- /// extended as appropriate for the type of this constant. Note that
- /// this method can assert if the value does not fit in 64 bits.
- /// @deprecated
- /// @brief Return the sign extended value.
- inline int64_t getSExtValue() const {
- return Val.getSExtValue();
- }
-
- /// A helper method that can be used to determine if the constant contained
- /// within is equal to a constant. This only works for very small values,
- /// because this is all that can be represented with all types.
- /// @brief Determine if this constant's value is same as an unsigned char.
- bool equalsInt(uint64_t V) const {
- return Val == V;
- }
-
- /// getType - Specialize the getType() method to always return an IntegerType,
- /// which reduces the amount of casting needed in parts of the compiler.
- ///
- inline IntegerType *getType() const {
- return reinterpret_cast<IntegerType*>(Value::getType());
- }
-
- /// This static method returns true if the type Ty is big enough to
- /// represent the value V. This can be used to avoid having the get method
- /// assert when V is larger than Ty can represent. Note that there are two
- /// versions of this method, one for unsigned and one for signed integers.
- /// Although ConstantInt canonicalizes everything to an unsigned integer,
- /// the signed version avoids callers having to convert a signed quantity
- /// to the appropriate unsigned type before calling the method.
- /// @returns true if V is a valid value for type Ty
- /// @brief Determine if the value is in range for the given type.
- static bool isValueValidForType(Type *Ty, uint64_t V);
- static bool isValueValidForType(Type *Ty, int64_t V);
-
- bool isNegative() const { return Val.isNegative(); }
-
- /// This is just a convenience method to make client code smaller for a
- /// common code. It also correctly performs the comparison without the
- /// potential for an assertion from getZExtValue().
- bool isZero() const {
- return Val == 0;
- }
-
- /// This is just a convenience method to make client code smaller for a
- /// common case. It also correctly performs the comparison without the
- /// potential for an assertion from getZExtValue().
- /// @brief Determine if the value is one.
- bool isOne() const {
- return Val == 1;
- }
-
- /// This function will return true iff every bit in this constant is set
- /// to true.
- /// @returns true iff this constant's bits are all set to true.
- /// @brief Determine if the value is all ones.
- bool isMinusOne() const {
- return Val.isAllOnesValue();
- }
-
- /// This function will return true iff this constant represents the largest
- /// value that may be represented by the constant's type.
- /// @returns true iff this is the largest value that may be represented
- /// by this type.
- /// @brief Determine if the value is maximal.
- bool isMaxValue(bool isSigned) const {
- if (isSigned)
- return Val.isMaxSignedValue();
- else
- return Val.isMaxValue();
- }
-
- /// This function will return true iff this constant represents the smallest
- /// value that may be represented by this constant's type.
- /// @returns true if this is the smallest value that may be represented by
- /// this type.
- /// @brief Determine if the value is minimal.
- bool isMinValue(bool isSigned) const {
- if (isSigned)
- return Val.isMinSignedValue();
- else
- return Val.isMinValue();
- }
-
- /// This function will return true iff this constant represents a value with
- /// active bits bigger than 64 bits or a value greater than the given uint64_t
- /// value.
- /// @returns true iff this constant is greater or equal to the given number.
- /// @brief Determine if the value is greater or equal to the given number.
- bool uge(uint64_t Num) const {
- return Val.getActiveBits() > 64 || Val.getZExtValue() >= Num;
- }
-
- /// getLimitedValue - If the value is smaller than the specified limit,
- /// return it, otherwise return the limit value. This causes the value
- /// to saturate to the limit.
- /// @returns the min of the value of the constant and the specified value
- /// @brief Get the constant's value with a saturation limit
- uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
- return Val.getLimitedValue(Limit);
- }
-
- /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
- static bool classof(const Value *V) {
- return V->getValueID() == ConstantIntVal;
- }
-};
-
-
-//===----------------------------------------------------------------------===//
-/// ConstantFP - Floating Point Values [float, double]
-///
-class ConstantFP : public Constant {
- APFloat Val;
- virtual void anchor();
- void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
- ConstantFP(const ConstantFP &) LLVM_DELETED_FUNCTION;
- friend class LLVMContextImpl;
-protected:
- ConstantFP(Type *Ty, const APFloat& V);
-protected:
- // allocate space for exactly zero operands
- void *operator new(size_t s) {
- return User::operator new(s, 0);
- }
-public:
- /// Floating point negation must be implemented with f(x) = -0.0 - x. This
- /// method returns the negative zero constant for floating point or vector
- /// floating point types; for all other types, it returns the null value.
