aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp')
-rw-r--r--contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp879
1 files changed, 608 insertions, 271 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp b/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp
index 7df726091843..2e7bbb208743 100644
--- a/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp
+++ b/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp
@@ -21,6 +21,7 @@
#include "llvm/Support/Debug.h"
#include "llvm/Target/CostTable.h"
#include "llvm/Target/TargetLowering.h"
+
using namespace llvm;
#define DEBUG_TYPE "x86tti"
@@ -62,8 +63,8 @@ unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) {
if (ST->is64Bit())
return 64;
- return 32;
+ return 32;
}
unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
@@ -84,12 +85,12 @@ unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
return 2;
}
-unsigned X86TTIImpl::getArithmeticInstrCost(
+int X86TTIImpl::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
TTI::OperandValueProperties Opd2PropInfo) {
// Legalize the type.
- std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
@@ -101,10 +102,9 @@ unsigned X86TTIImpl::getArithmeticInstrCost(
// normally expanded to the sequence SRA + SRL + ADD + SRA.
// The OperandValue properties many not be same as that of previous
// operation;conservatively assume OP_None.
- unsigned Cost =
- 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info, Op2Info,
- TargetTransformInfo::OP_None,
- TargetTransformInfo::OP_None);
+ int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info,
+ Op2Info, TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
TargetTransformInfo::OP_None,
TargetTransformInfo::OP_None);
@@ -115,8 +115,7 @@ unsigned X86TTIImpl::getArithmeticInstrCost(
return Cost;
}
- static const CostTblEntry<MVT::SimpleValueType>
- AVX2UniformConstCostTable[] = {
+ static const CostTblEntry AVX2UniformConstCostTable[] = {
{ ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle.
{ ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
@@ -127,12 +126,12 @@ unsigned X86TTIImpl::getArithmeticInstrCost(
if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
ST->hasAVX2()) {
- int Idx = CostTableLookup(AVX2UniformConstCostTable, ISD, LT.second);
- if (Idx != -1)
- return LT.first * AVX2UniformConstCostTable[Idx].Cost;
+ if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
+ LT.second))
+ return LT.first * Entry->Cost;
}
- static const CostTblEntry<MVT::SimpleValueType> AVX512CostTable[] = {
+ static const CostTblEntry AVX512CostTable[] = {
{ ISD::SHL, MVT::v16i32, 1 },
{ ISD::SRL, MVT::v16i32, 1 },
{ ISD::SRA, MVT::v16i32, 1 },
@@ -141,7 +140,12 @@ unsigned X86TTIImpl::getArithmeticInstrCost(
{ ISD::SRA, MVT::v8i64, 1 },
};
- static const CostTblEntry<MVT::SimpleValueType> AVX2CostTable[] = {
+ if (ST->hasAVX512()) {
+ if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
+ return LT.first * Entry->Cost;
+ }
+
+ static const CostTblEntry AVX2CostTable[] = {
// Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
// customize them to detect the cases where shift amount is a scalar one.
{ ISD::SHL, MVT::v4i32, 1 },
@@ -154,7 +158,57 @@ unsigned X86TTIImpl::getArithmeticInstrCost(
{ ISD::SRL, MVT::v2i64, 1 },
{ ISD::SHL, MVT::v4i64, 1 },
{ ISD::SRL, MVT::v4i64, 1 },
+ };
+
+ // Look for AVX2 lowering tricks.
+ if (ST->hasAVX2()) {
+ if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
+ (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
+ Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
+ // On AVX2, a packed v16i16 shift left by a constant build_vector
+ // is lowered into a vector multiply (vpmullw).
+ return LT.first;
+
+ if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
+ return LT.first * Entry->Cost;
+ }
+
+ static const CostTblEntry XOPCostTable[] = {
+ // 128bit shifts take 1cy, but right shifts require negation beforehand.
+ { ISD::SHL, MVT::v16i8, 1 },
+ { ISD::SRL, MVT::v16i8, 2 },
+ { ISD::SRA, MVT::v16i8, 2 },
+ { ISD::SHL, MVT::v8i16, 1 },
+ { ISD::SRL, MVT::v8i16, 2 },
+ { ISD::SRA, MVT::v8i16, 2 },
+ { ISD::SHL, MVT::v4i32, 1 },
+ { ISD::SRL, MVT::v4i32, 2 },
+ { ISD::SRA, MVT::v4i32, 2 },
+ { ISD::SHL, MVT::v2i64, 1 },
+ { ISD::SRL, MVT::v2i64, 2 },
+ { ISD::SRA, MVT::v2i64, 2 },
+ // 256bit shifts require splitting if AVX2 didn't catch them above.
+ { ISD::SHL, MVT::v32i8, 2 },
+ { ISD::SRL, MVT::v32i8, 4 },
+ { ISD::SRA, MVT::v32i8, 4 },
+ { ISD::SHL, MVT::v16i16, 2 },
+ { ISD::SRL, MVT::v16i16, 4 },
+ { ISD::SRA, MVT::v16i16, 4 },
+ { ISD::SHL, MVT::v8i32, 2 },
+ { ISD::SRL, MVT::v8i32, 4 },
+ { ISD::SRA, MVT::v8i32, 4 },
+ { ISD::SHL, MVT::v4i64, 2 },
+ { ISD::SRL, MVT::v4i64, 4 },
+ { ISD::SRA, MVT::v4i64, 4 },
+ };
+ // Look for XOP lowering tricks.
+ if (ST->hasXOP()) {
+ if (const auto *Entry = CostTableLookup(XOPCostTable, ISD, LT.second))
+ return LT.first * Entry->Cost;
+ }
+
+ static const CostTblEntry AVX2CustomCostTable[] = {
{ ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence.
{ ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
@@ -163,7 +217,8 @@ unsigned X86TTIImpl::getArithmeticInstrCost(
{ ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence.
{ ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence.
- { ISD::SRA, MVT::v4i64, 4*10 }, // Scalarized.
+ { ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence.
+ { ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence.
// Vectorizing division is a bad idea. See the SSE2 table for more comments.
{ ISD::SDIV, MVT::v32i8, 32*20 },
@@ -176,44 +231,44 @@ unsigned X86TTIImpl::getArithmeticInstrCost(
{ ISD::UDIV, MVT::v4i64, 4*20 },
};
- if (ST->hasAVX512()) {
- int Idx = CostTableLookup(AVX512CostTable, ISD, LT.second);
- if (Idx != -1)
- return LT.first * AVX512CostTable[Idx].Cost;
- }
- // Look for AVX2 lowering tricks.
+ // Look for AVX2 lowering tricks for custom cases.
if (ST->hasAVX2()) {
- if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
- (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
- Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
- // On AVX2, a packed v16i16 shift left by a constant build_vector
- // is lowered into a vector multiply (vpmullw).
- return LT.first;
-
- int Idx = CostTableLookup(AVX2CostTable, ISD, LT.second);
- if (Idx != -1)
- return LT.first * AVX2CostTable[Idx].Cost;
+ if (const auto *Entry = CostTableLookup(AVX2CustomCostTable, ISD,
+ LT.second))
+ return LT.first * Entry->Cost;
}
- static const CostTblEntry<MVT::SimpleValueType>
+ static const CostTblEntry
SSE2UniformConstCostTable[] = {
// We don't correctly identify costs of casts because they are marked as
// custom.
// Constant splats are cheaper for the following instructions.
{ ISD::SHL, MVT::v16i8, 1 }, // psllw.
+ { ISD::SHL, MVT::v32i8, 2 }, // psllw.
{ ISD::SHL, MVT::v8i16, 1 }, // psllw.
+ { ISD::SHL, MVT::v16i16, 2 }, // psllw.
{ ISD::SHL, MVT::v4i32, 1 }, // pslld
+ { ISD::SHL, MVT::v8i32, 2 }, // pslld
{ ISD::SHL, MVT::v2i64, 1 }, // psllq.
+ { ISD::SHL, MVT::v4i64, 2 }, // psllq.
{ ISD::SRL, MVT::v16i8, 1 }, // psrlw.
+ { ISD::SRL, MVT::v32i8, 2 }, // psrlw.
{ ISD::SRL, MVT::v8i16, 1 }, // psrlw.
+ { ISD::SRL, MVT::v16i16, 2 }, // psrlw.
{ ISD::SRL, MVT::v4i32, 1 }, // psrld.
+ { ISD::SRL, MVT::v8i32, 2 }, // psrld.
{ ISD::SRL, MVT::v2i64, 1 }, // psrlq.
+ { ISD::SRL, MVT::v4i64, 2 }, // psrlq.
{ ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
+ { ISD::SRA, MVT::v32i8, 8 }, // psrlw, pand, pxor, psubb.
{ ISD::SRA, MVT::v8i16, 1 }, // psraw.
+ { ISD::SRA, MVT::v16i16, 2 }, // psraw.
{ ISD::SRA, MVT::v4i32, 1 }, // psrad.
+ { ISD::SRA, MVT::v8i32, 2 }, // psrad.
{ ISD::SRA, MVT::v2i64, 4 }, // 2 x psrad + shuffle.
+ { ISD::SRA, MVT::v4i64, 8 }, // 2 x psrad + shuffle.
{ ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
{ ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
@@ -227,27 +282,34 @@ unsigned X86TTIImpl::getArithmeticInstrCost(
if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
return LT.first * 15;
- int Idx = CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second);
- if (Idx != -1)
- return LT.first * SSE2UniformConstCostTable[Idx].Cost;
+ if (const auto *Entry = CostTableLookup(SSE2UniformConstCostTable, ISD,
+ LT.second))
+ return LT.first * Entry->Cost;
}
if (ISD == ISD::SHL &&
Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
- EVT VT = LT.second;
+ MVT VT = LT.second;
+ // Vector shift left by non uniform constant can be lowered
+ // into vector multiply (pmullw/pmulld).
if ((VT == MVT::v8i16 && ST->hasSSE2()) ||
(VT == MVT::v4i32 && ST->hasSSE41()))
- // Vector shift left by non uniform constant can be lowered
- // into vector multiply (pmullw/pmulld).
return LT.first;
+
+ // v16i16 and v8i32 shifts by non-uniform constants are lowered into a
+ // sequence of extract + two vector multiply + insert.
+ if ((VT == MVT::v8i32 || VT == MVT::v16i16) &&
+ (ST->hasAVX() && !ST->hasAVX2()))
+ ISD = ISD::MUL;
+
+ // A vector shift left by non uniform constant is converted
+ // into a vector multiply; the new multiply is eventually
+ // lowered into a sequence of shuffles and 2 x pmuludq.
if (VT == MVT::v4i32 && ST->hasSSE2())
- // A vector shift left by non uniform constant is converted
- // into a vector multiply; the new multiply is eventually
- // lowered into a sequence of shuffles and 2 x pmuludq.
ISD = ISD::MUL;
}
- static const CostTblEntry<MVT::SimpleValueType> SSE2CostTable[] = {
+ static const CostTblEntry SSE2CostTable[] = {
// We don't correctly identify costs of casts because they are marked as
// custom.
// For some cases, where the shift amount is a scalar we would be able
@@ -257,20 +319,31 @@ unsigned X86TTIImpl::getArithmeticInstrCost(
// used for vectorization and we don't want to make vectorized code worse
// than scalar code.
{ ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence.
