aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/tools/clang/lib/Rewrite/Core/RewriteRope.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Rewrite/Core/RewriteRope.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Rewrite/Core/RewriteRope.cpp807
1 files changed, 807 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Rewrite/Core/RewriteRope.cpp b/contrib/llvm/tools/clang/lib/Rewrite/Core/RewriteRope.cpp
new file mode 100644
index 000000000000..fe7aa2d6477d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Rewrite/Core/RewriteRope.cpp
@@ -0,0 +1,807 @@
+//===--- RewriteRope.cpp - Rope specialized for rewriter --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the RewriteRope class, which is a powerful string.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Rewrite/Core/RewriteRope.h"
+#include "clang/Basic/LLVM.h"
+#include <algorithm>
+using namespace clang;
+
+/// RewriteRope is a "strong" string class, designed to make insertions and
+/// deletions in the middle of the string nearly constant time (really, they are
+/// O(log N), but with a very low constant factor).
+///
+/// The implementation of this datastructure is a conceptual linear sequence of
+/// RopePiece elements. Each RopePiece represents a view on a separately
+/// allocated and reference counted string. This means that splitting a very
+/// long string can be done in constant time by splitting a RopePiece that
+/// references the whole string into two rope pieces that reference each half.
+/// Once split, another string can be inserted in between the two halves by
+/// inserting a RopePiece in between the two others. All of this is very
+/// inexpensive: it takes time proportional to the number of RopePieces, not the
+/// length of the strings they represent.
+///
+/// While a linear sequences of RopePieces is the conceptual model, the actual
+/// implementation captures them in an adapted B+ Tree. Using a B+ tree (which
+/// is a tree that keeps the values in the leaves and has where each node
+/// contains a reasonable number of pointers to children/values) allows us to
+/// maintain efficient operation when the RewriteRope contains a *huge* number
+/// of RopePieces. The basic idea of the B+ Tree is that it allows us to find
+/// the RopePiece corresponding to some offset very efficiently, and it
+/// automatically balances itself on insertions of RopePieces (which can happen
+/// for both insertions and erases of string ranges).
+///
+/// The one wrinkle on the theory is that we don't attempt to keep the tree
+/// properly balanced when erases happen. Erases of string data can both insert
+/// new RopePieces (e.g. when the middle of some other rope piece is deleted,
+/// which results in two rope pieces, which is just like an insert) or it can
+/// reduce the number of RopePieces maintained by the B+Tree. In the case when
+/// the number of RopePieces is reduced, we don't attempt to maintain the
+/// standard 'invariant' that each node in the tree contains at least
+/// 'WidthFactor' children/values. For our use cases, this doesn't seem to
+/// matter.
+///
+/// The implementation below is primarily implemented in terms of three classes:
+/// RopePieceBTreeNode - Common base class for:
+///
+/// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
+/// nodes. This directly represents a chunk of the string with those
+/// RopePieces contatenated.
+/// RopePieceBTreeInterior - An interior node in the B+ Tree, which manages
+/// up to '2*WidthFactor' other nodes in the tree.
+
+
+//===----------------------------------------------------------------------===//
+// RopePieceBTreeNode Class
+//===----------------------------------------------------------------------===//
+
+namespace {
+ /// RopePieceBTreeNode - Common base class of RopePieceBTreeLeaf and
+ /// RopePieceBTreeInterior. This provides some 'virtual' dispatching methods
+ /// and a flag that determines which subclass the instance is. Also
+ /// important, this node knows the full extend of the node, including any
+ /// children that it has. This allows efficient skipping over entire subtrees
+ /// when looking for an offset in the BTree.
+ class RopePieceBTreeNode {
+ protected:
+ /// WidthFactor - This controls the number of K/V slots held in the BTree:
+ /// how wide it is. Each level of the BTree is guaranteed to have at least
+ /// 'WidthFactor' elements in it (either ropepieces or children), (except
+ /// the root, which may have less) and may have at most 2*WidthFactor
+ /// elements.
+ enum { WidthFactor = 8 };
+
+ /// Size - This is the number of bytes of file this node (including any
+ /// potential children) covers.