- static Constant *getZeroValueForNegation(Type *Ty);
-
- /// get() - This returns a ConstantFP, or a vector containing a splat of a
- /// ConstantFP, for the specified value in the specified type. This should
- /// only be used for simple constant values like 2.0/1.0 etc, that are
- /// known-valid both as host double and as the target format.
- static Constant *get(Type* Ty, double V);
- static Constant *get(Type* Ty, StringRef Str);
- static ConstantFP *get(LLVMContext &Context, const APFloat &V);
- static ConstantFP *getNegativeZero(Type* Ty);
- static ConstantFP *getInfinity(Type *Ty, bool Negative = false);
-
- /// isValueValidForType - return true if Ty is big enough to represent V.
- static bool isValueValidForType(Type *Ty, const APFloat &V);
- inline const APFloat &getValueAPF() const { return Val; }
-
- /// isZero - Return true if the value is positive or negative zero.
- bool isZero() const { return Val.isZero(); }
-
- /// isNegative - Return true if the sign bit is set.
- bool isNegative() const { return Val.isNegative(); }
-
- /// isNaN - Return true if the value is a NaN.
- bool isNaN() const { return Val.isNaN(); }
-
- /// isExactlyValue - We don't rely on operator== working on double values, as
- /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
- /// As such, this method can be used to do an exact bit-for-bit comparison of
- /// two floating point values. The version with a double operand is retained
- /// because it's so convenient to write isExactlyValue(2.0), but please use
- /// it only for simple constants.
- bool isExactlyValue(const APFloat &V) const;
-
- bool isExactlyValue(double V) const {
- bool ignored;
- APFloat FV(V);
- FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
- return isExactlyValue(FV);
- }
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const Value *V) {
- return V->getValueID() == ConstantFPVal;
- }
-};
-
-//===----------------------------------------------------------------------===//
-/// ConstantAggregateZero - All zero aggregate value
-///
-class ConstantAggregateZero : public Constant {
- void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
- ConstantAggregateZero(const ConstantAggregateZero &) LLVM_DELETED_FUNCTION;
-protected:
- explicit ConstantAggregateZero(Type *ty)
- : Constant(ty, ConstantAggregateZeroVal, 0, 0) {}
-protected:
- // allocate space for exactly zero operands
- void *operator new(size_t s) {
- return User::operator new(s, 0);
- }
-public:
- static ConstantAggregateZero *get(Type *Ty);
-
- virtual void destroyConstant();
-
- /// getSequentialElement - If this CAZ has array or vector type, return a zero
- /// with the right element type.
- Constant *getSequentialElement() const;
-
- /// getStructElement - If this CAZ has struct type, return a zero with the
- /// right element type for the specified element.
- Constant *getStructElement(unsigned Elt) const;
-
- /// getElementValue - Return a zero of the right value for the specified GEP
- /// index.
- Constant *getElementValue(Constant *C) const;
-
- /// getElementValue - Return a zero of the right value for the specified GEP
- /// index.
- Constant *getElementValue(unsigned Idx) const;
-
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- ///
- static bool classof(const Value *V) {
- return V->getValueID() == ConstantAggregateZeroVal;
- }
-};
-
-
-//===----------------------------------------------------------------------===//
-/// ConstantArray - Constant Array Declarations
-///
-class ConstantArray : public Constant {
- friend struct ConstantArrayCreator<ConstantArray, ArrayType>;
- ConstantArray(const ConstantArray &) LLVM_DELETED_FUNCTION;
-protected:
- ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
-public:
- // ConstantArray accessors
- static Constant *get(ArrayType *T, ArrayRef<Constant*> V);
-
- /// Transparently provide more efficient getOperand methods.
- DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
-
- /// getType - Specialize the getType() method to always return an ArrayType,
- /// which reduces the amount of casting needed in parts of the compiler.
- ///
- inline ArrayType *getType() const {
- return reinterpret_cast<ArrayType*>(Value::getType());
- }
-
- virtual void destroyConstant();
- virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
-
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const Value *V) {
- return V->getValueID() == ConstantArrayVal;
- }
-};
-
-template <>
-struct OperandTraits<ConstantArray> :
- public VariadicOperandTraits<ConstantArray> {
-};
-
-DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantArray, Constant)
-
-//===----------------------------------------------------------------------===//
-// ConstantStruct - Constant Struct Declarations
-//
-class ConstantStruct : public Constant {
- friend struct ConstantArrayCreator<ConstantStruct, StructType>;
- ConstantStruct(const ConstantStruct &) LLVM_DELETED_FUNCTION;
-protected:
- ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
-public:
- // ConstantStruct accessors
- static Constant *get(StructType *T, ArrayRef<Constant*> V);
- static Constant *get(StructType *T, ...) END_WITH_NULL;
-
- /// getAnon - Return an anonymous struct that has the specified
- /// elements. If the struct is possibly empty, then you must specify a
- /// context.
