aboutsummaryrefslogtreecommitdiff
path: root/gnu/usr.bin/awk/regex.c
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/usr.bin/awk/regex.c')
-rw-r--r--gnu/usr.bin/awk/regex.c6330
1 files changed, 4273 insertions, 2057 deletions
diff --git a/gnu/usr.bin/awk/regex.c b/gnu/usr.bin/awk/regex.c
index f4dd4c2cd24d..6a36f3de8178 100644
--- a/gnu/usr.bin/awk/regex.c
+++ b/gnu/usr.bin/awk/regex.c
@@ -1,9 +1,13 @@
-/* Extended regular expression matching and search library.
- Copyright (C) 1985, 1989-90 Free Software Foundation, Inc.
+/* Extended regular expression matching and search library,
+ version 0.12.
+ (Implements POSIX draft P10003.2/D11.2, except for
+ internationalization features.)
+
+ Copyright (C) 1993 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 1, or (at your option)
+ the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
@@ -15,75 +19,63 @@
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
+/* AIX requires this to be the first thing in the file. */
+#if defined (_AIX) && !defined (REGEX_MALLOC)
+ #pragma alloca
+#endif
-/* To test, compile with -Dtest. This Dtestable feature turns this into
- a self-contained program which reads a pattern, describes how it
- compiles, then reads a string and searches for it.
-
- On the other hand, if you compile with both -Dtest and -Dcanned you
- can run some tests we've already thought of. */
+#define _GNU_SOURCE
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
-#ifdef emacs
+#if defined(STDC_HEADERS) && !defined(emacs)
+#include <stddef.h>
+#else
+/* We need this for `regex.h', and perhaps for the Emacs include files. */
+#include <sys/types.h>
+#endif
-/* The `emacs' switch turns on certain special matching commands
- that make sense only in emacs. */
+/* The `emacs' switch turns on certain matching commands
+ that make sense only in Emacs. */
+#ifdef emacs
#include "lisp.h"
#include "buffer.h"
#include "syntax.h"
-/* We write fatal error messages on standard error. */
-#include <stdio.h>
-
-/* isalpha(3) etc. are used for the character classes. */
-#include <ctype.h>
-
-#else /* not emacs */
+/* Emacs uses `NULL' as a predicate. */
+#undef NULL
-#include "awk.h"
+#else /* not emacs */
-#define NO_ALLOCA /* try it out for now */
-#ifndef NO_ALLOCA
-/* Make alloca work the best possible way. */
-#ifdef __GNUC__
-#ifndef atarist
-#ifndef alloca
-#define alloca __builtin_alloca
+/* We used to test for `BSTRING' here, but only GCC and Emacs define
+ `BSTRING', as far as I know, and neither of them use this code. */
+#if HAVE_STRING_H || STDC_HEADERS
+#include <string.h>
+#ifndef bcmp
+#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
+#endif
+#ifndef bcopy
+#define bcopy(s, d, n) memcpy ((d), (s), (n))
+#endif
+#ifndef bzero
+#define bzero(s, n) memset ((s), 0, (n))
#endif
-#endif /* atarist */
#else
-#if defined(sparc) && !defined(__GNUC__)
-#include <alloca.h>
+#include <strings.h>
+#endif
+
+#ifdef STDC_HEADERS
+#include <stdlib.h>
#else
-char *alloca ();
+char *malloc ();
+char *realloc ();
#endif
-#endif /* __GNUC__ */
-
-#define FREE_AND_RETURN_VOID(stackb) return
-#define FREE_AND_RETURN(stackb,val) return(val)
-#define DOUBLE_STACK(stackx,stackb,len) \
- (stackx = (unsigned char **) alloca (2 * len \
- * sizeof (unsigned char *)),\
- /* Only copy what is in use. */ \
- (unsigned char **) memcpy (stackx, stackb, len * sizeof (char *)))
-#else /* NO_ALLOCA defined */
-#define FREE_AND_RETURN_VOID(stackb) free(stackb);return
-#define FREE_AND_RETURN(stackb,val) free(stackb);return(val)
-#define DOUBLE_STACK(stackx,stackb,len) \
- (unsigned char **) realloc (stackb, 2 * len * sizeof (unsigned char *))
-#endif /* NO_ALLOCA */
-
-static void store_jump P((char *, int, char *));
-static void insert_jump P((int, char *, char *, char *));
-static void store_jump_n P((char *, int, char *, unsigned));
-static void insert_jump_n P((int, char *, char *, char *, unsigned));
-static void insert_op_2 P((int, char *, char *, int, int ));
-static int memcmp_translate P((unsigned char *, unsigned char *,
- int, unsigned char *));
-long re_set_syntax P((long));
-
-/* Define the syntax stuff, so we can do the \<, \>, etc. */
+
+
+/* Define the syntax stuff for \<, \>, etc. */
/* This must be nonzero for the wordchar and notwordchar pattern
commands in re_match_2. */
@@ -91,18 +83,16 @@ long re_set_syntax P((long));
#define Sword 1
#endif
-#define SYNTAX(c) re_syntax_table[c]
-
-
#ifdef SYNTAX_TABLE
-char *re_syntax_table;
+extern char *re_syntax_table;
#else /* not SYNTAX_TABLE */
-static char re_syntax_table[256];
-static void init_syntax_once P((void));
+/* How many characters in the character set. */
+#define CHAR_SET_SIZE 256
+static char re_syntax_table[CHAR_SET_SIZE];
static void
init_syntax_once ()
@@ -113,7 +103,7 @@ init_syntax_once ()
if (done)
return;
- memset (re_syntax_table, 0, sizeof re_syntax_table);
+ bzero (re_syntax_table, sizeof re_syntax_table);
for (c = 'a'; c <= 'z'; c++)
re_syntax_table[c] = Sword;
@@ -123,1504 +113,2900 @@ init_syntax_once ()
for (c = '0'; c <= '9'; c++)
re_syntax_table[c] = Sword;
-
- /* Add specific syntax for ISO Latin-1. */
- for (c = 0300; c <= 0377; c++)
- re_syntax_table[c] = Sword;
- re_syntax_table[0327] = 0;
- re_syntax_table[0367] = 0;
+
+ re_syntax_table['_'] = Sword;
done = 1;
}
-#endif /* SYNTAX_TABLE */
-#undef P
-#endif /* emacs */
+#endif /* not SYNTAX_TABLE */
+#define SYNTAX(c) re_syntax_table[c]
-/* Sequents are missing isgraph. */
-#ifndef isgraph
-#define isgraph(c) (isprint((c)) && !isspace((c)))
-#endif
-
+#endif /* not emacs */
+
/* Get the interface, including the syntax bits. */
#include "regex.h"
+/* isalpha etc. are used for the character classes. */
+#include <ctype.h>
-/* These are the command codes that appear in compiled regular
- expressions, one per byte. Some command codes are followed by
- argument bytes. A command code can specify any interpretation
- whatsoever for its arguments. Zero-bytes may appear in the compiled
- regular expression.
+/* Jim Meyering writes:
+
+ "... Some ctype macros are valid only for character codes that
+ isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
+ using /bin/cc or gcc but without giving an ansi option). So, all
+ ctype uses should be through macros like ISPRINT... If
+ STDC_HEADERS is defined, then autoconf has verified that the ctype
+ macros don't need to be guarded with references to isascii. ...
+ Defining isascii to 1 should let any compiler worth its salt
+ eliminate the && through constant folding." */
+#if ! defined (isascii) || defined (STDC_HEADERS)
+#undef isascii
+#define isascii(c) 1
+#endif
+
+#ifdef isblank
+#define ISBLANK(c) (isascii (c) && isblank (c))
+#else
+#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
+#endif
+#ifdef isgraph
+#define ISGRAPH(c) (isascii (c) && isgraph (c))
+#else
+#define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
+#endif
+
+#define ISPRINT(c) (isascii (c) && isprint (c))
+#define ISDIGIT(c) (isascii (c) && isdigit (c))
+#define ISALNUM(c) (isascii (c) && isalnum (c))
+#define ISALPHA(c) (isascii (c) && isalpha (c))
+#define ISCNTRL(c) (isascii (c) && iscntrl (c))
+#define ISLOWER(c) (isascii (c) && islower (c))
+#define ISPUNCT(c) (isascii (c) && ispunct (c))
+#define ISSPACE(c) (isascii (c) && isspace (c))
+#define ISUPPER(c) (isascii (c) && isupper (c))
+#define ISXDIGIT(c) (isascii (c) && isxdigit (c))
+
+#ifndef NULL
+#define NULL 0
+#endif
+
+/* We remove any previous definition of `SIGN_EXTEND_CHAR',
+ since ours (we hope) works properly with all combinations of
+ machines, compilers, `char' and `unsigned char' argument types.
+ (Per Bothner suggested the basic approach.) */
+#undef SIGN_EXTEND_CHAR
+#if __STDC__
+#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
+#else /* not __STDC__ */
+/* As in Harbison and Steele. */
+#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
+#endif
+
+/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
+ use `alloca' instead of `malloc'. This is because using malloc in
+ re_search* or re_match* could cause memory leaks when C-g is used in
+ Emacs; also, malloc is slower and causes storage fragmentation. On
+ the other hand, malloc is more portable, and easier to debug.
- The value of `exactn' is needed in search.c (search_buffer) in emacs.
+ Because we sometimes use alloca, some routines have to be macros,
+ not functions -- `alloca'-allocated space disappears at the end of the
+ function it is called in. */
+
+#ifdef REGEX_MALLOC
+
+#define REGEX_ALLOCATE malloc
+#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
+
+#else /* not REGEX_MALLOC */
+
+/* Emacs already defines alloca, sometimes. */
+#ifndef alloca
+
+/* Make alloca work the best possible way. */
+#ifdef __GNUC__
+#define alloca __builtin_alloca
+#else /* not __GNUC__ */
+#if HAVE_ALLOCA_H
+#include <alloca.h>
+#else /* not __GNUC__ or HAVE_ALLOCA_H */
+#ifndef _AIX /* Already did AIX, up at the top. */
+char *alloca ();
+#endif /* not _AIX */
+#endif /* not HAVE_ALLOCA_H */
+#endif /* not __GNUC__ */
+
+#endif /* not alloca */
+
+#define REGEX_ALLOCATE alloca
+
+/* Assumes a `char *destination' variable. */
+#define REGEX_REALLOCATE(source, osize, nsize) \
+ (destination = (char *) alloca (nsize), \
+ bcopy (source, destination, osize), \
+ destination)
+
+#endif /* not REGEX_MALLOC */
+
+
+/* True if `size1' is non-NULL and PTR is pointing anywhere inside
+ `string1' or just past its end. This works if PTR is NULL, which is
+ a good thing. */
+#define FIRST_STRING_P(ptr) \
+ (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
+
+/* (Re)Allocate N items of type T using malloc, or fail. */
+#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
+#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
+#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
+
+#define BYTEWIDTH 8 /* In bits. */
+
+#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
+
+#define MAX(a, b) ((a) > (b) ? (a) : (b))
+#define MIN(a, b) ((a) < (b) ? (a) : (b))
+
+typedef char boolean;
+#define false 0
+#define true 1
+
+/* These are the command codes that appear in compiled regular
+ expressions. Some opcodes are followed by argument bytes. A
+ command code can specify any interpretation whatsoever for its
+ arguments. Zero bytes may appear in the compiled regular expression.
+
+ The value of `exactn' is needed in search.c (search_buffer) in Emacs.
So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
`exactn' we use here must also be 1. */
-enum regexpcode
- {
- unused=0,
- exactn=1, /* Followed by one byte giving n, then by n literal bytes. */
- begline, /* Fail unless at beginning of line. */
- endline, /* Fail unless at end of line. */
- jump, /* Followed by two bytes giving relative address to jump to. */
- on_failure_jump, /* Followed by two bytes giving relative address of
- place to resume at in case of failure. */
- finalize_jump, /* Throw away latest failure point and then jump to
- address. */
- maybe_finalize_jump, /* Like jump but finalize if safe to do so.
- This is used to jump back to the beginning
- of a repeat. If the command that follows
- this jump is clearly incompatible with the
- one at the beginning of the repeat, such that
- we can be sure that there is no use backtracking
- out of repetitions already completed,
- then we finalize. */
- dummy_failure_jump, /* Jump, and push a dummy failure point. This
- failure point will be thrown away if an attempt
- is made to use it for a failure. A + construct
- makes this before the first repeat. Also
- use it as an intermediary kind of jump when
- compiling an or construct. */
- succeed_n, /* Used like on_failure_jump except has to succeed n times;
- then gets turned into an on_failure_jump. The relative
- address following it is useless until then. The
- address is followed by two bytes containing n. */
- jump_n, /* Similar to jump, but jump n times only; also the relative
- address following is in turn followed by yet two more bytes
- containing n. */
- set_number_at, /* Set the following relative location to the
- subsequent number. */
- anychar, /* Matches any (more or less) one character. */
- charset, /* Matches any one char belonging to specified set.
- First following byte is number of bitmap bytes.
- Then come bytes for a bitmap saying which chars are in.
- Bits in each byte are ordered low-bit-first.
- A character is in the set if its bit is 1.
- A character too large to have a bit in the map
- is automatically not in the set. */
- charset_not, /* Same parameters as charset, but match any character
- that is not one of those specified. */
- start_memory, /* Start remembering the text that is matched, for
- storing in a memory register. Followed by one
- byte containing the register number. Register numbers
- must be in the range 0 through RE_NREGS. */
- stop_memory, /* Stop remembering the text that is matched
- and store it in a memory register. Followed by
- one byte containing the register number. Register
- numbers must be in the range 0 through RE_NREGS. */
- duplicate, /* Match a duplicate of something remembered.
- Followed by one byte containing the index of the memory
- register. */
- before_dot, /* Succeeds if before point. */
- at_dot, /* Succeeds if at point. */
- after_dot, /* Succeeds if after point. */
- begbuf, /* Succeeds if at beginning of buffer. */
- endbuf, /* Succeeds if at end of buffer. */
- wordchar, /* Matches any word-constituent character. */
- notwordchar, /* Matches any char that is not a word-constituent. */
- wordbeg, /* Succeeds if at word beginning. */
- wordend, /* Succeeds if at word end. */
- wordbound, /* Succeeds if at a word boundary. */
- notwordbound,/* Succeeds if not at a word boundary. */
- syntaxspec, /* Matches any character whose syntax is specified.
- followed by a byte which contains a syntax code,
- e.g., Sword. */
- notsyntaxspec /* Matches any character whose syntax differs from
- that specified. */
- };
-
+typedef enum
+{
+ no_op = 0,
+
+ /* Followed by one byte giving n, then by n literal bytes. */
+ exactn = 1,
+
+ /* Matches any (more or less) character. */
+ anychar,
+
+ /* Matches any one char belonging to specified set. First
+ following byte is number of bitmap bytes. Then come bytes
+ for a bitmap saying which chars are in. Bits in each byte
+ are ordered low-bit-first. A character is in the set if its
+ bit is 1. A character too large to have a bit in the map is
+ automatically not in the set. */
+ charset,
+
+ /* Same parameters as charset, but match any character that is
+ not one of those specified. */
+ charset_not,
+
+ /* Start remembering the text that is matched, for storing in a
+ register. Followed by one byte with the register number, in
+ the range 0 to one less than the pattern buffer's re_nsub
+ field. Then followed by one byte with the number of groups
+ inner to this one. (This last has to be part of the
+ start_memory only because we need it in the on_failure_jump
+ of re_match_2.) */
+ start_memory,
+
+ /* Stop remembering the text that is matched and store it in a
+ memory register. Followed by one byte with the register
+ number, in the range 0 to one less than `re_nsub' in the
+ pattern buffer, and one byte with the number of inner groups,
+ just like `start_memory'. (We need the number of inner
+ groups here because we don't have any easy way of finding the
+ corresponding start_memory when we're at a stop_memory.) */
+ stop_memory,
+
+ /* Match a duplicate of something remembered. Followed by one
+ byte containing the register number. */
+ duplicate,
+
+ /* Fail unless at beginning of line. */
+ begline,
+
+ /* Fail unless at end of line. */
+ endline,
+
+ /* Succeeds if at beginning of buffer (if emacs) or at beginning
+ of string to be matched (if not). */
+ begbuf,
+
+ /* Analogously, for end of buffer/string. */
+ endbuf,
-/* Number of failure points to allocate space for initially,
- when matching. If this number is exceeded, more space is allocated,
- so it is not a hard limit. */
+ /* Followed by two byte relative address to which to jump. */
+ jump,
+
+ /* Same as jump, but marks the end of an alternative. */
+ jump_past_alt,
+
+ /* Followed by two-byte relative address of place to resume at
+ in case of failure. */
+ on_failure_jump,
+
+ /* Like on_failure_jump, but pushes a placeholder instead of the
+ current string position when executed. */
+ on_failure_keep_string_jump,
+
+ /* Throw away latest failure point and then jump to following
+ two-byte relative address. */
+ pop_failure_jump,
+
+ /* Change to pop_failure_jump if know won't have to backtrack to
+ match; otherwise change to jump. This is used to jump
+ back to the beginning of a repeat. If what follows this jump
+ clearly won't match what the repeat does, such that we can be
+ sure that there is no use backtracking out of repetitions
+ already matched, then we change it to a pop_failure_jump.
+ Followed by two-byte address. */
+ maybe_pop_jump,
+
+ /* Jump to following two-byte address, and push a dummy failure
+ point. This failure point will be thrown away if an attempt
+ is made to use it for a failure. A `+' construct makes this
+ before the first repeat. Also used as an intermediary kind
+ of jump when compiling an alternative. */
+ dummy_failure_jump,
+
+ /* Push a dummy failure point and continue. Used at the end of
+ alternatives. */
+ push_dummy_failure,
+
+ /* Followed by two-byte relative address and two-byte number n.
+ After matching N times, jump to the address upon failure. */
+ succeed_n,
+
+ /* Followed by two-byte relative address, and two-byte number n.
+ Jump to the address N times, then fail. */
+ jump_n,
+
+ /* Set the following two-byte relative address to the
+ subsequent two-byte number. The address *includes* the two
+ bytes of number. */
+ set_number_at,
+
+ wordchar, /* Matches any word-constituent character. */
+ notwordchar, /* Matches any char that is not a word-constituent. */
+
+ wordbeg, /* Succeeds if at word beginning. */
+ wordend, /* Succeeds if at word end. */
+
+ wordbound, /* Succeeds if at a word boundary. */
+ notwordbound /* Succeeds if not at a word boundary. */
-#ifndef NFAILURES
-#define NFAILURES 80
-#endif
+#ifdef emacs
+ ,before_dot, /* Succeeds if before point. */
+ at_dot, /* Succeeds if at point. */
+ after_dot, /* Succeeds if after point. */
-#ifdef CHAR_UNSIGNED
-#define SIGN_EXTEND_CHAR(c) ((c)>(char)127?(c)-256:(c)) /* for IBM RT */
-#endif
-#ifndef SIGN_EXTEND_CHAR
-#define SIGN_EXTEND_CHAR(x) (x)
-#endif
-
+ /* Matches any character whose syntax is specified. Followed by
+ a byte which contains a syntax code, e.g., Sword. */
+ syntaxspec,
+
+ /* Matches any character whose syntax is not that specified. */
+ notsyntaxspec
+#endif /* emacs */
+} re_opcode_t;
+
+/* Common operations on the compiled pattern. */
/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
+
#define STORE_NUMBER(destination, number) \
- { (destination)[0] = (number) & 0377; \
- (destination)[1] = (number) >> 8; }
-
-/* Same as STORE_NUMBER, except increment the destination pointer to
- the byte after where the number is stored. Watch out that values for
- DESTINATION such as p + 1 won't work, whereas p will. */
-#define STORE_NUMBER_AND_INCR(destination, number) \
- { STORE_NUMBER(destination, number); \
- (destination) += 2; }
+ do { \
+ (destination)[0] = (number) & 0377; \
+ (destination)[1] = (number) >> 8; \
+ } while (0)
+
+/* Same as STORE_NUMBER, except increment DESTINATION to
+ the byte after where the number is stored. Therefore, DESTINATION
+ must be an lvalue. */
+#define STORE_NUMBER_AND_INCR(destination, number) \
+ do { \
+ STORE_NUMBER (destination, number); \
+ (destination) += 2; \
+ } while (0)
-/* Put into DESTINATION a number stored in two contingous bytes starting
+/* Put into DESTINATION a number stored in two contiguous bytes starting
at SOURCE. */
+
#define EXTRACT_NUMBER(destination, source) \
- { (destination) = *(source) & 0377; \
- (destination) += SIGN_EXTEND_CHAR (*(char *)((source) + 1)) << 8; }
+ do { \
+ (destination) = *(source) & 0377; \
+ (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
+ } while (0)
+
+#ifdef DEBUG
+static void extract_number _RE_ARGS((int *dest, unsigned char *source));
+static void
+extract_number (dest, source)
+ int *dest;
+ unsigned char *source;
+{
+ int temp = SIGN_EXTEND_CHAR (*(source + 1));
+ *dest = *source & 0377;
+ *dest += temp << 8;
+}
+
+#ifndef EXTRACT_MACROS /* To debug the macros. */
+#undef EXTRACT_NUMBER
+#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
+#endif /* not EXTRACT_MACROS */
+
+#endif /* DEBUG */
+
+/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
+ SOURCE must be an lvalue. */
-/* Same as EXTRACT_NUMBER, except increment the pointer for source to
- point to second byte of SOURCE. Note that SOURCE has to be a value
- such as p, not, e.g., p + 1. */
#define EXTRACT_NUMBER_AND_INCR(destination, source) \
- { EXTRACT_NUMBER (destination, source); \
- (source) += 2; }
+ do { \
+ EXTRACT_NUMBER (destination, source); \
+ (source) += 2; \
+ } while (0)
+
+#ifdef DEBUG
+static void extract_number_and_incr _RE_ARGS((int *destination,
+ unsigned char **source));
+static void
+extract_number_and_incr (destination, source)
+ int *destination;
+ unsigned char **source;
+{
+ extract_number (destination, *source);
+ *source += 2;
+}
+#ifndef EXTRACT_MACROS
+#undef EXTRACT_NUMBER_AND_INCR
+#define EXTRACT_NUMBER_AND_INCR(dest, src) \
+ extract_number_and_incr (&dest, &src)
+#endif /* not EXTRACT_MACROS */
-/* Specify the precise syntax of regexps for compilation. This provides
- for compatibility for various utilities which historically have
- different, incompatible syntaxes.
-
- The argument SYNTAX is a bit-mask comprised of the various bits
- defined in regex.h. */
+#endif /* DEBUG */
+
+/* If DEBUG is defined, Regex prints many voluminous messages about what
+ it is doing (if the variable `debug' is nonzero). If linked with the
+ main program in `iregex.c', you can enter patterns and strings
+ interactively. And if linked with the main program in `main.c' and
+ the other test files, you can run the already-written tests. */
-long
-re_set_syntax (syntax)
- long syntax;
+#ifdef DEBUG
+
+/* We use standard I/O for debugging. */
+#include <stdio.h>
+
+/* It is useful to test things that ``must'' be true when debugging. */
+#include <assert.h>
+
+static int debug = 0;
+
+#define DEBUG_STATEMENT(e) e
+#define DEBUG_PRINT1(x) if (debug) printf (x)
+#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
+#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
+#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
+#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
+ if (debug) print_partial_compiled_pattern (s, e)
+#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
+ if (debug) print_double_string (w, s1, sz1, s2, sz2)
+
+
+extern void printchar ();
+
+/* Print the fastmap in human-readable form. */
+
+void
+print_fastmap (fastmap)
+ char *fastmap;
{
- long ret;
+ unsigned was_a_range = 0;
+ unsigned i = 0;
+
+ while (i < (1 << BYTEWIDTH))
+ {
+ if (fastmap[i++])
+ {
+ was_a_range = 0;
+ printchar (i - 1);
+ while (i < (1 << BYTEWIDTH) && fastmap[i])
+ {
+ was_a_range = 1;
+ i++;
+ }
+ if (was_a_range)
+ {
+ printf ("-");
+ printchar (i - 1);
+ }
+ }
+ }
+ putchar ('\n');
+}
- ret = obscure_syntax;
- obscure_syntax = syntax;
- return ret;
+
+/* Print a compiled pattern string in human-readable form, starting at
+ the START pointer into it and ending just before the pointer END. */
+
+void
+print_partial_compiled_pattern (start, end)
+ unsigned char *start;
+ unsigned char *end;
+{
+ int mcnt, mcnt2;
+ unsigned char *p = start;
+ unsigned char *pend = end;
+
+ if (start == NULL)
+ {
+ printf ("(null)\n");
+ return;
+ }
+
+ /* Loop over pattern commands. */
+ while (p < pend)
+ {
+ printf ("%d:\t", p - start);
+
+ switch ((re_opcode_t) *p++)
+ {
+ case no_op:
+ printf ("/no_op");
+ break;
+
+ case exactn:
+ mcnt = *p++;
+ printf ("/exactn/%d", mcnt);
+ do
+ {
+ putchar ('/');
+ printchar (*p++);
+ }
+ while (--mcnt);
+ break;
+
+ case start_memory:
+ mcnt = *p++;
+ printf ("/start_memory/%d/%d", mcnt, *p++);
+ break;
+
+ case stop_memory:
+ mcnt = *p++;
+ printf ("/stop_memory/%d/%d", mcnt, *p++);
+ break;
+
+ case duplicate:
+ printf ("/duplicate/%d", *p++);
+ break;
+
+ case anychar:
+ printf ("/anychar");
+ break;
+
+ case charset:
+ case charset_not:
+ {
+ register int c, last = -100;
+ register int in_range = 0;
+
+ printf ("/charset [%s",
+ (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
+
+ assert (p + *p < pend);
+
+ for (c = 0; c < 256; c++)
+ if (c / 8 < *p
+ && (p[1 + (c/8)] & (1 << (c % 8))))
+ {
+ /* Are we starting a range? */
+ if (last + 1 == c && ! in_range)
+ {
+ putchar ('-');
+ in_range = 1;
+ }
+ /* Have we broken a range? */
+ else if (last + 1 != c && in_range)
+ {
+ printchar (last);
+ in_range = 0;
+ }
+
+ if (! in_range)
+ printchar (c);
+
+ last = c;
+ }
+
+ if (in_range)
+ printchar (last);
+
+ putchar (']');
+
+ p += 1 + *p;
+ }
+ break;
+
+ case begline:
+ printf ("/begline");
+ break;
+
+ case endline:
+ printf ("/endline");
+ break;
+
+ case on_failure_jump:
+ extract_number_and_incr (&mcnt, &p);
+ printf ("/on_failure_jump to %d", p + mcnt - start);
+ break;
+
+ case on_failure_keep_string_jump:
+ extract_number_and_incr (&mcnt, &p);
+ printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
+ break;
+
+ case dummy_failure_jump:
+ extract_number_and_incr (&mcnt, &p);
+ printf ("/dummy_failure_jump to %d", p + mcnt - start);
+ break;
+
+ case push_dummy_failure:
+ printf ("/push_dummy_failure");
+ break;
+
+ case maybe_pop_jump:
+ extract_number_and_incr (&mcnt, &p);
+ printf ("/maybe_pop_jump to %d", p + mcnt - start);
+ break;
+
+ case pop_failure_jump:
+ extract_number_and_incr (&mcnt, &p);
+ printf ("/pop_failure_jump to %d", p + mcnt - start);
+ break;
+
+ case jump_past_alt:
+ extract_number_and_incr (&mcnt, &p);
+ printf ("/jump_past_alt to %d", p + mcnt - start);
+ break;
+
+ case jump:
+ extract_number_and_incr (&mcnt, &p);
+ printf ("/jump to %d", p + mcnt - start);
+ break;
+
+ case succeed_n:
+ extract_number_and_incr (&mcnt, &p);
+ extract_number_and_incr (&mcnt2, &p);
+ printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
+ break;
+
+ case jump_n:
+ extract_number_and_incr (&mcnt, &p);
+ extract_number_and_incr (&mcnt2, &p);
+ printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
+ break;
+
+ case set_number_at:
+ extract_number_and_incr (&mcnt, &p);
+ extract_number_and_incr (&mcnt2, &p);
+ printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
+ break;
+
+ case wordbound:
+ printf ("/wordbound");
+ break;
+
+ case notwordbound:
+ printf ("/notwordbound");
+ break;
+
+ case wordbeg:
+ printf ("/wordbeg");
+ break;
+
+ case wordend:
+ printf ("/wordend");
+
+#ifdef emacs
+ case before_dot:
+ printf ("/before_dot");
+ break;
+
+ case at_dot:
+ printf ("/at_dot");
+ break;
+
+ case after_dot:
+ printf ("/after_dot");
+ break;
+
+ case syntaxspec:
+ printf ("/syntaxspec");
+ mcnt = *p++;
+ printf ("/%d", mcnt);
+ break;
+
+ case notsyntaxspec:
+ printf ("/notsyntaxspec");
+ mcnt = *p++;
+ printf ("/%d", mcnt);
+ break;
+#endif /* emacs */
+
+ case wordchar:
+ printf ("/wordchar");
+ break;
+
+ case notwordchar:
+ printf ("/notwordchar");
+ break;
+
+ case begbuf:
+ printf ("/begbuf");
+ break;
+
+ case endbuf:
+ printf ("/endbuf");
+ break;
+
+ default:
+ printf ("?%d", *(p-1));
+ }
+
+ putchar ('\n');
+ }
+
+ printf ("%d:\tend of pattern.\n", p - start);
+}
+
+
+void
+print_compiled_pattern (bufp)
+ struct re_pattern_buffer *bufp;
+{
+ unsigned char *buffer = bufp->buffer;
+
+ print_partial_compiled_pattern (buffer, buffer + bufp->used);
+ printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
+
+ if (bufp->fastmap_accurate && bufp->fastmap)
+ {
+ printf ("fastmap: ");
+ print_fastmap (bufp->fastmap);
+ }
+
+ printf ("re_nsub: %d\t", bufp->re_nsub);
+ printf ("regs_alloc: %d\t", bufp->regs_allocated);
+ printf ("can_be_null: %d\t", bufp->can_be_null);
+ printf ("newline_anchor: %d\n", bufp->newline_anchor);
+ printf ("no_sub: %d\t", bufp->no_sub);
+ printf ("not_bol: %d\t", bufp->not_bol);
+ printf ("not_eol: %d\t", bufp->not_eol);
+ printf ("syntax: %d\n", bufp->syntax);
+ /* Perhaps we should print the translate table? */
+}
+
+
+void
+print_double_string (where, string1, size1, string2, size2)
+ const char *where;
+ const char *string1;
+ const char *string2;
+ int size1;
+ int size2;
+{
+ unsigned this_char;
+
+ if (where == NULL)
+ printf ("(null)");
+ else
+ {
+ if (FIRST_STRING_P (where))
+ {
+ for (this_char = where - string1; this_char < size1; this_char++)
+ printchar (string1[this_char]);
+
+ where = string2;
+ }
+
+ for (this_char = where - string2; this_char < size2; this_char++)
+ printchar (string2[this_char]);
+ }
}
-/* Set by re_set_syntax to the current regexp syntax to recognize. */
-long obscure_syntax = 0;
+#else /* not DEBUG */
+
+#undef assert
+#define assert(e)
+#define DEBUG_STATEMENT(e)
+#define DEBUG_PRINT1(x)
+#define DEBUG_PRINT2(x1, x2)
+#define DEBUG_PRINT3(x1, x2, x3)
+#define DEBUG_PRINT4(x1, x2, x3, x4)
+#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
+#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
+#endif /* not DEBUG */
-/* Macros for re_compile_pattern, which is found below these definitions. */
+/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
+ also be assigned to arbitrarily: each pattern buffer stores its own
+ syntax, so it can be changed between regex compilations. */
+reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
-#define CHAR_CLASS_MAX_LENGTH 6
-/* Fetch the next character in the uncompiled pattern, translating it if
- necessary. */
+/* Specify the precise syntax of regexps for compilation. This provides
+ for compatibility for various utilities which historically have
+ different, incompatible syntaxes.
