aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp1347
1 files changed, 647 insertions, 700 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
index a21ca2417ca1..2d577de7c2b8 100644
--- a/contrib/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
+++ b/contrib/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
@@ -31,11 +31,6 @@
// void foo(_Complex float *P)
// for (i) { __real__(*P) = 0; __imag__(*P) = 0; }
//
-// We should enhance this to handle negative strides through memory.
-// Alternatively (and perhaps better) we could rely on an earlier pass to force
-// forward iteration through memory, which is generally better for cache
-// behavior. Negative strides *do* happen for memset/memcpy loops.
-//
// This could recognize common matrix multiplies and dot product idioms and
// replace them with calls to BLAS (if linked in??).
//
@@ -44,7 +39,10 @@
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/BasicAliasAnalysis.h"
+#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
@@ -67,149 +65,85 @@ STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
namespace {
- class LoopIdiomRecognize;
+class LoopIdiomRecognize : public LoopPass {
+ Loop *CurLoop;
+ AliasAnalysis *AA;
+ DominatorTree *DT;
+ LoopInfo *LI;
+ ScalarEvolution *SE;
+ TargetLibraryInfo *TLI;
+ const TargetTransformInfo *TTI;
+ const DataLayout *DL;
+
+public:
+ static char ID;
+ explicit LoopIdiomRecognize() : LoopPass(ID) {
+ initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
+ }
- /// This class defines some utility functions for loop idiom recognization.
- class LIRUtil {
- public:
- /// Return true iff the block contains nothing but an uncondition branch
- /// (aka goto instruction).
- static bool isAlmostEmpty(BasicBlock *);
+ bool runOnLoop(Loop *L, LPPassManager &LPM) override;
+
+ /// This transformation requires natural loop information & requires that
+ /// loop preheaders be inserted into the CFG.
+ ///
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addPreserved<LoopInfoWrapperPass>();
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addPreservedID(LoopSimplifyID);
+ AU.addRequiredID(LCSSAID);
+ AU.addPreservedID(LCSSAID);
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addPreserved<AAResultsWrapperPass>();
+ AU.addRequired<ScalarEvolutionWrapperPass>();
+ AU.addPreserved<ScalarEvolutionWrapperPass>();
+ AU.addPreserved<SCEVAAWrapperPass>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ AU.addPreserved<BasicAAWrapperPass>();
+ AU.addPreserved<GlobalsAAWrapperPass>();
+ }
- static BranchInst *getBranch(BasicBlock *BB) {
- return dyn_cast<BranchInst>(BB->getTerminator());
- }
+private:
+ typedef SmallVector<StoreInst *, 8> StoreList;
+ StoreList StoreRefs;
- /// Derive the precondition block (i.e the block that guards the loop
- /// preheader) from the given preheader.
- static BasicBlock *getPrecondBb(BasicBlock *PreHead);
- };
-
- /// This class is to recoginize idioms of population-count conducted in
- /// a noncountable loop. Currently it only recognizes this pattern:
- /// \code
- /// while(x) {cnt++; ...; x &= x - 1; ...}
- /// \endcode
- class NclPopcountRecognize {
- LoopIdiomRecognize &LIR;
- Loop *CurLoop;
- BasicBlock *PreCondBB;
-
- typedef IRBuilder<> IRBuilderTy;
-
- public:
- explicit NclPopcountRecognize(LoopIdiomRecognize &TheLIR);
- bool recognize();
-
- private:
- /// Take a glimpse of the loop to see if we need to go ahead recoginizing
- /// the idiom.
- bool preliminaryScreen();
-
- /// Check if the given conditional branch is based on the comparison
- /// between a variable and zero, and if the variable is non-zero, the
- /// control yields to the loop entry. If the branch matches the behavior,
- /// the variable involved in the comparion is returned. This function will
- /// be called to see if the precondition and postcondition of the loop
- /// are in desirable form.
- Value *matchCondition(BranchInst *Br, BasicBlock *NonZeroTarget) const;
-
- /// Return true iff the idiom is detected in the loop. and 1) \p CntInst
- /// is set to the instruction counting the population bit. 2) \p CntPhi
- /// is set to the corresponding phi node. 3) \p Var is set to the value
- /// whose population bits are being counted.
- bool detectIdiom
- (Instruction *&CntInst, PHINode *&CntPhi, Value *&Var) const;
-
- /// Insert ctpop intrinsic function and some obviously dead instructions.
- void transform(Instruction *CntInst, PHINode *CntPhi, Value *Var);
-
- /// Create llvm.ctpop.* intrinsic function.
- CallInst *createPopcntIntrinsic(IRBuilderTy &IRB, Value *Val, DebugLoc DL);
- };
-
- class LoopIdiomRecognize : public LoopPass {
- Loop *CurLoop;
- DominatorTree *DT;
- ScalarEvolution *SE;
- TargetLibraryInfo *TLI;
- const TargetTransformInfo *TTI;
- public:
- static char ID;
- explicit LoopIdiomRecognize() : LoopPass(ID) {
- initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
- DT = nullptr;
- SE = nullptr;
- TLI = nullptr;
- TTI = nullptr;
- }
+ /// \name Countable Loop Idiom Handling
+ /// @{
- bool runOnLoop(Loop *L, LPPassManager &LPM) override;
- bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
- SmallVectorImpl<BasicBlock*> &ExitBlocks);
-
- bool processLoopStore(StoreInst *SI, const SCEV *BECount);
- bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
-
- bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
- unsigned StoreAlignment,
- Value *SplatValue, Instruction *TheStore,
- const SCEVAddRecExpr *Ev,
- const SCEV *BECount);
- bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
- const SCEVAddRecExpr *StoreEv,
- const SCEVAddRecExpr *LoadEv,
- const SCEV *BECount);
-
- /// This transformation requires natural loop information & requires that
- /// loop preheaders be inserted into the CFG.