- static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) {
- return get(getTypeForElements(V, Packed), V);
- }
- static Constant *getAnon(LLVMContext &Ctx,
- ArrayRef<Constant*> V, bool Packed = false) {
- return get(getTypeForElements(Ctx, V, Packed), V);
- }
-
- /// getTypeForElements - Return an anonymous struct type to use for a constant
- /// with the specified set of elements. The list must not be empty.
- static StructType *getTypeForElements(ArrayRef<Constant*> V,
- bool Packed = false);
- /// getTypeForElements - This version of the method allows an empty list.
- static StructType *getTypeForElements(LLVMContext &Ctx,
- ArrayRef<Constant*> V,
- bool Packed = false);
-
- /// Transparently provide more efficient getOperand methods.
- DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
-
- /// getType() specialization - Reduce amount of casting...
- ///
- inline StructType *getType() const {
- return reinterpret_cast<StructType*>(Value::getType());
- }
-
- virtual void destroyConstant();
- virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
-
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const Value *V) {
- return V->getValueID() == ConstantStructVal;
- }
-};
-
-template <>
-struct OperandTraits<ConstantStruct> :
- public VariadicOperandTraits<ConstantStruct> {
-};
-
-DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantStruct, Constant)
-
-
-//===----------------------------------------------------------------------===//
-/// ConstantVector - Constant Vector Declarations
-///
-class ConstantVector : public Constant {
- friend struct ConstantArrayCreator<ConstantVector, VectorType>;
- ConstantVector(const ConstantVector &) LLVM_DELETED_FUNCTION;
-protected:
- ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
-public:
- // ConstantVector accessors
- static Constant *get(ArrayRef<Constant*> V);
-
- /// getSplat - Return a ConstantVector with the specified constant in each
- /// element.
- static Constant *getSplat(unsigned NumElts, Constant *Elt);
-
- /// Transparently provide more efficient getOperand methods.
- DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
-
- /// getType - Specialize the getType() method to always return a VectorType,
- /// which reduces the amount of casting needed in parts of the compiler.
- ///
- inline VectorType *getType() const {
- return reinterpret_cast<VectorType*>(Value::getType());
- }
-
- /// getSplatValue - If this is a splat constant, meaning that all of the
- /// elements have the same value, return that value. Otherwise return NULL.
- Constant *getSplatValue() const;
-
- virtual void destroyConstant();
- virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
-
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const Value *V) {
- return V->getValueID() == ConstantVectorVal;
- }
-};
-
-template <>
-struct OperandTraits<ConstantVector> :
- public VariadicOperandTraits<ConstantVector> {
-};
-
-DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantVector, Constant)
-
-//===----------------------------------------------------------------------===//
-/// ConstantPointerNull - a constant pointer value that points to null
-///
-class ConstantPointerNull : public Constant {
- void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
- ConstantPointerNull(const ConstantPointerNull &) LLVM_DELETED_FUNCTION;
-protected:
- explicit ConstantPointerNull(PointerType *T)
- : Constant(reinterpret_cast<Type*>(T),
- Value::ConstantPointerNullVal, 0, 0) {}
-
-protected:
- // allocate space for exactly zero operands
- void *operator new(size_t s) {
- return User::operator new(s, 0);
- }
-public:
- /// get() - Static factory methods - Return objects of the specified value
- static ConstantPointerNull *get(PointerType *T);
-
- virtual void destroyConstant();
-
- /// getType - Specialize the getType() method to always return an PointerType,
- /// which reduces the amount of casting needed in parts of the compiler.
- ///
- inline PointerType *getType() const {
- return reinterpret_cast<PointerType*>(Value::getType());
- }
-
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const Value *V) {
- return V->getValueID() == ConstantPointerNullVal;
- }
-};
-
-//===----------------------------------------------------------------------===//
-/// ConstantDataSequential - A vector or array constant whose element type is a
-/// simple 1/2/4/8-byte integer or float/double, and whose elements are just
-/// simple data values (i.e. ConstantInt/ConstantFP). This Constant node has no
-/// operands because it stores all of the elements of the constant as densely
-/// packed data, instead of as Value*'s.
-///
-/// This is the common base class of ConstantDataArray and ConstantDataVector.
-///
-class ConstantDataSequential : public Constant {
- friend class LLVMContextImpl;
- /// DataElements - A pointer to the bytes underlying this constant (which is
- /// owned by the uniquing StringMap).