+
+ The argument SYNTAX is a bit mask comprised of the various bits
+ defined in regex.h. We return the old syntax. */
+
+reg_syntax_t
+re_set_syntax (syntax)
+ reg_syntax_t syntax;
+{
+ reg_syntax_t ret = re_syntax_options;
+
+ re_syntax_options = syntax;
+ return ret;
+}
+
+/* This table gives an error message for each of the error codes listed
+ in regex.h. Obviously the order here has to be same as there. */
+
+static const char *re_error_msg[] =
+ { NULL, /* REG_NOERROR */
+ "No match", /* REG_NOMATCH */
+ "Invalid regular expression", /* REG_BADPAT */
+ "Invalid collation character", /* REG_ECOLLATE */
+ "Invalid character class name", /* REG_ECTYPE */
+ "Trailing backslash", /* REG_EESCAPE */
+ "Invalid back reference", /* REG_ESUBREG */
+ "Unmatched [ or [^", /* REG_EBRACK */
+ "Unmatched ( or \\(", /* REG_EPAREN */
+ "Unmatched \\{", /* REG_EBRACE */
+ "Invalid content of \\{\\}", /* REG_BADBR */
+ "Invalid range end", /* REG_ERANGE */
+ "Memory exhausted", /* REG_ESPACE */
+ "Invalid preceding regular expression", /* REG_BADRPT */
+ "Premature end of regular expression", /* REG_EEND */
+ "Regular expression too big", /* REG_ESIZE */
+ "Unmatched ) or \\)", /* REG_ERPAREN */
+ };
+
+/* Subroutine declarations and macros for regex_compile. */
+
+static reg_errcode_t regex_compile _RE_ARGS((const char *pattern, size_t size,
+ reg_syntax_t syntax,
+ struct re_pattern_buffer *bufp));
+static void store_op1 _RE_ARGS((re_opcode_t op, unsigned char *loc, int arg));
+static void store_op2 _RE_ARGS((re_opcode_t op, unsigned char *loc,
+ int arg1, int arg2));
+static void insert_op1 _RE_ARGS((re_opcode_t op, unsigned char *loc,
+ int arg, unsigned char *end));
+static void insert_op2 _RE_ARGS((re_opcode_t op, unsigned char *loc,
+ int arg1, int arg2, unsigned char *end));
+static boolean at_begline_loc_p _RE_ARGS((const char *pattern, const char *p,
+ reg_syntax_t syntax));
+static boolean at_endline_loc_p _RE_ARGS((const char *p, const char *pend,
+ reg_syntax_t syntax));
+static reg_errcode_t compile_range _RE_ARGS((const char **p_ptr,
+ const char *pend,
+ char *translate,
+ reg_syntax_t syntax,
+ unsigned char *b));
+
+/* Fetch the next character in the uncompiled pattern---translating it
+ if necessary. Also cast from a signed character in the constant
+ string passed to us by the user to an unsigned char that we can use
+ as an array index (in, e.g., `translate'). */
#define PATFETCH(c) \
- {if (p == pend) goto end_of_pattern; \
- c = * (unsigned char *) p++; \
- if (translate) c = translate[c]; }
+ do {if (p == pend) return REG_EEND; \
+ c = (unsigned char) *p++; \
+ if (translate) c = translate[c]; \
+ } while (0)
/* Fetch the next character in the uncompiled pattern, with no
translation. */
#define PATFETCH_RAW(c) \
- {if (p == pend) goto end_of_pattern; \
- c = * (unsigned char *) p++; }
+ do {if (p == pend) return REG_EEND; \
+ c = (unsigned char) *p++; \
+ } while (0)
+/* Go backwards one character in the pattern. */
#define PATUNFETCH p--
+/* If `translate' is non-null, return translate[D], else just D. We
+ cast the subscript to translate because some data is declared as
+ `char *', to avoid warnings when a string constant is passed. But
+ when we use a character as a subscript we must make it unsigned. */
+#define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
+
+
+/* Macros for outputting the compiled pattern into `buffer'. */
+
/* If the buffer isn't allocated when it comes in, use this. */
-#define INIT_BUF_SIZE 28
+#define INIT_BUF_SIZE 32
/* Make sure we have at least N more bytes of space in buffer. */
#define GET_BUFFER_SPACE(n) \
- { \
- while (b - bufp->buffer + (n) >= bufp->allocated) \
- EXTEND_BUFFER; \
- }
+ while (b - bufp->buffer + (n) > bufp->allocated) \
+ EXTEND_BUFFER ()
-/* Make sure we have one more byte of buffer space and then add CH to it. */
-#define BUFPUSH(ch) \
- { \
+/* Make sure we have one more byte of buffer space and then add C to it. */
+#define BUF_PUSH(c) \
+ do { \
GET_BUFFER_SPACE (1); \
- *b++ = (char) (ch); \
- }
-
-/* Extend the buffer by twice its current size via reallociation and
- reset the pointers that pointed into the old allocation to point to
- the correct places in the new allocation. If extending the buffer
- results in it being larger than 1 << 16, then flag memory exhausted. */
-#define EXTEND_BUFFER \
- { char *old_buffer = bufp->buffer; \
- if (bufp->allocated == (1L<<16)) goto too_big; \
- bufp->allocated *= 2; \
- if (bufp->allocated > (1L<<16)) bufp->allocated = (1L<<16); \
- bufp->buffer = (char *) realloc (bufp->buffer, bufp->allocated); \
- if (bufp->buffer == 0) \
- goto memory_exhausted; \
- b = (b - old_buffer) + bufp->buffer; \
- if (fixup_jump) \
- fixup_jump = (fixup_jump - old_buffer) + bufp->buffer; \
- if (laststart) \
- laststart = (laststart - old_buffer) + bufp->buffer; \
- begalt = (begalt - old_buffer) + bufp->buffer; \
- if (pending_exact) \
- pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
- }
+ *b++ = (unsigned char) (c); \
+ } while (0)
+
+
+/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
+#define BUF_PUSH_2(c1, c2) \
+ do { \
+ GET_BUFFER_SPACE (2); \
+ *b++ = (unsigned char) (c1); \
+ *b++ = (unsigned char) (c2); \
+ } while (0)
+
+
+/* As with BUF_PUSH_2, except for three bytes. */
+#define BUF_PUSH_3(c1, c2, c3) \
+ do { \
+ GET_BUFFER_SPACE (3); \
+ *b++ = (unsigned char) (c1); \
+ *b++ = (unsigned char) (c2); \
+ *b++ = (unsigned char) (c3); \
+ } while (0)
+
+
+/* Store a jump with opcode OP at LOC to location TO. We store a
+ relative address offset by the three bytes the jump itself occupies. */
+#define STORE_JUMP(op, loc, to) \
+ store_op1 (op, loc, (int)((to) - (loc) - 3))
+
+/* Likewise, for a two-argument jump. */
+#define STORE_JUMP2(op, loc, to, arg) \
+ store_op2 (op, loc, (int)((to) - (loc) - 3), arg)
+
+/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
+#define INSERT_JUMP(op, loc, to) \
+ insert_op1 (op, loc, (int)((to) - (loc) - 3), b)
+
+/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
+#define INSERT_JUMP2(op, loc, to, arg) \
+ insert_op2 (op, loc, (int)((to) - (loc) - 3), arg, b)
+
+
+/* This is not an arbitrary limit: the arguments which represent offsets
+ into the pattern are two bytes long. So if 2^16 bytes turns out to
+ be too small, many things would have to change. */
+/* Any other compiler which, like MSC, has allocation limit below 2^16
+ bytes will have to use approach similar to what was done below for
+ MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
+ reallocating to 0 bytes. Such thing is not going to work too well.
+ You have been warned!! */
+#ifdef _MSC_VER
+/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
+ The REALLOC define eliminates a flurry of conversion warnings,
+ but is not required. */
+#define MAX_BUF_SIZE 65500L
+#define REALLOC(p,s) realloc((p), (size_t) (s))
+#else
+#define MAX_BUF_SIZE (1L << 16)
+#define REALLOC realloc
+#endif
-/* Set the bit for character C in a character set list. */
-#define SET_LIST_BIT(c) (b[(c) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
+/* Extend the buffer by twice its current size via realloc and
+ reset the pointers that pointed into the old block to point to the
+ correct places in the new one. If extending the buffer results in it
+ being larger than MAX_BUF_SIZE, then flag memory exhausted. */
+#define EXTEND_BUFFER() \
+ do { \
+ unsigned char *old_buffer = bufp->buffer; \
+ if (bufp->allocated == MAX_BUF_SIZE) \
+ return REG_ESIZE; \
+ bufp->allocated <<= 1; \
+ if (bufp->allocated > MAX_BUF_SIZE) \
+ bufp->allocated = MAX_BUF_SIZE; \
+ bufp->buffer = (unsigned char *) REALLOC(bufp->buffer, bufp->allocated);\
+ if (bufp->buffer == NULL) \
+ return REG_ESPACE; \
+ /* If the buffer moved, move all the pointers into it. */ \
+ if (old_buffer != bufp->buffer) \
+ { \
+ b = (b - old_buffer) + bufp->buffer; \
+ begalt = (begalt - old_buffer) + bufp->buffer; \
+ if (fixup_alt_jump) \
+ fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
+ if (laststart) \
+ laststart = (laststart - old_buffer) + bufp->buffer; \
+ if (pending_exact) \
+ pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
+ } \
+ } while (0)
-/* Get the next unsigned number in the uncompiled pattern. */
-#define GET_UNSIGNED_NUMBER(num) \
- { if (p != pend) \
- { \
- PATFETCH (c); \
- while (isdigit (c)) \
- { \
- if (num < 0) \
- num = 0; \
- num = num * 10 + c - '0'; \
- if (p == pend) \
- break; \
- PATFETCH (c); \
- } \
- } \
- }
-/* Subroutines for re_compile_pattern. */
-/* static void store_jump (), insert_jump (), store_jump_n (),
- insert_jump_n (), insert_op_2 (); */
+/* Since we have one byte reserved for the register number argument to
+ {start,stop}_memory, the maximum number of groups we can report
+ things about is what fits in that byte. */
+#define MAX_REGNUM 255
+/* But patterns can have more than `MAX_REGNUM' registers. We just
+ ignore the excess. */
+typedef unsigned regnum_t;
-/* re_compile_pattern takes a regular-expression string
- and converts it into a buffer full of byte commands for matching.
- PATTERN is the address of the pattern string
- SIZE is the length of it.
- BUFP is a struct re_pattern_buffer * which points to the info
- on where to store the byte commands.
- This structure contains a char * which points to the
- actual space, which should have been obtained with malloc.
- re_compile_pattern may use realloc to grow the buffer space.
+/* Macros for the compile stack. */
- The number of bytes of commands can be found out by looking in
- the `struct re_pattern_buffer' that bufp pointed to, after
- re_compile_pattern returns. */
+/* Since offsets can go either forwards or backwards, this type needs to
+ be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
+/* int may be not enough when sizeof(int) == 2 */
+typedef long pattern_offset_t;
-char *
-re_compile_pattern (pattern, size, bufp)
- char *pattern;
- size_t size;
- struct re_pattern_buffer *bufp;
+typedef struct
{
- register char *b = bufp->buffer;
- register char *p = pattern;
- char *pend = pattern + size;
- register unsigned c, c1;
- char *p0;
- unsigned char *translate = (unsigned char *) bufp->translate;
-
- /* Address of the count-byte of the most recently inserted `exactn'
- command. This makes it possible to tell whether a new exact-match
- character can be added to that command or requires a new `exactn'
- command. */
-
- char *pending_exact = 0;
+ pattern_offset_t begalt_offset;
+ pattern_offset_t fixup_alt_jump;
+ pattern_offset_t inner_group_offset;
+ pattern_offset_t laststart_offset;
+ regnum_t regnum;
+} compile_stack_elt_t;
- /* Address of the place where a forward-jump should go to the end of
- the containing expression. Each alternative of an `or', except the
- last, ends with a forward-jump of this sort. */
- char *fixup_jump = 0;
+typedef struct
+{
+ compile_stack_elt_t *stack;
+ unsigned size;
+ unsigned avail; /* Offset of next open position. */
+} compile_stack_type;
- /* Address of start of the most recently finished expression.
- This tells postfix * where to find the start of its operand. */
- char *laststart = 0;
+#define INIT_COMPILE_STACK_SIZE 32
- /* In processing a repeat, 1 means zero matches is allowed. */
+#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
+#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
- char zero_times_ok;
+/* The next available element. */
+#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
- /* In processing a repeat, 1 means many matches is allowed. */
- char many_times_ok;
+/* Set the bit for character C in a list. */
+#define SET_LIST_BIT(c) \
+ (b[((unsigned char) (c)) / BYTEWIDTH] \
+ |= 1 << (((unsigned char) c) % BYTEWIDTH))
- /* Address of beginning of regexp, or inside of last \(. */
- char *begalt = b;
+/* Get the next unsigned number in the uncompiled pattern. */
+#define GET_UNSIGNED_NUMBER(num) \
+ { if (p != pend) \
+ { \
+ PATFETCH (c); \
+ while (ISDIGIT (c)) \
+ { \
+ if (num < 0) \
+ num = 0; \
+ num = num * 10 + c - '0'; \
+ if (p == pend) \
+ break; \
+ PATFETCH (c); \
+ } \
+ } \
+ }
+
+#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
+
+#define IS_CHAR_CLASS(string) \
+ (STREQ (string, "alpha") || STREQ (string, "upper") \
+ || STREQ (string, "lower") || STREQ (string, "digit") \
+ || STREQ (string, "alnum") || STREQ (string, "xdigit") \
+ || STREQ (string, "space") || STREQ (string, "print") \
+ || STREQ (string, "punct") || STREQ (string, "graph") \
+ || STREQ (string, "cntrl") || STREQ (string, "blank"))
+
+static boolean group_in_compile_stack _RE_ARGS((compile_stack_type
+ compile_stack,
+ regnum_t regnum));
+
+/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
+ Returns one of error codes defined in `regex.h', or zero for success.
+
+ Assumes the `allocated' (and perhaps `buffer') and `translate'
+ fields are set in BUFP on entry.
+
+ If it succeeds, results are put in BUFP (if it returns an error, the
+ contents of BUFP are undefined):
+ `buffer' is the compiled pattern;
+ `syntax' is set to SYNTAX;
+ `used' is set to the length of the compiled pattern;
+ `fastmap_accurate' is zero;
+ `re_nsub' is the number of subexpressions in PATTERN;
+ `not_bol' and `not_eol' are zero;
+
+ The `fastmap' and `newline_anchor' fields are neither
+ examined nor set. */
- /* In processing an interval, at least this many matches must be made. */
- int lower_bound;
+static reg_errcode_t
+regex_compile (pattern, size, syntax, bufp)
+ const char *pattern;
+ size_t size;
+ reg_syntax_t syntax;
+ struct re_pattern_buffer *bufp;
+{
+ /* We fetch characters from PATTERN here. Even though PATTERN is
+ `char *' (i.e., signed), we declare these variables as unsigned, so
+ they can be reliably used as array indices. */
+ register unsigned char c, c1;
+
+ /* A random tempory spot in PATTERN. */
+ const char *p1;
- /* In processing an interval, at most this many matches can be made. */
- int upper_bound;
+ /* Points to the end of the buffer, where we should append. */
+ register unsigned char *b;
+
+ /* Keeps track of unclosed groups. */
+ compile_stack_type compile_stack;
- /* Place in pattern (i.e., the {) to which to go back if the interval
- is invalid. */
- char *beg_interval = 0;
+ /* Points to the current (ending) position in the pattern. */
+ const char *p = pattern;
+ const char *pend = pattern + size;
- /* Stack of information saved by \( and restored by \).
- Four stack elements are pushed by each \(:
- First, the value of b.
- Second, the value of fixup_jump.
- Third, the value of regnum.
- Fourth, the value of begalt. */
+ /* How to translate the characters in the pattern. */
+ char *translate = bufp->translate;
- int stackb[40];
- int *stackp = stackb;
- int *stacke = stackb + 40;
- int *stackt;
+ /* Address of the count-byte of the most recently inserted `exactn'
+ command. This makes it possible to tell if a new exact-match
+ character can be added to that command or if the character requires
+ a new `exactn' command. */
+ unsigned char *pending_exact = 0;
- /* Counts \('s as they are encountered. Remembered for the matching \),
- where it becomes the register number to put in the stop_memory
- command. */
+ /* Address of start of the most recently finished expression.
+ This tells, e.g., postfix * where to find the start of its
+ operand. Reset at the beginning of groups and alternatives. */
+ unsigned char *laststart = 0;
- int regnum = 1;
+ /* Address of beginning of regexp, or inside of last group. */
+ unsigned char *begalt;
+
+ /* Place in the uncompiled pattern (i.e., the {) to
+ which to go back if the interval is invalid. */
+ const char *beg_interval;
+
+ /* Address of the place where a forward jump should go to the end of
+ the containing expression. Each alternative of an `or' -- except the
+ last -- ends with a forward jump of this sort. */
+ unsigned char *fixup_alt_jump = 0;
+
+ /* Counts open-groups as they are encountered. Remembered for the
+ matching close-group on the compile stack, so the same register
+ number is put in the stop_memory as the start_memory. */
+ regnum_t regnum = 0;
+
+#ifdef DEBUG
+ DEBUG_PRINT1 ("\nCompiling pattern: ");
+ if (debug)
+ {
+ unsigned debug_count;
+
+ for (debug_count = 0; debug_count < size; debug_count++)
+ printchar (pattern[debug_count]);
+ putchar ('\n');
+ }
+#endif /* DEBUG */
+ /* Initialize the compile stack. */
+ compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
+ if (compile_stack.stack == NULL)
+ return REG_ESPACE;
+
+ compile_stack.size = INIT_COMPILE_STACK_SIZE;
+ compile_stack.avail = 0;
+
+ /* Initialize the pattern buffer. */
+ bufp->syntax = syntax;
bufp->fastmap_accurate = 0;
+ bufp->not_bol = bufp->not_eol = 0;
-#ifndef emacs
-#ifndef SYNTAX_TABLE
+ /* Set `used' to zero, so that if we return an error, the pattern
+ printer (for debugging) will think there's no pattern. We reset it
+ at the end. */
+ bufp->used = 0;
+
+ /* Always count groups, whether or not bufp->no_sub is set. */
+ bufp->re_nsub = 0;
+
+#if !defined (emacs) && !defined (SYNTAX_TABLE)
/* Initialize the syntax table. */
- init_syntax_once();
-#endif
+ init_syntax_once ();
#endif
if (bufp->allocated == 0)
{
- bufp->allocated = INIT_BUF_SIZE;
if (bufp->buffer)
- /* EXTEND_BUFFER loses when bufp->allocated is 0. */
- bufp->buffer = (char *) realloc (bufp->buffer, INIT_BUF_SIZE);
+ { /* If zero allocated, but buffer is non-null, try to realloc
+ enough space. This loses if buffer's address is bogus, but
+ that is the user's responsibility. */
+ RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
+ }
else
- /* Caller did not allocate a buffer. Do it for them. */
- bufp->buffer = (char *) malloc (INIT_BUF_SIZE);
- if (!bufp->buffer) goto memory_exhausted;
- begalt = b = bufp->buffer;
+ { /* Caller did not allocate a buffer. Do it for them. */
+ bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
+ }
+ if (!bufp->buffer) return REG_ESPACE;
+
+ bufp->allocated = INIT_BUF_SIZE;
}
+ begalt = b = bufp->buffer;
+
+ /* Loop through the uncompiled pattern until we're at the end. */
while (p != pend)
{
PATFETCH (c);
switch (c)
- {
- case '$':
- {
- char *p1 = p;
- /* When testing what follows the $,
- look past the \-constructs that don't consume anything. */
- if (! (obscure_syntax & RE_CONTEXT_INDEP_OPS))
- while (p1 != pend)
- {
- if (*p1 == '\\' && p1 + 1 != pend
- && (p1[1] == '<' || p1[1] == '>'
- || p1[1] == '`' || p1[1] == '\''
-#ifdef emacs
- || p1[1] == '='
-#endif
- || p1[1] == 'b' || p1[1] == 'B'))
- p1 += 2;
- else
- break;
- }
- if (obscure_syntax & RE_TIGHT_VBAR)
- {
- if (! (obscure_syntax & RE_CONTEXT_INDEP_OPS) && p1 != pend)
- goto normal_char;
- /* Make operand of last vbar end before this `$'. */
- if (fixup_jump)
- store_jump (fixup_jump, jump, b);
- fixup_jump = 0;
- BUFPUSH (endline);
- break;
- }
- /* $ means succeed if at end of line, but only in special contexts.
- If validly in the middle of a pattern, it is a normal character. */
-
- if ((obscure_syntax & RE_CONTEXTUAL_INVALID_OPS) && p1 != pend)
- goto invalid_pattern;
- if (p1 == pend || *p1 == '\n'
- || (obscure_syntax & RE_CONTEXT_INDEP_OPS)
- || (obscure_syntax & RE_NO_BK_PARENS
- ? *p1 == ')'
- : *p1 == '\\' && p1[1] == ')')
- || (obscure_syntax & RE_NO_BK_VBAR
- ? *p1 == '|'
- : *p1 == '\\' && p1[1] == '|'))
- {
- BUFPUSH (endline);
- break;
- }
- goto normal_char;
+ {
+ case '^':
+ {
+ if ( /* If at start of pattern, it's an operator. */
+ p == pattern + 1
+ /* If context independent, it's an operator. */
+ || syntax & RE_CONTEXT_INDEP_ANCHORS
+ /* Otherwise, depends on what's come before. */
+ || at_begline_loc_p (pattern, p, syntax))
+ BUF_PUSH (begline);
+ else
+ goto normal_char;
}
- case '^':
- /* ^ means succeed if at beg of line, but only if no preceding
- pattern. */
-
- if ((obscure_syntax & RE_CONTEXTUAL_INVALID_OPS) && laststart)
- goto invalid_pattern;
- if (laststart && p - 2 >= pattern && p[-2] != '\n'
- && !(obscure_syntax & RE_CONTEXT_INDEP_OPS))
- goto normal_char;
- if (obscure_syntax & RE_TIGHT_VBAR)
- {
- if (p != pattern + 1
- && ! (obscure_syntax & RE_CONTEXT_INDEP_OPS))
- goto normal_char;
- BUFPUSH (begline);
- begalt = b;
- }
- else
- BUFPUSH (begline);
- break;
+ break;
+
+
+ case '$':
+ {
+ if ( /* If at end of pattern, it's an operator. */
+ p == pend
+ /* If context independent, it's an operator. */
+ || syntax & RE_CONTEXT_INDEP_ANCHORS
+ /* Otherwise, depends on what's next. */
+ || at_endline_loc_p (p, pend, syntax))
+ BUF_PUSH (endline);
+ else
+ goto normal_char;
+ }
+ break;
+
case '+':
- case '?':
- if ((obscure_syntax & RE_BK_PLUS_QM)
- || (obscure_syntax & RE_LIMITED_OPS))
- goto normal_char;
- handle_plus:
- case '*':
- /* If there is no previous pattern, char not special. */
- if (!laststart)
+ case '?':
+ if ((syntax & RE_BK_PLUS_QM)
+ || (syntax & RE_LIMITED_OPS))
+ goto normal_char;
+ handle_plus:
+ case '*':
+ /* If there is no previous pattern... */
+ if (!laststart)
{
- if (obscure_syntax & RE_CONTEXTUAL_INVALID_OPS)
- goto invalid_pattern;
- else if (! (obscure_syntax & RE_CONTEXT_INDEP_OPS))
- goto normal_char;
+ if (syntax & RE_CONTEXT_INVALID_OPS)
+ return REG_BADRPT;
+ else if (!(syntax & RE_CONTEXT_INDEP_OPS))
+ goto normal_char;
}
- /* If there is a sequence of repetition chars,
- collapse it down to just one. */
- zero_times_ok = 0;
- many_times_ok = 0;
- while (1)
- {
- zero_times_ok |= c != '+';
- many_times_ok |= c != '?';
- if (p == pend)
- break;
- PATFETCH (c);
- if (c == '*')
- ;
- else if (!(obscure_syntax & RE_BK_PLUS_QM)
- && (c == '+' || c == '?'))