+ unsigned Size;
+
+ /// IsLeaf - True if this is an instance of RopePieceBTreeLeaf, false if it
+ /// is an instance of RopePieceBTreeInterior.
+ bool IsLeaf;
+
+ RopePieceBTreeNode(bool isLeaf) : Size(0), IsLeaf(isLeaf) {}
+ ~RopePieceBTreeNode() {}
+ public:
+
+ bool isLeaf() const { return IsLeaf; }
+ unsigned size() const { return Size; }
+
+ void Destroy();
+
+ /// split - Split the range containing the specified offset so that we are
+ /// guaranteed that there is a place to do an insertion at the specified
+ /// offset. The offset is relative, so "0" is the start of the node.
+ ///
+ /// If there is no space in this subtree for the extra piece, the extra tree
+ /// node is returned and must be inserted into a parent.
+ RopePieceBTreeNode *split(unsigned Offset);
+
+ /// insert - Insert the specified ropepiece into this tree node at the
+ /// specified offset. The offset is relative, so "0" is the start of the
+ /// node.
+ ///
+ /// If there is no space in this subtree for the extra piece, the extra tree
+ /// node is returned and must be inserted into a parent.
+ RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
+
+ /// erase - Remove NumBytes from this node at the specified offset. We are
+ /// guaranteed that there is a split at Offset.
+ void erase(unsigned Offset, unsigned NumBytes);
+
+ };
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// RopePieceBTreeLeaf Class
+//===----------------------------------------------------------------------===//
+
+namespace {
+ /// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
+ /// nodes. This directly represents a chunk of the string with those
+ /// RopePieces contatenated. Since this is a B+Tree, all values (in this case
+ /// instances of RopePiece) are stored in leaves like this. To make iteration
+ /// over the leaves efficient, they maintain a singly linked list through the
+ /// NextLeaf field. This allows the B+Tree forward iterator to be constant
+ /// time for all increments.
+ class RopePieceBTreeLeaf : public RopePieceBTreeNode {
+ /// NumPieces - This holds the number of rope pieces currently active in the
+ /// Pieces array.
+ unsigned char NumPieces;
+
+ /// Pieces - This tracks the file chunks currently in this leaf.
+ ///
+ RopePiece Pieces[2*WidthFactor];
+
+ /// NextLeaf - This is a pointer to the next leaf in the tree, allowing
+ /// efficient in-order forward iteration of the tree without traversal.
+ RopePieceBTreeLeaf **PrevLeaf, *NextLeaf;
+ public:
+ RopePieceBTreeLeaf() : RopePieceBTreeNode(true), NumPieces(0),
+ PrevLeaf(0), NextLeaf(0) {}
+ ~RopePieceBTreeLeaf() {
+ if (PrevLeaf || NextLeaf)
+ removeFromLeafInOrder();
+ clear();
+ }
+
+ bool isFull() const { return NumPieces == 2*WidthFactor; }
+
+ /// clear - Remove all rope pieces from this leaf.
+ void clear() {
+ while (NumPieces)
+ Pieces[--NumPieces] = RopePiece();
+ Size = 0;
+ }
+
+ unsigned getNumPieces() const { return NumPieces; }
+
+ const RopePiece &getPiece(unsigned i) const {
+ assert(i < getNumPieces() && "Invalid piece ID");
+ return Pieces[i];
+ }
+
+ const RopePieceBTreeLeaf *getNextLeafInOrder() const { return NextLeaf; }
+ void insertAfterLeafInOrder(RopePieceBTreeLeaf *Node) {
+ assert(PrevLeaf == 0 && NextLeaf == 0 && "Already in ordering");
+
+ NextLeaf = Node->NextLeaf;
+ if (NextLeaf)
+ NextLeaf->PrevLeaf = &NextLeaf;
+ PrevLeaf = &Node->NextLeaf;
+ Node->NextLeaf = this;
+ }
+
+ void removeFromLeafInOrder() {
+ if (PrevLeaf) {
+ *PrevLeaf = NextLeaf;
+ if (NextLeaf)
+ NextLeaf->PrevLeaf = PrevLeaf;
+ } else if (NextLeaf) {
+ NextLeaf->PrevLeaf = 0;
+ }
+ }
+
+ /// FullRecomputeSizeLocally - This method recomputes the 'Size' field by
+ /// summing the size of all RopePieces.