- const char *DataElements;
-
- /// Next - This forms a link list of ConstantDataSequential nodes that have
- /// the same value but different type. For example, 0,0,0,1 could be a 4
- /// element array of i8, or a 1-element array of i32. They'll both end up in
- /// the same StringMap bucket, linked up.
- ConstantDataSequential *Next;
- void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
- ConstantDataSequential(const ConstantDataSequential &) LLVM_DELETED_FUNCTION;
-protected:
- explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
- : Constant(ty, VT, 0, 0), DataElements(Data), Next(0) {}
- ~ConstantDataSequential() { delete Next; }
-
- static Constant *getImpl(StringRef Bytes, Type *Ty);
-
-protected:
- // allocate space for exactly zero operands.
- void *operator new(size_t s) {
- return User::operator new(s, 0);
- }
-public:
-
- /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
- /// formed with a vector or array of the specified element type.
- /// ConstantDataArray only works with normal float and int types that are
- /// stored densely in memory, not with things like i42 or x86_f80.
- static bool isElementTypeCompatible(const Type *Ty);
-
- /// getElementAsInteger - If this is a sequential container of integers (of
- /// any size), return the specified element in the low bits of a uint64_t.
- uint64_t getElementAsInteger(unsigned i) const;
-
- /// getElementAsAPFloat - If this is a sequential container of floating point
- /// type, return the specified element as an APFloat.
- APFloat getElementAsAPFloat(unsigned i) const;
-
- /// getElementAsFloat - If this is an sequential container of floats, return
- /// the specified element as a float.
- float getElementAsFloat(unsigned i) const;
-
- /// getElementAsDouble - If this is an sequential container of doubles, return
- /// the specified element as a double.
- double getElementAsDouble(unsigned i) const;
-
- /// getElementAsConstant - Return a Constant for a specified index's element.
- /// Note that this has to compute a new constant to return, so it isn't as
- /// efficient as getElementAsInteger/Float/Double.
- Constant *getElementAsConstant(unsigned i) const;
-
- /// getType - Specialize the getType() method to always return a
- /// SequentialType, which reduces the amount of casting needed in parts of the
- /// compiler.
- inline SequentialType *getType() const {
- return reinterpret_cast<SequentialType*>(Value::getType());
- }
-
- /// getElementType - Return the element type of the array/vector.
- Type *getElementType() const;
-
- /// getNumElements - Return the number of elements in the array or vector.
- unsigned getNumElements() const;
-
- /// getElementByteSize - Return the size (in bytes) of each element in the
- /// array/vector. The size of the elements is known to be a multiple of one
- /// byte.
- uint64_t getElementByteSize() const;
-
-
- /// isString - This method returns true if this is an array of i8.
- bool isString() const;
-
- /// isCString - This method returns true if the array "isString", ends with a
- /// nul byte, and does not contains any other nul bytes.
- bool isCString() const;
-
- /// getAsString - If this array is isString(), then this method returns the
- /// array as a StringRef. Otherwise, it asserts out.
- ///
- StringRef getAsString() const {
- assert(isString() && "Not a string");
- return getRawDataValues();
- }
-
- /// getAsCString - If this array is isCString(), then this method returns the
- /// array (without the trailing null byte) as a StringRef. Otherwise, it
- /// asserts out.
- ///
- StringRef getAsCString() const {
- assert(isCString() && "Isn't a C string");
- StringRef Str = getAsString();
- return Str.substr(0, Str.size()-1);
- }
-
- /// getRawDataValues - Return the raw, underlying, bytes of this data. Note
- /// that this is an extremely tricky thing to work with, as it exposes the
- /// host endianness of the data elements.
- StringRef getRawDataValues() const;
-
- virtual void destroyConstant();
-
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- ///
- static bool classof(const Value *V) {
- return V->getValueID() == ConstantDataArrayVal ||
- V->getValueID() == ConstantDataVectorVal;
- }
-private:
- const char *getElementPointer(unsigned Elt) const;
-};
-
-//===----------------------------------------------------------------------===//
-/// ConstantDataArray - An array constant whose element type is a simple
-/// 1/2/4/8-byte integer or float/double, and whose elements are just simple
-/// data values (i.e. ConstantInt/ConstantFP). This Constant node has no
-/// operands because it stores all of the elements of the constant as densely
-/// packed data, instead of as Value*'s.
-class ConstantDataArray : public ConstantDataSequential {
- void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
- ConstantDataArray(const ConstantDataArray &) LLVM_DELETED_FUNCTION;
- virtual void anchor();
- friend class ConstantDataSequential;
- explicit ConstantDataArray(Type *ty, const char *Data)
- : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
-protected:
- // allocate space for exactly zero operands.