+ { ISD::SHL, MVT::v32i8, 2*26 }, // cmpgtb sequence.
{ ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence.
+ { ISD::SHL, MVT::v16i16, 2*32 }, // cmpgtb sequence.
{ ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
- { ISD::SHL, MVT::v2i64, 2*10 }, // Scalarized.
- { ISD::SHL, MVT::v4i64, 4*10 }, // Scalarized.
+ { ISD::SHL, MVT::v8i32, 2*2*5 }, // We optimized this using mul.
+ { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence.
+ { ISD::SHL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
{ ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence.
+ { ISD::SRL, MVT::v32i8, 2*26 }, // cmpgtb sequence.
{ ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence.
+ { ISD::SRL, MVT::v16i16, 2*32 }, // cmpgtb sequence.
{ ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend.
- { ISD::SRL, MVT::v2i64, 2*10 }, // Scalarized.
+ { ISD::SRL, MVT::v8i32, 2*16 }, // Shift each lane + blend.
+ { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence.
+ { ISD::SRL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
{ ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence.
+ { ISD::SRA, MVT::v32i8, 2*54 }, // unpacked cmpgtb sequence.
{ ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence.
+ { ISD::SRA, MVT::v16i16, 2*32 }, // cmpgtb sequence.
{ ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend.
- { ISD::SRA, MVT::v2i64, 2*10 }, // Scalarized.
+ { ISD::SRA, MVT::v8i32, 2*16 }, // Shift each lane + blend.
+ { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence.
+ { ISD::SRA, MVT::v4i64, 2*12 }, // srl/xor/sub sequence.
// It is not a good idea to vectorize division. We have to scalarize it and
// in the process we will often end up having to spilling regular
@@ -289,12 +362,11 @@ unsigned X86TTIImpl::getArithmeticInstrCost(
};
if (ST->hasSSE2()) {
- int Idx = CostTableLookup(SSE2CostTable, ISD, LT.second);
- if (Idx != -1)
- return LT.first * SSE2CostTable[Idx].Cost;
+ if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
+ return LT.first * Entry->Cost;
}
- static const CostTblEntry<MVT::SimpleValueType> AVX1CostTable[] = {
+ static const CostTblEntry AVX1CostTable[] = {
// We don't have to scalarize unsupported ops. We can issue two half-sized
// operations and we only need to extract the upper YMM half.
// Two ops + 1 extract + 1 insert = 4.
@@ -314,29 +386,21 @@ unsigned X86TTIImpl::getArithmeticInstrCost(
// Look for AVX1 lowering tricks.
if (ST->hasAVX() && !ST->hasAVX2()) {
- EVT VT = LT.second;
+ MVT VT = LT.second;
- // v16i16 and v8i32 shifts by non-uniform constants are lowered into a
- // sequence of extract + two vector multiply + insert.
- if (ISD == ISD::SHL && (VT == MVT::v8i32 || VT == MVT::v16i16) &&
- Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)
- ISD = ISD::MUL;
-
- int Idx = CostTableLookup(AVX1CostTable, ISD, VT);
- if (Idx != -1)
- return LT.first * AVX1CostTable[Idx].Cost;
+ if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, VT))
+ return LT.first * Entry->Cost;
}
// Custom lowering of vectors.
- static const CostTblEntry<MVT::SimpleValueType> CustomLowered[] = {
+ static const CostTblEntry CustomLowered[] = {
// A v2i64/v4i64 and multiply is custom lowered as a series of long
// multiplies(3), shifts(4) and adds(2).
{ ISD::MUL, MVT::v2i64, 9 },
{ ISD::MUL, MVT::v4i64, 9 },
};
- int Idx = CostTableLookup(CustomLowered, ISD, LT.second);
- if (Idx != -1)
- return LT.first * CustomLowered[Idx].Cost;
+ if (const auto *Entry = CostTableLookup(CustomLowered, ISD, LT.second))
+ return LT.first * Entry->Cost;
// Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
// 2x pmuludq, 2x shuffle.
@@ -348,15 +412,15 @@ unsigned X86TTIImpl::getArithmeticInstrCost(
return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
}
-unsigned X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
- Type *SubTp) {
+int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
+ Type *SubTp) {
// We only estimate the cost of reverse and alternate shuffles.
if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate)
return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
if (Kind == TTI::SK_Reverse) {
- std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
- unsigned Cost = 1;
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
+ int Cost = 1;
if (LT.second.getSizeInBits() > 128)
Cost = 3; // Extract + insert + copy.
@@ -367,14 +431,14 @@ unsigned X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
if (Kind == TTI::SK_Alternate) {
// 64-bit packed float vectors (v2f32) are widened to type v4f32.
// 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
- std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
// The backend knows how to generate a single VEX.256 version of
// instruction VPBLENDW if the target supports AVX2.
if (ST->hasAVX2() && LT.second == MVT::v16i16)
return LT.first;
- static const CostTblEntry<MVT::SimpleValueType> AVXAltShuffleTbl[] = {
+ static const CostTblEntry AVXAltShuffleTbl[] = {
{ISD::VECTOR_SHUFFLE, MVT::v4i64, 1}, // vblendpd
{ISD::VECTOR_SHUFFLE, MVT::v4f64, 1}, // vblendpd
@@ -390,13 +454,12 @@ unsigned X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
{ISD::VECTOR_SHUFFLE, MVT::v32i8, 9}
};
- if (ST->hasAVX()) {
- int Idx = CostTableLookup(AVXAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
- if (Idx != -1)
- return LT.first * AVXAltShuffleTbl[Idx].Cost;
- }
+ if (ST->hasAVX())
+ if (const auto *Entry = CostTableLookup(AVXAltShuffleTbl,
+ ISD::VECTOR_SHUFFLE, LT.second))
+ return LT.first * Entry->Cost;
- static const CostTblEntry<MVT::SimpleValueType> SSE41AltShuffleTbl[] = {
+ static const CostTblEntry SSE41AltShuffleTbl[] = {
// These are lowered into movsd.
{ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
{ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
@@ -414,13 +477,12 @@ unsigned X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
{ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}
};
- if (ST->hasSSE41()) {
- int Idx = CostTableLookup(SSE41AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
- if (Idx != -1)
- return LT.first * SSE41AltShuffleTbl[Idx].Cost;
- }
+ if (ST->hasSSE41())
+ if (const auto *Entry = CostTableLookup(SSE41AltShuffleTbl, ISD::VECTOR_SHUFFLE,
+ LT.second))
+ return LT.first * Entry->Cost;
- static const CostTblEntry<MVT::SimpleValueType> SSSE3AltShuffleTbl[] = {
+ static const CostTblEntry SSSE3AltShuffleTbl[] = {
{ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, // movsd
{ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, // movsd
@@ -433,13 +495,12 @@ unsigned X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
{ISD::VECTOR_SHUFFLE, MVT::v16i8, 3} // pshufb + pshufb + or
};
- if (ST->hasSSSE3()) {
- int Idx = CostTableLookup(SSSE3AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
- if (Idx != -1)
- return LT.first * SSSE3AltShuffleTbl[Idx].Cost;
- }
+ if (ST->hasSSSE3())
+ if (const auto *Entry = CostTableLookup(SSSE3AltShuffleTbl,
+ ISD::VECTOR_SHUFFLE, LT.second))
+ return LT.first * Entry->Cost;
- static const CostTblEntry<MVT::SimpleValueType> SSEAltShuffleTbl[] = {
+ static const CostTblEntry SSEAltShuffleTbl[] = {
{ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, // movsd
{ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, // movsd
@@ -454,65 +515,47 @@ unsigned X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
};
// Fall-back (SSE3 and SSE2).
- int Idx = CostTableLookup(SSEAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
- if (Idx != -1)
- return LT.first * SSEAltShuffleTbl[Idx].Cost;
+ if (const auto *Entry = CostTableLookup(SSEAltShuffleTbl,
+ ISD::VECTOR_SHUFFLE, LT.second))
+ return LT.first * Entry->Cost;
return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
}
return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
}
-unsigned X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
+int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
- std::pair<unsigned, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
- std::pair<unsigned, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
-
- static const TypeConversionCostTblEntry<MVT::SimpleValueType>
- SSE2ConvTbl[] = {
- // These are somewhat magic numbers justified by looking at the output of
- // Intel's IACA, running some kernels and making sure when we take
- // legalization into account the throughput will be overestimated.
- { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
- { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
- { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
- { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
- { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
- { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
- { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
- { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
- // There are faster sequences for float conversions.
- { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
- { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
- { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
- { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
- { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
- { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
- { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
- { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
+ // FIXME: Need a better design of the cost table to handle non-simple types of
+ // potential massive combinations (elem_num x src_type x dst_type).
+
+ static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
+ { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
+
+ { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
+ { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 },
+ { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 },
+ { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 },
};
- if (ST->hasSSE2() && !ST->hasAVX()) {
- int Idx =
- ConvertCostTableLookup(SSE2ConvTbl, ISD, LTDest.second, LTSrc.second);
- if (Idx != -1)
- return LTSrc.first * SSE2ConvTbl[Idx].Cost;
- }
-
- static const TypeConversionCostTblEntry<MVT::SimpleValueType>
- AVX512ConversionTbl[] = {
+ static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
{ ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
{ ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
{ ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
- { ISD::FP_ROUND, MVT::v16f32, MVT::v8f64, 3 },
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 },
{ ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 },
{ ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 },
{ ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
- { ISD::TRUNCATE, MVT::v16i32, MVT::v8i64, 4 },
// v16i1 -> v16i32 - load + broadcast
{ ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
@@ -522,33 +565,49 @@ unsigned X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
{ ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
{ ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
{ ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
- { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v16i32, 3 },
- { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v16i32, 3 },
+ { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
+ { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
+ { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
+ { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
{ ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
+ { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
{ ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
{ ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
- };
- if (ST->hasAVX512()) {
- int Idx = ConvertCostTableLookup(AVX512ConversionTbl, ISD, LTDest.second,
- LTSrc.second);
- if (Idx != -1)
- return AVX512ConversionTbl[Idx].Cost;
- }
- EVT SrcTy = TLI->getValueType(DL, Src);
- EVT DstTy = TLI->getValueType(DL, Dst);
-
- // The function getSimpleVT only handles simple value types.
- if (!SrcTy.isSimple() || !DstTy.isSimple())
- return BaseT::getCastInstrCost(Opcode, Dst, Src);
+ { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
+ { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
+ { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
+ { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
+ { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
+ { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
+ { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
+ { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 },
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 12 },
+ { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
+
+ { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 },
+ };
- static const TypeConversionCostTblEntry<MVT::SimpleValueType>
- AVX2ConversionTbl[] = {
+ static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
{ ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
{ ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
@@ -579,8 +638,7 @@ unsigned X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
};
- static const TypeConversionCostTblEntry<MVT::SimpleValueType>
- AVXConversionTbl[] = {
+ static const TypeConversionCostTblEntry AVXConversionTbl[] = {
{ ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
{ ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
@@ -650,34 +708,158 @@ unsigned X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
};
+ static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
+ { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
+ { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
+ { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
+ { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
+ { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
+ { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
+ { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
+ { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
+ { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
+ { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
+ { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
+ { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
+ { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
+ { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 2 },
+
+ { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 },
+ { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 },
+ { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
+ { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 30 },
+ { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
+ { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 },
+ { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
+ { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 },
+ { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 },
+ };
+
+ static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
+ // These are somewhat magic numbers justified by looking at the output of
+ // Intel's IACA, running some kernels and making sure when we take
+ // legalization into account the throughput will be overestimated.