+ void FullRecomputeSizeLocally() {
+ Size = 0;
+ for (unsigned i = 0, e = getNumPieces(); i != e; ++i)
+ Size += getPiece(i).size();
+ }
+
+ /// split - Split the range containing the specified offset so that we are
+ /// guaranteed that there is a place to do an insertion at the specified
+ /// offset. The offset is relative, so "0" is the start of the node.
+ ///
+ /// If there is no space in this subtree for the extra piece, the extra tree
+ /// node is returned and must be inserted into a parent.
+ RopePieceBTreeNode *split(unsigned Offset);
+
+ /// insert - Insert the specified ropepiece into this tree node at the
+ /// specified offset. The offset is relative, so "0" is the start of the
+ /// node.
+ ///
+ /// If there is no space in this subtree for the extra piece, the extra tree
+ /// node is returned and must be inserted into a parent.
+ RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
+
+
+ /// erase - Remove NumBytes from this node at the specified offset. We are
+ /// guaranteed that there is a split at Offset.
+ void erase(unsigned Offset, unsigned NumBytes);
+
+ static inline bool classof(const RopePieceBTreeNode *N) {
+ return N->isLeaf();
+ }
+ };
+} // end anonymous namespace
+
+/// split - Split the range containing the specified offset so that we are
+/// guaranteed that there is a place to do an insertion at the specified
+/// offset. The offset is relative, so "0" is the start of the node.
+///
+/// If there is no space in this subtree for the extra piece, the extra tree
+/// node is returned and must be inserted into a parent.
+RopePieceBTreeNode *RopePieceBTreeLeaf::split(unsigned Offset) {
+ // Find the insertion point. We are guaranteed that there is a split at the
+ // specified offset so find it.
+ if (Offset == 0 || Offset == size()) {
+ // Fastpath for a common case. There is already a splitpoint at the end.
+ return 0;
+ }
+
+ // Find the piece that this offset lands in.
+ unsigned PieceOffs = 0;
+ unsigned i = 0;
+ while (Offset >= PieceOffs+Pieces[i].size()) {
+ PieceOffs += Pieces[i].size();
+ ++i;
+ }
+
+ // If there is already a split point at the specified offset, just return
+ // success.
+ if (PieceOffs == Offset)
+ return 0;
+
+ // Otherwise, we need to split piece 'i' at Offset-PieceOffs. Convert Offset
+ // to being Piece relative.
+ unsigned IntraPieceOffset = Offset-PieceOffs;
+
+ // We do this by shrinking the RopePiece and then doing an insert of the tail.
+ RopePiece Tail(Pieces[i].StrData, Pieces[i].StartOffs+IntraPieceOffset,
+ Pieces[i].EndOffs);
+ Size -= Pieces[i].size();
+ Pieces[i].EndOffs = Pieces[i].StartOffs+IntraPieceOffset;
+ Size += Pieces[i].size();
+
+ return insert(Offset, Tail);
+}
+
+
+/// insert - Insert the specified RopePiece into this tree node at the
+/// specified offset. The offset is relative, so "0" is the start of the node.
+///
+/// If there is no space in this subtree for the extra piece, the extra tree
+/// node is returned and must be inserted into a parent.
+RopePieceBTreeNode *RopePieceBTreeLeaf::insert(unsigned Offset,
+ const RopePiece &R) {
+ // If this node is not full, insert the piece.
+ if (!isFull()) {
+ // Find the insertion point. We are guaranteed that there is a split at the
+ // specified offset so find it.
+ unsigned i = 0, e = getNumPieces();
+ if (Offset == size()) {
+ // Fastpath for a common case.