- ///
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addRequiredID(LoopSimplifyID);
- AU.addPreservedID(LoopSimplifyID);
- AU.addRequiredID(LCSSAID);
- AU.addPreservedID(LCSSAID);
- AU.addRequired<AliasAnalysis>();
- AU.addPreserved<AliasAnalysis>();
- AU.addRequired<ScalarEvolution>();
- AU.addPreserved<ScalarEvolution>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- }
+ bool runOnCountableLoop();
+ bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
+ SmallVectorImpl<BasicBlock *> &ExitBlocks);
- DominatorTree *getDominatorTree() {
- return DT ? DT
- : (DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree());
- }
+ void collectStores(BasicBlock *BB);
+ bool isLegalStore(StoreInst *SI);
+ bool processLoopStore(StoreInst *SI, const SCEV *BECount);
+ bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
- ScalarEvolution *getScalarEvolution() {
- return SE ? SE : (SE = &getAnalysis<ScalarEvolution>());
- }
+ bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
+ unsigned StoreAlignment, Value *SplatValue,
+ Instruction *TheStore, const SCEVAddRecExpr *Ev,
+ const SCEV *BECount, bool NegStride);
+ bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
+ const SCEVAddRecExpr *StoreEv,
+ const SCEV *BECount, bool NegStride);
- TargetLibraryInfo *getTargetLibraryInfo() {
- if (!TLI)
- TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
+ /// @}
+ /// \name Noncountable Loop Idiom Handling
+ /// @{
- return TLI;
- }
+ bool runOnNoncountableLoop();
- const TargetTransformInfo *getTargetTransformInfo() {
- return TTI ? TTI
- : (TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
- *CurLoop->getHeader()->getParent()));
- }
+ bool recognizePopcount();
+ void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
+ PHINode *CntPhi, Value *Var);
- Loop *getLoop() const { return CurLoop; }
+ /// @}
+};
- private:
- bool runOnNoncountableLoop();
- bool runOnCountableLoop();
- };
-}
+} // End anonymous namespace.
char LoopIdiomRecognize::ID = 0;
INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
@@ -218,9 +152,12 @@ INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
-INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
-INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
false, false)
@@ -242,406 +179,64 @@ static void deleteDeadInstruction(Instruction *I,
//===----------------------------------------------------------------------===//
//
-// Implementation of LIRUtil
-//
-//===----------------------------------------------------------------------===//
-
-// This function will return true iff the given block contains nothing but goto.
-// A typical usage of this function is to check if the preheader function is
-// "almost" empty such that generated intrinsic functions can be moved across
-// the preheader and be placed at the end of the precondition block without
-// the concern of breaking data dependence.
-bool LIRUtil::isAlmostEmpty(BasicBlock *BB) {
- if (BranchInst *Br = getBranch(BB)) {
- return Br->isUnconditional() && Br == BB->begin();
- }
- return false;
-}
-
-BasicBlock *LIRUtil::getPrecondBb(BasicBlock *PreHead) {
- if (BasicBlock *BB = PreHead->getSinglePredecessor()) {
- BranchInst *Br = getBranch(BB);
- return Br && Br->isConditional() ? BB : nullptr;
- }
- return nullptr;
-}
-
-//===----------------------------------------------------------------------===//
-//
-// Implementation of NclPopcountRecognize
+// Implementation of LoopIdiomRecognize
//
//===----------------------------------------------------------------------===//
-NclPopcountRecognize::NclPopcountRecognize(LoopIdiomRecognize &TheLIR):
- LIR(TheLIR), CurLoop(TheLIR.getLoop()), PreCondBB(nullptr) {
-}
-
-bool NclPopcountRecognize::preliminaryScreen() {
- const TargetTransformInfo *TTI = LIR.getTargetTransformInfo();
- if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
- return false;
-
- // Counting population are usually conducted by few arithmetic instructions.
- // Such instructions can be easilly "absorbed" by vacant slots in a
- // non-compact loop. Therefore, recognizing popcount idiom only makes sense
- // in a compact loop.
-
- // Give up if the loop has multiple blocks or multiple backedges.
- if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
- return false;
-
- BasicBlock *LoopBody = *(CurLoop->block_begin());
- if (LoopBody->size() >= 20) {
- // The loop is too big, bail out.
- return false;
- }
-
- // It should have a preheader containing nothing but a goto instruction.
- BasicBlock *PreHead = CurLoop->getLoopPreheader();
- if (!PreHead || !LIRUtil::isAlmostEmpty(PreHead))
+bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
+ if (skipOptnoneFunction(L))
return false;
- // It should have a precondition block where the generated popcount instrinsic
- // function will be inserted.
- PreCondBB = LIRUtil::getPrecondBb(PreHead);
- if (!PreCondBB)
+ CurLoop = L;
+ // If the loop could not be converted to canonical form, it must have an
+ // indirectbr in it, just give up.
+ if (!L->getLoopPreheader())
return false;
- return true;
-}
-
-Value *NclPopcountRecognize::matchCondition(BranchInst *Br,
- BasicBlock *LoopEntry) const {
- if (!Br || !Br->isConditional())
- return nullptr;
-
- ICmpInst *Cond = dyn_cast<ICmpInst>(Br->getCondition());
- if (!Cond)
- return nullptr;
-
- ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
- if (!CmpZero || !CmpZero->isZero())
- return nullptr;
-
- ICmpInst::Predicate Pred = Cond->getPredicate();
- if ((Pred == ICmpInst::ICMP_NE && Br->getSuccessor(0) == LoopEntry) ||
- (Pred == ICmpInst::ICMP_EQ && Br->getSuccessor(1) == LoopEntry))
- return Cond->getOperand(0);
-
- return nullptr;
-}
-
-bool NclPopcountRecognize::detectIdiom(Instruction *&CntInst,
- PHINode *&CntPhi,
- Value *&Var) const {
- // Following code tries to detect this idiom:
- //
- // if (x0 != 0)
- // goto loop-exit // the precondition of the loop
- // cnt0 = init-val;
- // do {
- // x1 = phi (x0, x2);
- // cnt1 = phi(cnt0, cnt2);
- //
- // cnt2 = cnt1 + 1;
- // ...
- // x2 = x1 & (x1 - 1);
- // ...
- // } while(x != 0);
- //
- // loop-exit:
- //
-
- // step 1: Check to see if the look-back branch match this pattern:
- // "if (a!=0) goto loop-entry".
- BasicBlock *LoopEntry;
- Instruction *DefX2, *CountInst;
- Value *VarX1, *VarX0;
- PHINode *PhiX, *CountPhi;
-
- DefX2 = CountInst = nullptr;
- VarX1 = VarX0 = nullptr;
- PhiX = CountPhi = nullptr;
- LoopEntry = *(CurLoop->block_begin());
-
- // step 1: Check if the loop-back branch is in desirable form.
- {
- if (Value *T = matchCondition (LIRUtil::getBranch(LoopEntry), LoopEntry))
- DefX2 = dyn_cast<Instruction>(T);
- else
- return false;
- }
-
- // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
- {
- if (!DefX2 || DefX2->getOpcode() != Instruction::And)
- return false;
-
- BinaryOperator *SubOneOp;
-
- if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
- VarX1 = DefX2->getOperand(1);
- else {
- VarX1 = DefX2->getOperand(0);
- SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
- }
- if (!SubOneOp)
- return false;
-
- Instruction *SubInst = cast<Instruction>(SubOneOp);
- ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
- if (!Dec ||
- !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
- (SubInst->getOpcode() == Instruction::Add && Dec->isAllOnesValue()))) {
- return false;
- }
- }
-
- // step 3: Check the recurrence of variable X
- {
- PhiX = dyn_cast<PHINode>(VarX1);
- if (!PhiX ||
- (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) {
- return false;
- }
- }
-
- // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
- {
- CountInst = nullptr;
- for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI(),
- IterE = LoopEntry->end(); Iter != IterE; Iter++) {
- Instruction *Inst = Iter;
- if (Inst->getOpcode() != Instruction::Add)
- continue;
-
- ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
- if (!Inc || !Inc->isOne())
- continue;
-
- PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0));
- if (!Phi || Phi->getParent() != LoopEntry)
- continue;
-
- // Check if the result of the instruction is live of the loop.