- void *operator new(size_t s) {
- return User::operator new(s, 0);
- }
-public:
-
- /// get() constructors - Return a constant with array type with an element
- /// count and element type matching the ArrayRef passed in. Note that this
- /// can return a ConstantAggregateZero object.
- static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
- static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
- static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
- static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
- static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
- static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
-
- /// getString - This method constructs a CDS and initializes it with a text
- /// string. The default behavior (AddNull==true) causes a null terminator to
- /// be placed at the end of the array (increasing the length of the string by
- /// one more than the StringRef would normally indicate. Pass AddNull=false
- /// to disable this behavior.
- static Constant *getString(LLVMContext &Context, StringRef Initializer,
- bool AddNull = true);
-
- /// getType - Specialize the getType() method to always return an ArrayType,
- /// which reduces the amount of casting needed in parts of the compiler.
- ///
- inline ArrayType *getType() const {
- return reinterpret_cast<ArrayType*>(Value::getType());
- }
-
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- ///
- static bool classof(const Value *V) {
- return V->getValueID() == ConstantDataArrayVal;
- }
-};
-
-//===----------------------------------------------------------------------===//
-/// ConstantDataVector - A vector constant whose element type is a simple
-/// 1/2/4/8-byte integer or float/double, and whose elements are just simple
-/// data values (i.e. ConstantInt/ConstantFP). This Constant node has no
-/// operands because it stores all of the elements of the constant as densely
-/// packed data, instead of as Value*'s.
-class ConstantDataVector : public ConstantDataSequential {
- void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
- ConstantDataVector(const ConstantDataVector &) LLVM_DELETED_FUNCTION;
- virtual void anchor();
- friend class ConstantDataSequential;
- explicit ConstantDataVector(Type *ty, const char *Data)
- : ConstantDataSequential(ty, ConstantDataVectorVal, Data) {}
-protected:
- // allocate space for exactly zero operands.
- void *operator new(size_t s) {
- return User::operator new(s, 0);
- }
-public:
-
- /// get() constructors - Return a constant with vector type with an element
- /// count and element type matching the ArrayRef passed in. Note that this
- /// can return a ConstantAggregateZero object.
- static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
- static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
- static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
- static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
- static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
- static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
-
- /// getSplat - Return a ConstantVector with the specified constant in each
- /// element. The specified constant has to be a of a compatible type (i8/i16/
- /// i32/i64/float/double) and must be a ConstantFP or ConstantInt.
- static Constant *getSplat(unsigned NumElts, Constant *Elt);
-
- /// getSplatValue - If this is a splat constant, meaning that all of the
- /// elements have the same value, return that value. Otherwise return NULL.
- Constant *getSplatValue() const;
-
- /// getType - Specialize the getType() method to always return a VectorType,
- /// which reduces the amount of casting needed in parts of the compiler.
- ///
- inline VectorType *getType() const {
- return reinterpret_cast<VectorType*>(Value::getType());
- }
-
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- ///
- static bool classof(const Value *V) {
- return V->getValueID() == ConstantDataVectorVal;
- }
-};
-
-
-
-/// BlockAddress - The address of a basic block.
-///
-class BlockAddress : public Constant {
- void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
- void *operator new(size_t s) { return User::operator new(s, 2); }
- BlockAddress(Function *F, BasicBlock *BB);
-public:
- /// get - Return a BlockAddress for the specified function and basic block.
- static BlockAddress *get(Function *F, BasicBlock *BB);
-
- /// get - Return a BlockAddress for the specified basic block. The basic
- /// block must be embedded into a function.
- static BlockAddress *get(BasicBlock *BB);
-
- /// Transparently provide more efficient getOperand methods.
- DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
-
- Function *getFunction() const { return (Function*)Op<0>().get(); }
- BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); }
-
- virtual void destroyConstant();
- virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
-
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static inline bool classof(const Value *V) {
- return V->getValueID() == BlockAddressVal;
- }
-};
-
-template <>
-struct OperandTraits<BlockAddress> :
- public FixedNumOperandTraits<BlockAddress, 2> {
-};
-
-DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
-
-
-//===----------------------------------------------------------------------===//
-/// ConstantExpr - a constant value that is initialized with an expression using
-/// other constant values.
-///
-/// This class uses the standard Instruction opcodes to define the various
-/// constant expressions. The Opcode field for the ConstantExpr class is
-/// maintained in the Value::SubclassData field.