+ i = e;
+ } else {
+ unsigned SlotOffs = 0;
+ for (; Offset > SlotOffs; ++i)
+ SlotOffs += getPiece(i).size();
+ assert(SlotOffs == Offset && "Split didn't occur before insertion!");
+ }
+
+ // For an insertion into a non-full leaf node, just insert the value in
+ // its sorted position. This requires moving later values over.
+ for (; i != e; --e)
+ Pieces[e] = Pieces[e-1];
+ Pieces[i] = R;
+ ++NumPieces;
+ Size += R.size();
+ return 0;
+ }
+
+ // Otherwise, if this is leaf is full, split it in two halves. Since this
+ // node is full, it contains 2*WidthFactor values. We move the first
+ // 'WidthFactor' values to the LHS child (which we leave in this node) and
+ // move the last 'WidthFactor' values into the RHS child.
+
+ // Create the new node.
+ RopePieceBTreeLeaf *NewNode = new RopePieceBTreeLeaf();
+
+ // Move over the last 'WidthFactor' values from here to NewNode.
+ std::copy(&Pieces[WidthFactor], &Pieces[2*WidthFactor],
+ &NewNode->Pieces[0]);
+ // Replace old pieces with null RopePieces to drop refcounts.
+ std::fill(&Pieces[WidthFactor], &Pieces[2*WidthFactor], RopePiece());
+
+ // Decrease the number of values in the two nodes.
+ NewNode->NumPieces = NumPieces = WidthFactor;
+
+ // Recompute the two nodes' size.
+ NewNode->FullRecomputeSizeLocally();
+ FullRecomputeSizeLocally();
+
+ // Update the list of leaves.
+ NewNode->insertAfterLeafInOrder(this);
+
+ // These insertions can't fail.
+ if (this->size() >= Offset)
+ this->insert(Offset, R);
+ else
+ NewNode->insert(Offset - this->size(), R);
+ return NewNode;
+}
+
+/// erase - Remove NumBytes from this node at the specified offset. We are
+/// guaranteed that there is a split at Offset.
+void RopePieceBTreeLeaf::erase(unsigned Offset, unsigned NumBytes) {
+ // Since we are guaranteed that there is a split at Offset, we start by
+ // finding the Piece that starts there.
+ unsigned PieceOffs = 0;
+ unsigned i = 0;
+ for (; Offset > PieceOffs; ++i)
+ PieceOffs += getPiece(i).size();
+ assert(PieceOffs == Offset && "Split didn't occur before erase!");
+
+ unsigned StartPiece = i;
+
+ // Figure out how many pieces completely cover 'NumBytes'. We want to remove
+ // all of them.
+ for (; Offset+NumBytes > PieceOffs+getPiece(i).size(); ++i)
+ PieceOffs += getPiece(i).size();
+
+ // If we exactly include the last one, include it in the region to delete.
+ if (Offset+NumBytes == PieceOffs+getPiece(i).size())
+ PieceOffs += getPiece(i).size(), ++i;
+
+ // If we completely cover some RopePieces, erase them now.
+ if (i != StartPiece) {
+ unsigned NumDeleted = i-StartPiece;
+ for (; i != getNumPieces(); ++i)
+ Pieces[i-NumDeleted] = Pieces[i];
+
+ // Drop references to dead rope pieces.
+ std::fill(&Pieces[getNumPieces()-NumDeleted], &Pieces[getNumPieces()],
+ RopePiece());
+ NumPieces -= NumDeleted;
+
+ unsigned CoverBytes = PieceOffs-Offset;
+ NumBytes -= CoverBytes;
+ Size -= CoverBytes;
+ }
+
+ // If we completely removed some stuff, we could be done.
+ if (NumBytes == 0) return;
+
+ // Okay, now might be erasing part of some Piece. If this is the case, then
+ // move the start point of the piece.
+ assert(getPiece(StartPiece).size() > NumBytes);
+ Pieces[StartPiece].StartOffs += NumBytes;
+
+ // The size of this node just shrunk by NumBytes.