- bool LiveOutLoop = false;
- for (User *U : Inst->users()) {
- if ((cast<Instruction>(U))->getParent() != LoopEntry) {
- LiveOutLoop = true; break;
- }
- }
-
- if (LiveOutLoop) {
- CountInst = Inst;
- CountPhi = Phi;
- break;
- }
- }
-
- if (!CountInst)
- return false;
- }
-
- // step 5: check if the precondition is in this form:
- // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
- {
- BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
- Value *T = matchCondition (PreCondBr, CurLoop->getLoopPreheader());
- if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
- return false;
-
- CntInst = CountInst;
- CntPhi = CountPhi;
- Var = T;
- }
-
- return true;
-}
-
-void NclPopcountRecognize::transform(Instruction *CntInst,
- PHINode *CntPhi, Value *Var) {
-
- ScalarEvolution *SE = LIR.getScalarEvolution();
- TargetLibraryInfo *TLI = LIR.getTargetLibraryInfo();
- BasicBlock *PreHead = CurLoop->getLoopPreheader();
- BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
- const DebugLoc DL = CntInst->getDebugLoc();
-
- // Assuming before transformation, the loop is following:
- // if (x) // the precondition
- // do { cnt++; x &= x - 1; } while(x);
-
- // Step 1: Insert the ctpop instruction at the end of the precondition block
- IRBuilderTy Builder(PreCondBr);
- Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
- {
- PopCnt = createPopcntIntrinsic(Builder, Var, DL);
- NewCount = PopCntZext =
- Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
-
- if (NewCount != PopCnt)
- (cast<Instruction>(NewCount))->setDebugLoc(DL);
-
- // TripCnt is exactly the number of iterations the loop has
- TripCnt = NewCount;
-
- // If the population counter's initial value is not zero, insert Add Inst.
- Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
- ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
- if (!InitConst || !InitConst->isZero()) {
- NewCount = Builder.CreateAdd(NewCount, CntInitVal);
- (cast<Instruction>(NewCount))->setDebugLoc(DL);
- }
- }
-
- // Step 2: Replace the precondition from "if(x == 0) goto loop-exit" to
- // "if(NewCount == 0) loop-exit". Withtout this change, the intrinsic
- // function would be partial dead code, and downstream passes will drag
- // it back from the precondition block to the preheader.
- {
- ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
-
- Value *Opnd0 = PopCntZext;
- Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
- if (PreCond->getOperand(0) != Var)
- std::swap(Opnd0, Opnd1);
-
- ICmpInst *NewPreCond =
- cast<ICmpInst>(Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
- PreCondBr->setCondition(NewPreCond);
-
- RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
- }
-
- // Step 3: Note that the population count is exactly the trip count of the
- // loop in question, which enble us to to convert the loop from noncountable
- // loop into a countable one. The benefit is twofold:
- //
- // - If the loop only counts population, the entire loop become dead after
- // the transformation. It is lots easier to prove a countable loop dead
- // than to prove a noncountable one. (In some C dialects, a infite loop
- // isn't dead even if it computes nothing useful. In general, DCE needs
- // to prove a noncountable loop finite before safely delete it.)
- //
- // - If the loop also performs something else, it remains alive.
- // Since it is transformed to countable form, it can be aggressively
- // optimized by some optimizations which are in general not applicable
- // to a noncountable loop.
- //
- // After this step, this loop (conceptually) would look like following:
- // newcnt = __builtin_ctpop(x);
- // t = newcnt;
- // if (x)
- // do { cnt++; x &= x-1; t--) } while (t > 0);
- BasicBlock *Body = *(CurLoop->block_begin());
- {
- BranchInst *LbBr = LIRUtil::getBranch(Body);
- ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
- Type *Ty = TripCnt->getType();
-
- PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", Body->begin());
-
- Builder.SetInsertPoint(LbCond);
- Value *Opnd1 = cast<Value>(TcPhi);
- Value *Opnd2 = cast<Value>(ConstantInt::get(Ty, 1));
- Instruction *TcDec =
- cast<Instruction>(Builder.CreateSub(Opnd1, Opnd2, "tcdec", false, true));
-
- TcPhi->addIncoming(TripCnt, PreHead);
- TcPhi->addIncoming(TcDec, Body);
-
- CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ?
- CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
- LbCond->setPredicate(Pred);
- LbCond->setOperand(0, TcDec);
- LbCond->setOperand(1, cast<Value>(ConstantInt::get(Ty, 0)));
- }
-
- // Step 4: All the references to the original population counter outside
- // the loop are replaced with the NewCount -- the value returned from
- // __builtin_ctpop().
- CntInst->replaceUsesOutsideBlock(NewCount, Body);
-
- // step 5: Forget the "non-computable" trip-count SCEV associated with the
- // loop. The loop would otherwise not be deleted even if it becomes empty.
- SE->forgetLoop(CurLoop);
-}
-
-CallInst *NclPopcountRecognize::createPopcntIntrinsic(IRBuilderTy &IRBuilder,
- Value *Val, DebugLoc DL) {
- Value *Ops[] = { Val };
- Type *Tys[] = { Val->getType() };
-
- Module *M = (*(CurLoop->block_begin()))->getParent()->getParent();
- Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
- CallInst *CI = IRBuilder.CreateCall(Func, Ops);
- CI->setDebugLoc(DL);
-
- return CI;
-}
-
-/// recognize - detect population count idiom in a non-countable loop. If
-/// detected, transform the relevant code to popcount intrinsic function
-/// call, and return true; otherwise, return false.
-bool NclPopcountRecognize::recognize() {
-
- if (!LIR.getTargetTransformInfo())
+ // Disable loop idiom recognition if the function's name is a common idiom.