-class ConstantExpr : public Constant {
- friend struct ConstantCreator<ConstantExpr,Type,
- std::pair<unsigned, std::vector<Constant*> > >;
- friend struct ConvertConstantType<ConstantExpr, Type>;
-
-protected:
- ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
- : Constant(ty, ConstantExprVal, Ops, NumOps) {
- // Operation type (an Instruction opcode) is stored as the SubclassData.
- setValueSubclassData(Opcode);
- }
-
-public:
- // Static methods to construct a ConstantExpr of different kinds. Note that
- // these methods may return a object that is not an instance of the
- // ConstantExpr class, because they will attempt to fold the constant
- // expression into something simpler if possible.
-
- /// getAlignOf constant expr - computes the alignment of a type in a target
- /// independent way (Note: the return type is an i64).
- static Constant *getAlignOf(Type *Ty);
-
- /// getSizeOf constant expr - computes the (alloc) size of a type (in
- /// address-units, not bits) in a target independent way (Note: the return
- /// type is an i64).
- ///
- static Constant *getSizeOf(Type *Ty);
-
- /// getOffsetOf constant expr - computes the offset of a struct field in a
- /// target independent way (Note: the return type is an i64).
- ///
- static Constant *getOffsetOf(StructType *STy, unsigned FieldNo);
-
- /// getOffsetOf constant expr - This is a generalized form of getOffsetOf,
- /// which supports any aggregate type, and any Constant index.
- ///
- static Constant *getOffsetOf(Type *Ty, Constant *FieldNo);
-
- static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false);
- static Constant *getFNeg(Constant *C);
- static Constant *getNot(Constant *C);
- static Constant *getAdd(Constant *C1, Constant *C2,
- bool HasNUW = false, bool HasNSW = false);
- static Constant *getFAdd(Constant *C1, Constant *C2);
- static Constant *getSub(Constant *C1, Constant *C2,
- bool HasNUW = false, bool HasNSW = false);
- static Constant *getFSub(Constant *C1, Constant *C2);
- static Constant *getMul(Constant *C1, Constant *C2,
- bool HasNUW = false, bool HasNSW = false);
- static Constant *getFMul(Constant *C1, Constant *C2);
- static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false);
- static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false);
- static Constant *getFDiv(Constant *C1, Constant *C2);
- static Constant *getURem(Constant *C1, Constant *C2);
- static Constant *getSRem(Constant *C1, Constant *C2);
- static Constant *getFRem(Constant *C1, Constant *C2);
- static Constant *getAnd(Constant *C1, Constant *C2);
- static Constant *getOr(Constant *C1, Constant *C2);
- static Constant *getXor(Constant *C1, Constant *C2);
- static Constant *getShl(Constant *C1, Constant *C2,
- bool HasNUW = false, bool HasNSW = false);
- static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false);
- static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false);
- static Constant *getTrunc (Constant *C, Type *Ty);
- static Constant *getSExt (Constant *C, Type *Ty);
- static Constant *getZExt (Constant *C, Type *Ty);
- static Constant *getFPTrunc (Constant *C, Type *Ty);
- static Constant *getFPExtend(Constant *C, Type *Ty);
- static Constant *getUIToFP (Constant *C, Type *Ty);
- static Constant *getSIToFP (Constant *C, Type *Ty);
- static Constant *getFPToUI (Constant *C, Type *Ty);
- static Constant *getFPToSI (Constant *C, Type *Ty);
- static Constant *getPtrToInt(Constant *C, Type *Ty);
- static Constant *getIntToPtr(Constant *C, Type *Ty);
- static Constant *getBitCast (Constant *C, Type *Ty);
-
- static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
- static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
- static Constant *getNSWAdd(Constant *C1, Constant *C2) {
- return getAdd(C1, C2, false, true);
- }
- static Constant *getNUWAdd(Constant *C1, Constant *C2) {
- return getAdd(C1, C2, true, false);
- }
- static Constant *getNSWSub(Constant *C1, Constant *C2) {
- return getSub(C1, C2, false, true);
- }
- static Constant *getNUWSub(Constant *C1, Constant *C2) {
- return getSub(C1, C2, true, false);
- }
- static Constant *getNSWMul(Constant *C1, Constant *C2) {
- return getMul(C1, C2, false, true);
- }
- static Constant *getNUWMul(Constant *C1, Constant *C2) {
- return getMul(C1, C2, true, false);
- }
- static Constant *getNSWShl(Constant *C1, Constant *C2) {
- return getShl(C1, C2, false, true);
- }
- static Constant *getNUWShl(Constant *C1, Constant *C2) {
- return getShl(C1, C2, true, false);
- }
- static Constant *getExactSDiv(Constant *C1, Constant *C2) {
- return getSDiv(C1, C2, true);
- }
- static Constant *getExactUDiv(Constant *C1, Constant *C2) {
- return getUDiv(C1, C2, true);
- }
- static Constant *getExactAShr(Constant *C1, Constant *C2) {
- return getAShr(C1, C2, true);
- }
- static Constant *getExactLShr(Constant *C1, Constant *C2) {
- return getLShr(C1, C2, true);
- }
-
- /// getBinOpIdentity - Return the identity for the given binary operation,
- /// i.e. a constant C such that X op C = X and C op X = X for every X. It
- /// returns null if the operator doesn't have an identity.