+ Size -= NumBytes;
+}
+
+//===----------------------------------------------------------------------===//
+// RopePieceBTreeInterior Class
+//===----------------------------------------------------------------------===//
+
+namespace {
+ /// RopePieceBTreeInterior - This represents an interior node in the B+Tree,
+ /// which holds up to 2*WidthFactor pointers to child nodes.
+ class RopePieceBTreeInterior : public RopePieceBTreeNode {
+ /// NumChildren - This holds the number of children currently active in the
+ /// Children array.
+ unsigned char NumChildren;
+ RopePieceBTreeNode *Children[2*WidthFactor];
+ public:
+ RopePieceBTreeInterior() : RopePieceBTreeNode(false), NumChildren(0) {}
+
+ RopePieceBTreeInterior(RopePieceBTreeNode *LHS, RopePieceBTreeNode *RHS)
+ : RopePieceBTreeNode(false) {
+ Children[0] = LHS;
+ Children[1] = RHS;
+ NumChildren = 2;
+ Size = LHS->size() + RHS->size();
+ }
+
+ ~RopePieceBTreeInterior() {
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ Children[i]->Destroy();
+ }
+
+ bool isFull() const { return NumChildren == 2*WidthFactor; }
+
+ unsigned getNumChildren() const { return NumChildren; }
+ const RopePieceBTreeNode *getChild(unsigned i) const {
+ assert(i < NumChildren && "invalid child #");
+ return Children[i];
+ }
+ RopePieceBTreeNode *getChild(unsigned i) {
+ assert(i < NumChildren && "invalid child #");
+ return Children[i];
+ }
+
+ /// FullRecomputeSizeLocally - Recompute the Size field of this node by
+ /// summing up the sizes of the child nodes.
+ void FullRecomputeSizeLocally() {
+ Size = 0;
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ Size += getChild(i)->size();
+ }
+
+
+ /// split - Split the range containing the specified offset so that we are
+ /// guaranteed that there is a place to do an insertion at the specified
+ /// offset. The offset is relative, so "0" is the start of the node.
+ ///
+ /// If there is no space in this subtree for the extra piece, the extra tree
+ /// node is returned and must be inserted into a parent.
+ RopePieceBTreeNode *split(unsigned Offset);
+
+
+ /// insert - Insert the specified ropepiece into this tree node at the
+ /// specified offset. The offset is relative, so "0" is the start of the
+ /// node.
+ ///
+ /// If there is no space in this subtree for the extra piece, the extra tree
+ /// node is returned and must be inserted into a parent.
+ RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
+
+ /// HandleChildPiece - A child propagated an insertion result up to us.
+ /// Insert the new child, and/or propagate the result further up the tree.
+ RopePieceBTreeNode *HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS);
+
+ /// erase - Remove NumBytes from this node at the specified offset. We are
+ /// guaranteed that there is a split at Offset.
+ void erase(unsigned Offset, unsigned NumBytes);
+
+ static inline bool classof(const RopePieceBTreeNode *N) {
+ return !N->isLeaf();
+ }
+ };
+} // end anonymous namespace
+
+/// split - Split the range containing the specified offset so that we are
+/// guaranteed that there is a place to do an insertion at the specified
+/// offset. The offset is relative, so "0" is the start of the node.
+///
+/// If there is no space in this subtree for the extra piece, the extra tree
+/// node is returned and must be inserted into a parent.
+RopePieceBTreeNode *RopePieceBTreeInterior::split(unsigned Offset) {
+ // Figure out which child to split.
+ if (Offset == 0 || Offset == size())
+ return 0; // If we have an exact offset, we're already split.
+
+ unsigned ChildOffset = 0;
+ unsigned i = 0;
+ for (; Offset >= ChildOffset+getChild(i)->size(); ++i)
+ ChildOffset += getChild(i)->size();
+
+ // If already split there, we're done.
+ if (ChildOffset == Offset)
+ return 0;
+
+ // Otherwise, recursively split the child.
+ if (RopePieceBTreeNode *RHS = getChild(i)->split(Offset-ChildOffset))
+ return HandleChildPiece(i, RHS);
+ return 0; // Done!
+}
+
+/// insert - Insert the specified ropepiece into this tree node at the
+/// specified offset. The offset is relative, so "0" is the start of the
+/// node.