- ;
- else if ((obscure_syntax & RE_BK_PLUS_QM)
- && c == '\\')
- {
- /* int c1; */
- PATFETCH (c1);
- if (!(c1 == '+' || c1 == '?'))
- {
- PATUNFETCH;
- PATUNFETCH;
- break;
- }
- c = c1;
- }
- else
- {
- PATUNFETCH;
- break;
- }
- }
- /* Star, etc. applied to an empty pattern is equivalent
- to an empty pattern. */
- if (!laststart)
- break;
+ {
+ /* Are we optimizing this jump? */
+ boolean keep_string_p = false;
+
+ /* 1 means zero (many) matches is allowed. */
+ char zero_times_ok = 0, many_times_ok = 0;
+
+ /* If there is a sequence of repetition chars, collapse it
+ down to just one (the right one). We can't combine
+ interval operators with these because of, e.g., `a{2}*',
+ which should only match an even number of `a's. */
+
+ for (;;)
+ {
+ zero_times_ok |= c != '+';
+ many_times_ok |= c != '?';
+
+ if (p == pend)
+ break;
+
+ PATFETCH (c);
+
+ if (c == '*'
+ || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
+ ;
+
+ else if (syntax & RE_BK_PLUS_QM && c == '\\')
+ {
+ if (p == pend) return REG_EESCAPE;
+
+ PATFETCH (c1);
+ if (!(c1 == '+' || c1 == '?'))
+ {
+ PATUNFETCH;
+ PATUNFETCH;
+ break;
+ }
+
+ c = c1;
+ }
+ else
+ {
+ PATUNFETCH;
+ break;
+ }
- /* Now we know whether or not zero matches is allowed
- and also whether or not two or more matches is allowed. */
- if (many_times_ok)
- {
- /* If more than one repetition is allowed, put in at the
- end a backward relative jump from b to before the next
- jump we're going to put in below (which jumps from
- laststart to after this jump). */
- GET_BUFFER_SPACE (3);
- store_jump (b, maybe_finalize_jump, laststart - 3);
- b += 3; /* Because store_jump put stuff here. */
- }
- /* On failure, jump from laststart to b + 3, which will be the
- end of the buffer after this jump is inserted. */
- GET_BUFFER_SPACE (3);
- insert_jump (on_failure_jump, laststart, b + 3, b);
- pending_exact = 0;
- b += 3;
- if (!zero_times_ok)
- {
- /* At least one repetition is required, so insert a
- dummy-failure before the initial on-failure-jump
- instruction of the loop. This effects a skip over that
- instruction the first time we hit that loop. */
- GET_BUFFER_SPACE (6);
- insert_jump (dummy_failure_jump, laststart, laststart + 6, b);
- b += 3;
- }
+ /* If we get here, we found another repeat character. */
+ }
+
+ /* Star, etc. applied to an empty pattern is equivalent
+ to an empty pattern. */
+ if (!laststart)
+ break;
+
+ /* Now we know whether or not zero matches is allowed
+ and also whether or not two or more matches is allowed. */
+ if (many_times_ok)
+ { /* More than one repetition is allowed, so put in at the
+ end a backward relative jump from `b' to before the next
+ jump we're going to put in below (which jumps from
+ laststart to after this jump).
+
+ But if we are at the `*' in the exact sequence `.*\n',
+ insert an unconditional jump backwards to the .,
+ instead of the beginning of the loop. This way we only
+ push a failure point once, instead of every time
+ through the loop. */
+ assert (p - 1 > pattern);
+
+ /* Allocate the space for the jump. */
+ GET_BUFFER_SPACE (3);
+
+ /* We know we are not at the first character of the pattern,
+ because laststart was nonzero. And we've already
+ incremented `p', by the way, to be the character after
+ the `*'. Do we have to do something analogous here
+ for null bytes, because of RE_DOT_NOT_NULL? */
+ if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
+ && zero_times_ok
+ && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
+ && !(syntax & RE_DOT_NEWLINE))
+ { /* We have .*\n. */
+ STORE_JUMP (jump, b, laststart);
+ keep_string_p = true;
+ }
+ else
+ /* Anything else. */
+ STORE_JUMP (maybe_pop_jump, b, laststart - 3);
+
+ /* We've added more stuff to the buffer. */
+ b += 3;
+ }
+
+ /* On failure, jump from laststart to b + 3, which will be the
+ end of the buffer after this jump is inserted. */
+ GET_BUFFER_SPACE (3);
+ INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
+ : on_failure_jump,
+ laststart, b + 3);
+ pending_exact = 0;
+ b += 3;
+
+ if (!zero_times_ok)
+ {
+ /* At least one repetition is required, so insert a
+ `dummy_failure_jump' before the initial
+ `on_failure_jump' instruction of the loop. This
+ effects a skip over that instruction the first time
+ we hit that loop. */
+ GET_BUFFER_SPACE (3);
+ INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
+ b += 3;
+ }
+ }
break;
+
case '.':
- laststart = b;
- BUFPUSH (anychar);
- break;
+ laststart = b;
+ BUF_PUSH (anychar);
+ break;
+
case '[':
- if (p == pend)
- goto invalid_pattern;
- while (b - bufp->buffer
- > bufp->allocated - 3 - (1 << BYTEWIDTH) / BYTEWIDTH)
- EXTEND_BUFFER;
-
- laststart = b;
- if (*p == '^')
- {
- BUFPUSH (charset_not);
- p++;
- }
- else
- BUFPUSH (charset);
- p0 = p;
+ {
+ boolean had_char_class = false;
- BUFPUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
- /* Clear the whole map */
- memset (b, 0, (1 << BYTEWIDTH) / BYTEWIDTH);
-
- if ((obscure_syntax & RE_HAT_NOT_NEWLINE) && b[-2] == charset_not)
- SET_LIST_BIT ('\n');
+ if (p == pend) return REG_EBRACK;
+ /* Ensure that we have enough space to push a charset: the
+ opcode, the length count, and the bitset; 34 bytes in all. */
+ GET_BUFFER_SPACE (34);
- /* Read in characters and ranges, setting map bits. */
- while (1)
- {
- /* Don't translate while fetching, in case it's a range bound.
- When we set the bit for the character, we translate it. */
- PATFETCH_RAW (c);
-
- /* If set, \ escapes characters when inside [...]. */
- if ((obscure_syntax & RE_AWK_CLASS_HACK) && c == '\\')
- {
- PATFETCH(c1);
- SET_LIST_BIT (c1);
- continue;
- }
- if (c == ']')
- {
- if (p == p0 + 1)
- {
- /* If this is an empty bracket expression. */
- if ((obscure_syntax & RE_NO_EMPTY_BRACKETS)
- && p == pend)
- goto invalid_pattern;
- }
- else
- /* Stop if this isn't merely a ] inside a bracket
- expression, but rather the end of a bracket
- expression. */
- break;
- }
- /* Get a range. */
- if (p[0] == '-' && p[1] != ']')
- {
- PATFETCH (c1);
- /* Don't translate the range bounds while fetching them. */
- PATFETCH_RAW (c1);
-
- if ((obscure_syntax & RE_NO_EMPTY_RANGES) && c > c1)
- goto invalid_pattern;
-
- if ((obscure_syntax & RE_NO_HYPHEN_RANGE_END)
- && c1 == '-' && *p != ']')
- goto invalid_pattern;
-
- while (c <= c1)
- {
- /* Translate each char that's in the range. */
- if (translate)
- SET_LIST_BIT (translate[c]);
- else
- SET_LIST_BIT (c);
- c++;
- }
- }
- else if ((obscure_syntax & RE_CHAR_CLASSES)
- && c == '[' && p[0] == ':')
- {
- /* Longest valid character class word has six characters. */
- char str[CHAR_CLASS_MAX_LENGTH];
- PATFETCH (c);
- c1 = 0;
- /* If no ] at end. */
- if (p == pend)
- goto invalid_pattern;
- while (1)
- {
- /* Don't translate the ``character class'' characters. */
- PATFETCH_RAW (c);
- if (c == ':' || c == ']' || p == pend
- || c1 == CHAR_CLASS_MAX_LENGTH)
- break;
- str[c1++] = c;
- }
- str[c1] = '\0';
- if (p == pend
- || c == ']' /* End of the bracket expression. */
- || p[0] != ']'
- || p + 1 == pend
- || (strcmp (str, "alpha") != 0
- && strcmp (str, "upper") != 0
- && strcmp (str, "lower") != 0
- && strcmp (str, "digit") != 0
- && strcmp (str, "alnum") != 0
- && strcmp (str, "xdigit") != 0
- && strcmp (str, "space") != 0
- && strcmp (str, "print") != 0
- && strcmp (str, "punct") != 0
- && strcmp (str, "graph") != 0
- && strcmp (str, "cntrl") != 0))
- {
- /* Undo the ending character, the letters, and leave
- the leading : and [ (but set bits for them). */
- c1++;
- while (c1--)
- PATUNFETCH;
- SET_LIST_BIT ('[');
- SET_LIST_BIT (':');
- }
- else
- {
- /* The ] at the end of the character class. */
- PATFETCH (c);
- if (c != ']')
- goto invalid_pattern;
- for (c = 0; c < (1 << BYTEWIDTH); c++)
- {
- if ((strcmp (str, "alpha") == 0 && isalpha (c))
- || (strcmp (str, "upper") == 0 && isupper (c))
- || (strcmp (str, "lower") == 0 && islower (c))
- || (strcmp (str, "digit") == 0 && isdigit (c))
- || (strcmp (str, "alnum") == 0 && isalnum (c))
- || (strcmp (str, "xdigit") == 0 && isxdigit (c))
- || (strcmp (str, "space") == 0 && isspace (c))
- || (strcmp (str, "print") == 0 && isprint (c))
- || (strcmp (str, "punct") == 0 && ispunct (c))
- || (strcmp (str, "graph") == 0 && isgraph (c))
- || (strcmp (str, "cntrl") == 0 && iscntrl (c)))
- SET_LIST_BIT (c);
- }
- }
- }
- else if (translate)
- SET_LIST_BIT (translate[c]);
- else
- SET_LIST_BIT (c);
- }
+ laststart = b;
+
+ /* We test `*p == '^' twice, instead of using an if
+ statement, so we only need one BUF_PUSH. */
+ BUF_PUSH (*p == '^' ? charset_not : charset);
+ if (*p == '^')
+ p++;
- /* Discard any character set/class bitmap bytes that are all
- 0 at the end of the map. Decrement the map-length byte too. */
- while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
- b[-1]--;
- b += b[-1];
+ /* Remember the first position in the bracket expression. */
+ p1 = p;
+
+ /* Push the number of bytes in the bitmap. */
+ BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
+
+ /* Clear the whole map. */
+ bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
+
+ /* charset_not matches newline according to a syntax bit. */
+ if ((re_opcode_t) b[-2] == charset_not
+ && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
+ SET_LIST_BIT ('\n');
+
+ /* Read in characters and ranges, setting map bits. */
+ for (;;)
+ {
+ if (p == pend) return REG_EBRACK;
+
+ PATFETCH (c);
+
+ /* \ might escape characters inside [...] and [^...]. */
+ if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
+ {
+ if (p == pend) return REG_EESCAPE;
+
+ PATFETCH (c1);
+ SET_LIST_BIT (c1);
+ continue;
+ }
+
+ /* Could be the end of the bracket expression. If it's
+ not (i.e., when the bracket expression is `[]' so
+ far), the ']' character bit gets set way below. */
+ if (c == ']' && p != p1 + 1)
+ break;
+
+ /* Look ahead to see if it's a range when the last thing
+ was a character class. */
+ if (had_char_class && c == '-' && *p != ']')
+ return REG_ERANGE;
+
+ /* Look ahead to see if it's a range when the last thing
+ was a character: if this is a hyphen not at the
+ beginning or the end of a list, then it's the range
+ operator. */
+ if (c == '-'
+ && !(p - 2 >= pattern && p[-2] == '[')
+ && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
+ && *p != ']')
+ {
+ reg_errcode_t ret
+ = compile_range (&p, pend, translate, syntax, b);
+ if (ret != REG_NOERROR) return ret;
+ }
+
+ else if (p[0] == '-' && p[1] != ']')
+ { /* This handles ranges made up of characters only. */
+ reg_errcode_t ret;
+
+ /* Move past the `-'. */
+ PATFETCH (c1);
+
+ ret = compile_range (&p, pend, translate, syntax, b);
+ if (ret != REG_NOERROR) return ret;
+ }
+
+ /* See if we're at the beginning of a possible character
+ class. */
+
+ else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
+ { /* Leave room for the null. */
+ char str[CHAR_CLASS_MAX_LENGTH + 1];
+
+ PATFETCH (c);
+ c1 = 0;
+
+ /* If pattern is `[[:'. */
+ if (p == pend) return REG_EBRACK;
+
+ for (;;)
+ {
+ PATFETCH (c);
+ if (c == ':' || c == ']' || p == pend
+ || c1 == CHAR_CLASS_MAX_LENGTH)
+ break;
+ str[c1++] = c;
+ }
+ str[c1] = '\0';
+
+ /* If isn't a word bracketed by `[:' and:`]':
+ undo the ending character, the letters, and leave
+ the leading `:' and `[' (but set bits for them). */
+ if (c == ':' && *p == ']')
+ {
+ int ch;
+ boolean is_alnum = STREQ (str, "alnum");
+ boolean is_alpha = STREQ (str, "alpha");
+ boolean is_blank = STREQ (str, "blank");
+ boolean is_cntrl = STREQ (str, "cntrl");
+ boolean is_digit = STREQ (str, "digit");
+ boolean is_graph = STREQ (str, "graph");
+ boolean is_lower = STREQ (str, "lower");
+ boolean is_print = STREQ (str, "print");
+ boolean is_punct = STREQ (str, "punct");
+ boolean is_space = STREQ (str, "space");
+ boolean is_upper = STREQ (str, "upper");
+ boolean is_xdigit = STREQ (str, "xdigit");
+
+ if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
+
+ /* Throw away the ] at the end of the character
+ class. */
+ PATFETCH (c);
+
+ if (p == pend) return REG_EBRACK;
+
+ for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
+ {
+ if ( (is_alnum && ISALNUM (ch))
+ || (is_alpha && ISALPHA (ch))
+ || (is_blank && ISBLANK (ch))
+ || (is_cntrl && ISCNTRL (ch))
+ || (is_digit && ISDIGIT (ch))
+ || (is_graph && ISGRAPH (ch))
+ || (is_lower && ISLOWER (ch))
+ || (is_print && ISPRINT (ch))
+ || (is_punct && ISPUNCT (ch))
+ || (is_space && ISSPACE (ch))
+ || (is_upper && ISUPPER (ch))
+ || (is_xdigit && ISXDIGIT (ch)))
+ SET_LIST_BIT (ch);
+ }
+ had_char_class = true;
+ }
+ else
+ {
+ c1++;
+ while (c1--)
+ PATUNFETCH;
+ SET_LIST_BIT ('[');
+ SET_LIST_BIT (':');
+ had_char_class = false;
+ }
+ }
+ else
+ {
+ had_char_class = false;
+ SET_LIST_BIT (c);
+ }
+ }
+
+ /* Discard any (non)matching list bytes that are all 0 at the
+ end of the map. Decrease the map-length byte too. */
+ while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
+ b[-1]--;
+ b += b[-1];
+ }
break;
+
case '(':
- if (! (obscure_syntax & RE_NO_BK_PARENS))
- goto normal_char;
- else
- goto handle_open;
+ if (syntax & RE_NO_BK_PARENS)
+ goto handle_open;
+ else
+ goto normal_char;
+
+
+ case ')':
+ if (syntax & RE_NO_BK_PARENS)
+ goto handle_close;
+ else
+ goto normal_char;
- case ')':
- if (! (obscure_syntax & RE_NO_BK_PARENS))
- goto normal_char;
- else
- goto handle_close;
case '\n':
- if (! (obscure_syntax & RE_NEWLINE_OR))
- goto normal_char;
- else
- goto handle_bar;
+ if (syntax & RE_NEWLINE_ALT)
+ goto handle_alt;
+ else
+ goto normal_char;
+
case '|':
- if ((obscure_syntax & RE_CONTEXTUAL_INVALID_OPS)
- && (! laststart || p == pend))
- goto invalid_pattern;
- else if (! (obscure_syntax & RE_NO_BK_VBAR))
- goto normal_char;
- else
- goto handle_bar;
+ if (syntax & RE_NO_BK_VBAR)
+ goto handle_alt;
+ else
+ goto normal_char;
- case '{':
- if (! ((obscure_syntax & RE_NO_BK_CURLY_BRACES)
- && (obscure_syntax & RE_INTERVALS)))
- goto normal_char;
- else
+
+ case '{':
+ if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
goto handle_interval;
-
+ else
+ goto normal_char;
+
+
case '\\':
- if (p == pend) goto invalid_pattern;
- PATFETCH_RAW (c);
- switch (c)
- {
- case '(':
- if (obscure_syntax & RE_NO_BK_PARENS)
- goto normal_backsl;
- handle_open:
- if (stackp == stacke) goto nesting_too_deep;
-
- /* Laststart should point to the start_memory that we are about
- to push (unless the pattern has RE_NREGS or more ('s). */
- *stackp++ = b - bufp->buffer;
- if (regnum < RE_NREGS)
- {
- BUFPUSH (start_memory);
- BUFPUSH (regnum);
- }
- *stackp++ = fixup_jump ? fixup_jump - bufp->buffer + 1 : 0;
- *stackp++ = regnum++;
- *stackp++ = begalt - bufp->buffer;
- fixup_jump = 0;
- laststart = 0;
- begalt = b;
- break;
-
- case ')':
- if (obscure_syntax & RE_NO_BK_PARENS)
- goto normal_backsl;
- handle_close:
- if (stackp == stackb) goto unmatched_close;
- begalt = *--stackp + bufp->buffer;
- if (fixup_jump)
- store_jump (fixup_jump, jump, b);
- if (stackp[-1] < RE_NREGS)
- {
- BUFPUSH (stop_memory);
- BUFPUSH (stackp[-1]);
- }
- stackp -= 2;
- fixup_jump = *stackp ? *stackp + bufp->buffer - 1 : 0;
- laststart = *--stackp + bufp->buffer;
- break;
-
- case '|':
- if ((obscure_syntax & RE_LIMITED_OPS)
- || (obscure_syntax & RE_NO_BK_VBAR))
- goto normal_backsl;
- handle_bar:
- if (obscure_syntax & RE_LIMITED_OPS)
- goto normal_char;
- /* Insert before the previous alternative a jump which
- jumps to this alternative if the former fails. */
- GET_BUFFER_SPACE (6);
- insert_jump (on_failure_jump, begalt, b + 6, b);
- pending_exact = 0;
- b += 3;
- /* The alternative before the previous alternative has a
- jump after it which gets executed if it gets matched.
- Adjust that jump so it will jump to the previous
- alternative's analogous jump (put in below, which in
- turn will jump to the next (if any) alternative's such
- jump, etc.). The last such jump jumps to the correct
- final destination. */
- if (fixup_jump)
- store_jump (fixup_jump, jump, b);
+ if (p == pend) return REG_EESCAPE;
+
+ /* Do not translate the character after the \, so that we can
+ distinguish, e.g., \B from \b, even if we normally would
+ translate, e.g., B to b. */
+ PATFETCH_RAW (c);
+
+ switch (c)
+ {
+ case '(':
+ if (syntax & RE_NO_BK_PARENS)
+ goto normal_backslash;
+
+ handle_open:
+ bufp->re_nsub++;
+ regnum++;
+
+ if (COMPILE_STACK_FULL)
+ {
+ RETALLOC (compile_stack.stack, compile_stack.size << 1,
+ compile_stack_elt_t);
+ if (compile_stack.stack == NULL) return REG_ESPACE;
+
+ compile_stack.size <<= 1;
+ }
+
+ /* These are the values to restore when we hit end of this
+ group. They are all relative offsets, so that if the
+ whole pattern moves because of realloc, they will still
+ be valid. */
+ COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
+ COMPILE_STACK_TOP.fixup_alt_jump
+ = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
+ COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
+ COMPILE_STACK_TOP.regnum = regnum;
+
+ /* We will eventually replace the 0 with the number of
+ groups inner to this one. But do not push a
+ start_memory for groups beyond the last one we can
+ represent in the compiled pattern. */
+ if (regnum <= MAX_REGNUM)
+ {
+ COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
+ BUF_PUSH_3 (start_memory, regnum, 0);
+ }
- /* Leave space for a jump after previous alternative---to be
- filled in later. */
- fixup_jump = b;
- b += 3;
+ compile_stack.avail++;
+ fixup_alt_jump = 0;
laststart = 0;
- begalt = b;
- break;
+ begalt = b;
+ /* If we've reached MAX_REGNUM groups, then this open
+ won't actually generate any code, so we'll have to
+ clear pending_exact explicitly. */
+ pending_exact = 0;
+ break;
- case '{':
- if (! (obscure_syntax & RE_INTERVALS)
- /* Let \{ be a literal. */
- || ((obscure_syntax & RE_INTERVALS)
- && (obscure_syntax & RE_NO_BK_CURLY_BRACES))
- /* If it's the string "\{". */
- || (p - 2 == pattern && p == pend))
- goto normal_backsl;
- handle_interval:
- beg_interval = p - 1; /* The {. */
- /* If there is no previous pattern, this isn't an interval. */
- if (!laststart)
- {
- if (obscure_syntax & RE_CONTEXTUAL_INVALID_OPS)
- goto invalid_pattern;
- else
- goto normal_backsl;
+
+ case ')':
+ if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
+
+ if (COMPILE_STACK_EMPTY)
+ if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
+ goto normal_backslash;
+ else
+ return REG_ERPAREN;
+
+ handle_close:
+ if (fixup_alt_jump)
+ { /* Push a dummy failure point at the end of the
+ alternative for a possible future
+ `pop_failure_jump' to pop. See comments at
+ `push_dummy_failure' in `re_match_2'. */
+ BUF_PUSH (push_dummy_failure);
+
+ /* We allocated space for this jump when we assigned
+ to `fixup_alt_jump', in the `handle_alt' case below. */
+ STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
}
- /* It also isn't an interval if not preceded by an re
- matching a single character or subexpression, or if
- the current type of intervals can't handle back
- references and the previous thing is a back reference. */
- if (! (*laststart == anychar
- || *laststart == charset
- || *laststart == charset_not
- || *laststart == start_memory
- || (*laststart == exactn && laststart[1] == 1)
- || (! (obscure_syntax & RE_NO_BK_REFS)
- && *laststart == duplicate)))
- {
- if (obscure_syntax & RE_NO_BK_CURLY_BRACES)
- goto normal_char;
-
- /* Posix extended syntax is handled in previous
- statement; this is for Posix basic syntax. */
- if (obscure_syntax & RE_INTERVALS)
- goto invalid_pattern;
+
+ /* See similar code for backslashed left paren above. */
+ if (COMPILE_STACK_EMPTY)
+ if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
+ goto normal_char;
+ else
+ return REG_ERPAREN;
+
+ /* Since we just checked for an empty stack above, this
+ ``can't happen''. */
+ assert (compile_stack.avail != 0);
+ {
+ /* We don't just want to restore into `regnum', because
+ later groups should continue to be numbered higher,
+ as in `(ab)c(de)' -- the second group is #2. */
+ regnum_t this_group_regnum;
+
+ compile_stack.avail--;
+ begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
+ fixup_alt_jump
+ = COMPILE_STACK_TOP.fixup_alt_jump
+ ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
+ : 0;
+ laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
+ this_group_regnum = COMPILE_STACK_TOP.regnum;
+ /* If we've reached MAX_REGNUM groups, then this open
+ won't actually generate any code, so we'll have to
+ clear pending_exact explicitly. */
+ pending_exact = 0;
+
+ /* We're at the end of the group, so now we know how many
+ groups were inside this one. */
+ if (this_group_regnum <= MAX_REGNUM)
+ {
+ unsigned char *inner_group_loc
+ = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
- goto normal_backsl;
- }
- lower_bound = -1; /* So can see if are set. */
- upper_bound = -1;
- GET_UNSIGNED_NUMBER (lower_bound);
- if (c == ',')
- {
- GET_UNSIGNED_NUMBER (upper_bound);
- if (upper_bound < 0)
- upper_bound = RE_DUP_MAX;
- }
- if (upper_bound < 0)
- upper_bound = lower_bound;
- if (! (obscure_syntax & RE_NO_BK_CURLY_BRACES))
- {
- if (c != '\\')
- goto invalid_pattern;
- PATFETCH (c);
- }
- if (c != '}' || lower_bound < 0 || upper_bound > RE_DUP_MAX
- || lower_bound > upper_bound
- || ((obscure_syntax & RE_NO_BK_CURLY_BRACES)
- && p != pend && *p == '{'))
- {
- if (obscure_syntax & RE_NO_BK_CURLY_BRACES)
- goto unfetch_interval;
- else
- goto invalid_pattern;
- }
+ *inner_group_loc = regnum - this_group_regnum;
+ BUF_PUSH_3 (stop_memory, this_group_regnum,
+ regnum - this_group_regnum);
+ }
+ }
+ break;
- /* If upper_bound is zero, don't want to succeed at all;
- jump from laststart to b + 3, which will be the end of
- the buffer after this jump is inserted. */
-
- if (upper_bound == 0)
- {
- GET_BUFFER_SPACE (3);
- insert_jump (jump, laststart, b + 3, b);
- b += 3;
- }
- /* Otherwise, after lower_bound number of succeeds, jump
- to after the jump_n which will be inserted at the end
- of the buffer, and insert that jump_n. */
- else
- { /* Set to 5 if only one repetition is allowed and
- hence no jump_n is inserted at the current end of
- the buffer; then only space for the succeed_n is
- needed. Otherwise, need space for both the
- succeed_n and the jump_n. */
-
- unsigned slots_needed = upper_bound == 1 ? 5 : 10;
-
- GET_BUFFER_SPACE (slots_needed);
- /* Initialize the succeed_n to n, even though it will
- be set by its attendant set_number_at, because
- re_compile_fastmap will need to know it. Jump to
- what the end of buffer will be after inserting
- this succeed_n and possibly appending a jump_n. */
- insert_jump_n (succeed_n, laststart, b + slots_needed,
- b, lower_bound);
- b += 5; /* Just increment for the succeed_n here. */
-
- /* More than one repetition is allowed, so put in at
- the end of the buffer a backward jump from b to the
- succeed_n we put in above. By the time we've gotten
- to this jump when matching, we'll have matched once
- already, so jump back only upper_bound - 1 times. */
-
- if (upper_bound > 1)
- {
- store_jump_n (b, jump_n, laststart, upper_bound - 1);
- b += 5;
- /* When hit this when matching, reset the
- preceding jump_n's n to upper_bound - 1. */
- BUFPUSH (set_number_at);
- GET_BUFFER_SPACE (2);
- STORE_NUMBER_AND_INCR (b, -5);
- STORE_NUMBER_AND_INCR (b, upper_bound - 1);
- }
- /* When hit this when matching, set the succeed_n's n. */
- GET_BUFFER_SPACE (5);
- insert_op_2 (set_number_at, laststart, b, 5, lower_bound);
- b += 5;
- }
+ case '|': /* `\|'. */
+ if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
+ goto normal_backslash;
+ handle_alt:
+ if (syntax & RE_LIMITED_OPS)
+ goto normal_char;
+
+ /* Insert before the previous alternative a jump which
+ jumps to this alternative if the former fails. */
+ GET_BUFFER_SPACE (3);
+ INSERT_JUMP (on_failure_jump, begalt, b + 6);
pending_exact = 0;
- beg_interval = 0;
+ b += 3;
+
+ /* The alternative before this one has a jump after it
+ which gets executed if it gets matched. Adjust that
+ jump so it will jump to this alternative's analogous
+ jump (put in below, which in turn will jump to the next
+ (if any) alternative's such jump, etc.). The last such
+ jump jumps to the correct final destination. A picture:
+ _____ _____
+ | | | |
+ | v | v
+ a | b | c
+
+ If we are at `b', then fixup_alt_jump right now points to a
+ three-byte space after `a'. We'll put in the jump, set
+ fixup_alt_jump to right after `b', and leave behind three
+ bytes which we'll fill in when we get to after `c'. */
+
+ if (fixup_alt_jump)
+ STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
+
+ /* Mark and leave space for a jump after this alternative,
+ to be filled in later either by next alternative or
+ when know we're at the end of a series of alternatives. */
+ fixup_alt_jump = b;
+ GET_BUFFER_SPACE (3);
+ b += 3;
+
+ laststart = 0;
+ begalt = b;
break;
+ case '{':
+ /* If \{ is a literal. */
+ if (!(syntax & RE_INTERVALS)
+ /* If we're at `\{' and it's not the open-interval
+ operator. */
+ || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
+ || (p - 2 == pattern && p == pend))
+ goto normal_backslash;
+
+ handle_interval:
+ {
+ /* If got here, then the syntax allows intervals. */
+
+ /* At least (most) this many matches must be made. */
+ int lower_bound = -1, upper_bound = -1;
+
+ beg_interval = p - 1;
+
+ if (p == pend)
+ {
+ if (syntax & RE_NO_BK_BRACES)
+ goto unfetch_interval;
+ else
+ return REG_EBRACE;
+ }
+
+ GET_UNSIGNED_NUMBER (lower_bound);
+
+ if (c == ',')
+ {
+ GET_UNSIGNED_NUMBER (upper_bound);
+ if (upper_bound < 0) upper_bound = RE_DUP_MAX;
+ }
+ else
+ /* Interval such as `{1}' => match exactly once. */
+ upper_bound = lower_bound;
+
+ if (lower_bound < 0 || upper_bound > RE_DUP_MAX
+ || lower_bound > upper_bound)
+ {
+ if (syntax & RE_NO_BK_BRACES)
+ goto unfetch_interval;
+ else
+ return REG_BADBR;
+ }
+
+ if (!(syntax & RE_NO_BK_BRACES))
+ {
+ if (c != '\\') return REG_EBRACE;
+
+ PATFETCH (c);
+ }
+
+ if (c != '}')
+ {
+ if (syntax & RE_NO_BK_BRACES)
+ goto unfetch_interval;
+ else
+ return REG_BADBR;
+ }
+
+ /* We just parsed a valid interval. */
+
+ /* If it's invalid to have no preceding re. */
+ if (!laststart)
+ {
+ if (syntax & RE_CONTEXT_INVALID_OPS)
+ return REG_BADRPT;
+ else if (syntax & RE_CONTEXT_INDEP_OPS)
+ laststart = b;
+ else
+ goto unfetch_interval;
+ }
+
+ /* If the upper bound is zero, don't want to succeed at
+ all; jump from `laststart' to `b + 3', which will be
+ the end of the buffer after we insert the jump. */
+ if (upper_bound == 0)
+ {
+ GET_BUFFER_SPACE (3);
+ INSERT_JUMP (jump, laststart, b + 3);
+ b += 3;
+ }
+
+ /* Otherwise, we have a nontrivial interval. When
+ we're all done, the pattern will look like:
+ set_number_at <jump count> <upper bound>
+ set_number_at <succeed_n count> <lower bound>
+ succeed_n <after jump addr> <succed_n count>
+ <body of loop>
+ jump_n <succeed_n addr> <jump count>
+ (The upper bound and `jump_n' are omitted if
+ `upper_bound' is 1, though.) */
+ else
+ { /* If the upper bound is > 1, we need to insert
+ more at the end of the loop. */
+ unsigned nbytes = 10 + (upper_bound > 1) * 10;
+
+ GET_BUFFER_SPACE (nbytes);
+
+ /* Initialize lower bound of the `succeed_n', even
+ though it will be set during matching by its
+ attendant `set_number_at' (inserted next),
+ because `re_compile_fastmap' needs to know.