- static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty);
-
- /// getBinOpAbsorber - Return the absorbing element for the given binary
- /// operation, i.e. a constant C such that X op C = C and C op X = C for
- /// every X. For example, this returns zero for integer multiplication.
- /// It returns null if the operator doesn't have an absorbing element.
- static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
-
- /// Transparently provide more efficient getOperand methods.
- DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
-
- // @brief Convenience function for getting one of the casting operations
- // using a CastOps opcode.
- static Constant *getCast(
- unsigned ops, ///< The opcode for the conversion
- Constant *C, ///< The constant to be converted
- Type *Ty ///< The type to which the constant is converted
- );
-
- // @brief Create a ZExt or BitCast cast constant expression
- static Constant *getZExtOrBitCast(
- Constant *C, ///< The constant to zext or bitcast
- Type *Ty ///< The type to zext or bitcast C to
- );
-
- // @brief Create a SExt or BitCast cast constant expression
- static Constant *getSExtOrBitCast(
- Constant *C, ///< The constant to sext or bitcast
- Type *Ty ///< The type to sext or bitcast C to
- );
-
- // @brief Create a Trunc or BitCast cast constant expression
- static Constant *getTruncOrBitCast(
- Constant *C, ///< The constant to trunc or bitcast
- Type *Ty ///< The type to trunc or bitcast C to
- );
-
- /// @brief Create a BitCast or a PtrToInt cast constant expression
- static Constant *getPointerCast(
- Constant *C, ///< The pointer value to be casted (operand 0)
- Type *Ty ///< The type to which cast should be made
- );
-
- /// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts
- static Constant *getIntegerCast(
- Constant *C, ///< The integer constant to be casted
- Type *Ty, ///< The integer type to cast to
- bool isSigned ///< Whether C should be treated as signed or not
- );
-
- /// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
- static Constant *getFPCast(
- Constant *C, ///< The integer constant to be casted
- Type *Ty ///< The integer type to cast to
- );
-
- /// @brief Return true if this is a convert constant expression
- bool isCast() const;
-
- /// @brief Return true if this is a compare constant expression
- bool isCompare() const;
-
- /// @brief Return true if this is an insertvalue or extractvalue expression,
- /// and the getIndices() method may be used.
- bool hasIndices() const;
-
- /// @brief Return true if this is a getelementptr expression and all
- /// the index operands are compile-time known integers within the
- /// corresponding notional static array extents. Note that this is
- /// not equivalant to, a subset of, or a superset of the "inbounds"
- /// property.
- bool isGEPWithNoNotionalOverIndexing() const;
-
- /// Select constant expr
- ///
- static Constant *getSelect(Constant *C, Constant *V1, Constant *V2);
-
- /// get - Return a binary or shift operator constant expression,
- /// folding if possible.
- ///
- static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
- unsigned Flags = 0);
-
- /// @brief Return an ICmp or FCmp comparison operator constant expression.
- static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2);
-
- /// get* - Return some common constants without having to
- /// specify the full Instruction::OPCODE identifier.
- ///
- static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS);
- static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS);
-
- /// Getelementptr form. Value* is only accepted for convenience;
- /// all elements must be Constant's.
- ///
- static Constant *getGetElementPtr(Constant *C,
- ArrayRef<Constant *> IdxList,
- bool InBounds = false) {
- return getGetElementPtr(C, makeArrayRef((Value * const *)IdxList.data(),
- IdxList.size()),
- InBounds);
- }
- static Constant *getGetElementPtr(Constant *C,
- Constant *Idx,
- bool InBounds = false) {
- // This form of the function only exists to avoid ambiguous overload
- // warnings about whether to convert Idx to ArrayRef<Constant *> or
- // ArrayRef<Value *>.
- return getGetElementPtr(C, cast<Value>(Idx), InBounds);
- }
- static Constant *getGetElementPtr(Constant *C,
- ArrayRef<Value *> IdxList,
- bool InBounds = false);
-
- /// Create an "inbounds" getelementptr. See the documentation for the
- /// "inbounds" flag in LangRef.html for details.