+///
+/// If there is no space in this subtree for the extra piece, the extra tree
+/// node is returned and must be inserted into a parent.
+RopePieceBTreeNode *RopePieceBTreeInterior::insert(unsigned Offset,
+ const RopePiece &R) {
+ // Find the insertion point. We are guaranteed that there is a split at the
+ // specified offset so find it.
+ unsigned i = 0, e = getNumChildren();
+
+ unsigned ChildOffs = 0;
+ if (Offset == size()) {
+ // Fastpath for a common case. Insert at end of last child.
+ i = e-1;
+ ChildOffs = size()-getChild(i)->size();
+ } else {
+ for (; Offset > ChildOffs+getChild(i)->size(); ++i)
+ ChildOffs += getChild(i)->size();
+ }
+
+ Size += R.size();
+
+ // Insert at the end of this child.
+ if (RopePieceBTreeNode *RHS = getChild(i)->insert(Offset-ChildOffs, R))
+ return HandleChildPiece(i, RHS);
+
+ return 0;
+}
+
+/// HandleChildPiece - A child propagated an insertion result up to us.
+/// Insert the new child, and/or propagate the result further up the tree.
+RopePieceBTreeNode *
+RopePieceBTreeInterior::HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS) {
+ // Otherwise the child propagated a subtree up to us as a new child. See if
+ // we have space for it here.
+ if (!isFull()) {
+ // Insert RHS after child 'i'.
+ if (i + 1 != getNumChildren())
+ memmove(&Children[i+2], &Children[i+1],
+ (getNumChildren()-i-1)*sizeof(Children[0]));
+ Children[i+1] = RHS;
+ ++NumChildren;
+ return 0;
+ }
+
+ // Okay, this node is full. Split it in half, moving WidthFactor children to
+ // a newly allocated interior node.
+
+ // Create the new node.
+ RopePieceBTreeInterior *NewNode = new RopePieceBTreeInterior();
+
+ // Move over the last 'WidthFactor' values from here to NewNode.
+ memcpy(&NewNode->Children[0], &Children[WidthFactor],
+ WidthFactor*sizeof(Children[0]));
+
+ // Decrease the number of values in the two nodes.
+ NewNode->NumChildren = NumChildren = WidthFactor;
+
+ // Finally, insert the two new children in the side the can (now) hold them.
+ // These insertions can't fail.
+ if (i < WidthFactor)
+ this->HandleChildPiece(i, RHS);
+ else
+ NewNode->HandleChildPiece(i-WidthFactor, RHS);
+
+ // Recompute the two nodes' size.
+ NewNode->FullRecomputeSizeLocally();
+ FullRecomputeSizeLocally();
+ return NewNode;
+}
+
+/// erase - Remove NumBytes from this node at the specified offset. We are
+/// guaranteed that there is a split at Offset.
+void RopePieceBTreeInterior::erase(unsigned Offset, unsigned NumBytes) {
+ // This will shrink this node by NumBytes.
+ Size -= NumBytes;
+
+ // Find the first child that overlaps with Offset.
+ unsigned i = 0;
+ for (; Offset >= getChild(i)->size(); ++i)
+ Offset -= getChild(i)->size();
+
+ // Propagate the delete request into overlapping children, or completely
+ // delete the children as appropriate.
+ while (NumBytes) {
+ RopePieceBTreeNode *CurChild = getChild(i);
+
+ // If we are deleting something contained entirely in the child, pass on the
+ // request.
+ if (Offset+NumBytes < CurChild->size()) {
+ CurChild->erase(Offset, NumBytes);
+ return;
+ }
+
+ // If this deletion request starts somewhere in the middle of the child, it
+ // must be deleting to the end of the child.
+ if (Offset) {
+ unsigned BytesFromChild = CurChild->size()-Offset;
+ CurChild->erase(Offset, BytesFromChild);
+ NumBytes -= BytesFromChild;
+ // Start at the beginning of the next child.
+ Offset = 0;
+ ++i;
+ continue;
+ }
+
+ // If the deletion request completely covers the child, delete it and move
+ // the rest down.