+ Jump to the `jump_n' we might insert below. */
+ INSERT_JUMP2 (succeed_n, laststart,
+ b + 5 + (upper_bound > 1) * 5,
+ lower_bound);
+ b += 5;
+
+ /* Code to initialize the lower bound. Insert
+ before the `succeed_n'. The `5' is the last two
+ bytes of this `set_number_at', plus 3 bytes of
+ the following `succeed_n'. */
+ insert_op2 (set_number_at, laststart, 5, lower_bound, b);
+ b += 5;
+
+ if (upper_bound > 1)
+ { /* More than one repetition is allowed, so
+ append a backward jump to the `succeed_n'
+ that starts this interval.
+
+ When we've reached this during matching,
+ we'll have matched the interval once, so
+ jump back only `upper_bound - 1' times. */
+ STORE_JUMP2 (jump_n, b, laststart + 5,
+ upper_bound - 1);
+ b += 5;
+
+ /* The location we want to set is the second
+ parameter of the `jump_n'; that is `b-2' as
+ an absolute address. `laststart' will be
+ the `set_number_at' we're about to insert;
+ `laststart+3' the number to set, the source
+ for the relative address. But we are
+ inserting into the middle of the pattern --
+ so everything is getting moved up by 5.
+ Conclusion: (b - 2) - (laststart + 3) + 5,
+ i.e., b - laststart.
+
+ We insert this at the beginning of the loop
+ so that if we fail during matching, we'll
+ reinitialize the bounds. */
+ insert_op2 (set_number_at, laststart, b - laststart,
+ upper_bound - 1, b);
+ b += 5;
+ }
+ }
+ pending_exact = 0;
+ beg_interval = NULL;
+ }
+ break;
+
unfetch_interval:
- /* If an invalid interval, match the characters as literals. */
- if (beg_interval)
- p = beg_interval;
- else
+ /* If an invalid interval, match the characters as literals. */
+ assert (beg_interval);
+ p = beg_interval;
+ beg_interval = NULL;
+
+ /* normal_char and normal_backslash need `c'. */
+ PATFETCH (c);
+
+ if (!(syntax & RE_NO_BK_BRACES))
{
- fprintf (stderr,
- "regex: no interval beginning to which to backtrack.\n");
- exit (1);
+ if (p > pattern && p[-1] == '\\')
+ goto normal_backslash;
}
-
- beg_interval = 0;
- PATFETCH (c); /* normal_char expects char in `c'. */
- goto normal_char;
- break;
+ goto normal_char;
#ifdef emacs
- case '=':
- BUFPUSH (at_dot);
- break;
-
- case 's':
- laststart = b;
- BUFPUSH (syntaxspec);
- PATFETCH (c);
- BUFPUSH (syntax_spec_code[c]);
- break;
-
- case 'S':
- laststart = b;
- BUFPUSH (notsyntaxspec);
- PATFETCH (c);
- BUFPUSH (syntax_spec_code[c]);
- break;
+ /* There is no way to specify the before_dot and after_dot
+ operators. rms says this is ok. --karl */
+ case '=':
+ BUF_PUSH (at_dot);
+ break;
+
+ case 's':
+ laststart = b;
+ PATFETCH (c);
+ BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
+ break;
+
+ case 'S':
+ laststart = b;
+ PATFETCH (c);
+ BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
+ break;
#endif /* emacs */
- case 'w':
- laststart = b;
- BUFPUSH (wordchar);
- break;
-
- case 'W':
- laststart = b;
- BUFPUSH (notwordchar);
- break;
-
- case '<':
- BUFPUSH (wordbeg);
- break;
-
- case '>':
- BUFPUSH (wordend);
- break;
-
- case 'b':
- BUFPUSH (wordbound);
- break;
-
- case 'B':
- BUFPUSH (notwordbound);
- break;
-
- case '`':
- BUFPUSH (begbuf);
- break;
-
- case '\'':
- BUFPUSH (endbuf);
- break;
-
- case '1':
- case '2':
- case '3':
- case '4':
- case '5':
- case '6':
- case '7':
- case '8':
- case '9':
- if (obscure_syntax & RE_NO_BK_REFS)
+
+ case 'w':
+ if (re_syntax_options & RE_NO_GNU_OPS)
+ goto normal_char;
+ laststart = b;
+ BUF_PUSH (wordchar);
+ break;
+
+
+ case 'W':
+ if (re_syntax_options & RE_NO_GNU_OPS)
+ goto normal_char;
+ laststart = b;
+ BUF_PUSH (notwordchar);
+ break;
+
+
+ case '<':
+ if (re_syntax_options & RE_NO_GNU_OPS)
+ goto normal_char;
+ BUF_PUSH (wordbeg);
+ break;
+
+ case '>':
+ if (re_syntax_options & RE_NO_GNU_OPS)
+ goto normal_char;
+ BUF_PUSH (wordend);
+ break;
+
+ case 'b':
+ if (re_syntax_options & RE_NO_GNU_OPS)
+ goto normal_char;
+ BUF_PUSH (wordbound);
+ break;
+
+ case 'B':
+ if (re_syntax_options & RE_NO_GNU_OPS)
+ goto normal_char;
+ BUF_PUSH (notwordbound);
+ break;
+
+ case '`':
+ if (re_syntax_options & RE_NO_GNU_OPS)
+ goto normal_char;
+ BUF_PUSH (begbuf);
+ break;
+
+ case '\'':
+ if (re_syntax_options & RE_NO_GNU_OPS)
+ goto normal_char;
+ BUF_PUSH (endbuf);
+ break;
+
+ case '1': case '2': case '3': case '4': case '5':
+ case '6': case '7': case '8': case '9':
+ if (syntax & RE_NO_BK_REFS)
goto normal_char;
+
c1 = c - '0';
- if (c1 >= regnum)
- {
- if (obscure_syntax & RE_NO_EMPTY_BK_REF)
- goto invalid_pattern;
- else
- goto normal_char;
- }
+
+ if (c1 > regnum)
+ return REG_ESUBREG;
+
/* Can't back reference to a subexpression if inside of it. */
- for (stackt = stackp - 2; stackt > stackb; stackt -= 4)
- if (*stackt == c1)
- goto normal_char;
- laststart = b;
- BUFPUSH (duplicate);
- BUFPUSH (c1);
- break;
-
- case '+':
- case '?':
- if (obscure_syntax & RE_BK_PLUS_QM)
- goto handle_plus;
- else
- goto normal_backsl;
+ if (group_in_compile_stack (compile_stack, (regnum_t)c1))
+ goto normal_char;
+
+ laststart = b;
+ BUF_PUSH_2 (duplicate, c1);
break;
+
+ case '+':
+ case '?':
+ if (syntax & RE_BK_PLUS_QM)
+ goto handle_plus;
+ else
+ goto normal_backslash;
+
default:
- normal_backsl:
- /* You might think it would be useful for \ to mean
- not to translate; but if we don't translate it
- it will never match anything. */
- if (translate) c = translate[c];
- goto normal_char;
- }
- break;
+ normal_backslash:
+ /* You might think it would be useful for \ to mean
+ not to translate; but if we don't translate it
+ it will never match anything. */
+ c = TRANSLATE (c);
+ goto normal_char;
+ }
+ break;
+
default:
- normal_char: /* Expects the character in `c'. */
- if (!pending_exact || pending_exact + *pending_exact + 1 != b
- || *pending_exact == 0177 || *p == '*' || *p == '^'
- || ((obscure_syntax & RE_BK_PLUS_QM)
+ /* Expects the character in `c'. */
+ normal_char:
+ /* If no exactn currently being built. */
+ if (!pending_exact
+
+ /* If last exactn not at current position. */
+ || pending_exact + *pending_exact + 1 != b
+
+ /* We have only one byte following the exactn for the count. */
+ || *pending_exact == (1 << BYTEWIDTH) - 1
+
+ /* If followed by a repetition operator. */
+ || *p == '*' || *p == '^'
+ || ((syntax & RE_BK_PLUS_QM)
? *p == '\\' && (p[1] == '+' || p[1] == '?')
: (*p == '+' || *p == '?'))
- || ((obscure_syntax & RE_INTERVALS)
- && ((obscure_syntax & RE_NO_BK_CURLY_BRACES)
+ || ((syntax & RE_INTERVALS)
+ && ((syntax & RE_NO_BK_BRACES)
? *p == '{'
: (p[0] == '\\' && p[1] == '{'))))
{
- laststart = b;
- BUFPUSH (exactn);
- pending_exact = b;
- BUFPUSH (0);
- }
- BUFPUSH (c);
- (*pending_exact)++;
- }
- }
+ /* Start building a new exactn. */
+
+ laststart = b;
+
+ BUF_PUSH_2 (exactn, 0);
+ pending_exact = b - 1;
+ }
+
+ BUF_PUSH (c);
+ (*pending_exact)++;
+ break;
+ } /* switch (c) */
+ } /* while p != pend */
+
+
+ /* Through the pattern now. */
+
+ if (fixup_alt_jump)
+ STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
- if (fixup_jump)
- store_jump (fixup_jump, jump, b);
+ if (!COMPILE_STACK_EMPTY)
+ return REG_EPAREN;
- if (stackp != stackb) goto unmatched_open;
+ free (compile_stack.stack);
+ /* We have succeeded; set the length of the buffer. */
bufp->used = b - bufp->buffer;
- return 0;
- invalid_pattern:
- return "Invalid regular expression";
+#ifdef DEBUG
+ if (debug)
+ {
+ DEBUG_PRINT1 ("\nCompiled pattern: \n");
+ print_compiled_pattern (bufp);
+ }
+#endif /* DEBUG */
- unmatched_open:
- return "Unmatched \\(";
+ return REG_NOERROR;
+} /* regex_compile */
+
+/* Subroutines for `regex_compile'. */
- unmatched_close:
- return "Unmatched \\)";
+/* Store OP at LOC followed by two-byte integer parameter ARG. */
- end_of_pattern:
- return "Premature end of regular expression";
+static void
+store_op1 (op, loc, arg)
+ re_opcode_t op;
+ unsigned char *loc;
+ int arg;
+{
+ *loc = (unsigned char) op;
+ STORE_NUMBER (loc + 1, arg);
+}
- nesting_too_deep:
- return "Nesting too deep";
- too_big:
- return "Regular expression too big";
+/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
- memory_exhausted:
- return "Memory exhausted";
+static void
+store_op2 (op, loc, arg1, arg2)
+ re_opcode_t op;
+ unsigned char *loc;
+ int arg1, arg2;
+{
+ *loc = (unsigned char) op;
+ STORE_NUMBER (loc + 1, arg1);
+ STORE_NUMBER (loc + 3, arg2);
}
-/* Store a jump of the form <OPCODE> <relative address>.
- Store in the location FROM a jump operation to jump to relative
- address FROM - TO. OPCODE is the opcode to store. */
+/* Copy the bytes from LOC to END to open up three bytes of space at LOC
+ for OP followed by two-byte integer parameter ARG. */
static void
-store_jump (from, opcode, to)
- char *from, *to;
- int opcode;
+insert_op1 (op, loc, arg, end)
+ re_opcode_t op;
+ unsigned char *loc;
+ int arg;
+ unsigned char *end;
{
- from[0] = (char)opcode;
- STORE_NUMBER(from + 1, to - (from + 3));
-}
+ register unsigned char *pfrom = end;
+ register unsigned char *pto = end + 3;
+ while (pfrom != loc)
+ *--pto = *--pfrom;
+
+ store_op1 (op, loc, arg);
+}
-/* Open up space before char FROM, and insert there a jump to TO.
- CURRENT_END gives the end of the storage not in use, so we know
- how much data to copy up. OP is the opcode of the jump to insert.
- If you call this function, you must zero out pending_exact. */
+/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
static void
-insert_jump (op, from, to, current_end)
- int op;
- char *from, *to, *current_end;
+insert_op2 (op, loc, arg1, arg2, end)
+ re_opcode_t op;
+ unsigned char *loc;
+ int arg1, arg2;
+ unsigned char *end;
{
- register char *pfrom = current_end; /* Copy from here... */
- register char *pto = current_end + 3; /* ...to here. */
+ register unsigned char *pfrom = end;
+ register unsigned char *pto = end + 5;
- while (pfrom != from)
+ while (pfrom != loc)
*--pto = *--pfrom;
- store_jump (from, op, to);
+
+ store_op2 (op, loc, arg1, arg2);
}
-/* Store a jump of the form <opcode> <relative address> <n> .
+/* P points to just after a ^ in PATTERN. Return true if that ^ comes
+ after an alternative or a begin-subexpression. We assume there is at
+ least one character before the ^. */
- Store in the location FROM a jump operation to jump to relative
- address FROM - TO. OPCODE is the opcode to store, N is a number the
- jump uses, say, to decide how many times to jump.
-
- If you call this function, you must zero out pending_exact. */
+static boolean
+at_begline_loc_p (pattern, p, syntax)
+ const char *pattern, *p;
+ reg_syntax_t syntax;
+{
+ const char *prev = p - 2;
+ boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
+
+ return
+ /* After a subexpression? */
+ (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
+ /* After an alternative? */
+ || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
+}
-static void
-store_jump_n (from, opcode, to, n)
- char *from, *to;
- int opcode;
- unsigned n;
+
+/* The dual of at_begline_loc_p. This one is for $. We assume there is
+ at least one character after the $, i.e., `P < PEND'. */
+
+static boolean
+at_endline_loc_p (p, pend, syntax)
+ const char *p, *pend;
+ reg_syntax_t syntax;
{
- from[0] = (char)opcode;
- STORE_NUMBER (from + 1, to - (from + 3));
- STORE_NUMBER (from + 3, n);
+ const char *next = p;
+ boolean next_backslash = *next == '\\';
+ const char *next_next = p + 1 < pend ? p + 1 : NULL;
+
+ return
+ /* Before a subexpression? */
+ (syntax & RE_NO_BK_PARENS ? *next == ')'
+ : next_backslash && next_next && *next_next == ')')
+ /* Before an alternative? */
+ || (syntax & RE_NO_BK_VBAR ? *next == '|'
+ : next_backslash && next_next && *next_next == '|');
}
-/* Similar to insert_jump, but handles a jump which needs an extra
- number to handle minimum and maximum cases. Open up space at
- location FROM, and insert there a jump to TO. CURRENT_END gives the
- end of the storage in use, so we know how much data to copy up. OP is
- the opcode of the jump to insert.
+/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
+ false if it's not. */
- If you call this function, you must zero out pending_exact. */
+static boolean
+group_in_compile_stack (compile_stack, regnum)
+ compile_stack_type compile_stack;
+ regnum_t regnum;
+{
+ int this_element;
-static void
-insert_jump_n (op, from, to, current_end, n)
- int op;
- char *from, *to, *current_end;
- unsigned n;
+ for (this_element = compile_stack.avail - 1;
+ this_element >= 0;
+ this_element--)
+ if (compile_stack.stack[this_element].regnum == regnum)
+ return true;
+
+ return false;
+}
+
+
+/* Read the ending character of a range (in a bracket expression) from the
+ uncompiled pattern *P_PTR (which ends at PEND). We assume the
+ starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
+ Then we set the translation of all bits between the starting and
+ ending characters (inclusive) in the compiled pattern B.
+
+ Return an error code.
+
+ We use these short variable names so we can use the same macros as
+ `regex_compile' itself. */
+
+static reg_errcode_t
+compile_range (p_ptr, pend, translate, syntax, b)
+ const char **p_ptr, *pend;
+ char *translate;
+ reg_syntax_t syntax;
+ unsigned char *b;
{
- register char *pfrom = current_end; /* Copy from here... */
- register char *pto = current_end + 5; /* ...to here. */
+ unsigned this_char;
- while (pfrom != from)
- *--pto = *--pfrom;
- store_jump_n (from, op, to, n);
+ const char *p = *p_ptr;
+ int range_start, range_end;
+
+ if (p == pend)
+ return REG_ERANGE;
+
+ /* Even though the pattern is a signed `char *', we need to fetch
+ with unsigned char *'s; if the high bit of the pattern character
+ is set, the range endpoints will be negative if we fetch using a
+ signed char *.
+
+ We also want to fetch the endpoints without translating them; the
+ appropriate translation is done in the bit-setting loop below. */
+ range_start = ((unsigned char *) p)[-2];
+ range_end = ((unsigned char *) p)[0];
+
+ /* Have to increment the pointer into the pattern string, so the
+ caller isn't still at the ending character. */
+ (*p_ptr)++;
+
+ /* If the start is after the end, the range is empty. */
+ if (range_start > range_end)
+ return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
+
+ /* Here we see why `this_char' has to be larger than an `unsigned
+ char' -- the range is inclusive, so if `range_end' == 0xff
+ (assuming 8-bit characters), we would otherwise go into an infinite
+ loop, since all characters <= 0xff. */
+ for (this_char = range_start; this_char <= range_end; this_char++)
+ {
+ SET_LIST_BIT (TRANSLATE (this_char));
+ }
+
+ return REG_NOERROR;
}
+
+/* Failure stack declarations and macros; both re_compile_fastmap and
+ re_match_2 use a failure stack. These have to be macros because of
+ REGEX_ALLOCATE. */
+
+/* Number of failure points for which to initially allocate space
+ when matching. If this number is exceeded, we allocate more
+ space, so it is not a hard limit. */
+#ifndef INIT_FAILURE_ALLOC
+#define INIT_FAILURE_ALLOC 5
+#endif
-/* Open up space at location THERE, and insert operation OP followed by
- NUM_1 and NUM_2. CURRENT_END gives the end of the storage in use, so
- we know how much data to copy up.
+/* Roughly the maximum number of failure points on the stack. Would be
+ exactly that if always used MAX_FAILURE_SPACE each time we failed.
+ This is a variable only so users of regex can assign to it; we never
+ change it ourselves. */
+int re_max_failures = 2000;
- If you call this function, you must zero out pending_exact. */
+typedef const unsigned char *fail_stack_elt_t;
-static void
-insert_op_2 (op, there, current_end, num_1, num_2)
- int op;
- char *there, *current_end;
- int num_1, num_2;
+typedef struct
{
- register char *pfrom = current_end; /* Copy from here... */
- register char *pto = current_end + 5; /* ...to here. */
+ fail_stack_elt_t *stack;
+ unsigned size;
+ unsigned avail; /* Offset of next open position. */
+} fail_stack_type;
- while (pfrom != there)
- *--pto = *--pfrom;
-
- there[0] = (char)op;
- STORE_NUMBER (there + 1, num_1);
- STORE_NUMBER (there + 3, num_2);
-}
+#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
+#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
+#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
+#define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
+
+
+/* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
+
+#define INIT_FAIL_STACK() \
+ do { \
+ fail_stack.stack = (fail_stack_elt_t *) \
+ REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
+ \
+ if (fail_stack.stack == NULL) \
+ return -2; \
+ \
+ fail_stack.size = INIT_FAILURE_ALLOC; \
+ fail_stack.avail = 0; \
+ } while (0)
+
+
+/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
+
+ Return 1 if succeeds, and 0 if either ran out of memory
+ allocating space for it or it was already too large.
+
+ REGEX_REALLOCATE requires `destination' be declared. */
+
+#define DOUBLE_FAIL_STACK(fail_stack) \
+ ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
+ ? 0 \
+ : ((fail_stack).stack = (fail_stack_elt_t *) \
+ REGEX_REALLOCATE ((fail_stack).stack, \
+ (fail_stack).size * sizeof (fail_stack_elt_t), \
+ ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
+ \
+ (fail_stack).stack == NULL \
+ ? 0 \
+ : ((fail_stack).size <<= 1, \
+ 1)))
+
+
+/* Push PATTERN_OP on FAIL_STACK.
+
+ Return 1 if was able to do so and 0 if ran out of memory allocating
+ space to do so. */
+#define PUSH_PATTERN_OP(pattern_op, fail_stack) \
+ ((FAIL_STACK_FULL () \
+ && !DOUBLE_FAIL_STACK (fail_stack)) \
+ ? 0 \
+ : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
+ 1))
+
+/* This pushes an item onto the failure stack. Must be a four-byte
+ value. Assumes the variable `fail_stack'. Probably should only
+ be called from within `PUSH_FAILURE_POINT'. */
+#define PUSH_FAILURE_ITEM(item) \
+ fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
+
+/* The complement operation. Assumes `fail_stack' is nonempty. */
+#define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
+
+/* Used to omit pushing failure point id's when we're not debugging. */
+#ifdef DEBUG
+#define DEBUG_PUSH PUSH_FAILURE_ITEM
+#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
+#else
+#define DEBUG_PUSH(item)
+#define DEBUG_POP(item_addr)
+#endif
+
+
+/* Push the information about the state we will need
+ if we ever fail back to it.
+
+ Requires variables fail_stack, regstart, regend, reg_info, and
+ num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
+ declared.
+
+ Does `return FAILURE_CODE' if runs out of memory. */
+
+#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
+ do { \
+ char *destination; \
+ /* Must be int, so when we don't save any registers, the arithmetic \
+ of 0 + -1 isn't done as unsigned. */ \
+ /* Can't be int, since there is not a shred of a guarantee that int \
+ is wide enough to hold a value of something to which pointer can \
+ be assigned */ \
+ s_reg_t this_reg; \
+ \
+ DEBUG_STATEMENT (failure_id++); \
+ DEBUG_STATEMENT (nfailure_points_pushed++); \
+ DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
+ DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
+ DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
+ \
+ DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
+ DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
+ \
+ /* Ensure we have enough space allocated for what we will push. */ \
+ while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
+ { \
+ if (!DOUBLE_FAIL_STACK (fail_stack)) \
+ return failure_code; \
+ \
+ DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
+ (fail_stack).size); \
+ DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
+ }
+
+#define PUSH_FAILURE_POINT2(pattern_place, string_place, failure_code) \
+ /* Push the info, starting with the registers. */ \
+ DEBUG_PRINT1 ("\n"); \
+ \
+ PUSH_FAILURE_POINT_LOOP (); \
+ \
+ DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
+ PUSH_FAILURE_ITEM (lowest_active_reg); \
+ \
+ DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
+ PUSH_FAILURE_ITEM (highest_active_reg); \
+ \
+ DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
+ DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
+ PUSH_FAILURE_ITEM (pattern_place); \
+ \
+ DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
+ DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
+ size2); \
+ DEBUG_PRINT1 ("'\n"); \
+ PUSH_FAILURE_ITEM (string_place); \
+ \
+ DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
+ DEBUG_PUSH (failure_id); \
+ } while (0)
+
+/* Pulled out of PUSH_FAILURE_POINT() to shorten the definition
+ of that macro. (for VAX C) */
+#define PUSH_FAILURE_POINT_LOOP() \
+ for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
+ this_reg++) \
+ { \
+ DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
+ DEBUG_STATEMENT (num_regs_pushed++); \
+ \
+ DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
+ PUSH_FAILURE_ITEM (regstart[this_reg]); \
+ \
+ DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
+ PUSH_FAILURE_ITEM (regend[this_reg]); \
+ \
+ DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
+ DEBUG_PRINT2 (" match_null=%d", \
+ REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
+ DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
+ DEBUG_PRINT2 (" matched_something=%d", \
+ MATCHED_SOMETHING (reg_info[this_reg])); \
+ DEBUG_PRINT2 (" ever_matched=%d", \
+ EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
+ DEBUG_PRINT1 ("\n"); \
+ PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
+ }
+
+/* This is the number of items that are pushed and popped on the stack
+ for each register. */
+#define NUM_REG_ITEMS 3
+
+/* Individual items aside from the registers. */
+#ifdef DEBUG
+#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
+#else
+#define NUM_NONREG_ITEMS 4
+#endif
+
+/* We push at most this many items on the stack. */
+#define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
+
+/* We actually push this many items. */
+#define NUM_FAILURE_ITEMS \
+ ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
+ + NUM_NONREG_ITEMS)
+
+/* How many items can still be added to the stack without overflowing it. */
+#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
+
+
+/* Pops what PUSH_FAIL_STACK pushes.
