diff options
Diffstat (limited to 'lib/Target/Hexagon/MCTargetDesc/HexagonMCChecker.cpp')
-rw-r--r-- | lib/Target/Hexagon/MCTargetDesc/HexagonMCChecker.cpp | 581 |
1 files changed, 581 insertions, 0 deletions
diff --git a/lib/Target/Hexagon/MCTargetDesc/HexagonMCChecker.cpp b/lib/Target/Hexagon/MCTargetDesc/HexagonMCChecker.cpp new file mode 100644 index 000000000000..46b7b41fec3b --- /dev/null +++ b/lib/Target/Hexagon/MCTargetDesc/HexagonMCChecker.cpp @@ -0,0 +1,581 @@ +//===----- HexagonMCChecker.cpp - Instruction bundle checking -------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This implements the checking of insns inside a bundle according to the +// packet constraint rules of the Hexagon ISA. +// +//===----------------------------------------------------------------------===// + +#include "HexagonMCChecker.h" + +#include "HexagonBaseInfo.h" + +#include "llvm/ADT/SmallVector.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCInstrInfo.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; + +static cl::opt<bool> RelaxNVChecks("relax-nv-checks", cl::init(false), + cl::ZeroOrMore, cl::Hidden, cl::desc("Relax checks of new-value validity")); + +const HexagonMCChecker::PredSense + HexagonMCChecker::Unconditional(Hexagon::NoRegister, false); + +void HexagonMCChecker::init() { + // Initialize read-only registers set. + ReadOnly.insert(Hexagon::PC); + + // Figure out the loop-registers definitions. + if (HexagonMCInstrInfo::isInnerLoop(MCB)) { + Defs[Hexagon::SA0].insert(Unconditional); // FIXME: define or change SA0? + Defs[Hexagon::LC0].insert(Unconditional); + } + if (HexagonMCInstrInfo::isOuterLoop(MCB)) { + Defs[Hexagon::SA1].insert(Unconditional); // FIXME: define or change SA0? + Defs[Hexagon::LC1].insert(Unconditional); + } + + if (HexagonMCInstrInfo::isBundle(MCB)) + // Unfurl a bundle. + for (auto const&I : HexagonMCInstrInfo::bundleInstructions(MCB)) { + init(*I.getInst()); + } + else + init(MCB); +} + +void HexagonMCChecker::init(MCInst const& MCI) { + const MCInstrDesc& MCID = HexagonMCInstrInfo::getDesc(MCII, MCI); + unsigned PredReg = Hexagon::NoRegister; + bool isTrue = false; + + // Get used registers. + for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i) + if (MCI.getOperand(i).isReg()) { + unsigned R = MCI.getOperand(i).getReg(); + + if (HexagonMCInstrInfo::isPredicated(MCII, MCI) && isPredicateRegister(R)) { + // Note an used predicate register. + PredReg = R; + isTrue = HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI); + + // Note use of new predicate register. + if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI)) + NewPreds.insert(PredReg); + } + else + // Note register use. Super-registers are not tracked directly, + // but their components. + for(MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid()); + SRI.isValid(); + ++SRI) + if (!MCSubRegIterator(*SRI, &RI).isValid()) + // Skip super-registers used indirectly. + Uses.insert(*SRI); + } + + // Get implicit register definitions. + if (const MCPhysReg *ImpDef = MCID.getImplicitDefs()) + for (; *ImpDef; ++ImpDef) { + unsigned R = *ImpDef; + + if (Hexagon::R31 != R && MCID.isCall()) + // Any register other than the LR and the PC are actually volatile ones + // as defined by the ABI, not modified implicitly by the call insn. + continue; + if (Hexagon::PC == R) + // Branches are the only insns that can change the PC, + // otherwise a read-only register. + continue; + + if (Hexagon::USR_OVF == R) + // Many insns change the USR implicitly, but only one or another flag. + // The instruction table models the USR.OVF flag, which can be implicitly + // modified more than once, but cannot be modified in the same packet + // with an instruction that modifies is explicitly. Deal with such situ- + // ations individually. + SoftDefs.insert(R); + else if (isPredicateRegister(R) && + HexagonMCInstrInfo::isPredicateLate(MCII, MCI)) + // Include implicit late predicates. + LatePreds.insert(R); + else + Defs[R].insert(PredSense(PredReg, isTrue)); + } + + // Figure out explicit register definitions. + for (unsigned i = 0; i < MCID.getNumDefs(); ++i) { + unsigned R = MCI.getOperand(i).getReg(), + S = Hexagon::NoRegister; + + // Note register definitions, direct ones as well as indirect side-effects. + // Super-registers are not tracked directly, but their components. + for(MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid()); + SRI.isValid(); + ++SRI) { + if (MCSubRegIterator(*SRI, &RI).isValid()) + // Skip super-registers defined indirectly. + continue; + + if (R == *SRI) { + if (S == R) + // Avoid scoring the defined register multiple times. + continue; + else + // Note that the defined register has already been scored. + S = R; + } + + if (Hexagon::P3_0 != R && Hexagon::P3_0 == *SRI) + // P3:0 is a special case, since multiple predicate register definitions + // in a packet is allowed as the equivalent of their logical "and". + // Only an explicit definition of P3:0 is noted as such; if a + // side-effect, then note as a soft definition. + SoftDefs.insert(*SRI); + else if (HexagonMCInstrInfo::isPredicateLate(MCII, MCI) && isPredicateRegister(*SRI)) + // Some insns produce predicates too late to be used in the same packet. + LatePreds.insert(*SRI); + else if (i == 0 && llvm::HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCVI_VM_CUR_LD) + // Current loads should be used in the same packet. + // TODO: relies on the impossibility of a current and a temporary loads + // in the same packet. + CurDefs.insert(*SRI), Defs[*SRI].insert(PredSense(PredReg, isTrue)); + else if (i == 0 && llvm::HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCVI_VM_TMP_LD) + // Temporary loads should be used in the same packet, but don't commit + // results, so it should be disregarded if another insn changes the same + // register. + // TODO: relies on the impossibility of a current and a temporary loads + // in the same packet. + TmpDefs.insert(*SRI); + else if (i <= 1 && llvm::HexagonMCInstrInfo::hasNewValue2(MCII, MCI) ) + // vshuff(Vx, Vy, Rx) <- Vx(0) and Vy(1) are both source and + // destination registers with this instruction. same for vdeal(Vx,Vy,Rx) + Uses.insert(*SRI); + else + Defs[*SRI].insert(PredSense(PredReg, isTrue)); + } + } + + // Figure out register definitions that produce new values. + if (HexagonMCInstrInfo::hasNewValue(MCII, MCI)) { + unsigned R = HexagonMCInstrInfo::getNewValueOperand(MCII, MCI).getReg(); + + if (HexagonMCInstrInfo::isCompound(MCII, MCI)) + compoundRegisterMap(R); // Compound insns have a limited register range. + + for(MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid()); + SRI.isValid(); + ++SRI) + if (!MCSubRegIterator(*SRI, &RI).isValid()) + // No super-registers defined indirectly. + NewDefs[*SRI].push_back(NewSense::Def(PredReg, HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI), + HexagonMCInstrInfo::isFloat(MCII, MCI))); + + // For fairly unique 2-dot-new producers, example: + // vdeal(V1, V9, R0) V1.new and V9.new can be used by consumers. + if (HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) { + unsigned R2 = HexagonMCInstrInfo::getNewValueOperand2(MCII, MCI).getReg(); + + for(MCRegAliasIterator SRI(R2, &RI, !MCSubRegIterator(R2, &RI).isValid()); + SRI.isValid(); + ++SRI) + if (!MCSubRegIterator(*SRI, &RI).isValid()) + NewDefs[*SRI].push_back(NewSense::Def(PredReg, HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI), + HexagonMCInstrInfo::isFloat(MCII, MCI))); + } + } + + // Figure