+ StringRef Name = L->getHeader()->getParent()->getName();
+ if (Name == "memset" || Name == "memcpy")
return false;
- LIR.getScalarEvolution();
-
- if (!preliminaryScreen())
- return false;
+ AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
+ TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
+ TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
+ *CurLoop->getHeader()->getParent());
+ DL = &CurLoop->getHeader()->getModule()->getDataLayout();
- Instruction *CntInst;
- PHINode *CntPhi;
- Value *Val;
- if (!detectIdiom(CntInst, CntPhi, Val))
- return false;
+ if (SE->hasLoopInvariantBackedgeTakenCount(L))
+ return runOnCountableLoop();
- transform(CntInst, CntPhi, Val);
- return true;
+ return runOnNoncountableLoop();
}
-//===----------------------------------------------------------------------===//
-//
-// Implementation of LoopIdiomRecognize
-//
-//===----------------------------------------------------------------------===//
-
bool LoopIdiomRecognize::runOnCountableLoop() {
const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
assert(!isa<SCEVCouldNotCompute>(BECount) &&
- "runOnCountableLoop() called on a loop without a predictable"
- "backedge-taken count");
+ "runOnCountableLoop() called on a loop without a predictable"
+ "backedge-taken count");
// If this loop executes exactly one time, then it should be peeled, not
// optimized by this pass.
if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
- if (BECst->getValue()->getValue() == 0)
+ if (BECst->getAPInt() == 0)
return false;
- // set DT
- (void)getDominatorTree();
-
- LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
-
- // set TLI
- (void)getTargetLibraryInfo();
-
- SmallVector<BasicBlock*, 8> ExitBlocks;
+ SmallVector<BasicBlock *, 8> ExitBlocks;
CurLoop->getUniqueExitBlocks(ExitBlocks);
DEBUG(dbgs() << "loop-idiom Scanning: F["
- << CurLoop->getHeader()->getParent()->getName()
- << "] Loop %" << CurLoop->getHeader()->getName() << "\n");
+ << CurLoop->getHeader()->getParent()->getName() << "] Loop %"
+ << CurLoop->getHeader()->getName() << "\n");
bool MadeChange = false;
// Scan all the blocks in the loop that are not in subloops.
for (auto *BB : CurLoop->getBlocks()) {
// Ignore blocks in subloops.
- if (LI.getLoopFor(BB) != CurLoop)
+ if (LI->getLoopFor(BB) != CurLoop)
continue;
MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
@@ -649,41 +244,109 @@ bool LoopIdiomRecognize::runOnCountableLoop() {
return MadeChange;
}
-bool LoopIdiomRecognize::runOnNoncountableLoop() {
- NclPopcountRecognize Popcount(*this);
- if (Popcount.recognize())
- return true;
+static unsigned getStoreSizeInBytes(StoreInst *SI, const DataLayout *DL) {
+ uint64_t SizeInBits = DL->getTypeSizeInBits(SI->getValueOperand()->getType());
+ assert(((SizeInBits & 7) || (SizeInBits >> 32) == 0) &&
+ "Don't overflow unsigned.");
+ return (unsigned)SizeInBits >> 3;
+}
- return false;
+static unsigned getStoreStride(const SCEVAddRecExpr *StoreEv) {
+ const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
+ return ConstStride->getAPInt().getZExtValue();
}
-bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
- if (skipOptnoneFunction(L))
+/// getMemSetPatternValue - If a strided store of the specified value is safe to
+/// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
+/// be passed in. Otherwise, return null.
+///
+/// Note that we don't ever attempt to use memset_pattern8 or 4, because these
+/// just replicate their input array and then pass on to memset_pattern16.
+static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
+ // If the value isn't a constant, we can't promote it to being in a constant
+ // array. We could theoretically do a store to an alloca or something, but
+ // that doesn't seem worthwhile.
+ Constant *C = dyn_cast<Constant>(V);
+ if (!C)
+ return nullptr;
+
+ // Only handle simple values that are a power of two bytes in size.
+ uint64_t Size = DL->getTypeSizeInBits(V->getType());
+ if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
+ return nullptr;
+
+ // Don't care enough about darwin/ppc to implement this.
+ if (DL->isBigEndian())
+ return nullptr;
+
+ // Convert to size in bytes.
+ Size /= 8;
+
+ // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
+ // if the top and bottom are the same (e.g. for vectors and large integers).
+ if (Size > 16)
+ return nullptr;
+
+ // If the constant is exactly 16 bytes, just use it.
+ if (Size == 16)
+ return C;
+
+ // Otherwise, we'll use an array of the constants.
+ unsigned ArraySize = 16 / Size;
+ ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
+ return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
+}
+
+bool LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
+ // Don't touch volatile stores.
+ if (!SI->isSimple())
return false;
- CurLoop = L;
+ Value *StoredVal = SI->getValueOperand();
+ Value *StorePtr = SI->getPointerOperand();
- // If the loop could not be converted to canonical form, it must have an
- // indirectbr in it, just give up.
- if (!L->getLoopPreheader())
+ // Reject stores that are so large that they overflow an unsigned.
+ uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
+ if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
return false;
- // Disable loop idiom recognition if the function's name is a common idiom.
- StringRef Name = L->getHeader()->getParent()->getName();
- if (Name == "memset" || Name == "memcpy")
+ // See if the pointer expression is an AddRec like {base,+,1} on the current
+ // loop, which indicates a strided store. If we have something else, it's a
+ // random store we can't handle.
+ const SCEVAddRecExpr *StoreEv =
+ dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
+ if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
return false;
- SE = &getAnalysis<ScalarEvolution>();
- if (SE->hasLoopInvariantBackedgeTakenCount(L))
- return runOnCountableLoop();
- return runOnNoncountableLoop();
+ // Check to see if we have a constant stride.
+ if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
+ return false;
+
+ return true;
+}
+
+void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
+ StoreRefs.clear();
+ for (Instruction &I : *BB) {
+ StoreInst *SI = dyn_cast<StoreInst>(&I);
+ if (!SI)
+ continue;
+
+ // Make sure this is a strided store with a constant stride.
+ if (!isLegalStore(SI))
+ continue;
+
+ // Save the store locations.
+ StoreRefs.push_back(SI);
+ }
}
/// runOnLoopBlock - Process the specified block, which lives in a counted loop
/// with the specified backedge count. This block is known to be in the current
/// loop and not in any subloops.
-bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
- SmallVectorImpl<BasicBlock*> &ExitBlocks) {
+bool LoopIdiomRecognize::runOnLoopBlock(
+ BasicBlock *BB, const SCEV *BECount,
+ SmallVectorImpl<BasicBlock *> &ExitBlocks) {
// We can only promote stores in this block if they are unconditionally
// executed in the loop. For a block to be unconditionally executed, it has
// to dominate all the exit blocks of the loop. Verify this now.
@@ -692,25 +355,18 @@ bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
return false;
bool MadeChange = false;
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
- Instruction *Inst = I++;
- // Look for store instructions, which may be optimized to memset/memcpy.
- if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- WeakVH InstPtr(I);
- if (!processLoopStore(SI, BECount)) continue;
- MadeChange = true;
-
- // If processing the store invalidated our iterator, start over from the
- // top of the block.