+
+ We restore into the parameters, all of which should be lvalues:
+ STR -- the saved data position.
+ PAT -- the saved pattern position.
+ LOW_REG, HIGH_REG -- the highest and lowest active registers.
+ REGSTART, REGEND -- arrays of string positions.
+ REG_INFO -- array of information about each subexpression.
+
+ Also assumes the variables `fail_stack' and (if debugging), `bufp',
+ `pend', `string1', `size1', `string2', and `size2'. */
+
+#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
+{ \
+ DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
+ s_reg_t this_reg; \
+ const unsigned char *string_temp; \
+ \
+ assert (!FAIL_STACK_EMPTY ()); \
+ \
+ /* Remove failure points and point to how many regs pushed. */ \
+ DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
+ DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
+ DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
+ \
+ assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
+ \
+ DEBUG_POP (&failure_id); \
+ DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
+ \
+ /* If the saved string location is NULL, it came from an \
+ on_failure_keep_string_jump opcode, and we want to throw away the \
+ saved NULL, thus retaining our current position in the string. */ \
+ string_temp = POP_FAILURE_ITEM (); \
+ if (string_temp != NULL) \
+ str = (const char *) string_temp; \
+ \
+ DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
+ DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
+ DEBUG_PRINT1 ("'\n"); \
+ \
+ pat = (unsigned char *) POP_FAILURE_ITEM (); \
+ DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
+ DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
+ \
+ POP_FAILURE_POINT2 (low_reg, high_reg, regstart, regend, reg_info);
+/* Pulled out of POP_FAILURE_POINT() to shorten the definition
+ of that macro. (for MSC 5.1) */
+#define POP_FAILURE_POINT2(low_reg, high_reg, regstart, regend, reg_info) \
+ \
+ /* Restore register info. */ \
+ high_reg = (active_reg_t) POP_FAILURE_ITEM (); \
+ DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
+ \
+ low_reg = (active_reg_t) POP_FAILURE_ITEM (); \
+ DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
+ \
+ for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
+ { \
+ DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
+ \
+ reg_info[this_reg].word = POP_FAILURE_ITEM (); \
+ DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
+ \
+ regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
+ DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
+ \
+ regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
+ DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
+ } \
+ \
+ DEBUG_STATEMENT (nfailure_points_popped++); \
+} /* POP_FAILURE_POINT */
-/* Given a pattern, compute a fastmap from it. The fastmap records
- which of the (1 << BYTEWIDTH) possible characters can start a string
- that matches the pattern. This fastmap is used by re_search to skip
- quickly over totally implausible text.
+/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
+ BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
+ characters can start a string that matches the pattern. This fastmap
+ is used by re_search to skip quickly over impossible starting points.
- The caller must supply the address of a (1 << BYTEWIDTH)-byte data
- area as bufp->fastmap.
- The other components of bufp describe the pattern to be used. */
+ The caller must supply the address of a (1 << BYTEWIDTH)-byte data
+ area as BUFP->fastmap.
+
+ We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
+ the pattern buffer.
-void
+ Returns 0 if we succeed, -2 if an internal error. */
+
+int
re_compile_fastmap (bufp)
struct re_pattern_buffer *bufp;
{
- unsigned char *pattern = (unsigned char *) bufp->buffer;
- int size = bufp->used;
+ int j, k;
+ fail_stack_type fail_stack;
+#ifndef REGEX_MALLOC
+ char *destination;
+#endif
+ /* We don't push any register information onto the failure stack. */
+ unsigned num_regs = 0;
+
register char *fastmap = bufp->fastmap;
- register unsigned char *p = pattern;
- register unsigned char *pend = pattern + size;
- register int j, k;
- unsigned char *translate = (unsigned char *) bufp->translate;
- unsigned is_a_succeed_n;
+ unsigned char *pattern = bufp->buffer;
+ const unsigned char *p = pattern;
+ register unsigned char *pend = pattern + bufp->used;
-#ifndef NO_ALLOCA
- unsigned char *stackb[NFAILURES];
- unsigned char **stackp = stackb;
+ /* Assume that each path through the pattern can be null until
+ proven otherwise. We set this false at the bottom of switch
+ statement, to which we get only if a particular path doesn't
+ match the empty string. */
+ boolean path_can_be_null = true;
-#else
- unsigned char **stackb;
- unsigned char **stackp;
- stackb = (unsigned char **) malloc (NFAILURES * sizeof (unsigned char *));
- stackp = stackb;
-
-#endif /* NO_ALLOCA */
- memset (fastmap, 0, (1 << BYTEWIDTH));
- bufp->fastmap_accurate = 1;
+ /* We aren't doing a `succeed_n' to begin with. */
+ boolean succeed_n_p = false;
+
+ assert (fastmap != NULL && p != NULL);
+
+ INIT_FAIL_STACK ();
+ bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
+ bufp->fastmap_accurate = 1; /* It will be when we're done. */
bufp->can_be_null = 0;
- while (p)
+ while (p != pend || !FAIL_STACK_EMPTY ())
{
- is_a_succeed_n = 0;
if (p == pend)
- {
- bufp->can_be_null = 1;
- break;
+ {
+ bufp->can_be_null |= path_can_be_null;
+
+ /* Reset for next path. */
+ path_can_be_null = true;
+
+ p = fail_stack.stack[--fail_stack.avail];
}
+
+ /* We should never be about to go beyond the end of the pattern. */
+ assert (p < pend);
+
#ifdef SWITCH_ENUM_BUG
- switch ((int) ((enum regexpcode) *p++))
+ switch ((int) ((re_opcode_t) *p++))
#else
- switch ((enum regexpcode) *p++)
+ switch ((re_opcode_t) *p++)
#endif
{
+
+ /* I guess the idea here is to simply not bother with a fastmap
+ if a backreference is used, since it's too hard to figure out
+ the fastmap for the corresponding group. Setting
+ `can_be_null' stops `re_search_2' from using the fastmap, so
+ that is all we do. */
+ case duplicate:
+ bufp->can_be_null = 1;
+ return 0;
+
+
+ /* Following are the cases which match a character. These end
+ with `break'. */
+
case exactn:
- if (translate)
- fastmap[translate[p[1]]] = 1;
- else
- fastmap[p[1]] = 1;
+ fastmap[p[1]] = 1;
break;
- case begline:
- case before_dot:
+
+ case charset:
+ for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
+ if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
+ fastmap[j] = 1;
+ break;
+
+
+ case charset_not:
+ /* Chars beyond end of map must be allowed. */
+ for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
+ fastmap[j] = 1;
+
+ for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
+ if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
+ fastmap[j] = 1;
+ break;
+
+
+ case wordchar:
+ for (j = 0; j < (1 << BYTEWIDTH); j++)
+ if (SYNTAX (j) == Sword)
+ fastmap[j] = 1;
+ break;
+
+
+ case notwordchar:
+ for (j = 0; j < (1 << BYTEWIDTH); j++)
+ if (SYNTAX (j) != Sword)
+ fastmap[j] = 1;
+ break;
+
+
+ case anychar:
+ /* `.' matches anything ... */
+ for (j = 0; j < (1 << BYTEWIDTH); j++)
+ fastmap[j] = 1;
+
+ /* ... except perhaps newline. */
+ if (!(bufp->syntax & RE_DOT_NEWLINE))
+ fastmap['\n'] = 0;
+
+ /* Return if we have already set `can_be_null'; if we have,
+ then the fastmap is irrelevant. Something's wrong here. */
+ else if (bufp->can_be_null)
+ return 0;
+
+ /* Otherwise, have to check alternative paths. */
+ break;
+
+
+#ifdef emacs
+ case syntaxspec:
+ k = *p++;
+ for (j = 0; j < (1 << BYTEWIDTH); j++)
+ if (SYNTAX (j) == (enum syntaxcode) k)
+ fastmap[j] = 1;
+ break;
+
+
+ case notsyntaxspec:
+ k = *p++;
+ for (j = 0; j < (1 << BYTEWIDTH); j++)
+ if (SYNTAX (j) != (enum syntaxcode) k)
+ fastmap[j] = 1;
+ break;
+
+
+ /* All cases after this match the empty string. These end with
+ `continue'. */
+
+
+ case before_dot:
case at_dot:
case after_dot:
+ continue;
+#endif /* not emacs */
+
+
+ case no_op:
+ case begline:
+ case endline:
case begbuf:
case endbuf:
case wordbound:
case notwordbound:
case wordbeg:
case wordend:
+ case push_dummy_failure:
continue;
- case endline:
- if (translate)
- fastmap[translate['\n']] = 1;
- else
- fastmap['\n'] = 1;
-
- if (bufp->can_be_null != 1)
- bufp->can_be_null = 2;
- break;
case jump_n:
- case finalize_jump:
- case maybe_finalize_jump:
+ case pop_failure_jump:
+ case maybe_pop_jump:
case jump:
+ case jump_past_alt:
case dummy_failure_jump:
EXTRACT_NUMBER_AND_INCR (j, p);
p += j;
if (j > 0)
continue;
- /* Jump backward reached implies we just went through
- the body of a loop and matched nothing.
- Opcode jumped to should be an on_failure_jump.
- Just treat it like an ordinary jump.
- For a * loop, it has pushed its failure point already;
- If so, discard that as redundant. */
-
- if ((enum regexpcode) *p != on_failure_jump
- && (enum regexpcode) *p != succeed_n)
+
+ /* Jump backward implies we just went through the body of a
+ loop and matched nothing. Opcode jumped to should be
+ `on_failure_jump' or `succeed_n'. Just treat it like an
+ ordinary jump. For a * loop, it has pushed its failure
+ point already; if so, discard that as redundant. */
+ if ((re_opcode_t) *p != on_failure_jump
+ && (re_opcode_t) *p != succeed_n)
continue;
+
p++;
EXTRACT_NUMBER_AND_INCR (j, p);
p += j;
- if (stackp != stackb && *stackp == p)
- stackp--;
- continue;
+ /* If what's on the stack is where we are now, pop it. */
+ if (!FAIL_STACK_EMPTY ()
+ && fail_stack.stack[fail_stack.avail - 1] == p)
+ fail_stack.avail--;
+
+ continue;
+
+
case on_failure_jump:
+ case on_failure_keep_string_jump:
handle_on_failure_jump:
EXTRACT_NUMBER_AND_INCR (j, p);
- *++stackp = p + j;
- if (is_a_succeed_n)
- EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
- continue;
+
+ /* For some patterns, e.g., `(a?)?', `p+j' here points to the
+ end of the pattern. We don't want to push such a point,
+ since when we restore it above, entering the switch will
+ increment `p' past the end of the pattern. We don't need
+ to push such a point since we obviously won't find any more
+ fastmap entries beyond `pend'. Such a pattern can match
+ the null string, though. */
+ if (p + j < pend)
+ {
+ if (!PUSH_PATTERN_OP (p + j, fail_stack))
+ return -2;
+ }
+ else
+ bufp->can_be_null = 1;
+
+ if (succeed_n_p)
+ {
+ EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
+ succeed_n_p = false;
+ }
+
+ continue;
+
case succeed_n:
- is_a_succeed_n = 1;
/* Get to the number of times to succeed. */
p += 2;
- /* Increment p past the n for when k != 0. */
+
+ /* Increment p past the n for when k != 0. */
EXTRACT_NUMBER_AND_INCR (k, p);
if (k == 0)
{
p -= 4;
+ succeed_n_p = true; /* Spaghetti code alert. */
goto handle_on_failure_jump;
}
continue;
-
+
+
case set_number_at:
p += 4;
continue;
- case start_memory:
- case stop_memory:
- p++;
- continue;
-
- case duplicate:
- bufp->can_be_null = 1;
- fastmap['\n'] = 1;
- case anychar:
- for (j = 0; j < (1 << BYTEWIDTH); j++)
- if (j != '\n')
- fastmap[j] = 1;
- if (bufp->can_be_null)
- {
- FREE_AND_RETURN_VOID(stackb);
- }
- /* Don't return; check the alternative paths
- so we can set can_be_null if appropriate. */
- break;
-
- case wordchar:
- for (j = 0; j < (1 << BYTEWIDTH); j++)
- if (SYNTAX (j) == Sword)
- fastmap[j] = 1;
- break;
-
- case notwordchar:
- for (j = 0; j < (1 << BYTEWIDTH); j++)
- if (SYNTAX (j) != Sword)
- fastmap[j] = 1;
- break;
-#ifdef emacs
- case syntaxspec:
- k = *p++;
- for (j = 0; j < (1 << BYTEWIDTH); j++)
- if (SYNTAX (j) == (enum syntaxcode) k)
- fastmap[j] = 1;
- break;
-
- case notsyntaxspec:
- k = *p++;
- for (j = 0; j < (1 << BYTEWIDTH); j++)
- if (SYNTAX (j) != (enum syntaxcode) k)
- fastmap[j] = 1;
- break;
-
-#else /* not emacs */
- case syntaxspec:
- case notsyntaxspec:
- break;
-#endif /* not emacs */
+ case start_memory:
+ case stop_memory:
+ p += 2;
+ continue;
- case charset:
- for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
- if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
- {
- if (translate)
- fastmap[translate[j]] = 1;
- else
- fastmap[j] = 1;
- }
- break;
- case charset_not:
- /* Chars beyond end of map must be allowed */
- for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
- if (translate)
- fastmap[translate[j]] = 1;
- else
- fastmap[j] = 1;
+ default:
+ abort (); /* We have listed all the cases. */
+ } /* switch *p++ */
+
+ /* Getting here means we have found the possible starting
+ characters for one path of the pattern -- and that the empty
+ string does not match. We need not follow this path further.
+ Instead, look at the next alternative (remembered on the
+ stack), or quit if no more. The test at the top of the loop
+ does these things. */
+ path_can_be_null = false;
+ p = pend;
+ } /* while p */
+
+ /* Set `can_be_null' for the last path (also the first path, if the
+ pattern is empty). */
+ bufp->can_be_null |= path_can_be_null;
+ return 0;
+} /* re_compile_fastmap */
+
+/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
+ ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
+ this memory for recording register information. STARTS and ENDS
+ must be allocated using the malloc library routine, and must each
+ be at least NUM_REGS * sizeof (regoff_t) bytes long.
- for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
- if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
- {
- if (translate)
- fastmap[translate[j]] = 1;
- else
- fastmap[j] = 1;
- }
- break;
+ If NUM_REGS == 0, then subsequent matches should allocate their own
+ register data.
- case unused: /* pacify gcc -Wall */
- break;
- }
+ Unless this function is called, the first search or match using
+ PATTERN_BUFFER will allocate its own register data, without
+ freeing the old data. */
- /* Get here means we have successfully found the possible starting
- characters of one path of the pattern. We need not follow this
- path any farther. Instead, look at the next alternative
- remembered in the stack. */
- if (stackp != stackb)
- p = *stackp--;
- else
- break;
+void
+re_set_registers (bufp, regs, num_regs, starts, ends)
+ struct re_pattern_buffer *bufp;
+ struct re_registers *regs;
+ unsigned num_regs;
+ regoff_t *starts, *ends;
+{
+ if (num_regs)
+ {
+ bufp->regs_allocated = REGS_REALLOCATE;
+ regs->num_regs = num_regs;
+ regs->start = starts;
+ regs->end = ends;
+ }
+ else
+ {
+ bufp->regs_allocated = REGS_UNALLOCATED;
+ regs->num_regs = 0;
+ regs->start = regs->end = 0;
}
- FREE_AND_RETURN_VOID(stackb);
}
-
-
+/* Searching routines. */
+
/* Like re_search_2, below, but only one string is specified, and
doesn't let you say where to stop matching. */
int
-re_search (pbufp, string, size, startpos, range, regs)
- struct re_pattern_buffer *pbufp;
- char *string;
+re_search (bufp, string, size, startpos, range, regs)
+ struct re_pattern_buffer *bufp;
+ const char *string;
int size, startpos, range;
struct re_registers *regs;
{
- return re_search_2 (pbufp, (char *) 0, 0, string, size, startpos, range,
+ return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
regs, size);
}
-/* Using the compiled pattern in PBUFP->buffer, first tries to match the
+/* Using the compiled pattern in BUFP->buffer, first tries to match the
virtual concatenation of STRING1 and STRING2, starting first at index
- STARTPOS, then at STARTPOS + 1, and so on. RANGE is the number of
- places to try before giving up. If RANGE is negative, it searches
- backwards, i.e., the starting positions tried are STARTPOS, STARTPOS
- - 1, etc. STRING1 and STRING2 are of SIZE1 and SIZE2, respectively.
+ STARTPOS, then at STARTPOS + 1, and so on.
+
+ STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
+
+ RANGE is how far to scan while trying to match. RANGE = 0 means try
+ only at STARTPOS; in general, the last start tried is STARTPOS +
+ RANGE.
+
In REGS, return the indices of the virtual concatenation of STRING1
- and STRING2 that matched the entire PBUFP->buffer and its contained
- subexpressions. Do not consider matching one past the index MSTOP in
- the virtual concatenation of STRING1 and STRING2.
+ and STRING2 that matched the entire BUFP->buffer and its contained
+ subexpressions.
+
+ Do not consider matching one past the index STOP in the virtual
+ concatenation of STRING1 and STRING2.
- The value returned is the position in the strings at which the match
- was found, or -1 if no match was found, or -2 if error (such as
- failure stack overflow). */
+ We return either the position in the strings at which the match was
+ found, -1 if no match, or -2 if error (such as failure
+ stack overflow). */
int
-re_search_2 (pbufp, string1, size1, string2, size2, startpos, range,
- regs, mstop)
- struct re_pattern_buffer *pbufp;
- char *string1, *string2;
+re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
+ struct re_pattern_buffer *bufp;
+ const char *string1, *string2;
int size1, size2;
int startpos;
- register int range;
+ int range;
struct re_registers *regs;
- int mstop;
+ int stop;
{
- register char *fastmap = pbufp->fastmap;
- register unsigned char *translate = (unsigned char *) pbufp->translate;
+ int val;
+ register char *fastmap = bufp->fastmap;
+ register char *translate = bufp->translate;
int total_size = size1 + size2;
int endpos = startpos + range;
- int val;
- /* Check for out-of-range starting position. */
- if (startpos < 0 || startpos > total_size)
+ /* Check for out-of-range STARTPOS. */
+ if (startpos < 0 || startpos > total_size)
return -1;
- /* Fix up range if it would eventually take startpos outside of the
- virtual concatenation of string1 and string2. */
+ /* Fix up RANGE if it might eventually take us outside
+ the virtual concatenation of STRING1 and STRING2. */
if (endpos < -1)
range = -1 - startpos;
else if (endpos > total_size)
range = total_size - startpos;
- /* Update the fastmap now if not correct already. */
- if (fastmap && !pbufp->fastmap_accurate)
- re_compile_fastmap (pbufp);
-
/* If the search isn't to be a backwards one, don't waste time in a
- long search for a pattern that says it is anchored. */
- if (pbufp->used > 0 && (enum regexpcode) pbufp->buffer[0] == begbuf
- && range > 0)
+ search for a pattern that must be anchored. */
+ if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
{
if (startpos > 0)
return -1;
@@ -1628,65 +3014,68 @@ re_search_2 (pbufp, string1, size1, string2, size2, startpos, range,
range = 1;
}
- while (1)
+ /* Update the fastmap now if not correct already. */
+ if (fastmap && !bufp->fastmap_accurate)
+ if (re_compile_fastmap (bufp) == -2)
+ return -2;
+
+ /* Loop through the string, looking for a place to start matching. */
+ for (;;)
{
/* If a fastmap is supplied, skip quickly over characters that
- cannot possibly be the start of a match. Note, however, that
- if the pattern can possibly match the null string, we must
- test it at each starting point so that we take the first null
- string we get. */
-
- if (fastmap && startpos < total_size && pbufp->can_be_null != 1)
+ cannot be the start of a match. If the pattern can match the
+ null string, however, we don't need to skip characters; we want
+ the first null string. */
+ if (fastmap && startpos < total_size && !bufp->can_be_null)
{
if (range > 0) /* Searching forwards. */
{
+ register const char *d;
register int lim = 0;
- register unsigned char *p;
int irange = range;
- if (startpos < size1 && startpos + range >= size1)
- lim = range - (size1 - startpos);
- p = ((unsigned char *)
- &(startpos >= size1 ? string2 - size1 : string1)[startpos]);
+ if (startpos < size1 && startpos + range >= size1)
+ lim = range - (size1 - startpos);
+
+ d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
+
+ /* Written out as an if-else to avoid testing `translate'
+ inside the loop. */
+ if (translate)
+ while (range > lim
+ && !fastmap[(unsigned char)
+ translate[(unsigned char) *d++]])
+ range--;
+ else
+ while (range > lim && !fastmap[(unsigned char) *d++])
+ range--;
- while (range > lim && !fastmap[translate
- ? translate[*p++]
- : *p++])
- range--;
startpos += irange - range;
}
else /* Searching backwards. */
{
- register unsigned char c;
-
- if (string1 == 0 || startpos >= size1)
- c = string2[startpos - size1];
- else
- c = string1[startpos];
+ register char c = (size1 == 0 || startpos >= size1
+ ? string2[startpos - size1]
+ : string1[startpos]);
- c &= 0xff;
- if (translate ? !fastmap[translate[c]] : !fastmap[c])
+ if (!fastmap[(unsigned char) TRANSLATE (c)])
goto advance;
}
}
- if (range >= 0 && startpos == total_size
- && fastmap && pbufp->can_be_null == 0)
+ /* If can't match the null string, and that's all we have left, fail. */
+ if (range >= 0 && startpos == total_size && fastmap
+ && !bufp->can_be_null)
return -1;
- val = re_match_2 (pbufp, string1, size1, string2, size2, startpos,
- regs, mstop);
+ val = re_match_2 (bufp, string1, size1, string2, size2,
+ startpos, regs, stop);
if (val >= 0)
return startpos;
+
if (val == -2)
return -2;
-#ifndef NO_ALLOCA
-#ifdef C_ALLOCA
- alloca (0);
-#endif /* C_ALLOCA */
-
-#endif /* NO_ALLOCA */
advance:
if (!range)
break;
@@ -1702,245 +3091,236 @@ re_search_2 (pbufp, string1, size1, string2, size2, startpos, range,
}
}
return -1;
-}
-
-
+} /* re_search_2 */
-#ifndef emacs /* emacs never uses this. */
-int
-re_match (pbufp, string, size, pos, regs)
- struct re_pattern_buffer *pbufp;
- char *string;
- int size, pos;
- struct re_registers *regs;
-{
- return re_match_2 (pbufp, (char *) 0, 0, string, size, pos, regs, size);
-}
-#endif /* not emacs */
-
-
-/* The following are used for re_match_2, defined below: */
-
-/* Roughly the maximum number of failure points on the stack. Would be
- exactly that if always pushed MAX_NUM_FAILURE_ITEMS each time we failed. */
+/* Structure for per-register (a.k.a. per-group) information.
+ This must not be longer than one word, because we push this value
+ onto the failure stack. Other register information, such as the
+ starting and ending positions (which are addresses), and the list of
+ inner groups (which is a bits list) are maintained in separate
+ variables.