+ NumBytes -= CurChild->size();
+ CurChild->Destroy();
+ --NumChildren;
+ if (i != getNumChildren())
+ memmove(&Children[i], &Children[i+1],
+ (getNumChildren()-i)*sizeof(Children[0]));
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// RopePieceBTreeNode Implementation
+//===----------------------------------------------------------------------===//
+
+void RopePieceBTreeNode::Destroy() {
+ if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
+ delete Leaf;
+ else
+ delete cast<RopePieceBTreeInterior>(this);
+}
+
+/// split - Split the range containing the specified offset so that we are
+/// guaranteed that there is a place to do an insertion at the specified
+/// offset. The offset is relative, so "0" is the start of the node.
+///
+/// If there is no space in this subtree for the extra piece, the extra tree
+/// node is returned and must be inserted into a parent.
+RopePieceBTreeNode *RopePieceBTreeNode::split(unsigned Offset) {
+ assert(Offset <= size() && "Invalid offset to split!");
+ if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
+ return Leaf->split(Offset);
+ return cast<RopePieceBTreeInterior>(this)->split(Offset);
+}
+
+/// insert - Insert the specified ropepiece into this tree node at the
+/// specified offset. The offset is relative, so "0" is the start of the
+/// node.
+///
+/// If there is no space in this subtree for the extra piece, the extra tree
+/// node is returned and must be inserted into a parent.
+RopePieceBTreeNode *RopePieceBTreeNode::insert(unsigned Offset,
+ const RopePiece &R) {
+ assert(Offset <= size() && "Invalid offset to insert!");
+ if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
+ return Leaf->insert(Offset, R);
+ return cast<RopePieceBTreeInterior>(this)->insert(Offset, R);
+}
+
+/// erase - Remove NumBytes from this node at the specified offset. We are
+/// guaranteed that there is a split at Offset.
+void RopePieceBTreeNode::erase(unsigned Offset, unsigned NumBytes) {
+ assert(Offset+NumBytes <= size() && "Invalid offset to erase!");
+ if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
+ return Leaf->erase(Offset, NumBytes);
+ return cast<RopePieceBTreeInterior>(this)->erase(Offset, NumBytes);
+}
+
+
+//===----------------------------------------------------------------------===//
+// RopePieceBTreeIterator Implementation
+//===----------------------------------------------------------------------===//
+
+static const RopePieceBTreeLeaf *getCN(const void *P) {
+ return static_cast<const RopePieceBTreeLeaf*>(P);
+}
+
+// begin iterator.
+RopePieceBTreeIterator::RopePieceBTreeIterator(const void *n) {
+ const RopePieceBTreeNode *N = static_cast<const RopePieceBTreeNode*>(n);
+
+ // Walk down the left side of the tree until we get to a leaf.
+ while (const RopePieceBTreeInterior *IN = dyn_cast<RopePieceBTreeInterior>(N))
+ N = IN->getChild(0);
+
+ // We must have at least one leaf.
+ CurNode = cast<RopePieceBTreeLeaf>(N);
+
+ // If we found a leaf that happens to be empty, skip over it until we get
+ // to something full.
+ while (CurNode && getCN(CurNode)->getNumPieces() == 0)
+ CurNode = getCN(CurNode)->getNextLeafInOrder();
+
+ if (CurNode != 0)
+ CurPiece = &getCN(CurNode)->getPiece(0);
+ else // Empty tree, this is an end() iterator.
+ CurPiece = 0;
+ CurChar = 0;
+}
+
+void RopePieceBTreeIterator::MoveToNextPiece() {
+ if (CurPiece != &getCN(CurNode)->getPiece(getCN(CurNode)->getNumPieces()-1)) {
+ CurChar = 0;
+ ++CurPiece;
+ return;
+ }
+
+ // Find the next non-empty leaf node.
+ do
+ CurNode = getCN(CurNode)->getNextLeafInOrder();
+ while (CurNode && getCN(CurNode)->getNumPieces() == 0);
+
+ if (CurNode != 0)
+ CurPiece = &getCN(CurNode)->getPiece(0);
+ else // Hit end().