- if (!InstPtr)
- I = BB->begin();
- continue;
- }
+ // Look for store instructions, which may be optimized to memset/memcpy.
+ collectStores(BB);
+ for (auto &SI : StoreRefs)
+ MadeChange |= processLoopStore(SI, BECount);
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
+ Instruction *Inst = &*I++;
// Look for memset instructions, which may be optimized to a larger memset.
- if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
- WeakVH InstPtr(I);
- if (!processLoopMemSet(MSI, BECount)) continue;
+ if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
+ WeakVH InstPtr(&*I);
+ if (!processLoopMemSet(MSI, BECount))
+ continue;
MadeChange = true;
// If processing the memset invalidated our iterator, start over from the
@@ -724,71 +380,38 @@ bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
return MadeChange;
}
-
/// processLoopStore - See if this store can be promoted to a memset or memcpy.
bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) {
- if (!SI->isSimple()) return false;
+ assert(SI->isSimple() && "Expected only non-volatile stores.");
Value *StoredVal = SI->getValueOperand();
Value *StorePtr = SI->getPointerOperand();
- // Reject stores that are so large that they overflow an unsigned.
- auto &DL = CurLoop->getHeader()->getModule()->getDataLayout();
- uint64_t SizeInBits = DL.getTypeSizeInBits(StoredVal->getType());
- if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
- return false;
-
- // See if the pointer expression is an AddRec like {base,+,1} on the current
- // loop, which indicates a strided store. If we have something else, it's a
- // random store we can't handle.
- const SCEVAddRecExpr *StoreEv =
- dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
- if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
- return false;
-
// Check to see if the stride matches the size of the store. If so, then we
// know that every byte is touched in the loop.
- unsigned StoreSize = (unsigned)SizeInBits >> 3;
- const SCEVConstant *Stride = dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
-
- if (!Stride || StoreSize != Stride->getValue()->getValue()) {
- // TODO: Could also handle negative stride here someday, that will require
- // the validity check in mayLoopAccessLocation to be updated though.
- // Enable this to print exact negative strides.
- if (0 && Stride && StoreSize == -Stride->getValue()->getValue()) {
- dbgs() << "NEGATIVE STRIDE: " << *SI << "\n";
- dbgs() << "BB: " << *SI->getParent();
- }
-
+ const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
+ unsigned Stride = getStoreStride(StoreEv);
+ unsigned StoreSize = getStoreSizeInBytes(SI, DL);
+ if (StoreSize != Stride && StoreSize != -Stride)
return false;
- }
+
+ bool NegStride = StoreSize == -Stride;
// See if we can optimize just this store in isolation.
if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(),
- StoredVal, SI, StoreEv, BECount))
+ StoredVal, SI, StoreEv, BECount, NegStride))
return true;
- // If the stored value is a strided load in the same loop with the same stride
- // this this may be transformable into a memcpy. This kicks in for stuff like
- // for (i) A[i] = B[i];
- if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
- const SCEVAddRecExpr *LoadEv =
- dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getOperand(0)));
- if (LoadEv && LoadEv->getLoop() == CurLoop && LoadEv->isAffine() &&
- StoreEv->getOperand(1) == LoadEv->getOperand(1) && LI->isSimple())
- if (processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, LoadEv, BECount))
- return true;
- }
- //errs() << "UNHANDLED strided store: " << *StoreEv << " - " << *SI << "\n";
-
- return false;
+ // Optimize the store into a memcpy, if it feeds an similarly strided load.
+ return processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, BECount, NegStride);
}
/// processLoopMemSet - See if this memset can be promoted to a large memset.
-bool LoopIdiomRecognize::
-processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) {
+bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
+ const SCEV *BECount) {
// We can only handle non-volatile memsets with a constant size.
- if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false;
+ if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
+ return false;
// If we're not allowed to hack on memset, we fail.
if (!TLI->has(LibFunc::memset))
@@ -818,17 +441,16 @@ processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) {
return false;
return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
- MSI->getAlignment(), MSI->getValue(),
- MSI, Ev, BECount);
+ MSI->getAlignment(), MSI->getValue(), MSI, Ev,
+ BECount, /*NegStride=*/false);
}
-
/// mayLoopAccessLocation - Return true if the specified loop might access the
/// specified pointer location, which is a loop-strided access. The 'Access'
/// argument specifies what the verboten forms of access are (read or write).
-static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access,
- Loop *L, const SCEV *BECount,
- unsigned StoreSize, AliasAnalysis &AA,
+static bool mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
+ const SCEV *BECount, unsigned StoreSize,
+ AliasAnalysis &AA,
Instruction *IgnoredStore) {
// Get the location that may be stored across the loop. Since the access is
// strided positively through memory, we say that the modified location starts
@@ -838,7 +460,7 @@ static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access,
// If the loop iterates a fixed number of times, we can refine the access size
// to be exactly the size of the memset, which is (BECount+1)*StoreSize
if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
- AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize;
+ AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize;
// TODO: For this to be really effective, we have to dive into the pointer
// operand in the store. Store to &A[i] of 100 will always return may alias
@@ -849,59 +471,31 @@ static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access,
for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
++BI)
for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I)
- if (&*I != IgnoredStore &&
- (AA.getModRefInfo(I, StoreLoc) & Access))
+ if (&*I != IgnoredStore && (AA.getModRefInfo(&*I, StoreLoc) & Access))
return true;
return false;
}
-/// getMemSetPatternValue - If a strided store of the specified value is safe to
-/// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
-/// be passed in. Otherwise, return null.
-///
-/// Note that we don't ever attempt to use memset_pattern8 or 4, because these
-/// just replicate their input array and then pass on to memset_pattern16.
-static Constant *getMemSetPatternValue(Value *V, const DataLayout &DL) {
- // If the value isn't a constant, we can't promote it to being in a constant
- // array. We could theoretically do a store to an alloca or something, but
- // that doesn't seem worthwhile.
- Constant *C = dyn_cast<Constant>(V);
- if (!C) return nullptr;
-
- // Only handle simple values that are a power of two bytes in size.
- uint64_t Size = DL.getTypeSizeInBits(V->getType());
- if (Size == 0 || (Size & 7) || (Size & (Size-1)))
- return nullptr;
-
- // Don't care enough about darwin/ppc to implement this.
- if (DL.isBigEndian())
- return nullptr;
-
- // Convert to size in bytes.
- Size /= 8;
-
- // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
- // if the top and bottom are the same (e.g. for vectors and large integers).
- if (Size > 16) return nullptr;
-
- // If the constant is exactly 16 bytes, just use it.
- if (Size == 16) return C;
-
- // Otherwise, we'll use an array of the constants.