-int re_max_failures = 2000;
-
-/* Routine used by re_match_2. */
-/* static int memcmp_translate (); *//* already declared */
-
+ We are making a (strictly speaking) nonportable assumption here: that
+ the compiler will pack our bit fields into something that fits into
+ the type of `word', i.e., is something that fits into one item on the
+ failure stack. */
-/* Structure and accessing macros used in re_match_2: */
+/* Declarations and macros for re_match_2. */
-struct register_info
+typedef union
{
- unsigned is_active : 1;
- unsigned matched_something : 1;
-};
-
-#define IS_ACTIVE(R) ((R).is_active)
-#define MATCHED_SOMETHING(R) ((R).matched_something)
-
-
-/* Macros used by re_match_2: */
-
-
-/* I.e., regstart, regend, and reg_info. */
-
-#define NUM_REG_ITEMS 3
-
-/* We push at most this many things on the stack whenever we
- fail. The `+ 2' refers to PATTERN_PLACE and STRING_PLACE, which are
- arguments to the PUSH_FAILURE_POINT macro. */
-
-#define MAX_NUM_FAILURE_ITEMS (RE_NREGS * NUM_REG_ITEMS + 2)
-
-
-/* We push this many things on the stack whenever we fail. */
-
-#define NUM_FAILURE_ITEMS (last_used_reg * NUM_REG_ITEMS + 2)
-
-
-/* This pushes most of the information about the current state we will want
- if we ever fail back to it. */
-
-#define PUSH_FAILURE_POINT(pattern_place, string_place) \
- { \
- long last_used_reg, this_reg; \
- \
- /* Find out how many registers are active or have been matched. \
- (Aside from register zero, which is only set at the end.) */ \
- for (last_used_reg = RE_NREGS - 1; last_used_reg > 0; last_used_reg--)\
- if (regstart[last_used_reg] != (unsigned char *)(-1L)) \
- break; \
- \
- if (stacke - stackp < NUM_FAILURE_ITEMS) \
- { \
- unsigned char **stackx; \
- unsigned int len = stacke - stackb; \
- if (len > re_max_failures * MAX_NUM_FAILURE_ITEMS) \
- { \
- FREE_AND_RETURN(stackb,(-2)); \
- } \
- \
- /* Roughly double the size of the stack. */ \
- stackx = DOUBLE_STACK(stackx,stackb,len); \
- /* Rearrange the pointers. */ \
- stackp = stackx + (stackp - stackb); \
- stackb = stackx; \
- stacke = stackb + 2 * len; \
- } \
- \
- /* Now push the info for each of those registers. */ \
- for (this_reg = 1; this_reg <= last_used_reg; this_reg++) \
- { \
- *stackp++ = regstart[this_reg]; \
- *stackp++ = regend[this_reg]; \
- *stackp++ = (unsigned char *) &reg_info[this_reg]; \
- } \
- \
- /* Push how many registers we saved. */ \
- *stackp++ = (unsigned char *) last_used_reg; \
- \
- *stackp++ = pattern_place; \
- *stackp++ = string_place; \
- }
-
-
-/* This pops what PUSH_FAILURE_POINT pushes. */
-
-#define POP_FAILURE_POINT() \
- { \
- int temp; \
- stackp -= 2; /* Remove failure points. */ \
- temp = (int) *--stackp; /* How many regs pushed. */ \
- temp *= NUM_REG_ITEMS; /* How much to take off the stack. */ \
- stackp -= temp; /* Remove the register info. */ \
- }
-
+ fail_stack_elt_t word;
+ struct
+ {
+ /* This field is one if this group can match the empty string,
+ zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
+#define MATCH_NULL_UNSET_VALUE 3
+ unsigned match_null_string_p : 2;
+ unsigned is_active : 1;
+ unsigned matched_something : 1;
+ unsigned ever_matched_something : 1;
+ } bits;
+} register_info_type;
+
+#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
+#define IS_ACTIVE(R) ((R).bits.is_active)
+#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
+#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
+
+static boolean group_match_null_string_p _RE_ARGS((unsigned char **p,
+ unsigned char *end,
+ register_info_type *reg_info));
+static boolean alt_match_null_string_p _RE_ARGS((unsigned char *p,
+ unsigned char *end,
+ register_info_type *reg_info));
+static boolean common_op_match_null_string_p _RE_ARGS((unsigned char **p,
+ unsigned char *end,
+ register_info_type *reg_info));
+static int bcmp_translate _RE_ARGS((const char *s1, const char *s2,
+ int len, char *translate));
+
+/* Call this when have matched a real character; it sets `matched' flags
+ for the subexpressions which we are currently inside. Also records
+ that those subexprs have matched. */
+#define SET_REGS_MATCHED() \
+ do \
+ { \
+ active_reg_t r; \
+ for (r = lowest_active_reg; r <= highest_active_reg; r++) \
+ { \
+ MATCHED_SOMETHING (reg_info[r]) \
+ = EVER_MATCHED_SOMETHING (reg_info[r]) \
+ = 1; \
+ } \
+ } \
+ while (0)
+
+
+/* This converts PTR, a pointer into one of the search strings `string1'
+ and `string2' into an offset from the beginning of that string. */
+#define POINTER_TO_OFFSET(ptr) \
+ (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
+
+/* Registers are set to a sentinel when they haven't yet matched. */
+#define REG_UNSET_VALUE ((char *) -1)
+#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
+
+
+/* Macros for dealing with the split strings in re_match_2. */
#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
-/* Is true if there is a first string and if PTR is pointing anywhere
- inside it or just past the end. */
-
-#define IS_IN_FIRST_STRING(ptr) \
- (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
-
/* Call before fetching a character with *d. This switches over to
string2 if necessary. */
+#define PREFETCH() \
+ while (d == dend) \
+ { \
+ /* End of string2 => fail. */ \
+ if (dend == end_match_2) \
+ goto fail; \
+ /* End of string1 => advance to string2. */ \
+ d = string2; \
+ dend = end_match_2; \
+ }
-#define PREFETCH \
- while (d == dend) \
- { \
- /* end of string2 => fail. */ \
- if (dend == end_match_2) \
- goto fail; \
- /* end of string1 => advance to string2. */ \
- d = string2; \
- dend = end_match_2; \
- }
-
-
-/* Call this when have matched something; it sets `matched' flags for the
- registers corresponding to the subexpressions of which we currently
- are inside. */
-#define SET_REGS_MATCHED \
- { unsigned this_reg; \
- for (this_reg = 0; this_reg < RE_NREGS; this_reg++) \
- { \
- if (IS_ACTIVE(reg_info[this_reg])) \
- MATCHED_SOMETHING(reg_info[this_reg]) = 1; \
- else \
- MATCHED_SOMETHING(reg_info[this_reg]) = 0; \
- } \
- }
/* Test if at very beginning or at very end of the virtual concatenation
- of string1 and string2. If there is only one string, we've put it in
- string2. */
-
-#define AT_STRINGS_BEG (d == (size1 ? string1 : string2) || !size2)
-#define AT_STRINGS_END (d == end2)
-
-#define AT_WORD_BOUNDARY \
- (AT_STRINGS_BEG || AT_STRINGS_END || IS_A_LETTER (d - 1) != IS_A_LETTER (d))
-
-/* We have two special cases to check for:
- 1) if we're past the end of string1, we have to look at the first
- character in string2;
- 2) if we're before the beginning of string2, we have to look at the
- last character in string1; we assume there is a string1, so use
- this in conjunction with AT_STRINGS_BEG. */
-#define IS_A_LETTER(d) \
- (SYNTAX ((d) == end1 ? *string2 : (d) == string2 - 1 ? *(end1 - 1) : *(d))\
+ of `string1' and `string2'. If only one string, it's `string2'. */
+#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
+#define AT_STRINGS_END(d) ((d) == end2)
+
+
+/* Test if D points to a character which is word-constituent. We have
+ two special cases to check for: if past the end of string1, look at
+ the first character in string2; and if before the beginning of
+ string2, look at the last character in string1. */
+#define WORDCHAR_P(d) \
+ (SYNTAX ((d) == end1 ? *string2 \
+ : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
== Sword)
+/* Test if the character before D and the one at D differ with respect
+ to being word-constituent. */
+#define AT_WORD_BOUNDARY(d) \
+ (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
+ || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
+
+
+/* Free everything we malloc. */
+#ifdef REGEX_MALLOC
+#define FREE_VAR(var) if (var) free (var); var = NULL
+#define FREE_VARIABLES() \
+ do { \
+ FREE_VAR (fail_stack.stack); \
+ FREE_VAR (regstart); \
+ FREE_VAR (regend); \
+ FREE_VAR (old_regstart); \
+ FREE_VAR (old_regend); \
+ FREE_VAR (best_regstart); \
+ FREE_VAR (best_regend); \
+ FREE_VAR (reg_info); \
+ FREE_VAR (reg_dummy); \
+ FREE_VAR (reg_info_dummy); \
+ } while (0)
+#else /* not REGEX_MALLOC */
+/* Some MIPS systems (at least) want this to free alloca'd storage. */
+#define FREE_VARIABLES() alloca (0)
+#endif /* not REGEX_MALLOC */
+
+
+/* These values must meet several constraints. They must not be valid
+ register values; since we have a limit of 255 registers (because
+ we use only one byte in the pattern for the register number), we can
+ use numbers larger than 255. They must differ by 1, because of
+ NUM_FAILURE_ITEMS above. And the value for the lowest register must
+ be larger than the value for the highest register, so we do not try
+ to actually save any registers when none are active. */
+#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
+#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
+
+/* Matching routines. */
-/* Match the pattern described by PBUFP against the virtual
- concatenation of STRING1 and STRING2, which are of SIZE1 and SIZE2,
- respectively. Start the match at index POS in the virtual
- concatenation of STRING1 and STRING2. In REGS, return the indices of
- the virtual concatenation of STRING1 and STRING2 that matched the
- entire PBUFP->buffer and its contained subexpressions. Do not
- consider matching one past the index MSTOP in the virtual
- concatenation of STRING1 and STRING2.
+#ifndef emacs /* Emacs never uses this. */
+/* re_match is like re_match_2 except it takes only a single string. */
- If pbufp->fastmap is nonzero, then it had better be up to date.
+int
+re_match (bufp, string, size, pos, regs)
+ struct re_pattern_buffer *bufp;
+ const char *string;
+ int size, pos;
+ struct re_registers *regs;
+ {
+ return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size);
+}
+#endif /* not emacs */
- The reason that the data to match are specified as two components
- which are to be regarded as concatenated is so this function can be
- used directly on the contents of an Emacs buffer.
- -1 is returned if there is no match. -2 is returned if there is an
- error (such as match stack overflow). Otherwise the value is the
- length of the substring which was matched. */
+/* re_match_2 matches the compiled pattern in BUFP against the
+ the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
+ and SIZE2, respectively). We start matching at POS, and stop
+ matching at STOP.
+
+ If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
+ store offsets for the substring each group matched in REGS. See the
+ documentation for exactly how many groups we fill.
+
+ We return -1 if no match, -2 if an internal error (such as the
+ failure stack overflowing). Otherwise, we return the length of the
+ matched substring. */
int
-re_match_2 (pbufp, string1_arg, size1, string2_arg, size2, pos, regs, mstop)
- struct re_pattern_buffer *pbufp;
- char *string1_arg, *string2_arg;
+re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
+ struct re_pattern_buffer *bufp;
+ const char *string1, *string2;
int size1, size2;
int pos;
struct re_registers *regs;
- int mstop;
+ int stop;
{
- register unsigned char *p = (unsigned char *) pbufp->buffer;
-
- /* Pointer to beyond end of buffer. */
- register unsigned char *pend = p + pbufp->used;
+ /* General temporaries. */
+ int mcnt;
+ unsigned char *p1;
- unsigned char *string1 = (unsigned char *) string1_arg;
- unsigned char *string2 = (unsigned char *) string2_arg;
- unsigned char *end1; /* Just past end of first string. */
- unsigned char *end2; /* Just past end of second string. */
+ /* Just past the end of the corresponding string. */
+ const char *end1, *end2;
/* Pointers into string1 and string2, just past the last characters in
each to consider matching. */
- unsigned char *end_match_1, *end_match_2;
-
- register unsigned char *d, *dend;
- register int mcnt; /* Multipurpose. */
- unsigned char *translate = (unsigned char *) pbufp->translate;
- unsigned is_a_jump_n = 0;
-
- /* Failure point stack. Each place that can handle a failure further
- down the line pushes a failure point on this stack. It consists of
- restart, regend, and reg_info for all registers corresponding to the
- subexpressions we're currently inside, plus the number of such
- registers, and, finally, two char *'s. The first char * is where to
- resume scanning the pattern; the second one is where to resume
- scanning the strings. If the latter is zero, the failure point is a
- ``dummy''; if a failure happens and the failure point is a dummy, it
- gets discarded and the next next one is tried. */
-
-#ifndef NO_ALLOCA
- unsigned char *initial_stack[MAX_NUM_FAILURE_ITEMS * NFAILURES];
+ const char *end_match_1, *end_match_2;
+
+ /* Where we are in the data, and the end of the current string. */
+ const char *d, *dend;
+
+ /* Where we are in the pattern, and the end of the pattern. */
+ unsigned char *p = bufp->buffer;
+ register unsigned char *pend = p + bufp->used;
+
+ /* We use this to map every character in the string. */
+ char *translate = bufp->translate;
+
+ /* Failure point stack. Each place that can handle a failure further
+ down the line pushes a failure point on this stack. It consists of
+ restart, regend, and reg_info for all registers corresponding to
+ the subexpressions we're currently inside, plus the number of such
+ registers, and, finally, two char *'s. The first char * is where
+ to resume scanning the pattern; the second one is where to resume
+ scanning the strings. If the latter is zero, the failure point is
+ a ``dummy''; if a failure happens and the failure point is a dummy,
+ it gets discarded and the next next one is tried. */
+ fail_stack_type fail_stack;
+#ifdef DEBUG
+ static unsigned failure_id = 0;
+ unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
#endif
- unsigned char **stackb;
- unsigned char **stackp;
- unsigned char **stacke;
+ /* We fill all the registers internally, independent of what we
+ return, for use in backreferences. The number here includes
+ an element for register zero. */
+ size_t num_regs = bufp->re_nsub + 1;
+
+ /* The currently active registers. */
+ active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+ active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
/* Information on the contents of registers. These are pointers into
the input strings; they record just what was matched (on this
@@ -1949,9 +3329,14 @@ re_match_2 (pbufp, string1_arg, size1, string2_arg, size2, pos, regs, mstop)
matching and the regnum-th regend points to right after where we
stopped matching the regnum-th subexpression. (The zeroth register
keeps track of what the whole pattern matches.) */
-
- unsigned char *regstart[RE_NREGS];
- unsigned char *regend[RE_NREGS];
+ const char **regstart = 0, **regend = 0;
+
+ /* If a group that's operated upon by a repetition operator fails to
+ match anything, then the register for its start will need to be
+ restored because it will have been set to wherever in the string we
+ are when we last see its open-group operator. Similarly for a
+ register's end. */
+ const char **old_regstart = 0, **old_regend = 0;
/* The is_active field of reg_info helps us keep track of which (possibly
nested) subexpressions we are currently in. The matched_something
@@ -1959,50 +3344,97 @@ re_match_2 (pbufp, string1_arg, size1, string2_arg, size2, pos, regs, mstop)
matched any of the pattern so far this time through the reg_num-th
subexpression. These two fields get reset each time through any
loop their register is in. */
-
- struct register_info reg_info[RE_NREGS];
-
+ register_info_type *reg_info = 0;
/* The following record the register info as found in the above
variables when we find a match better than any we've seen before.
This happens as we backtrack through the failure points, which in
- turn happens only if we have not yet matched the entire string. */
-
- unsigned best_regs_set = 0;
- unsigned char *best_regstart[RE_NREGS];
- unsigned char *best_regend[RE_NREGS];
-
- /* Initialize the stack. */
-#ifdef NO_ALLOCA
- stackb = (unsigned char **) malloc (MAX_NUM_FAILURE_ITEMS * NFAILURES * sizeof (char *));
-#else
- stackb = initial_stack;
+ turn happens only if we have not yet matched the entire string. */
+ unsigned best_regs_set = false;
+ const char **best_regstart = 0, **best_regend = 0;
+
+ /* Logically, this is `best_regend[0]'. But we don't want to have to
+ allocate space for that if we're not allocating space for anything
+ else (see below). Also, we never need info about register 0 for
+ any of the other register vectors, and it seems rather a kludge to
+ treat `best_regend' differently than the rest. So we keep track of
+ the end of the best match so far in a separate variable. We
+ initialize this to NULL so that when we backtrack the first time
+ and need to test it, it's not garbage. */
+ const char *match_end = NULL;
+
+ /* Used when we pop values we don't care about. */
+ const char **reg_dummy = 0;
+ register_info_type *reg_info_dummy = 0;
+
+#ifdef DEBUG
+ /* Counts the total number of registers pushed. */
+ unsigned num_regs_pushed = 0;
#endif
- stackp = stackb;
- stacke = &stackb[MAX_NUM_FAILURE_ITEMS * NFAILURES];
-#ifdef DEBUG_REGEX
- fprintf (stderr, "Entering re_match_2(%s%s)\n", string1_arg, string2_arg);
-#endif
+ DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
+
+ INIT_FAIL_STACK ();
+
+ /* Do not bother to initialize all the register variables if there are
+ no groups in the pattern, as it takes a fair amount of time. If
+ there are groups, we include space for register 0 (the whole
+ pattern), even though we never use it, since it simplifies the
+ array indexing. We should fix this. */
+ if (bufp->re_nsub)
+ {
+ regstart = REGEX_TALLOC (num_regs, const char *);
+ regend = REGEX_TALLOC (num_regs, const char *);
+ old_regstart = REGEX_TALLOC (num_regs, const char *);
+ old_regend = REGEX_TALLOC (num_regs, const char *);
+ best_regstart = REGEX_TALLOC (num_regs, const char *);
+ best_regend = REGEX_TALLOC (num_regs, const char *);
+ reg_info = REGEX_TALLOC (num_regs, register_info_type);
+ reg_dummy = REGEX_TALLOC (num_regs, const char *);
+ reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
+
+ if (!(regstart && regend && old_regstart && old_regend && reg_info
+ && best_regstart && best_regend && reg_dummy && reg_info_dummy))
+ {
+ FREE_VARIABLES ();
+ return -2;
+ }
+ }
+#ifdef REGEX_MALLOC
+ else
+ {
+ /* We must initialize all our variables to NULL, so that
+ `FREE_VARIABLES' doesn't try to free them. */
+ regstart = regend = old_regstart = old_regend = best_regstart
+ = best_regend = reg_dummy = NULL;
+ reg_info = reg_info_dummy = (register_info_type *) NULL;
+ }
+#endif /* REGEX_MALLOC */
+ /* The starting position is bogus. */
+ if (pos < 0 || pos > size1 + size2)
+ {
+ FREE_VARIABLES ();
+ return -1;
+ }
+
/* Initialize subexpression text positions to -1 to mark ones that no
- \( or ( and \) or ) has been seen for. Also set all registers to
- inactive and mark them as not having matched anything or ever
- failed. */
- for (mcnt = 0; mcnt < RE_NREGS; mcnt++)
+ start_memory/stop_memory has been seen for. Also initialize the
+ register information struct. */
+ for (mcnt = 1; mcnt < num_regs; mcnt++)
{
- regstart[mcnt] = regend[mcnt] = (unsigned char *) (-1L);
+ regstart[mcnt] = regend[mcnt]
+ = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
+
+ REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
IS_ACTIVE (reg_info[mcnt]) = 0;
MATCHED_SOMETHING (reg_info[mcnt]) = 0;
+ EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
}
- if (regs)
- for (mcnt = 0; mcnt < RE_NREGS; mcnt++)
- regs->start[mcnt] = regs->end[mcnt] = -1;
-
- /* Set up pointers to ends of strings.
- Don't allow the second string to be empty unless both are empty. */
- if (size2 == 0)
+ /* We move `string1' into `string2' if the latter's empty -- but not if
+ `string1' is null. */
+ if (size2 == 0 && string1 != NULL)
{
string2 = string1;
size2 = size1;
@@ -2013,66 +3445,73 @@ re_match_2 (pbufp, string1_arg, size1, string2_arg, size2, pos, regs, mstop)
end2 = string2 + size2;
/* Compute where to stop matching, within the two strings. */
- if (mstop <= size1)
+ if (stop <= size1)
{
- end_match_1 = string1 + mstop;
+ end_match_1 = string1 + stop;
end_match_2 = string2;
}
else
{
end_match_1 = end1;
- end_match_2 = string2 + mstop - size1;
+ end_match_2 = string2 + stop - size1;
}
- /* `p' scans through the pattern as `d' scans through the data. `dend'
- is the end of the input string that `d' points within. `d' is
- advanced into the following input string whenever necessary, but
+ /* `p' scans through the pattern as `d' scans through the data.
+ `dend' is the end of the input string that `d' points within. `d'
+ is advanced into the following input string whenever necessary, but
this happens before fetching; therefore, at the beginning of the
loop, `d' can be pointing at the end of a string, but it cannot
- equal string2. */
-
- if (size1 != 0 && pos <= size1)
- d = string1 + pos, dend = end_match_1;
+ equal `string2'. */
+ if (size1 > 0 && pos <= size1)
+ {
+ d = string1 + pos;
+ dend = end_match_1;
+ }
else
- d = string2 + pos - size1, dend = end_match_2;
-
+ {
+ d = string2 + pos - size1;
+ dend = end_match_2;
+ }
+ DEBUG_PRINT1 ("The compiled pattern is: ");
+ DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
+ DEBUG_PRINT1 ("The string to match is: `");
+ DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
+ DEBUG_PRINT1 ("'\n");
+
/* This loops over pattern commands. It exits by returning from the
- function if match is complete, or it drops through if match fails
- at this starting point in the input data. */
-
- while (1)
+ function if the match is complete, or it drops through if the match
+ fails at this starting point in the input data. */
+ for (;;)
{
-#ifdef DEBUG_REGEX
- fprintf (stderr,
- "regex loop(%d): matching 0x%02d\n",
- p - (unsigned char *) pbufp->buffer,
- *p);
-#endif
- is_a_jump_n = 0;
- /* End of pattern means we might have succeeded. */
+ DEBUG_PRINT2 ("\n0x%x: ", p);
+
if (p == pend)
- {
- /* If not end of string, try backtracking. Otherwise done. */
+ { /* End of pattern means we might have succeeded. */
+ DEBUG_PRINT1 ("end of pattern ... ");
+
+ /* If we haven't matched the entire string, and we want the
+ longest match, try backtracking. */
if (d != end_match_2)
{
- if (stackp != stackb)
- {
- /* More failure points to try. */
-
- unsigned in_same_string =
- IS_IN_FIRST_STRING (best_regend[0])
- == MATCHING_IN_FIRST_STRING;
+ DEBUG_PRINT1 ("backtracking.\n");
+
+ if (!FAIL_STACK_EMPTY ())
+ { /* More failure points to try. */
+ boolean same_str_p = (FIRST_STRING_P (match_end)
+ == MATCHING_IN_FIRST_STRING);
/* If exceeds best match so far, save it. */
- if (! best_regs_set
- || (in_same_string && d > best_regend[0])
- || (! in_same_string && ! MATCHING_IN_FIRST_STRING))
+ if (!best_regs_set
+ || (same_str_p && d > match_end)
+ || (!same_str_p && !MATCHING_IN_FIRST_STRING))
{
- best_regs_set = 1;
- best_regend[0] = d; /* Never use regstart[0]. */
+ best_regs_set = true;
+ match_end = d;
- for (mcnt = 1; mcnt < RE_NREGS; mcnt++)
+ DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
+
+ for (mcnt = 1; mcnt < num_regs; mcnt++)
{
best_regstart[mcnt] = regstart[mcnt];
best_regend[mcnt] = regend[mcnt];
@@ -2080,123 +3519,395 @@ re_match_2 (pbufp, string1_arg, size1, string2_arg, size2, pos, regs, mstop)
}
goto fail;
}
+
/* If no failure points, don't restore garbage. */
else if (best_regs_set)
{
- restore_best_regs:
- /* Restore best match. */
- d = best_regend[0];
+ restore_best_regs:
+ /* Restore best match. It may happen that `dend ==
+ end_match_1' while the restored d is in string2.
+ For example, the pattern `x.*y.*z' against the
+ strings `x-' and `y-z-', if the two strings are
+ not consecutive in memory. */
+ DEBUG_PRINT1 ("Restoring best registers.\n");
- for (mcnt = 0; mcnt < RE_NREGS; mcnt++)
+ d = match_end;
+ dend = ((d >= string1 && d <= end1)
+ ? end_match_1 : end_match_2);
+
+ for (mcnt = 1; mcnt < num_regs; mcnt++)
{
regstart[mcnt] = best_regstart[mcnt];
regend[mcnt] = best_regend[mcnt];
}
}
- }
+ } /* d != end_match_2 */
+
+ DEBUG_PRINT1 ("Accepting match.\n");
- /* If caller wants register contents data back, convert it
- to indices. */
- if (regs)
+ /* If caller wants register contents data back, do it. */
+ if (regs && !bufp->no_sub)
{
- regs->start[0] = pos;
- if (MATCHING_IN_FIRST_STRING)
- regs->end[0] = d - string1;
- else
- regs->end[0] = d - string2 + size1;
- for (mcnt = 1; mcnt < RE_NREGS; mcnt++)
+ /* Have the register data arrays been allocated? */
+ if (bufp->regs_allocated == REGS_UNALLOCATED)
+ { /* No. So allocate them with malloc. We need one
+ extra element beyond `num_regs' for the `-1' marker
+ GNU code uses. */
+ regs->num_regs = MAX (RE_NREGS, num_regs + 1);
+ regs->start = TALLOC (regs->num_regs, regoff_t);
+ regs->end = TALLOC (regs->num_regs, regoff_t);
+ if (regs->start == NULL || regs->end == NULL)
+ return -2;
+ bufp->regs_allocated = REGS_REALLOCATE;
+ }
+ else if (bufp->regs_allocated == REGS_REALLOCATE)
+ { /* Yes. If we need more elements than were already
+ allocated, reallocate them. If we need fewer, just
+ leave it alone. */
+ if (regs->num_regs < num_regs + 1)
+ {
+ regs->num_regs = num_regs + 1;
+ RETALLOC (regs->start, regs->num_regs, regoff_t);
+ RETALLOC (regs->end, regs->num_regs, regoff_t);
+ if (regs->start == NULL || regs->end == NULL)
+ return -2;
+ }
+ }
+ else
{
- if (regend[mcnt] == (unsigned char *)(-1L))
- {
- regs->start[mcnt] = -1;
- regs->end[mcnt] = -1;
- continue;
- }
- if (IS_IN_FIRST_STRING (regstart[mcnt]))
- regs->start[mcnt] = regstart[mcnt] - string1;
- else
- regs->start[mcnt] = regstart[mcnt] - string2 + size1;
-
- if (IS_IN_FIRST_STRING (regend[mcnt]))
- regs->end[mcnt] = regend[mcnt] - string1;
- else
- regs->end[mcnt] = regend[mcnt] - string2 + size1;
+ /* These braces fend off a "empty body in an else-statement"
+ warning under GCC when assert expands to nothing. */
+ assert (bufp->regs_allocated == REGS_FIXED);
}
- }
- FREE_AND_RETURN(stackb,
- (d - pos - (MATCHING_IN_FIRST_STRING ?
- string1 :
- string2 - size1)));
+
+ /* Convert the pointer data in `regstart' and `regend' to
+ indices. Register zero has to be set differently,
+ since we haven't kept track of any info for it. */
+ if (regs->num_regs > 0)
+ {
+ regs->start[0] = pos;
+ regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1
+ : d - string2 + size1);
+ }
+
+ /* Go through the first `min (num_regs, regs->num_regs)'
+ registers, since that is all we initialized. */
+ for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
+ {
+ if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
+ regs->start[mcnt] = regs->end[mcnt] = -1;
+ else
+ {
+ regs->start[mcnt] = POINTER_TO_OFFSET (regstart[mcnt]);
+ regs->end[mcnt] = POINTER_TO_OFFSET (regend[mcnt]);
+ }
+ }
+
+ /* If the regs structure we return has more elements than
+ were in the pattern, set the extra elements to -1. If
+ we (re)allocated the registers, this is the case,
+ because we always allocate enough to have at least one
+ -1 at the end. */
+ for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
+ regs->start[mcnt] = regs->end[mcnt] = -1;
+ } /* regs && !bufp->no_sub */
+
+ FREE_VARIABLES ();
+ DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
+ nfailure_points_pushed, nfailure_points_popped,
+ nfailure_points_pushed - nfailure_points_popped);
+ DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
+
+ mcnt = d - pos - (MATCHING_IN_FIRST_STRING
+ ? string1
+ : string2 - size1);
+
+ DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
+
+ return mcnt;
}
/* Otherwise match next pattern command. */
#ifdef SWITCH_ENUM_BUG
- switch ((int) ((enum regexpcode) *p++))
+ switch ((int) ((re_opcode_t) *p++))
#else
- switch ((enum regexpcode) *p++)
+ switch ((re_opcode_t) *p++)
#endif
{
+ /* Ignore these. Used to ignore the n of succeed_n's which
+ currently have n == 0. */
+ case no_op:
+ DEBUG_PRINT1 ("EXECUTING no_op.\n");
+ break;
+
+
+ /* Match the next n pattern characters exactly. The following
+ byte in the pattern defines n, and the n bytes after that
+ are the characters to match. */
+ case exactn:
+ mcnt = *p++;
+ DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
+
+ /* This is written out as an if-else so we don't waste time
+ testing `translate' inside the loop. */
+ if (translate)
+ {
+ do
+ {
+ PREFETCH ();
+ if (translate[(unsigned char) *d++] != (char) *p++)
+ goto fail;
+ }
+ while (--mcnt);
+ }
+ else
+ {
+ do
+ {
+ PREFETCH ();
+ if (*d++ != (char) *p++) goto fail;
+ }
+ while (--mcnt);
+ }
+ SET_REGS_MATCHED ();
+ break;
+
+
+ /* Match any character except possibly a newline or a null. */
+ case anychar:
+ DEBUG_PRINT1 ("EXECUTING anychar.\n");
+
+ PREFETCH ();
+
+ if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
+ || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
+ goto fail;
+
+ SET_REGS_MATCHED ();
+ DEBUG_PRINT2 (" Matched `%d'.\n", *d);
+ d++;
+ break;
+
+
+ case charset:
+ case charset_not:
+ {
+ register unsigned char c;
+ boolean not = (re_opcode_t) *(p - 1) == charset_not;
+
+ DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
+
+ PREFETCH ();
+ c = TRANSLATE (*d); /* The character to match. */
+
+ /* Cast to `unsigned' instead of `unsigned char' in case the
+ bit list is a full 32 bytes long. */
+ if (c < (unsigned) (*p * BYTEWIDTH)
+ && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
+ not = !not;
+
+ p += 1 + *p;
+
+ if (!not) goto fail;
+
+ SET_REGS_MATCHED ();
+ d++;
+ break;
+ }
+
+
+ /* The beginning of a group is represented by start_memory.