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
+ // There are faster sequences for float conversions.
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
+
+ { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
+ { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
+ { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
+ { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 },
+ { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 },
+ { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
+ { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
+ { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 },
+ { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
+ { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
+ { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
+ { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 },
+ { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
+ { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 },
+
+ { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 },
+ { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
+ { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 },
+ { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 },
+ { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
+ { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 },
+ { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
+ { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 },
+ { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 4 },
+ };
+
+ std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
+ std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
+
+ if (ST->hasSSE2() && !ST->hasAVX()) {
+ if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
+ LTDest.second, LTSrc.second))
+ return LTSrc.first * Entry->Cost;
+ }
+
+ EVT SrcTy = TLI->getValueType(DL, Src);
+ EVT DstTy = TLI->getValueType(DL, Dst);
+
+ // The function getSimpleVT only handles simple value types.
+ if (!SrcTy.isSimple() || !DstTy.isSimple())
+ return BaseT::getCastInstrCost(Opcode, Dst, Src);
+
+ if (ST->hasDQI())
+ if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
+ DstTy.getSimpleVT(),
+ SrcTy.getSimpleVT()))
+ return Entry->Cost;
+
+ if (ST->hasAVX512())
+ if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
+ DstTy.getSimpleVT(),
+ SrcTy.getSimpleVT()))
+ return Entry->Cost;
+
if (ST->hasAVX2()) {
- int Idx = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
- DstTy.getSimpleVT(), SrcTy.getSimpleVT());
- if (Idx != -1)
- return AVX2ConversionTbl[Idx].Cost;
+ if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
+ DstTy.getSimpleVT(),
+ SrcTy.getSimpleVT()))
+ return Entry->Cost;
}
if (ST->hasAVX()) {
- int Idx = ConvertCostTableLookup(AVXConversionTbl, ISD, DstTy.getSimpleVT(),
- SrcTy.getSimpleVT());
- if (Idx != -1)
- return AVXConversionTbl[Idx].Cost;
+ if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
+ DstTy.getSimpleVT(),
+ SrcTy.getSimpleVT()))
+ return Entry->Cost;
+ }
+
+ if (ST->hasSSE41()) {
+ if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
+ DstTy.getSimpleVT(),
+ SrcTy.getSimpleVT()))
+ return Entry->Cost;
+ }
+
+ if (ST->hasSSE2()) {
+ if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
+ DstTy.getSimpleVT(),
+ SrcTy.getSimpleVT()))
+ return Entry->Cost;
}
return BaseT::getCastInstrCost(Opcode, Dst, Src);
}
-unsigned X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
- Type *CondTy) {
+int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
// Legalize the type.
- std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
MVT MTy = LT.second;
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
- static const CostTblEntry<MVT::SimpleValueType> SSE42CostTbl[] = {
+ static const CostTblEntry SSE42CostTbl[] = {
{ ISD::SETCC, MVT::v2f64, 1 },
{ ISD::SETCC, MVT::v4f32, 1 },
{ ISD::SETCC, MVT::v2i64, 1 },
@@ -686,7 +868,7 @@ unsigned X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
{ ISD::SETCC, MVT::v16i8, 1 },
};
- static const CostTblEntry<MVT::SimpleValueType> AVX1CostTbl[] = {
+ static const CostTblEntry AVX1CostTbl[] = {
{ ISD::SETCC, MVT::v4f64, 1 },
{ ISD::SETCC, MVT::v8f32, 1 },
// AVX1 does not support 8-wide integer compare.
@@ -696,54 +878,45 @@ unsigned X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
{ ISD::SETCC, MVT::v32i8, 4 },
};
- static const CostTblEntry<MVT::SimpleValueType> AVX2CostTbl[] = {
+ static const CostTblEntry AVX2CostTbl[] = {
{ ISD::SETCC, MVT::v4i64, 1 },
{ ISD::SETCC, MVT::v8i32, 1 },
{ ISD::SETCC, MVT::v16i16, 1 },
{ ISD::SETCC, MVT::v32i8, 1 },
};
- static const CostTblEntry<MVT::SimpleValueType> AVX512CostTbl[] = {
+ static const CostTblEntry AVX512CostTbl[] = {
{ ISD::SETCC, MVT::v8i64, 1 },
{ ISD::SETCC, MVT::v16i32, 1 },
{ ISD::SETCC, MVT::v8f64, 1 },
{ ISD::SETCC, MVT::v16f32, 1 },
};
- if (ST->hasAVX512()) {
- int Idx = CostTableLookup(AVX512CostTbl, ISD, MTy);
- if (Idx != -1)
- return LT.first * AVX512CostTbl[Idx].Cost;
- }
+ if (ST->hasAVX512())
+ if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
- if (ST->hasAVX2()) {
- int Idx = CostTableLookup(AVX2CostTbl, ISD, MTy);
- if (Idx != -1)
- return LT.first * AVX2CostTbl[Idx].Cost;
- }
+ if (ST->hasAVX2())
+ if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
- if (ST->hasAVX()) {
- int Idx = CostTableLookup(AVX1CostTbl, ISD, MTy);
- if (Idx != -1)
- return LT.first * AVX1CostTbl[Idx].Cost;
- }
+ if (ST->hasAVX())
+ if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
- if (ST->hasSSE42()) {
- int Idx = CostTableLookup(SSE42CostTbl, ISD, MTy);
- if (Idx != -1)
- return LT.first * SSE42CostTbl[Idx].Cost;
- }
+ if (ST->hasSSE42())
+ if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
+ return LT.first * Entry->Cost;
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
}
-unsigned X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
- unsigned Index) {
+int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
assert(Val->isVectorTy() && "This must be a vector type");
if (Index != -1U) {
// Legalize the type.