+ CurPiece = 0;
+ CurChar = 0;
+}
+
+//===----------------------------------------------------------------------===//
+// RopePieceBTree Implementation
+//===----------------------------------------------------------------------===//
+
+static RopePieceBTreeNode *getRoot(void *P) {
+ return static_cast<RopePieceBTreeNode*>(P);
+}
+
+RopePieceBTree::RopePieceBTree() {
+ Root = new RopePieceBTreeLeaf();
+}
+RopePieceBTree::RopePieceBTree(const RopePieceBTree &RHS) {
+ assert(RHS.empty() && "Can't copy non-empty tree yet");
+ Root = new RopePieceBTreeLeaf();
+}
+RopePieceBTree::~RopePieceBTree() {
+ getRoot(Root)->Destroy();
+}
+
+unsigned RopePieceBTree::size() const {
+ return getRoot(Root)->size();
+}
+
+void RopePieceBTree::clear() {
+ if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(getRoot(Root)))
+ Leaf->clear();
+ else {
+ getRoot(Root)->Destroy();
+ Root = new RopePieceBTreeLeaf();
+ }
+}
+
+void RopePieceBTree::insert(unsigned Offset, const RopePiece &R) {
+ // #1. Split at Offset.
+ if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
+ Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
+
+ // #2. Do the insertion.
+ if (RopePieceBTreeNode *RHS = getRoot(Root)->insert(Offset, R))
+ Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
+}
+
+void RopePieceBTree::erase(unsigned Offset, unsigned NumBytes) {
+ // #1. Split at Offset.
+ if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
+ Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
+
+ // #2. Do the erasing.
+ getRoot(Root)->erase(Offset, NumBytes);
+}
+
+//===----------------------------------------------------------------------===//
+// RewriteRope Implementation
+//===----------------------------------------------------------------------===//
+
+/// MakeRopeString - This copies the specified byte range into some instance of
+/// RopeRefCountString, and return a RopePiece that represents it. This uses
+/// the AllocBuffer object to aggregate requests for small strings into one
+/// allocation instead of doing tons of tiny allocations.
+RopePiece RewriteRope::MakeRopeString(const char *Start, const char *End) {
+ unsigned Len = End-Start;
+ assert(Len && "Zero length RopePiece is invalid!");
+
+ // If we have space for this string in the current alloc buffer, use it.
+ if (AllocOffs+Len <= AllocChunkSize) {
+ memcpy(AllocBuffer->Data+AllocOffs, Start, Len);
+ AllocOffs += Len;
+ return RopePiece(AllocBuffer, AllocOffs-Len, AllocOffs);
+ }
+
+ // If we don't have enough room because this specific allocation is huge,
+ // just allocate a new rope piece for it alone.
+ if (Len > AllocChunkSize) {
+ unsigned Size = End-Start+sizeof(RopeRefCountString)-1;
+ RopeRefCountString *Res =
+ reinterpret_cast<RopeRefCountString *>(new char[Size]);
+ Res->RefCount = 0;
+ memcpy(Res->Data, Start, End-Start);
+ return RopePiece(Res, 0, End-Start);
+ }
+
+ // Otherwise, this was a small request but we just don't have space for it
+ // Make a new chunk and share it with later allocations.
+
+ // If we had an old allocation, drop our reference to it.
+ if (AllocBuffer && --AllocBuffer->RefCount == 0)
+ delete [] (char*)AllocBuffer;
+
+ unsigned AllocSize = offsetof(RopeRefCountString, Data) + AllocChunkSize;
+ AllocBuffer = reinterpret_cast<RopeRefCountString *>(new char[AllocSize]);
+ AllocBuffer->RefCount = 0;
+ memcpy(AllocBuffer->Data, Start, Len);
+ AllocOffs = Len;
+
+ // Start out the new allocation with a refcount of 1, since we have an
+ // internal reference to it.
+ AllocBuffer->addRef();
+ return RopePiece(AllocBuffer, 0, Len);
+}
+
+