+ The arguments are the register number in the next byte, and the
+ number of groups inner to this one in the next. The text
+ matched within the group is recorded (in the internal
+ registers data structure) under the register number. */
+ case start_memory:
+ DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
+
+ /* Find out if this group can match the empty string. */
+ p1 = p; /* To send to group_match_null_string_p. */
+
+ if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
+ REG_MATCH_NULL_STRING_P (reg_info[*p])
+ = group_match_null_string_p (&p1, pend, reg_info);
+
+ /* Save the position in the string where we were the last time
+ we were at this open-group operator in case the group is
+ operated upon by a repetition operator, e.g., with `(a*)*b'
+ against `ab'; then we want to ignore where we are now in
+ the string in case this attempt to match fails. */
+ old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
+ ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
+ : regstart[*p];
+ DEBUG_PRINT2 (" old_regstart: %d\n",
+ POINTER_TO_OFFSET (old_regstart[*p]));
- /* \( [or `(', as appropriate] is represented by start_memory,
- \) by stop_memory. Both of those commands are followed by
- a register number in the next byte. The text matched
- within the \( and \) is recorded under that number. */
- case start_memory:
regstart[*p] = d;
+ DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
+
IS_ACTIVE (reg_info[*p]) = 1;
MATCHED_SOMETHING (reg_info[*p]) = 0;
- p++;
+
+ /* This is the new highest active register. */
+ highest_active_reg = *p;
+
+ /* If nothing was active before, this is the new lowest active
+ register. */
+ if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
+ lowest_active_reg = *p;
+
+ /* Move past the register number and inner group count. */
+ p += 2;
break;
+
+ /* The stop_memory opcode represents the end of a group. Its
+ arguments are the same as start_memory's: the register
+ number, and the number of inner groups. */
case stop_memory:
+ DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
+
+ /* We need to save the string position the last time we were at
+ this close-group operator in case the group is operated
+ upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
+ against `aba'; then we want to ignore where we are now in
+ the string in case this attempt to match fails. */
+ old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
+ ? REG_UNSET (regend[*p]) ? d : regend[*p]
+ : regend[*p];
+ DEBUG_PRINT2 (" old_regend: %d\n",
+ POINTER_TO_OFFSET (old_regend[*p]));
+
regend[*p] = d;
- IS_ACTIVE (reg_info[*p]) = 0;
+ DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
- /* If just failed to match something this time around with a sub-
- expression that's in a loop, try to force exit from the loop. */
- if ((! MATCHED_SOMETHING (reg_info[*p])
- || (enum regexpcode) p[-3] == start_memory)
- && (p + 1) != pend)
+ /* This register isn't active anymore. */
+ IS_ACTIVE (reg_info[*p]) = 0;
+
+ /* If this was the only register active, nothing is active
+ anymore. */
+ if (lowest_active_reg == highest_active_reg)
{
- register unsigned char *p2 = p + 1;
+ lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+ highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+ }
+ else
+ { /* We must scan for the new highest active register, since
+ it isn't necessarily one less than now: consider
+ (a(b)c(d(e)f)g). When group 3 ends, after the f), the
+ new highest active register is 1. */
+ unsigned char r = *p - 1;
+ while (r > 0 && !IS_ACTIVE (reg_info[r]))
+ r--;
+
+ /* If we end up at register zero, that means that we saved
+ the registers as the result of an `on_failure_jump', not
+ a `start_memory', and we jumped to past the innermost
+ `stop_memory'. For example, in ((.)*) we save
+ registers 1 and 2 as a result of the *, but when we pop
+ back to the second ), we are at the stop_memory 1.
+ Thus, nothing is active. */
+ if (r == 0)
+ {
+ lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+ highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+ }
+ else
+ highest_active_reg = r;
+ }
+
+ /* If just failed to match something this time around with a
+ group that's operated on by a repetition operator, try to
+ force exit from the ``loop'', and restore the register
+ information for this group that we had before trying this
+ last match. */
+ if ((!MATCHED_SOMETHING (reg_info[*p])
+ || (re_opcode_t) p[-3] == start_memory)
+ && (p + 2) < pend)
+ {
+ boolean is_a_jump_n = false;
+
+ p1 = p + 2;
mcnt = 0;
- switch (*p2++)
+ switch ((re_opcode_t) *p1++)
{
case jump_n:
- is_a_jump_n = 1;
- case finalize_jump:
- case maybe_finalize_jump:
+ is_a_jump_n = true;
+ case pop_failure_jump:
+ case maybe_pop_jump:
case jump:
case dummy_failure_jump:
- EXTRACT_NUMBER_AND_INCR (mcnt, p2);
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
if (is_a_jump_n)
- p2 += 2;
+ p1 += 2;
break;
+
+ default:
+ /* do nothing */ ;
}
- p2 += mcnt;
+ p1 += mcnt;
/* If the next operation is a jump backwards in the pattern
- to an on_failure_jump, exit from the loop by forcing a
- failure after pushing on the stack the on_failure_jump's
- jump in the pattern, and d. */
- if (mcnt < 0 && (enum regexpcode) *p2++ == on_failure_jump)
+ to an on_failure_jump right before the start_memory
+ corresponding to this stop_memory, exit from the loop
+ by forcing a failure after pushing on the stack the
+ on_failure_jump's jump in the pattern, and d. */
+ if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
+ && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
{
- EXTRACT_NUMBER_AND_INCR (mcnt, p2);
- PUSH_FAILURE_POINT (p2 + mcnt, d);
+ /* If this group ever matched anything, then restore
+ what its registers were before trying this last
+ failed match, e.g., with `(a*)*b' against `ab' for
+ regstart[1], and, e.g., with `((a*)*(b*)*)*'
+ against `aba' for regend[3].
+
+ Also restore the registers for inner groups for,
+ e.g., `((a*)(b*))*' against `aba' (register 3 would
+ otherwise get trashed). */
+
+ if (EVER_MATCHED_SOMETHING (reg_info[*p]))
+ {
+ unsigned r;
+
+ EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
+
+ /* Restore this and inner groups' (if any) registers. */
+ for (r = *p; r < *p + *(p + 1); r++)
+ {
+ regstart[r] = old_regstart[r];
+
+ /* xx why this test? */
+ if ((s_reg_t) old_regend[r] >= (s_reg_t) regstart[r])
+ regend[r] = old_regend[r];
+ }
+ }
+ p1++;
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
+ PUSH_FAILURE_POINT2(p1 + mcnt, d, -2);
+
goto fail;
}
}
- p++;
+
+ /* Move past the register number and the inner group count. */
+ p += 2;
break;
+
/* \<digit> has been turned into a `duplicate' command which is
followed by the numeric value of <digit> as the register number. */
case duplicate:
{
- int regno = *p++; /* Get which register to match against */
- register unsigned char *d2, *dend2;
+ register const char *d2, *dend2;
+ int regno = *p++; /* Get which register to match against. */
+ DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
- /* Where in input to try to start matching. */
+ /* Can't back reference a group which we've never matched. */
+ if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
+ goto fail;
+
+ /* Where in input to try to start matching. */
d2 = regstart[regno];
/* Where to stop matching; if both the place to start and
@@ -2204,10 +3915,10 @@ re_match_2 (pbufp, string1_arg, size1, string2_arg, size2, pos, regs, mstop)
set to the place to stop, otherwise, for now have to use
the end of the first string. */
- dend2 = ((IS_IN_FIRST_STRING (regstart[regno])
- == IS_IN_FIRST_STRING (regend[regno]))
+ dend2 = ((FIRST_STRING_P (regstart[regno])
+ == FIRST_STRING_P (regend[regno]))
? regend[regno] : end_match_1);
- while (1)
+ for (;;)
{
/* If necessary, advance to next segment in register
contents. */
@@ -2215,13 +3926,16 @@ re_match_2 (pbufp, string1_arg, size1, string2_arg, size2, pos, regs, mstop)
{
if (dend2 == end_match_2) break;
if (dend2 == regend[regno]) break;
- d2 = string2, dend2 = regend[regno]; /* end of string1 => advance to string2. */
+
+ /* End of string1 => advance to string2. */
+ d2 = string2;
+ dend2 = regend[regno];
}
/* At end of register contents => success */
if (d2 == dend2) break;
/* If necessary, advance to next segment in data. */
- PREFETCH;
+ PREFETCH ();
/* How many characters left in this segment to match. */
mcnt = dend - d;
@@ -2234,196 +3948,335 @@ re_match_2 (pbufp, string1_arg, size1, string2_arg, size2, pos, regs, mstop)
/* Compare that many; failure if mismatch, else move
past them. */
if (translate
- ? memcmp_translate (d, d2, mcnt, translate)
- : memcmp ((char *)d, (char *)d2, mcnt))
+ ? bcmp_translate (d, d2, mcnt, translate)
+ : bcmp (d, d2, mcnt))
goto fail;
d += mcnt, d2 += mcnt;
}
}
break;
- case anychar:
- PREFETCH; /* Fetch a data character. */
- /* Match anything but a newline, maybe even a null. */
- if ((translate ? translate[*d] : *d) == '\n'
- || ((obscure_syntax & RE_DOT_NOT_NULL)
- && (translate ? translate[*d] : *d) == '\000'))
- goto fail;
- SET_REGS_MATCHED;
- d++;
- break;
- case charset:
- case charset_not:
- {
- int not = 0; /* Nonzero for charset_not. */
- register int c;
- if (*(p - 1) == (unsigned char) charset_not)
- not = 1;
-
- PREFETCH; /* Fetch a data character. */
+ /* begline matches the empty string at the beginning of the string
+ (unless `not_bol' is set in `bufp'), and, if
+ `newline_anchor' is set, after newlines. */
+ case begline:
+ DEBUG_PRINT1 ("EXECUTING begline.\n");
+
+ if (AT_STRINGS_BEG (d))
+ {
+ if (!bufp->not_bol) break;
+ }
+ else if (d[-1] == '\n' && bufp->newline_anchor)
+ {
+ break;
+ }
+ /* In all other cases, we fail. */
+ goto fail;
- if (translate)
- c = translate[*d];
- else
- c = *d;
- if (c < *p * BYTEWIDTH
- && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
- not = !not;
+ /* endline is the dual of begline. */
+ case endline:
+ DEBUG_PRINT1 ("EXECUTING endline.\n");
- p += 1 + *p;
+ if (AT_STRINGS_END (d))
+ {
+ if (!bufp->not_eol) break;
+ }
+
+ /* We have to ``prefetch'' the next character. */
+ else if ((d == end1 ? *string2 : *d) == '\n'
+ && bufp->newline_anchor)
+ {
+ break;
+ }
+ goto fail;
- if (!not) goto fail;
- SET_REGS_MATCHED;
- d++;
- break;
- }
- case begline:
- if ((size1 != 0 && d == string1)
- || (size1 == 0 && size2 != 0 && d == string2)
- || (d && d[-1] == '\n')
- || (size1 == 0 && size2 == 0))
+ /* Match at the very beginning of the data. */
+ case begbuf:
+ DEBUG_PRINT1 ("EXECUTING begbuf.\n");
+ if (AT_STRINGS_BEG (d))
break;
- else
- goto fail;
-
- case endline:
- if (d == end2
- || (d == end1 ? (size2 == 0 || *string2 == '\n') : *d == '\n'))
+ goto fail;
+
+
+ /* Match at the very end of the data. */
+ case endbuf:
+ DEBUG_PRINT1 ("EXECUTING endbuf.\n");
+ if (AT_STRINGS_END (d))
break;
- goto fail;
+ goto fail;
- /* `or' constructs are handled by starting each alternative with
- an on_failure_jump that points to the start of the next
- alternative. Each alternative except the last ends with a
- jump to the joining point. (Actually, each jump except for
- the last one really jumps to the following jump, because
- tensioning the jumps is a hassle.) */
- /* The start of a stupid repeat has an on_failure_jump that points
- past the end of the repeat text. This makes a failure point so
- that on failure to match a repetition, matching restarts past
- as many repetitions have been found with no way to fail and
- look for another one. */
+ /* on_failure_keep_string_jump is used to optimize `.*\n'. It
+ pushes NULL as the value for the string on the stack. Then
+ `pop_failure_point' will keep the current value for the
+ string, instead of restoring it. To see why, consider
+ matching `foo\nbar' against `.*\n'. The .* matches the foo;
+ then the . fails against the \n. But the next thing we want
+ to do is match the \n against the \n; if we restored the
+ string value, we would be back at the foo.
+
+ Because this is used only in specific cases, we don't need to
+ check all the things that `on_failure_jump' does, to make
+ sure the right things get saved on the stack. Hence we don't
+ share its code. The only reason to push anything on the
+ stack at all is that otherwise we would have to change
+ `anychar's code to do something besides goto fail in this
+ case; that seems worse than this. */
+ case on_failure_keep_string_jump:
+ DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
+
+ EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
+
+ PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
+ PUSH_FAILURE_POINT2(p + mcnt, NULL, -2);
+ break;
- /* A smart repeat is similar but loops back to the on_failure_jump
- so that each repetition makes another failure point. */
+ /* Uses of on_failure_jump:
+
+ Each alternative starts with an on_failure_jump that points
+ to the beginning of the next alternative. Each alternative
+ except the last ends with a jump that in effect jumps past
+ the rest of the alternatives. (They really jump to the
+ ending jump of the following alternative, because tensioning
+ these jumps is a hassle.)
+
+ Repeats start with an on_failure_jump that points past both
+ the repetition text and either the following jump or
+ pop_failure_jump back to this on_failure_jump. */
case on_failure_jump:
on_failure:
+ DEBUG_PRINT1 ("EXECUTING on_failure_jump");
+
EXTRACT_NUMBER_AND_INCR (mcnt, p);
- PUSH_FAILURE_POINT (p + mcnt, d);
+ DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
+
+ /* If this on_failure_jump comes right before a group (i.e.,
+ the original * applied to a group), save the information
+ for that group and all inner ones, so that if we fail back
+ to this point, the group's information will be correct.
+ For example, in \(a*\)*\1, we need the preceding group,
+ and in \(\(a*\)b*\)\2, we need the inner group. */
+
+ /* We can't use `p' to check ahead because we push
+ a failure point to `p + mcnt' after we do this. */
+ p1 = p;
+
+ /* We need to skip no_op's before we look for the
+ start_memory in case this on_failure_jump is happening as
+ the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
+ against aba. */
+ while (p1 < pend && (re_opcode_t) *p1 == no_op)
+ p1++;
+
+ if (p1 < pend && (re_opcode_t) *p1 == start_memory)
+ {
+ /* We have a new highest active register now. This will
+ get reset at the start_memory we are about to get to,
+ but we will have saved all the registers relevant to
+ this repetition op, as described above. */
+ highest_active_reg = *(p1 + 1) + *(p1 + 2);
+ if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
+ lowest_active_reg = *(p1 + 1);
+ }
+
+ DEBUG_PRINT1 (":\n");
+ PUSH_FAILURE_POINT (p + mcnt, d, -2);
+ PUSH_FAILURE_POINT2(p + mcnt, d, -2);
break;
- /* The end of a smart repeat has a maybe_finalize_jump back.
- Change it either to a finalize_jump or an ordinary jump. */
- case maybe_finalize_jump:
+
+ /* A smart repeat ends with `maybe_pop_jump'.
+ We change it to either `pop_failure_jump' or `jump'. */
+ case maybe_pop_jump:
EXTRACT_NUMBER_AND_INCR (mcnt, p);
- {
+ DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
+ {
register unsigned char *p2 = p;
- /* Compare what follows with the beginning of the repeat.
- If we can establish that there is nothing that they would
- both match, we can change to finalize_jump. */
- while (p2 + 1 != pend
- && (*p2 == (unsigned char) stop_memory
- || *p2 == (unsigned char) start_memory))
- p2 += 2; /* Skip over reg number. */
- if (p2 == pend)
- p[-3] = (unsigned char) finalize_jump;
- else if (*p2 == (unsigned char) exactn
- || *p2 == (unsigned char) endline)
+
+ /* Compare the beginning of the repeat with what in the
+ pattern follows its end. If we can establish that there
+ is nothing that they would both match, i.e., that we
+ would have to backtrack because of (as in, e.g., `a*a')
+ then we can change to pop_failure_jump, because we'll
+ never have to backtrack.
+
+ This is not true in the case of alternatives: in
+ `(a|ab)*' we do need to backtrack to the `ab' alternative
+ (e.g., if the string was `ab'). But instead of trying to
+ detect that here, the alternative has put on a dummy
+ failure point which is what we will end up popping. */
+
+ /* Skip over open/close-group commands. */
+ while (p2 + 2 < pend
+ && ((re_opcode_t) *p2 == stop_memory
+ || (re_opcode_t) *p2 == start_memory))
+ p2 += 3; /* Skip over args, too. */
+
+ /* If we're at the end of the pattern, we can change. */
+ if (p2 == pend)
+ {
+ /* Consider what happens when matching ":\(.*\)"
+ against ":/". I don't really understand this code
+ yet. */
+ p[-3] = (unsigned char) pop_failure_jump;
+ DEBUG_PRINT1
+ (" End of pattern: change to `pop_failure_jump'.\n");
+ }
+
+ else if ((re_opcode_t) *p2 == exactn
+ || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
{
- register int c = *p2 == (unsigned char) endline ? '\n' : p2[2];
- register unsigned char *p1 = p + mcnt;
- /* p1[0] ... p1[2] are an on_failure_jump.
- Examine what follows that. */
- if (p1[3] == (unsigned char) exactn && p1[5] != c)
- p[-3] = (unsigned char) finalize_jump;
- else if (p1[3] == (unsigned char) charset
- || p1[3] == (unsigned char) charset_not)
+ register unsigned char c
+ = *p2 == (unsigned char) endline ? '\n' : p2[2];
+ p1 = p + mcnt;
+
+ /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
+ to the `maybe_finalize_jump' of this case. Examine what
+ follows. */
+ if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
+ {
+ p[-3] = (unsigned char) pop_failure_jump;
+ DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
+ c, p1[5]);
+ }
+
+ else if ((re_opcode_t) p1[3] == charset
+ || (re_opcode_t) p1[3] == charset_not)
{
- int not = p1[3] == (unsigned char) charset_not;
- if (c < p1[4] * BYTEWIDTH
+ int not = (re_opcode_t) p1[3] == charset_not;
+
+ if (c < (unsigned char) (p1[4] * BYTEWIDTH)
&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
not = !not;
- /* `not' is 1 if c would match. */
- /* That means it is not safe to finalize. */
+
+ /* `not' is equal to 1 if c would match, which means
+ that we can't change to pop_failure_jump. */
if (!not)
- p[-3] = (unsigned char) finalize_jump;
+ {
+ p[-3] = (unsigned char) pop_failure_jump;
+ DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
+ }
}
}
}
p -= 2; /* Point at relative address again. */
- if (p[-1] != (unsigned char) finalize_jump)
+ if ((re_opcode_t) p[-1] != pop_failure_jump)
{
- p[-1] = (unsigned char) jump;
- goto nofinalize;
+ p[-1] = (unsigned char) jump;
+ DEBUG_PRINT1 (" Match => jump.\n");
+ goto unconditional_jump;
}
/* Note fall through. */
- /* The end of a stupid repeat has a finalize_jump back to the
- start, where another failure point will be made which will
- point to after all the repetitions found so far. */
- /* Take off failure points put on by matching on_failure_jump
- because didn't fail. Also remove the register information
- put on by the on_failure_jump. */
- case finalize_jump:
- POP_FAILURE_POINT ();
- /* Note fall through. */
-
- /* Jump without taking off any failure points. */
+ /* The end of a simple repeat has a pop_failure_jump back to
+ its matching on_failure_jump, where the latter will push a
+ failure point. The pop_failure_jump takes off failure
+ points put on by this pop_failure_jump's matching
+ on_failure_jump; we got through the pattern to here from the
+ matching on_failure_jump, so didn't fail. */
+ case pop_failure_jump:
+ {
+ /* We need to pass separate storage for the lowest and
+ highest registers, even though we don't care about the
+ actual values. Otherwise, we will restore only one
+ register from the stack, since lowest will == highest in
+ `pop_failure_point'. */
+ active_reg_t dummy_low_reg, dummy_high_reg;
+ unsigned char *pdummy;
+ const char *sdummy;
+
+ DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
+ POP_FAILURE_POINT (sdummy, pdummy,
+ dummy_low_reg, dummy_high_reg,
+ reg_dummy, reg_dummy, reg_info_dummy);
+ }
+ /* Note fall through. */
+
+
+ /* Unconditionally jump (without popping any failure points). */
case jump:
- nofinalize:
- EXTRACT_NUMBER_AND_INCR (mcnt, p);
- p += mcnt;
+ unconditional_jump:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
+ DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
+ p += mcnt; /* Do the jump. */
+ DEBUG_PRINT2 ("(to 0x%x).\n", p);
break;
- case dummy_failure_jump:
- /* Normally, the on_failure_jump pushes a failure point, which
- then gets popped at finalize_jump. We will end up at
- finalize_jump, also, and with a pattern of, say, `a+', we
- are skipping over the on_failure_jump, so we have to push
- something meaningless for finalize_jump to pop. */
- PUSH_FAILURE_POINT (0, 0);
- goto nofinalize;
+
+ /* We need this opcode so we can detect where alternatives end
+ in `group_match_null_string_p' et al. */
+ case jump_past_alt:
+ DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
+ goto unconditional_jump;
+
+ /* Normally, the on_failure_jump pushes a failure point, which
+ then gets popped at pop_failure_jump. We will end up at
+ pop_failure_jump, also, and with a pattern of, say, `a+', we
+ are skipping over the on_failure_jump, so we have to push
+ something meaningless for pop_failure_jump to pop. */
+ case dummy_failure_jump:
+ DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
+ /* It doesn't matter what we push for the string here. What
+ the code at `fail' tests is the value for the pattern. */
+ PUSH_FAILURE_POINT (0, 0, -2);
+ PUSH_FAILURE_POINT2(0, 0, -2);
+ goto unconditional_jump;
+
+
+ /* At the end of an alternative, we need to push a dummy failure
+ point in case we are followed by a `pop_failure_jump', because
+ we don't want the failure point for the alternative to be
+ popped. For example, matching `(a|ab)*' against `aab'
+ requires that we match the `ab' alternative. */
+ case push_dummy_failure:
+ DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
+ /* See comments just above at `dummy_failure_jump' about the
+ two zeroes. */
+ PUSH_FAILURE_POINT (0, 0, -2);
+ PUSH_FAILURE_POINT2(0, 0, -2);
+ break;
- /* Have to succeed matching what follows at least n times. Then
- just handle like an on_failure_jump. */
+ /* Have to succeed matching what follows at least n times.
+ After that, handle like `on_failure_jump'. */
case succeed_n:
EXTRACT_NUMBER (mcnt, p + 2);
+ DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
+
+ assert (mcnt >= 0);
/* Originally, this is how many times we HAVE to succeed. */
- if (mcnt)
+ if (mcnt > 0)
{
mcnt--;
p += 2;
STORE_NUMBER_AND_INCR (p, mcnt);
+ DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
}
else if (mcnt == 0)
{
- p[2] = unused;
- p[3] = unused;
+ DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
+ p[2] = (unsigned char) no_op;
+ p[3] = (unsigned char) no_op;
goto on_failure;
}
- else
- {
- fprintf (stderr, "regex: the succeed_n's n is not set.\n");
- exit (1);
- }
break;
case jump_n:
EXTRACT_NUMBER (mcnt, p + 2);
+ DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
+
/* Originally, this is how many times we CAN jump. */
if (mcnt)
{
mcnt--;
- STORE_NUMBER(p + 2, mcnt);
- goto nofinalize; /* Do the jump without taking off
- any failure points. */
+ STORE_NUMBER (p + 2, mcnt);
+ goto unconditional_jump;
}
/* If don't have to jump any more, skip over the rest of command. */
else
@@ -2432,223 +4285,494 @@ re_match_2 (pbufp, string1_arg, size1, string2_arg, size2, pos, regs, mstop)
case set_number_at:
{
- register unsigned char *p1;
+ DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
EXTRACT_NUMBER_AND_INCR (mcnt, p);
p1 = p + mcnt;
EXTRACT_NUMBER_AND_INCR (mcnt, p);
+ DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
STORE_NUMBER (p1, mcnt);
break;
}
- /* Ignore these. Used to ignore the n of succeed_n's which
- currently have n == 0. */
- case unused:
- break;
-
case wordbound:
- if (AT_WORD_BOUNDARY)
+ DEBUG_PRINT1 ("EXECUTING wordbound.\n");
+ if (AT_WORD_BOUNDARY (d))
break;
- goto fail;
+ goto fail;
case notwordbound:
- if (AT_WORD_BOUNDARY)
+ DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
+ if (AT_WORD_BOUNDARY (d))
goto fail;
- break;
+ break;
case wordbeg:
- if (IS_A_LETTER (d) && (!IS_A_LETTER (d - 1) || AT_STRINGS_BEG))
+ DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
+ if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
break;
- goto fail;
+ goto fail;
case wordend:
- /* Have to check if AT_STRINGS_BEG before looking at d - 1. */
- if (!AT_STRINGS_BEG && IS_A_LETTER (d - 1)
- && (!IS_A_LETTER (d) || AT_STRINGS_END))
+ DEBUG_PRINT1 ("EXECUTING wordend.\n");
+ if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
+ && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
break;
- goto fail;
+ goto fail;
#ifdef emacs
- case before_dot:
- if (PTR_CHAR_POS (d) >= point)
- goto fail;
- break;
-
+#ifdef emacs19
+ case before_dot:
+ DEBUG_PRINT1 ("EXECUTING before_dot.\n");
+ if (PTR_CHAR_POS ((unsigned char *) d) >= point)
+ goto fail;
+ break;
+
+ case at_dot:
+ DEBUG_PRINT1 ("EXECUTING at_dot.\n");
+ if (PTR_CHAR_POS ((unsigned char *) d) != point)
+ goto fail;
+ break;
+
+ case after_dot:
+ DEBUG_PRINT1 ("EXECUTING after_dot.\n");
+ if (PTR_CHAR_POS ((unsigned char *) d) <= point)
+ goto fail;
+ break;
+#else /* not emacs19 */
case at_dot:
- if (PTR_CHAR_POS (d) != point)
+ DEBUG_PRINT1 ("EXECUTING at_dot.\n");
+ if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
goto fail;
break;
-
- case after_dot:
- if (PTR_CHAR_POS (d) <= point)
- goto fail;
- break;
-
- case wordchar:
- mcnt = (int) Sword;
- goto matchsyntax;
+#endif /* not emacs19 */
case syntaxspec:
+ DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
mcnt = *p++;
- matchsyntax:
- PREFETCH;
- if (SYNTAX (*d++) != (enum syntaxcode) mcnt) goto fail;
- SET_REGS_MATCHED;
- break;
-
- case notwordchar:
+ goto matchsyntax;
+
+ case wordchar:
+ DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
mcnt = (int) Sword;
- goto matchnotsyntax;
+ matchsyntax:
+ PREFETCH ();
+ if (SYNTAX (*d++) != (enum syntaxcode) mcnt)
+ goto fail;
+ SET_REGS_MATCHED ();
+ break;
case notsyntaxspec:
+ DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
mcnt = *p++;
- matchnotsyntax:
- PREFETCH;
- if (SYNTAX (*d++) == (enum syntaxcode) mcnt) goto fail;
- SET_REGS_MATCHED;
+ goto matchnotsyntax;
+
+ case notwordchar:
+ DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
+ mcnt = (int) Sword;
+ matchnotsyntax:
+ PREFETCH ();
+ if (SYNTAX (*d++) == (enum syntaxcode) mcnt)
+ goto fail;
+ SET_REGS_MATCHED ();
break;
#else /* not emacs */
-
case wordchar:
- PREFETCH;
- if (!IS_A_LETTER (d))
+ DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
+ PREFETCH ();
+ if (!WORDCHAR_P (d))
goto fail;
- SET_REGS_MATCHED;
+ SET_REGS_MATCHED ();
+ d++;
break;
case notwordchar:
- PREFETCH;
- if (IS_A_LETTER (d))
+ DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
+ PREFETCH ();
+ if (WORDCHAR_P (d))
goto fail;
- SET_REGS_MATCHED;
- break;
-
- case before_dot:
- case at_dot:
- case after_dot:
- case syntaxspec:
- case notsyntaxspec:
+ SET_REGS_MATCHED ();
+ d++;
break;
-
#endif /* not emacs */
-
- case begbuf:
- if (AT_STRINGS_BEG)
- break;
- goto fail;
-
- case endbuf:
- if (AT_STRINGS_END)
- break;
- goto fail;
-
- case exactn:
- /* Match the next few pattern characters exactly.