- std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
// This type is legalized to a scalar type.
if (!LT.second.isVector())
@@ -761,10 +934,9 @@ unsigned X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
return BaseT::getVectorInstrCost(Opcode, Val, Index);
}
-unsigned X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert,
- bool Extract) {
+int X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
assert (Ty->isVectorTy() && "Can only scalarize vectors");
- unsigned Cost = 0;
+ int Cost = 0;
for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
if (Insert)
@@ -776,9 +948,8 @@ unsigned X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert,
return Cost;
}
-unsigned X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
- unsigned Alignment,
- unsigned AddressSpace) {
+int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+ unsigned AddressSpace) {
// Handle non-power-of-two vectors such as <3 x float>
if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
unsigned NumElem = VTy->getVectorNumElements();
@@ -796,22 +967,21 @@ unsigned X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
// Assume that all other non-power-of-two numbers are scalarized.
if (!isPowerOf2_32(NumElem)) {
- unsigned Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(),
- Alignment, AddressSpace);
- unsigned SplitCost = getScalarizationOverhead(Src,
- Opcode == Instruction::Load,
- Opcode==Instruction::Store);
+ int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
+ AddressSpace);
+ int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
+ Opcode == Instruction::Store);
return NumElem * Cost + SplitCost;
}
}
// Legalize the type.
- std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
"Invalid Opcode");
// Each load/store unit costs 1.
- unsigned Cost = LT.first * 1;
+ int Cost = LT.first * 1;
// On Sandybridge 256bit load/stores are double pumped
// (but not on Haswell).
@@ -821,9 +991,9 @@ unsigned X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
return Cost;
}
-unsigned X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
- unsigned Alignment,
- unsigned AddressSpace) {
+int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
+ unsigned Alignment,
+ unsigned AddressSpace) {
VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
if (!SrcVTy)
// To calculate scalar take the regular cost, without mask
@@ -832,34 +1002,33 @@ unsigned X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
unsigned NumElem = SrcVTy->getVectorNumElements();
VectorType *MaskTy =
VectorType::get(Type::getInt8Ty(getGlobalContext()), NumElem);
- if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy, 1)) ||
- (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy, 1)) ||
+ if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) ||
+ (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) ||
!isPowerOf2_32(NumElem)) {
// Scalarization
- unsigned MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
- unsigned ScalarCompareCost =
- getCmpSelInstrCost(Instruction::ICmp,
- Type::getInt8Ty(getGlobalContext()), NULL);
- unsigned BranchCost = getCFInstrCost(Instruction::Br);
- unsigned MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
-
- unsigned ValueSplitCost =
- getScalarizationOverhead(SrcVTy, Opcode == Instruction::Load,
- Opcode == Instruction::Store);
- unsigned MemopCost =
+ int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
+ int ScalarCompareCost = getCmpSelInstrCost(
+ Instruction::ICmp, Type::getInt8Ty(getGlobalContext()), nullptr);
+ int BranchCost = getCFInstrCost(Instruction::Br);
+ int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
+
+ int ValueSplitCost = getScalarizationOverhead(
+ SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store);
+ int MemopCost =
NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
Alignment, AddressSpace);
return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
}
// Legalize the type.
- std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
- unsigned Cost = 0;
- if (LT.second != TLI->getValueType(DL, SrcVTy).getSimpleVT() &&
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
+ auto VT = TLI->getValueType(DL, SrcVTy);
+ int Cost = 0;
+ if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
LT.second.getVectorNumElements() == NumElem)
// Promotion requires expand/truncate for data and a shuffle for mask.
- Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, 0) +
- getShuffleCost(TTI::SK_Alternate, MaskTy, 0, 0);
+ Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, nullptr) +
+ getShuffleCost(TTI::SK_Alternate, MaskTy, 0, nullptr);
else if (LT.second.getVectorNumElements() > NumElem) {
VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
@@ -874,7 +1043,7 @@ unsigned X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
return Cost+LT.first;
}
-unsigned X86TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
+int X86TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
// Address computations in vectorized code with non-consecutive addresses will
// likely result in more instructions compared to scalar code where the
// computation can more often be merged into the index mode. The resulting
@@ -887,10 +1056,10 @@ unsigned X86TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
return BaseT::getAddressComputationCost(Ty, IsComplex);
}
-unsigned X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
- bool IsPairwise) {
+int X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
+ bool IsPairwise) {
- std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
MVT MTy = LT.second;
@@ -900,7 +1069,7 @@ unsigned X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
// We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
// and make it as the cost.