- static Constant *getInBoundsGetElementPtr(Constant *C,
- ArrayRef<Constant *> IdxList) {
- return getGetElementPtr(C, IdxList, true);
- }
- static Constant *getInBoundsGetElementPtr(Constant *C,
- Constant *Idx) {
- // This form of the function only exists to avoid ambiguous overload
- // warnings about whether to convert Idx to ArrayRef<Constant *> or
- // ArrayRef<Value *>.
- return getGetElementPtr(C, Idx, true);
- }
- static Constant *getInBoundsGetElementPtr(Constant *C,
- ArrayRef<Value *> IdxList) {
- return getGetElementPtr(C, IdxList, true);
- }
-
- static Constant *getExtractElement(Constant *Vec, Constant *Idx);
- static Constant *getInsertElement(Constant *Vec, Constant *Elt,Constant *Idx);
- static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask);
- static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs);
- static Constant *getInsertValue(Constant *Agg, Constant *Val,
- ArrayRef<unsigned> Idxs);
-
- /// getOpcode - Return the opcode at the root of this constant expression
- unsigned getOpcode() const { return getSubclassDataFromValue(); }
-
- /// getPredicate - Return the ICMP or FCMP predicate value. Assert if this is
- /// not an ICMP or FCMP constant expression.
- unsigned getPredicate() const;
-
- /// getIndices - Assert that this is an insertvalue or exactvalue
- /// expression and return the list of indices.
- ArrayRef<unsigned> getIndices() const;
-
- /// getOpcodeName - Return a string representation for an opcode.
- const char *getOpcodeName() const;
-
- /// getWithOperandReplaced - Return a constant expression identical to this
- /// one, but with the specified operand set to the specified value.
- Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;
-
- /// getWithOperands - This returns the current constant expression with the
- /// operands replaced with the specified values. The specified array must
- /// have the same number of operands as our current one.
- Constant *getWithOperands(ArrayRef<Constant*> Ops) const {
- return getWithOperands(Ops, getType());
- }
-
- /// getWithOperands - This returns the current constant expression with the
- /// operands replaced with the specified values and with the specified result
- /// type. The specified array must have the same number of operands as our
- /// current one.
- Constant *getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const;
-
- virtual void destroyConstant();
- virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
-
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static inline bool classof(const Value *V) {
- return V->getValueID() == ConstantExprVal;
- }
-
-private:
- // Shadow Value::setValueSubclassData with a private forwarding method so that
- // subclasses cannot accidentally use it.
- void setValueSubclassData(unsigned short D) {
- Value::setValueSubclassData(D);
- }
-};
-
-template <>
-struct OperandTraits<ConstantExpr> :
- public VariadicOperandTraits<ConstantExpr, 1> {
-};
-
-DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
-
-//===----------------------------------------------------------------------===//
-/// UndefValue - 'undef' values are things that do not have specified contents.
-/// These are used for a variety of purposes, including global variable
-/// initializers and operands to instructions. 'undef' values can occur with
-/// any first-class type.
-///
-/// Undef values aren't exactly constants; if they have multiple uses, they
-/// can appear to have different bit patterns at each use. See
-/// LangRef.html#undefvalues for details.
-///
-class UndefValue : public Constant {
- void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
- UndefValue(const UndefValue &) LLVM_DELETED_FUNCTION;
-protected:
- explicit UndefValue(Type *T) : Constant(T, UndefValueVal, 0, 0) {}
-protected:
- // allocate space for exactly zero operands
- void *operator new(size_t s) {
- return User::operator new(s, 0);
- }
-public:
- /// get() - Static factory methods - Return an 'undef' object of the specified
- /// type.
- ///
- static UndefValue *get(Type *T);
-
- /// getSequentialElement - If this Undef has array or vector type, return a
- /// undef with the right element type.
- UndefValue *getSequentialElement() const;
-
- /// getStructElement - If this undef has struct type, return a undef with the
- /// right element type for the specified element.
- UndefValue *getStructElement(unsigned Elt) const;
-
- /// getElementValue - Return an undef of the right value for the specified GEP
- /// index.
- UndefValue *getElementValue(Constant *C) const;
-
- /// getElementValue - Return an undef of the right value for the specified GEP
- /// index.
- UndefValue *getElementValue(unsigned Idx) const;
-
- virtual void destroyConstant();
-
- /// Methods for support type inquiry through isa, cast, and dyn_cast:
- static bool classof(const Value *V) {
- return V->getValueID() == UndefValueVal;
- }
-};
-
-} // End llvm namespace
-
-#endif