- mcnt is how many characters to match. */
- mcnt = *p++;
- /* This is written out as an if-else so we don't waste time
- testing `translate' inside the loop. */
- if (translate)
- {
- do
- {
- PREFETCH;
- if (translate[*d++] != *p++) goto fail;
- }
- while (--mcnt);
- }
- else
- {
- do
- {
- PREFETCH;
- if (*d++ != *p++) goto fail;
- }
- while (--mcnt);
- }
- SET_REGS_MATCHED;
- break;
+
+ default:
+ abort ();
}
continue; /* Successfully executed one pattern command; keep going. */
- /* Jump here if any matching operation fails. */
+
+ /* We goto here if a matching operation fails. */
fail:
- if (stackp != stackb)
- /* A restart point is known. Restart there and pop it. */
- {
- short last_used_reg, this_reg;
-
- /* If this failure point is from a dummy_failure_point, just
- skip it. */
- if (!stackp[-2])
+ if (!FAIL_STACK_EMPTY ())
+ { /* A restart point is known. Restore to that state. */
+ DEBUG_PRINT1 ("\nFAIL:\n");
+ POP_FAILURE_POINT (d, p,
+ lowest_active_reg, highest_active_reg,
+ regstart, regend, reg_info);
+
+ /* If this failure point is a dummy, try the next one. */
+ if (!p)
+ goto fail;
+
+ /* If we failed to the end of the pattern, don't examine *p. */
+ assert (p <= pend);
+ if (p < pend)
{
- POP_FAILURE_POINT ();
- goto fail;
+ boolean is_a_jump_n = false;
+
+ /* If failed to a backwards jump that's part of a repetition
+ loop, need to pop this failure point and use the next one. */
+ switch ((re_opcode_t) *p)
+ {
+ case jump_n:
+ is_a_jump_n = true;
+ case maybe_pop_jump:
+ case pop_failure_jump:
+ case jump:
+ p1 = p + 1;
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ p1 += mcnt;
+
+ if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
+ || (!is_a_jump_n
+ && (re_opcode_t) *p1 == on_failure_jump))
+ goto fail;
+ break;
+ default:
+ /* do nothing */ ;
+ }
}
- d = *--stackp;
- p = *--stackp;
if (d >= string1 && d <= end1)
dend = end_match_1;
- /* Restore register info. */
- last_used_reg = (long) *--stackp;
-
- /* Make the ones that weren't saved -1 or 0 again. */
- for (this_reg = RE_NREGS - 1; this_reg > last_used_reg; this_reg--)
- {
- regend[this_reg] = (unsigned char *) (-1L);
- regstart[this_reg] = (unsigned char *) (-1L);
- IS_ACTIVE (reg_info[this_reg]) = 0;
- MATCHED_SOMETHING (reg_info[this_reg]) = 0;
- }
-
- /* And restore the rest from the stack. */
- for ( ; this_reg > 0; this_reg--)
- {
- reg_info[this_reg] = *(struct register_info *) *--stackp;
- regend[this_reg] = *--stackp;
- regstart[this_reg] = *--stackp;
- }
- }
+ }
else
break; /* Matching at this starting point really fails. */
- }
+ } /* for (;;) */
if (best_regs_set)
goto restore_best_regs;
- FREE_AND_RETURN(stackb,(-1)); /* Failure to match. */
-}
+ FREE_VARIABLES ();
+
+ return -1; /* Failure to match. */
+} /* re_match_2 */
+
+/* Subroutine definitions for re_match_2. */
+
+
+/* We are passed P pointing to a register number after a start_memory.
+
+ Return true if the pattern up to the corresponding stop_memory can
+ match the empty string, and false otherwise.
+
+ If we find the matching stop_memory, sets P to point to one past its number.
+ Otherwise, sets P to an undefined byte less than or equal to END.
+
+ We don't handle duplicates properly (yet). */
+
+static boolean
+group_match_null_string_p (p, end, reg_info)
+ unsigned char **p, *end;
+ register_info_type *reg_info;
+{
+ int mcnt;
+ /* Point to after the args to the start_memory. */
+ unsigned char *p1 = *p + 2;
+
+ while (p1 < end)
+ {
+ /* Skip over opcodes that can match nothing, and return true or
+ false, as appropriate, when we get to one that can't, or to the
+ matching stop_memory. */
+
+ switch ((re_opcode_t) *p1)
+ {
+ /* Could be either a loop or a series of alternatives. */
+ case on_failure_jump:
+ p1++;
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+
+ /* If the next operation is not a jump backwards in the
+ pattern. */
+
+ if (mcnt >= 0)
+ {
+ /* Go through the on_failure_jumps of the alternatives,
+ seeing if any of the alternatives cannot match nothing.
+ The last alternative starts with only a jump,
+ whereas the rest start with on_failure_jump and end
+ with a jump, e.g., here is the pattern for `a|b|c':
+
+ /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
+ /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
+ /exactn/1/c
+
+ So, we have to first go through the first (n-1)
+ alternatives and then deal with the last one separately. */
+
+
+ /* Deal with the first (n-1) alternatives, which start
+ with an on_failure_jump (see above) that jumps to right
+ past a jump_past_alt. */
+
+ while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
+ {
+ /* `mcnt' holds how many bytes long the alternative
+ is, including the ending `jump_past_alt' and
+ its number. */
+
+ if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
+ reg_info))
+ return false;
+
+ /* Move to right after this alternative, including the
+ jump_past_alt. */
+ p1 += mcnt;
+
+ /* Break if it's the beginning of an n-th alternative
+ that doesn't begin with an on_failure_jump. */
+ if ((re_opcode_t) *p1 != on_failure_jump)
+ break;
+
+ /* Still have to check that it's not an n-th
+ alternative that starts with an on_failure_jump. */
+ p1++;
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
+ {
+ /* Get to the beginning of the n-th alternative. */
+ p1 -= 3;
+ break;
+ }
+ }
+
+ /* Deal with the last alternative: go back and get number
+ of the `jump_past_alt' just before it. `mcnt' contains
+ the length of the alternative. */
+ EXTRACT_NUMBER (mcnt, p1 - 2);
+
+ if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
+ return false;
+
+ p1 += mcnt; /* Get past the n-th alternative. */
+ } /* if mcnt > 0 */
+ break;
+
+
+ case stop_memory:
+ assert (p1[1] == **p);
+ *p = p1 + 2;
+ return true;
+
+
+ default:
+ if (!common_op_match_null_string_p (&p1, end, reg_info))
+ return false;
+ }
+ } /* while p1 < end */
+
+ return false;
+} /* group_match_null_string_p */
+
+
+/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
+ It expects P to be the first byte of a single alternative and END one
+ byte past the last. The alternative can contain groups. */
+
+static boolean
+alt_match_null_string_p (p, end, reg_info)
+ unsigned char *p, *end;
+ register_info_type *reg_info;
+{
+ int mcnt;
+ unsigned char *p1 = p;
+
+ while (p1 < end)
+ {
+ /* Skip over opcodes that can match nothing, and break when we get
+ to one that can't. */
+
+ switch ((re_opcode_t) *p1)
+ {
+ /* It's a loop. */
+ case on_failure_jump:
+ p1++;
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ p1 += mcnt;
+ break;
+
+ default:
+ if (!common_op_match_null_string_p (&p1, end, reg_info))
+ return false;
+ }
+ } /* while p1 < end */
+
+ return true;
+} /* alt_match_null_string_p */
+
+
+/* Deals with the ops common to group_match_null_string_p and
+ alt_match_null_string_p.
+
+ Sets P to one after the op and its arguments, if any. */
+
+static boolean
+common_op_match_null_string_p (p, end, reg_info)
+ unsigned char **p, *end;
+ register_info_type *reg_info;
+{
+ int mcnt;
+ boolean ret;
+ int reg_no;
+ unsigned char *p1 = *p;
+
+ switch ((re_opcode_t) *p1++)
+ {
+ case no_op:
+ case begline:
+ case endline:
+ case begbuf:
+ case endbuf:
+ case wordbeg:
+ case wordend:
+ case wordbound:
+ case notwordbound:
+#ifdef emacs
+ case before_dot:
+ case at_dot:
+ case after_dot:
+#endif
+ break;
+
+ case start_memory:
+ reg_no = *p1;
+ assert (reg_no > 0 && reg_no <= MAX_REGNUM);
+ ret = group_match_null_string_p (&p1, end, reg_info);
+
+ /* Have to set this here in case we're checking a group which
+ contains a group and a back reference to it. */
+
+ if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
+ REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
+
+ if (!ret)
+ return false;
+ break;
+
+ /* If this is an optimized succeed_n for zero times, make the jump. */
+ case jump:
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ if (mcnt >= 0)
+ p1 += mcnt;
+ else
+ return false;
+ break;
+
+ case succeed_n:
+ /* Get to the number of times to succeed. */
+ p1 += 2;
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+
+ if (mcnt == 0)
+ {
+ p1 -= 4;
+ EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+ p1 += mcnt;
+ }
+ else
+ return false;
+ break;
+
+ case duplicate:
+ if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
+ return false;
+ break;
+
+ case set_number_at:
+ p1 += 4;
+
+ default:
+ /* All other opcodes mean we cannot match the empty string. */
+ return false;
+ }
+
+ *p = p1;
+ return true;
+} /* common_op_match_null_string_p */
+/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
+ bytes; nonzero otherwise. */
+
static int
-memcmp_translate (s1, s2, len, translate)
- unsigned char *s1, *s2;
+bcmp_translate (s1, s2, len, translate)
+ const char *s1, *s2;
register int len;
- unsigned char *translate;
+ char *translate;
{
- register unsigned char *p1 = s1, *p2 = s2;
+ register const unsigned char *p1 = (const unsigned char *) s1,
+ *p2 = (const unsigned char *) s2;
while (len)
{
- if (translate [*p1++] != translate [*p2++]) return 1;
+ if (translate[*p1++] != translate[*p2++]) return 1;
len--;
}
return 0;
}
+
+/* Entry points for GNU code. */
+/* re_compile_pattern is the GNU regular expression compiler: it
+ compiles PATTERN (of length SIZE) and puts the result in BUFP.
+ Returns 0 if the pattern was valid, otherwise an error string.
+
+ Assumes the `allocated' (and perhaps `buffer') and `translate' fields
+ are set in BUFP on entry.
+
+ We call regex_compile to do the actual compilation. */
+
+const char *
+re_compile_pattern (pattern, length, bufp)
+ const char *pattern;
+ size_t length;
+ struct re_pattern_buffer *bufp;
+{
+ reg_errcode_t ret;
+
+ /* GNU code is written to assume at least RE_NREGS registers will be set
+ (and at least one extra will be -1). */
+ bufp->regs_allocated = REGS_UNALLOCATED;
+
+ /* And GNU code determines whether or not to get register information
+ by passing null for the REGS argument to re_match, etc., not by
+ setting no_sub. */
+ bufp->no_sub = 0;
+
+ /* Match anchors at newline. */
+ bufp->newline_anchor = 1;
+
+ ret = regex_compile (pattern, length, re_syntax_options, bufp);
+ return re_error_msg[(int) ret];
+}
-/* Entry points compatible with 4.2 BSD regex library. */
+/* Entry points compatible with 4.2 BSD regex library. We don't define
+ them if this is an Emacs or POSIX compilation. */
-#if !defined(emacs) && !defined(GAWK)
+#if !defined (emacs) && !defined (_POSIX_SOURCE)
+/* BSD has one and only one pattern buffer. */
static struct re_pattern_buffer re_comp_buf;
char *
re_comp (s)
- char *s;
+ const char *s;
{
+ reg_errcode_t ret;
+
if (!s)
{
if (!re_comp_buf.buffer)
@@ -2658,197 +4782,289 @@ re_comp (s)
if (!re_comp_buf.buffer)
{
- if (!(re_comp_buf.buffer = (char *) malloc (200)))
- return "Memory exhausted";
+ re_comp_buf.buffer = (unsigned char *) malloc (200);
+ if (re_comp_buf.buffer == NULL)
+ return "Memory exhausted";
re_comp_buf.allocated = 200;
- if (!(re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH)))
+
+ re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
+ if (re_comp_buf.fastmap == NULL)
return "Memory exhausted";
}
- return re_compile_pattern (s, strlen (s), &re_comp_buf);
+
+ /* Since `re_exec' always passes NULL for the `regs' argument, we
+ don't need to initialize the pattern buffer fields which affect it. */
+
+ /* Match anchors at newlines. */
+ re_comp_buf.newline_anchor = 1;
+
+ ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
+
+ /* Yes, we're discarding `const' here. */
+ return (char *) re_error_msg[(int) ret];
}
+
int
re_exec (s)
- char *s;
+ const char *s;
{
- int len = strlen (s);
- return 0 <= re_search (&re_comp_buf, s, len, 0, len,
- (struct re_registers *) 0);
+ const int len = strlen (s);
+ return
+ 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
}
-#endif /* not emacs && not GAWK */
+#endif /* not emacs and not _POSIX_SOURCE */
+
+/* POSIX.2 functions. Don't define these for Emacs. */
+#ifndef emacs
-
-#ifdef test
+/* regcomp takes a regular expression as a string and compiles it.
-#ifdef atarist
-long _stksize = 2L; /* reserve memory for stack */
-#endif
-#include <stdio.h>
+ PREG is a regex_t *. We do not expect any fields to be initialized,
+ since POSIX says we shouldn't. Thus, we set
-/* Indexed by a character, gives the upper case equivalent of the
- character. */
-
-char upcase[0400] =
- { 000, 001, 002, 003, 004, 005, 006, 007,
- 010, 011, 012, 013, 014, 015, 016, 017,
- 020, 021, 022, 023, 024, 025, 026, 027,
- 030, 031, 032, 033, 034, 035, 036, 037,
- 040, 041, 042, 043, 044, 045, 046, 047,
- 050, 051, 052, 053, 054, 055, 056, 057,
- 060, 061, 062, 063, 064, 065, 066, 067,
- 070, 071, 072, 073, 074, 075, 076, 077,
- 0100, 0101, 0102, 0103, 0104, 0105, 0106, 0107,
- 0110, 0111, 0112, 0113, 0114, 0115, 0116, 0117,
- 0120, 0121, 0122, 0123, 0124, 0125, 0126, 0127,
- 0130, 0131, 0132, 0133, 0134, 0135, 0136, 0137,
- 0140, 0101, 0102, 0103, 0104, 0105, 0106, 0107,
- 0110, 0111, 0112, 0113, 0114, 0115, 0116, 0117,
- 0120, 0121, 0122, 0123, 0124, 0125, 0126, 0127,
- 0130, 0131, 0132, 0173, 0174, 0175, 0176, 0177,
- 0200, 0201, 0202, 0203, 0204, 0205, 0206, 0207,
- 0210, 0211, 0212, 0213, 0214, 0215, 0216, 0217,
- 0220, 0221, 0222, 0223, 0224, 0225, 0226, 0227,
- 0230, 0231, 0232, 0233, 0234, 0235, 0236, 0237,
- 0240, 0241, 0242, 0243, 0244, 0245, 0246, 0247,
- 0250, 0251, 0252, 0253, 0254, 0255, 0256, 0257,
- 0260, 0261, 0262, 0263, 0264, 0265, 0266, 0267,
- 0270, 0271, 0272, 0273, 0274, 0275, 0276, 0277,
- 0300, 0301, 0302, 0303, 0304, 0305, 0306, 0307,
- 0310, 0311, 0312, 0313, 0314, 0315, 0316, 0317,
- 0320, 0321, 0322, 0323, 0324, 0325, 0326, 0327,
- 0330, 0331, 0332, 0333, 0334, 0335, 0336, 0337,
- 0340, 0341, 0342, 0343, 0344, 0345, 0346, 0347,
- 0350, 0351, 0352, 0353, 0354, 0355, 0356, 0357,
- 0360, 0361, 0362, 0363, 0364, 0365, 0366, 0367,
- 0370, 0371, 0372, 0373, 0374, 0375, 0376, 0377
- };
+ `buffer' to the compiled pattern;
+ `used' to the length of the compiled pattern;
+ `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
+ REG_EXTENDED bit in CFLAGS is set; otherwise, to
+ RE_SYNTAX_POSIX_BASIC;
+ `newline_anchor' to REG_NEWLINE being set in CFLAGS;
+ `fastmap' and `fastmap_accurate' to zero;
+ `re_nsub' to the number of subexpressions in PATTERN.
-#ifdef canned
+ PATTERN is the address of the pattern string.
-#include "tests.h"
+ CFLAGS is a series of bits which affect compilation.
-typedef enum { extended_test, basic_test } test_type;
+ If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
+ use POSIX basic syntax.
-/* Use this to run the tests we've thought of. */
+ If REG_NEWLINE is set, then . and [^...] don't match newline.
+ Also, regexec will try a match beginning after every newline.
-void
-main ()
-{
- test_type t = extended_test;
+ If REG_ICASE is set, then we considers upper- and lowercase
+ versions of letters to be equivalent when matching.
+
+ If REG_NOSUB is set, then when PREG is passed to regexec, that
+ routine will report only success or failure, and nothing about the
+ registers.
+
+ It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
+ the return codes and their meanings.) */
- if (t == basic_test)
+int
+regcomp (preg, pattern, cflags)
+ regex_t *preg;
+ const char *pattern;
+ int cflags;
+{
+ reg_errcode_t ret;
+ reg_syntax_t syntax
+ = (cflags & REG_EXTENDED) ?
+ RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
+
+ /* regex_compile will allocate the space for the compiled pattern. */
+ preg->buffer = 0;
+ preg->allocated = 0;
+ preg->used = 0;
+
+ /* Don't bother to use a fastmap when searching. This simplifies the
+ REG_NEWLINE case: if we used a fastmap, we'd have to put all the
+ characters after newlines into the fastmap. This way, we just try
+ every character. */
+ preg->fastmap = 0;
+
+ if (cflags & REG_ICASE)
{
- printf ("Running basic tests:\n\n");
- test_posix_basic ();
+ unsigned i;
+
+ preg->translate = (char *) malloc (CHAR_SET_SIZE);
+ if (preg->translate == NULL)
+ return (int) REG_ESPACE;
+
+ /* Map uppercase characters to corresponding lowercase ones. */
+ for (i = 0; i < CHAR_SET_SIZE; i++)
+ preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
}
- else if (t == extended_test)
- {
- printf ("Running extended tests:\n\n");
- test_posix_extended ();
+ else
+ preg->translate = NULL;
+
+ /* If REG_NEWLINE is set, newlines are treated differently. */
+ if (cflags & REG_NEWLINE)
+ { /* REG_NEWLINE implies neither . nor [^...] match newline. */
+ syntax &= ~RE_DOT_NEWLINE;
+ syntax |= RE_HAT_LISTS_NOT_NEWLINE;
+ /* It also changes the matching behavior. */
+ preg->newline_anchor = 1;
}
+ else
+ preg->newline_anchor = 0;
+
+ preg->no_sub = !!(cflags & REG_NOSUB);
+
+ /* POSIX says a null character in the pattern terminates it, so we
+ can use strlen here in compiling the pattern. */
+ ret = regex_compile (pattern, strlen (pattern), syntax, preg);
+
+ /* POSIX doesn't distinguish between an unmatched open-group and an
+ unmatched close-group: both are REG_EPAREN. */
+ if (ret == REG_ERPAREN) ret = REG_EPAREN;
+
+ return (int) ret;
}
-#else /* not canned */
-/* Use this to run interactive tests. */
+/* regexec searches for a given pattern, specified by PREG, in the
+ string STRING.
+
+ If NMATCH is zero or REG_NOSUB was set in the cflags argument to
+ `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
+ least NMATCH elements, and we set them to the offsets of the
+ corresponding matched substrings.
+
+ EFLAGS specifies `execution flags' which affect matching: if
+ REG_NOTBOL is set, then ^ does not match at the beginning of the
+ string; if REG_NOTEOL is set, then $ does not match at the end.
+
+ We return 0 if we find a match and REG_NOMATCH if not. */
-void
-main (argc, argv)
- int argc;
- char **argv;
+int
+regexec (preg, string, nmatch, pmatch, eflags)
+ const regex_t *preg;
+ const char *string;
+ size_t nmatch;
+ regmatch_t pmatch[];
+ int eflags;
{
- char pat[80];
- struct re_pattern_buffer buf;
- int i;
- char c;
- char fastmap[(1 << BYTEWIDTH)];
-
- /* Allow a command argument to specify the style of syntax. */
- if (argc > 1)
- obscure_syntax = atol (argv[1]);
-
- buf.allocated = 40;
- buf.buffer = (char *) malloc (buf.allocated);
- buf.fastmap = fastmap;
- buf.translate = upcase;
-
- while (1)
+ int ret;
+ struct re_registers regs;
+ regex_t private_preg;
+ int len = strlen (string);
+ boolean want_reg_info = !preg->no_sub && nmatch > 0;
+
+ private_preg = *preg;
+
+ private_preg.not_bol = !!(eflags & REG_NOTBOL);
+ private_preg.not_eol = !!(eflags & REG_NOTEOL);
+
+ /* The user has told us exactly how many registers to return
+ information about, via `nmatch'. We have to pass that on to the
+ matching routines. */
+ private_preg.regs_allocated = REGS_FIXED;
+
+ if (want_reg_info)
{
- gets (pat);
+ regs.num_regs = nmatch;
+ regs.start = TALLOC (nmatch, regoff_t);
+ regs.end = TALLOC (nmatch, regoff_t);
+ if (regs.start == NULL || regs.end == NULL)
+ return (int) REG_NOMATCH;
+ }
- if (*pat)
- {
- re_compile_pattern (pat, strlen(pat), &buf);
+ /* Perform the searching operation. */
+ ret = re_search (&private_preg, string, len,
+ /* start: */ 0, /* range: */ len,
+ want_reg_info ? &regs : (struct re_registers *) 0);
+
+ /* Copy the register information to the POSIX structure. */
+ if (want_reg_info)
+ {
+ if (ret >= 0)
+ {
+ unsigned r;
- for (i = 0; i < buf.used; i++)
- printchar (buf.buffer[i]);
+ for (r = 0; r < nmatch; r++)
+ {
+ pmatch[r].rm_so = regs.start[r];
+ pmatch[r].rm_eo = regs.end[r];
+ }
+ }
- putchar ('\n');
+ /* If we needed the temporary register info, free the space now. */
+ free (regs.start);
+ free (regs.end);
+ }
- printf ("%d allocated, %d used.\n", buf.allocated, buf.used);
+ /* We want zero return to mean success, unlike `re_search'. */
+ return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
+}
- re_compile_fastmap (&buf);
- printf ("Allowed by fastmap: ");
- for (i = 0; i < (1 << BYTEWIDTH); i++)
- if (fastmap[i]) printchar (i);
- putchar ('\n');
- }
- gets (pat); /* Now read the string to match against */
+/* Returns a message corresponding to an error code, ERRCODE, returned
+ from either regcomp or regexec. We don't use PREG here. */
- i = re_match (&buf, pat, strlen (pat), 0, 0);
- printf ("Match value %d.\n", i);
- }
-}
+size_t
+regerror (errcode, preg, errbuf, errbuf_size)
+ int errcode;
+ const regex_t *preg;
+ char *errbuf;
+ size_t errbuf_size;
+{
+ const char *msg;
+ size_t msg_size;
-#endif
+ if (errcode < 0
+ || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
+ /* Only error codes returned by the rest of the code should be passed
+ to this routine. If we are given anything else, or if other regex
+ code generates an invalid error code, then the program has a bug.
+ Dump core so we can fix it. */
+ abort ();
+ msg = re_error_msg[errcode];
-#ifdef NOTDEF
-print_buf (bufp)
- struct re_pattern_buffer *bufp;
-{
- int i;
+ /* POSIX doesn't require that we do anything in this case, but why
+ not be nice. */
+ if (! msg)
+ msg = "Success";
- printf ("buf is :\n----------------\n");
- for (i = 0; i < bufp->used; i++)
- printchar (bufp->buffer[i]);
-
- printf ("\n%d allocated, %d used.\n", bufp->allocated, bufp->used);
+ msg_size = strlen (msg) + 1; /* Includes the null. */
- printf ("Allowed by fastmap: ");
- for (i = 0; i < (1 << BYTEWIDTH); i++)
- if (bufp->fastmap[i])
- printchar (i);
- printf ("\nAllowed by translate: ");
- if (bufp->translate)
- for (i = 0; i < (1 << BYTEWIDTH); i++)
- if (bufp->translate[i])
- printchar (i);
- printf ("\nfastmap is%s accurate\n", bufp->fastmap_accurate ? "" : "n't");
- printf ("can %s be null\n----------", bufp->can_be_null ? "" : "not");
-}
-#endif /* NOTDEF */
-
-printchar (c)
- char c;
-{
- if (c < 040 || c >= 0177)
+ if (errbuf_size != 0)
{
- putchar ('\\');
- putchar (((c >> 6) & 3) + '0');
- putchar (((c >> 3) & 7) + '0');
- putchar ((c & 7) + '0');
+ if (msg_size > errbuf_size)
+ {
+ strncpy (errbuf, msg, errbuf_size - 1);
+ errbuf[errbuf_size - 1] = 0;
+ }
+ else
+ strcpy (errbuf, msg);
}
- else
- putchar (c);
+
+ return msg_size;
}
-error (string)
- char *string;
+
+/* Free dynamically allocated space used by PREG. */
+
+void
+regfree (preg)
+ regex_t *preg;
{
- puts (string);
- exit (1);
+ if (preg->buffer != NULL)
+ free (preg->buffer);
+ preg->buffer = NULL;
+
+ preg->allocated = 0;
+ preg->used = 0;
+
+ if (preg->fastmap != NULL)
+ free (preg->fastmap);
+ preg->fastmap = NULL;
+ preg->fastmap_accurate = 0;
+
+ if (preg->translate != NULL)
+ free (preg->translate);
+ preg->translate = NULL;
}
-#endif /* test */
+
+#endif /* not emacs */
+
+/*
+Local variables:
+make-backup-files: t
+version-control: t
+trim-versions-without-asking: nil
+End:
+*/