- unsigned ArraySize = 16/Size;
- ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
- return ConstantArray::get(AT, std::vector<Constant*>(ArraySize, C));
+// If we have a negative stride, Start refers to the end of the memory location
+// we're trying to memset. Therefore, we need to recompute the base pointer,
+// which is just Start - BECount*Size.
+static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
+ Type *IntPtr, unsigned StoreSize,
+ ScalarEvolution *SE) {
+ const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
+ if (StoreSize != 1)
+ Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
+ SCEV::FlagNUW);
+ return SE->getMinusSCEV(Start, Index);
}
-
/// processLoopStridedStore - We see a strided store of some value. If we can
/// transform this into a memset or memset_pattern in the loop preheader, do so.
-bool LoopIdiomRecognize::
-processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
- unsigned StoreAlignment, Value *StoredVal,
- Instruction *TheStore, const SCEVAddRecExpr *Ev,
- const SCEV *BECount) {
+bool LoopIdiomRecognize::processLoopStridedStore(
+ Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment,
+ Value *StoredVal, Instruction *TheStore, const SCEVAddRecExpr *Ev,
+ const SCEV *BECount, bool NegStride) {
// If the stored value is a byte-wise value (like i32 -1), then it may be
// turned into a memset of i8 -1, assuming that all the consecutive bytes
@@ -909,7 +503,6 @@ processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
// but it can be turned into memset_pattern if the target supports it.
Value *SplatValue = isBytewiseValue(StoredVal);
Constant *PatternValue = nullptr;
- auto &DL = CurLoop->getHeader()->getModule()->getDataLayout();
unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
// If we're allowed to form a memset, and the stored value would be acceptable
@@ -936,9 +529,15 @@ processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
// header. This allows us to insert code for it in the preheader.
BasicBlock *Preheader = CurLoop->getLoopPreheader();
IRBuilder<> Builder(Preheader->getTerminator());
- SCEVExpander Expander(*SE, DL, "loop-idiom");
+ SCEVExpander Expander(*SE, *DL, "loop-idiom");
Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
+ Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS);
+
+ const SCEV *Start = Ev->getStart();
+ // Handle negative strided loops.
+ if (NegStride)
+ Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE);
// Okay, we have a strided store "p[i]" of a splattable value. We can turn
// this into a memset in the loop preheader now if we want. However, this
@@ -946,12 +545,9 @@ processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
// or write to the aliased location. Check for any overlap by generating the
// base pointer and checking the region.
Value *BasePtr =
- Expander.expandCodeFor(Ev->getStart(), DestInt8PtrTy,
- Preheader->getTerminator());
-
- if (mayLoopAccessLocation(BasePtr, AliasAnalysis::ModRef,
- CurLoop, BECount,
- StoreSize, getAnalysis<AliasAnalysis>(), TheStore)) {
+ Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
+ if (mayLoopAccessLocation(BasePtr, MRI_ModRef, CurLoop, BECount, StoreSize,
+ *AA, TheStore)) {
Expander.clear();
// If we generated new code for the base pointer, clean up.
RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
@@ -962,36 +558,30 @@ processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
// The # stored bytes is (BECount+1)*Size. Expand the trip count out to
// pointer size if it isn't already.
- Type *IntPtr = Builder.getIntPtrTy(DL, DestAS);
BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
- const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
- SCEV::FlagNUW);
+ const SCEV *NumBytesS =
+ SE->getAddExpr(BECount, SE->getOne(IntPtr), SCEV::FlagNUW);
if (StoreSize != 1) {
NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
SCEV::FlagNUW);
}
Value *NumBytes =
- Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
+ Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
CallInst *NewCall;
if (SplatValue) {
- NewCall = Builder.CreateMemSet(BasePtr,
- SplatValue,
- NumBytes,
- StoreAlignment);
+ NewCall =
+ Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment);
} else {
// Everything is emitted in default address space
Type *Int8PtrTy = DestInt8PtrTy;
- Module *M = TheStore->getParent()->getParent()->getParent();
- Value *MSP = M->getOrInsertFunction("memset_pattern16",
- Builder.getVoidTy(),
- Int8PtrTy,
- Int8PtrTy,
- IntPtr,
- (void*)nullptr);
+ Module *M = TheStore->getModule();
+ Value *MSP =
+ M->getOrInsertFunction("memset_pattern16", Builder.getVoidTy(),
+ Int8PtrTy, Int8PtrTy, IntPtr, (void *)nullptr);
// Otherwise we should form a memset_pattern16. PatternValue is known to be
// an constant array of 16-bytes. Plop the value into a mergable global.
@@ -1015,26 +605,47 @@ processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
return true;
}
-/// processLoopStoreOfLoopLoad - We see a strided store whose value is a
-/// same-strided load.
-bool LoopIdiomRecognize::
-processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
- const SCEVAddRecExpr *StoreEv,
- const SCEVAddRecExpr *LoadEv,
- const SCEV *BECount) {
+/// If the stored value is a strided load in the same loop with the same stride
+/// this may be transformable into a memcpy. This kicks in for stuff like
+/// for (i) A[i] = B[i];
+bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(
+ StoreInst *SI, unsigned StoreSize, const SCEVAddRecExpr *StoreEv,
+ const SCEV *BECount, bool NegStride) {
// If we're not allowed to form memcpy, we fail.
if (!TLI->has(LibFunc::memcpy))
return false;
- LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
+ // The store must be feeding a non-volatile load.
+ LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
+ if (!LI || !LI->isSimple())
+ return false;
+
+ // See if the pointer expression is an AddRec like {base,+,1} on the current
+ // loop, which indicates a strided load. If we have something else, it's a
+ // random load we can't handle.
+ const SCEVAddRecExpr *LoadEv =
+ dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
+ if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
+ return false;
+
+ // The store and load must share the same stride.
+ if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
+ return false;
// The trip count of the loop and the base pointer of the addrec SCEV is
// guaranteed to be loop invariant, which means that it should dominate the
// header. This allows us to insert code for it in the preheader.
BasicBlock *Preheader = CurLoop->getLoopPreheader();
IRBuilder<> Builder(Preheader->getTerminator());
- const DataLayout &DL = Preheader->getModule()->getDataLayout();
- SCEVExpander Expander(*SE, DL, "loop-idiom");
+ SCEVExpander Expander(*SE, *DL, "loop-idiom");
+
+ const SCEV *StrStart = StoreEv->getStart();
+ unsigned StrAS = SI->getPointerAddressSpace();
+ Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS);
+
+ // Handle negative strided loops.
+ if (NegStride)
+ StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE);
// Okay, we have a strided store "p[i]" of a loaded value. We can turn
// this into a memcpy in the loop preheader now if we want. However, this
@@ -1042,29 +653,31 @@ processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
// or write the memory region we're storing to. This includes the load that
// feeds the stores. Check for an alias by generating the base address and
// checking everything.