- static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblPairWise[] = {
+ static const CostTblEntry SSE42CostTblPairWise[] = {
{ ISD::FADD, MVT::v2f64, 2 },
{ ISD::FADD, MVT::v4f32, 4 },
{ ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
@@ -908,7 +1077,7 @@ unsigned X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
{ ISD::ADD, MVT::v8i16, 5 },
};
- static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblPairWise[] = {
+ static const CostTblEntry AVX1CostTblPairWise[] = {
{ ISD::FADD, MVT::v4f32, 4 },
{ ISD::FADD, MVT::v4f64, 5 },
{ ISD::FADD, MVT::v8f32, 7 },
@@ -919,7 +1088,7 @@ unsigned X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
{ ISD::ADD, MVT::v8i32, 5 },
};
- static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblNoPairWise[] = {
+ static const CostTblEntry SSE42CostTblNoPairWise[] = {
{ ISD::FADD, MVT::v2f64, 2 },
{ ISD::FADD, MVT::v4f32, 4 },
{ ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
@@ -927,7 +1096,7 @@ unsigned X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
{ ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
};
- static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblNoPairWise[] = {
+ static const CostTblEntry AVX1CostTblNoPairWise[] = {
{ ISD::FADD, MVT::v4f32, 3 },
{ ISD::FADD, MVT::v4f64, 3 },
{ ISD::FADD, MVT::v8f32, 4 },
@@ -939,29 +1108,21 @@ unsigned X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
};
if (IsPairwise) {
- if (ST->hasAVX()) {
- int Idx = CostTableLookup(AVX1CostTblPairWise, ISD, MTy);
- if (Idx != -1)
- return LT.first * AVX1CostTblPairWise[Idx].Cost;
- }
+ if (ST->hasAVX())
+ if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
+ return LT.first * Entry->Cost;
- if (ST->hasSSE42()) {
- int Idx = CostTableLookup(SSE42CostTblPairWise, ISD, MTy);
- if (Idx != -1)
- return LT.first * SSE42CostTblPairWise[Idx].Cost;
- }
+ if (ST->hasSSE42())
+ if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
+ return LT.first * Entry->Cost;
} else {
- if (ST->hasAVX()) {
- int Idx = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy);
- if (Idx != -1)
- return LT.first * AVX1CostTblNoPairWise[Idx].Cost;
- }
+ if (ST->hasAVX())
+ if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
+ return LT.first * Entry->Cost;
- if (ST->hasSSE42()) {
- int Idx = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy);
- if (Idx != -1)
- return LT.first * SSE42CostTblNoPairWise[Idx].Cost;
- }
+ if (ST->hasSSE42())
+ if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
+ return LT.first * Entry->Cost;
}
return BaseT::getReductionCost(Opcode, ValTy, IsPairwise);
@@ -970,7 +1131,7 @@ unsigned X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
/// \brief Calculate the cost of materializing a 64-bit value. This helper
/// method might only calculate a fraction of a larger immediate. Therefore it
/// is valid to return a cost of ZERO.
-unsigned X86TTIImpl::getIntImmCost(int64_t Val) {
+int X86TTIImpl::getIntImmCost(int64_t Val) {
if (Val == 0)
return TTI::TCC_Free;
@@ -980,7 +1141,7 @@ unsigned X86TTIImpl::getIntImmCost(int64_t Val) {
return 2 * TTI::TCC_Basic;
}
-unsigned X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
+int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
@@ -1004,18 +1165,18 @@ unsigned X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
// Split the constant into 64-bit chunks and calculate the cost for each
// chunk.
- unsigned Cost = 0;
+ int Cost = 0;
for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
int64_t Val = Tmp.getSExtValue();
Cost += getIntImmCost(Val);
}
// We need at least one instruction to materialze the constant.
- return std::max(1U, Cost);
+ return std::max(1, Cost);
}
-unsigned X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
- const APInt &Imm, Type *Ty) {
+int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
+ Type *Ty) {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
@@ -1038,6 +1199,26 @@ unsigned X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
case Instruction::Store:
ImmIdx = 0;
break;
+ case Instruction::ICmp:
+ // This is an imperfect hack to prevent constant hoisting of
+ // compares that might be trying to check if a 64-bit value fits in
+ // 32-bits. The backend can optimize these cases using a right shift by 32.
+ // Ideally we would check the compare predicate here. There also other
+ // similar immediates the backend can use shifts for.
+ if (Idx == 1 && Imm.getBitWidth() == 64) {
+ uint64_t ImmVal = Imm.getZExtValue();
+ if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
+ return TTI::TCC_Free;
+ }
+ ImmIdx = 1;
+ break;
+ case Instruction::And:
+ // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
+ // by using a 32-bit operation with implicit zero extension. Detect such
+ // immediates here as the normal path expects bit 31 to be sign extended.
+ if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
+ return TTI::TCC_Free;
+ // Fallthrough
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
@@ -1045,10 +1226,8 @@ unsigned X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
- case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
- case Instruction::ICmp:
ImmIdx = 1;
break;
// Always return TCC_Free for the shift value of a shift instruction.
@@ -1073,18 +1252,18 @@ unsigned X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
}
if (Idx == ImmIdx) {
- unsigned NumConstants = (BitSize + 63) / 64;
- unsigned Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
+ int NumConstants = (BitSize + 63) / 64;
+ int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
return (Cost <= NumConstants * TTI::TCC_Basic)
- ? static_cast<unsigned>(TTI::TCC_Free)
+ ? static_cast<int>(TTI::TCC_Free)
: Cost;
}
return X86TTIImpl::getIntImmCost(Imm, Ty);
}
-unsigned X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
- const APInt &Imm, Type *Ty) {
+int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
+ Type *Ty) {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
@@ -1118,23 +1297,181 @@ unsigned X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
return X86TTIImpl::getIntImmCost(Imm, Ty);
}
-bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, int Consecutive) {
- int DataWidth = DataTy->getPrimitiveSizeInBits();
+// Return an average cost of Gather / Scatter instruction, maybe improved later
+int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
+ unsigned Alignment, unsigned AddressSpace) {
+
+ assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
+ unsigned VF = SrcVTy->getVectorNumElements();
+
+ // Try to reduce index size from 64 bit (default for GEP)
+ // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
+ // operation will use 16 x 64 indices which do not fit in a zmm and needs
+ // to split. Also check that the base pointer is the same for all lanes,
+ // and that there's at most one variable index.
+ auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
+ unsigned IndexSize = DL.getPointerSizeInBits();
+ GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
+ if (IndexSize < 64 || !GEP)
+ return IndexSize;
+
+ unsigned NumOfVarIndices = 0;
+ Value *Ptrs = GEP->getPointerOperand();
+ if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
+ return IndexSize;
+ for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
+ if (isa<Constant>(GEP->getOperand(i)))
+ continue;
+ Type *IndxTy = GEP->getOperand(i)->getType();
+ if (IndxTy->isVectorTy())
+ IndxTy = IndxTy->getVectorElementType();
+ if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
+ !isa<SExtInst>(GEP->getOperand(i))) ||
+ ++NumOfVarIndices > 1)
+ return IndexSize; // 64
+ }
+ return (unsigned)32;
+ };
+
+
+ // Trying to reduce IndexSize to 32 bits for vector 16.
+ // By default the IndexSize is equal to pointer size.
+ unsigned IndexSize = (VF >= 16) ? getIndexSizeInBits(Ptr, DL) :
+ DL.getPointerSizeInBits();
+
+ Type *IndexVTy = VectorType::get(IntegerType::get(getGlobalContext(),
+ IndexSize), VF);
+ std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
+ std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
+ int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
+ if (SplitFactor > 1) {
+ // Handle splitting of vector of pointers
+ Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
+ return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
+ AddressSpace);
+ }
+
+ // The gather / scatter cost is given by Intel architects. It is a rough
+ // number since we are looking at one instruction in a time.
+ const int GSOverhead = 2;
+ return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
+ Alignment, AddressSpace);
+}
+
+/// Return the cost of full scalarization of gather / scatter operation.
+///
+/// Opcode - Load or Store instruction.
+/// SrcVTy - The type of the data vector that should be gathered or scattered.
+/// VariableMask - The mask is non-constant at compile time.
+/// Alignment - Alignment for one element.
+/// AddressSpace - pointer[s] address space.
+///
+int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
+ bool VariableMask, unsigned Alignment,
+ unsigned AddressSpace) {
+ unsigned VF = SrcVTy->getVectorNumElements();
+
+ int MaskUnpackCost = 0;
+ if (VariableMask) {
+ VectorType *MaskTy =
+ VectorType::get(Type::getInt1Ty(getGlobalContext()), VF);
+ MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
+ int ScalarCompareCost =
+ getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(getGlobalContext()),
+ nullptr);
+ int BranchCost = getCFInstrCost(Instruction::Br);
+ MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
+ }
- // Todo: AVX512 allows gather/scatter, works with strided and random as well
- if ((DataWidth < 32) || (Consecutive == 0))
+ // The cost of the scalar loads/stores.
+ int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
+ Alignment, AddressSpace);
+
+ int InsertExtractCost = 0;
+ if (Opcode == Instruction::Load)
+ for (unsigned i = 0; i < VF; ++i)
+ // Add the cost of inserting each scalar load into the vector
+ InsertExtractCost +=
+ getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
+ else
+ for (unsigned i = 0; i < VF; ++i)
+ // Add the cost of extracting each element out of the data vector
+ InsertExtractCost +=
+ getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
+
+ return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
+}
+
+/// Calculate the cost of Gather / Scatter operation
+int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
+ Value *Ptr, bool VariableMask,
+ unsigned Alignment) {
+ assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
+ unsigned VF = SrcVTy->getVectorNumElements();
+ PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
+ if (!PtrTy && Ptr->getType()->isVectorTy())
+ PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
+ assert(PtrTy && "Unexpected type for Ptr argument");
+ unsigned AddressSpace = PtrTy->getAddressSpace();
+
+ bool Scalarize = false;
+ if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
+ (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
+ Scalarize = true;
+ // Gather / Scatter for vector 2 is not profitable on KNL / SKX
+ // Vector-4 of gather/scatter instruction does not exist on KNL.
+ // We can extend it to 8 elements, but zeroing upper bits of
+ // the mask vector will add more instructions. Right now we give the scalar
+ // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction is
+ // better in the VariableMask case.
+ if (VF == 2 || (VF == 4 && !ST->hasVLX()))
+ Scalarize = true;
+
+ if (Scalarize)
+ return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment, AddressSpace);
+
+ return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
+}
+
+bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
+ Type *ScalarTy = DataTy->getScalarType();
+ int DataWidth = isa<PointerType>(ScalarTy) ?
+ DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
+
+ return (DataWidth >= 32 && ST->hasAVX2());
+}
+
+bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
+ return isLegalMaskedLoad(DataType);
+}
+
+bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
+ // This function is called now in two cases: from the Loop Vectorizer
+ // and from the Scalarizer.
+ // When the Loop Vectorizer asks about legality of the feature,
+ // the vectorization factor is not calculated yet. The Loop Vectorizer
+ // sends a scalar type and the decision is based on the width of the
+ // scalar element.
+ // Later on, the cost model will estimate usage this intrinsic based on
+ // the vector type.
+ // The Scalarizer asks again about legality. It sends a vector type.
+ // In this case we can reject non-power-of-2 vectors.
+ if (isa<VectorType>(DataTy) && !isPowerOf2_32(DataTy->getVectorNumElements()))
return false;
- if (ST->hasAVX512() || ST->hasAVX2())
- return true;
- return false;
+ Type *ScalarTy = DataTy->getScalarType();
+ int DataWidth = isa<PointerType>(ScalarTy) ?
+ DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
+
+ // AVX-512 allows gather and scatter
+ return DataWidth >= 32 && ST->hasAVX512();
}
-bool X86TTIImpl::isLegalMaskedStore(Type *DataType, int Consecutive) {
- return isLegalMaskedLoad(DataType, Consecutive);
+bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
+ return isLegalMaskedGather(DataType);
}
-bool X86TTIImpl::hasCompatibleFunctionAttributes(const Function *Caller,
- const Function *Callee) const {
+bool X86TTIImpl::areInlineCompatible(const Function *Caller,
+ const Function *Callee) const {
const TargetMachine &TM = getTLI()->getTargetMachine();
// Work this as a subsetting of subtarget features.