- Value *StoreBasePtr =
- Expander.expandCodeFor(StoreEv->getStart(),
- Builder.getInt8PtrTy(SI->getPointerAddressSpace()),
- Preheader->getTerminator());
-
- if (mayLoopAccessLocation(StoreBasePtr, AliasAnalysis::ModRef,
- CurLoop, BECount, StoreSize,
- getAnalysis<AliasAnalysis>(), SI)) {
+ Value *StoreBasePtr = Expander.expandCodeFor(
+ StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
+
+ if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount,
+ StoreSize, *AA, SI)) {
Expander.clear();
// If we generated new code for the base pointer, clean up.
RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
return false;
}
+ const SCEV *LdStart = LoadEv->getStart();
+ unsigned LdAS = LI->getPointerAddressSpace();
+
+ // Handle negative strided loops.
+ if (NegStride)
+ LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE);
+
// For a memcpy, we have to make sure that the input array is not being
// mutated by the loop.
- Value *LoadBasePtr =
- Expander.expandCodeFor(LoadEv->getStart(),
- Builder.getInt8PtrTy(LI->getPointerAddressSpace()),
- Preheader->getTerminator());
+ Value *LoadBasePtr = Expander.expandCodeFor(
+ LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
- if (mayLoopAccessLocation(LoadBasePtr, AliasAnalysis::Mod, CurLoop, BECount,
- StoreSize, getAnalysis<AliasAnalysis>(), SI)) {
+ if (mayLoopAccessLocation(LoadBasePtr, MRI_Mod, CurLoop, BECount, StoreSize,
+ *AA, SI)) {
Expander.clear();
// If we generated new code for the base pointer, clean up.
RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
@@ -1074,34 +687,368 @@ processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
// Okay, everything is safe, we can transform this!
-
// The # stored bytes is (BECount+1)*Size. Expand the trip count out to
// pointer size if it isn't already.
- Type *IntPtrTy = Builder.getIntPtrTy(DL, SI->getPointerAddressSpace());
BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
- const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtrTy, 1),
- SCEV::FlagNUW);
+ const SCEV *NumBytesS =
+ SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW);
if (StoreSize != 1)
NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
SCEV::FlagNUW);
Value *NumBytes =
- Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
+ Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
CallInst *NewCall =
- Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
- std::min(SI->getAlignment(), LI->getAlignment()));
+ Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
+ std::min(SI->getAlignment(), LI->getAlignment()));
NewCall->setDebugLoc(SI->getDebugLoc());
DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n"
<< " from load ptr=" << *LoadEv << " at: " << *LI << "\n"
<< " from store ptr=" << *StoreEv << " at: " << *SI << "\n");
-
- // Okay, the memset has been formed. Zap the original store and anything that
+ // Okay, the memcpy has been formed. Zap the original store and anything that
// feeds into it.
deleteDeadInstruction(SI, TLI);
++NumMemCpy;
return true;
}
+
+bool LoopIdiomRecognize::runOnNoncountableLoop() {
+ return recognizePopcount();
+}
+
+/// Check if the given conditional branch is based on the comparison between
+/// a variable and zero, and if the variable is non-zero, the control yields to
+/// the loop entry. If the branch matches the behavior, the variable involved
+/// in the comparion is returned. This function will be called to see if the
+/// precondition and postcondition of the loop are in desirable form.
+static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry) {
+ if (!BI || !BI->isConditional())
+ return nullptr;
+
+ ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
+ if (!Cond)
+ return nullptr;
+
+ ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
+ if (!CmpZero || !CmpZero->isZero())
+ return nullptr;
+
+ ICmpInst::Predicate Pred = Cond->getPredicate();
+ if ((Pred == ICmpInst::ICMP_NE && BI->getSuccessor(0) == LoopEntry) ||
+ (Pred == ICmpInst::ICMP_EQ && BI->getSuccessor(1) == LoopEntry))
+ return Cond->getOperand(0);
+
+ return nullptr;
+}
+
+/// Return true iff the idiom is detected in the loop.
+///
+/// Additionally:
+/// 1) \p CntInst is set to the instruction counting the population bit.
+/// 2) \p CntPhi is set to the corresponding phi node.
+/// 3) \p Var is set to the value whose population bits are being counted.
+///
+/// The core idiom we are trying to detect is:
+/// \code
+/// if (x0 != 0)
+/// goto loop-exit // the precondition of the loop
+/// cnt0 = init-val;
+/// do {
+/// x1 = phi (x0, x2);
+/// cnt1 = phi(cnt0, cnt2);
+///
+/// cnt2 = cnt1 + 1;
+/// ...
+/// x2 = x1 & (x1 - 1);
+/// ...
+/// } while(x != 0);
+///
+/// loop-exit:
+/// \endcode
+static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
+ Instruction *&CntInst, PHINode *&CntPhi,
+ Value *&Var) {
+ // step 1: Check to see if the look-back branch match this pattern:
+ // "if (a!=0) goto loop-entry".
+ BasicBlock *LoopEntry;
+ Instruction *DefX2, *CountInst;
+ Value *VarX1, *VarX0;
+ PHINode *PhiX, *CountPhi;
+
+ DefX2 = CountInst = nullptr;
+ VarX1 = VarX0 = nullptr;
+ PhiX = CountPhi = nullptr;
+ LoopEntry = *(CurLoop->block_begin());
+
+ // step 1: Check if the loop-back branch is in desirable form.
+ {
+ if (Value *T = matchCondition(
+ dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
+ DefX2 = dyn_cast<Instruction>(T);
+ else
+ return false;
+ }
+
+ // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
+ {
+ if (!DefX2 || DefX2->getOpcode() != Instruction::And)
+ return false;
+
+ BinaryOperator *SubOneOp;
+
+ if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
+ VarX1 = DefX2->getOperand(1);
+ else {
+ VarX1 = DefX2->getOperand(0);
+ SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
+ }
+ if (!SubOneOp)
+ return false;
+
+ Instruction *SubInst = cast<Instruction>(SubOneOp);
+ ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
+ if (!Dec ||
+ !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
+ (SubInst->getOpcode() == Instruction::Add &&
+ Dec->isAllOnesValue()))) {
+ return false;
+ }
+ }
+
+ // step 3: Check the recurrence of variable X
+ {
+ PhiX = dyn_cast<PHINode>(VarX1);
+ if (!PhiX ||
+ (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) {
+ return false;
+ }
+ }
+
+ // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
+ {
+ CountInst = nullptr;
+ for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
+ IterE = LoopEntry->end();
+ Iter != IterE; Iter++) {
+ Instruction *Inst = &*Iter;
+ if (Inst->getOpcode() != Instruction::Add)
+ continue;
+
+ ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
+ if (!Inc || !Inc->isOne())
+ continue;
+
+ PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0));
+ if (!Phi || Phi->getParent() != LoopEntry)
+ continue;
+
+ // Check if the result of the instruction is live of the loop.
+ bool LiveOutLoop = false;
+ for (User *U : Inst->users()) {
+ if ((cast<Instruction>(U))->getParent() != LoopEntry) {
+ LiveOutLoop = true;
+ break;
+ }
+ }
+
+ if (LiveOutLoop) {
+ CountInst = Inst;
+ CountPhi = Phi;
+ break;
+ }
+ }
+
+ if (!CountInst)
+ return false;
+ }
+
+ // step 5: check if the precondition is in this form:
+ // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
+ {
+ auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
+ Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
+ if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
+ return false;
+
+ CntInst = CountInst;
+ CntPhi = CountPhi;
+ Var = T;
+ }
+
+ return true;
+}
+
+/// Recognizes a population count idiom in a non-countable loop.
+///
+/// If detected, transforms the relevant code to issue the popcount intrinsic
+/// function call, and returns true; otherwise, returns false.
+bool LoopIdiomRecognize::recognizePopcount() {
+ if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
+ return false;
+
+ // Counting population are usually conducted by few arithmetic instructions.
+ // Such instructions can be easily "absorbed" by vacant slots in a
+ // non-compact loop. Therefore, recognizing popcount idiom only makes sense
+ // in a compact loop.
+
+ // Give up if the loop has multiple blocks or multiple backedges.
+ if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
+ return false;
+
+ BasicBlock *LoopBody = *(CurLoop->block_begin());
+ if (LoopBody->size() >= 20) {
+ // The loop is too big, bail out.
+ return false;
+ }
+
+ // It should have a preheader containing nothing but an unconditional branch.
+ BasicBlock *PH = CurLoop->getLoopPreheader();
+ if (!PH)
+ return false;
+ if (&PH->front() != PH->getTerminator())
+ return false;
+ auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
+ if (!EntryBI || EntryBI->isConditional())
+ return false;
+
+ // It should have a precondition block where the generated popcount instrinsic
+ // function can be inserted.
+ auto *PreCondBB = PH->getSinglePredecessor();
+ if (!PreCondBB)
+ return false;
+ auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
+ if (!PreCondBI || PreCondBI->isUnconditional())
+ return false;
+
+ Instruction *CntInst;
+ PHINode *CntPhi;
+ Value *Val;
+ if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
+ return false;
+
+ transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
+ return true;
+}
+
+static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
+ DebugLoc DL) {
+ Value *Ops[] = {Val};
+ Type *Tys[] = {Val->getType()};
+
+ Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
+ Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
+ CallInst *CI = IRBuilder.CreateCall(Func, Ops);
+ CI->setDebugLoc(DL);
+
+ return CI;
+}
+
+void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
+ Instruction *CntInst,
+ PHINode *CntPhi, Value *Var) {
+ BasicBlock *PreHead = CurLoop->getLoopPreheader();
+ auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
+ const DebugLoc DL = CntInst->getDebugLoc();
+
+ // Assuming before transformation, the loop is following:
+ // if (x) // the precondition
+ // do { cnt++; x &= x - 1; } while(x);
+
+ // Step 1: Insert the ctpop instruction at the end of the precondition block
+ IRBuilder<> Builder(PreCondBr);
+ Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
+ {
+ PopCnt = createPopcntIntrinsic(Builder, Var, DL);
+ NewCount = PopCntZext =
+ Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
+
+ if (NewCount != PopCnt)
+ (cast<Instruction>(NewCount))->setDebugLoc(DL);
+
+ // TripCnt is exactly the number of iterations the loop has
+ TripCnt = NewCount;
+
+ // If the population counter's initial value is not zero, insert Add Inst.
+ Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
+ ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
+ if (!InitConst || !InitConst->isZero()) {
+ NewCount = Builder.CreateAdd(NewCount, CntInitVal);
+ (cast<Instruction>(NewCount))->setDebugLoc(DL);
+ }
+ }
+
+ // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
+ // "if (NewCount == 0) loop-exit". Without this change, the intrinsic
+ // function would be partial dead code, and downstream passes will drag
+ // it back from the precondition block to the preheader.
+ {
+ ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
+
+ Value *Opnd0 = PopCntZext;
+ Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
+ if (PreCond->getOperand(0) != Var)
+ std::swap(Opnd0, Opnd1);
+
+ ICmpInst *NewPreCond = cast<ICmpInst>(
+ Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
+ PreCondBr->setCondition(NewPreCond);
+
+ RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
+ }
+
+ // Step 3: Note that the population count is exactly the trip count of the
+ // loop in question, which enable us to to convert the loop from noncountable
+ // loop into a countable one. The benefit is twofold:
+ //
+ // - If the loop only counts population, the entire loop becomes dead after
+ // the transformation. It is a lot easier to prove a countable loop dead
+ // than to prove a noncountable one. (In some C dialects, an infinite loop
+ // isn't dead even if it computes nothing useful. In general, DCE needs
+ // to prove a noncountable loop finite before safely delete it.)
+ //
+ // - If the loop also performs something else, it remains alive.
+ // Since it is transformed to countable form, it can be aggressively
+ // optimized by some optimizations which are in general not applicable
+ // to a noncountable loop.
+ //
+ // After this step, this loop (conceptually) would look like following:
+ // newcnt = __builtin_ctpop(x);
+ // t = newcnt;
+ // if (x)
+ // do { cnt++; x &= x-1; t--) } while (t > 0);
+ BasicBlock *Body = *(CurLoop->block_begin());
+ {
+ auto *LbBr = dyn_cast<BranchInst>(Body->getTerminator());
+ ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
+ Type *Ty = TripCnt->getType();
+
+ PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
+
+ Builder.SetInsertPoint(LbCond);
+ Instruction *TcDec = cast<Instruction>(
+ Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
+ "tcdec", false, true));
+
+ TcPhi->addIncoming(TripCnt, PreHead);
+ TcPhi->addIncoming(TcDec, Body);
+
+ CmpInst::Predicate Pred =
+ (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
+ LbCond->setPredicate(Pred);
+ LbCond->setOperand(0, TcDec);
+ LbCond->setOperand(1, ConstantInt::get(Ty, 0));
+ }
+
+ // Step 4: All the references to the original population counter outside
+ // the loop are replaced with the NewCount -- the value returned from
+ // __builtin_ctpop().
+ CntInst->replaceUsesOutsideBlock(NewCount, Body);
+
+ // step 5: Forget the "non-computable" trip-count SCEV associated with the
+ // loop. The loop would otherwise not be deleted even if it becomes empty.
+ SE->forgetLoop(CurLoop);
+}