out definitions of new predicate registers. + if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI)) + for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i) + if (MCI.getOperand(i).isReg()) { + unsigned P = MCI.getOperand(i).getReg(); + + if (isPredicateRegister(P)) + NewPreds.insert(P); + } + + // Figure out uses of new values. + if (HexagonMCInstrInfo::isNewValue(MCII, MCI)) { + unsigned N = HexagonMCInstrInfo::getNewValueOperand(MCII, MCI).getReg(); + + if (!MCSubRegIterator(N, &RI).isValid()) { + // Super-registers cannot use new values. + if (MCID.isBranch()) + NewUses[N] = NewSense::Jmp(llvm::HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeNV); + else + NewUses[N] = NewSense::Use(PredReg, HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI)); + } + } +} + +HexagonMCChecker::HexagonMCChecker(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, MCInst &mcb, MCInst &mcbdx, + MCRegisterInfo const &ri) + : MCB(mcb), MCBDX(mcbdx), RI(ri), MCII(MCII), STI(STI), + bLoadErrInfo(false) { + init(); +} + +bool HexagonMCChecker::check() { + bool chkB = checkBranches(); + bool chkP = checkPredicates(); + bool chkNV = checkNewValues(); + bool chkR = checkRegisters(); + bool chkS = checkSolo(); + bool chkSh = checkShuffle(); + bool chkSl = checkSlots(); + bool chk = chkB && chkP && chkNV && chkR && chkS && chkSh && chkSl; + + return chk; +} + +bool HexagonMCChecker::checkSlots() + +{ + unsigned slotsUsed = 0; + for (auto HMI: HexagonMCInstrInfo::bundleInstructions(MCBDX)) { + MCInst const& MCI = *HMI.getInst(); + if (HexagonMCInstrInfo::isImmext(MCI)) + continue; + if (HexagonMCInstrInfo::isDuplex(MCII, MCI)) + slotsUsed += 2; + else + ++slotsUsed; + } + + if (slotsUsed > HEXAGON_PACKET_SIZE) { + HexagonMCErrInfo errInfo; + errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_NOSLOTS); + addErrInfo(errInfo); + return false; + } + return true; +} + +// Check legal use of branches. +bool HexagonMCChecker::checkBranches() { + HexagonMCErrInfo errInfo; + if (HexagonMCInstrInfo::isBundle(MCB)) { + bool hasConditional = false; + unsigned Branches = 0, Returns = 0, NewIndirectBranches = 0, + NewValueBranches = 0, Conditional = HEXAGON_PRESHUFFLE_PACKET_SIZE, + Unconditional = HEXAGON_PRESHUFFLE_PACKET_SIZE; + + for (unsigned i = HexagonMCInstrInfo::bundleInstructionsOffset; + i < MCB.size(); ++i) { + MCInst const &MCI = *MCB.begin()[i].getInst(); + + if (HexagonMCInstrInfo::isImmext(MCI)) + continue; + if (HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch() || + HexagonMCInstrInfo::getDesc(MCII, MCI).isCall()) { + ++Branches; + if (HexagonMCInstrInfo::getDesc(MCII, MCI).isIndirectBranch() && + HexagonMCInstrInfo::isPredicatedNew(MCII, MCI)) + ++NewIndirectBranches; + if (HexagonMCInstrInfo::isNewValue(MCII, MCI)) + ++NewValueBranches; + + if (HexagonMCInstrInfo::isPredicated(MCII, MCI) || + HexagonMCInstrInfo::isPredicatedNew(MCII, MCI)) { + hasConditional = true; + Conditional = i; // Record the position of the conditional branch. + } else { + Unconditional = i; // Record the position of the unconditional branch. + } + } + if (HexagonMCInstrInfo::getDesc(MCII, MCI).isReturn() && + HexagonMCInstrInfo::getDesc(MCII, MCI).mayLoad()) + ++Returns; + } + + if (Branches) // FIXME: should "Defs.count(Hexagon::PC)" be here too? + if (HexagonMCInstrInfo::isInnerLoop(MCB) || + HexagonMCInstrInfo::isOuterLoop(MCB)) { + // Error out if there's any branch in a loop-end packet. + errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_ENDLOOP, Hexagon::PC); + addErrInfo(errInfo); + return false; + } + if (Branches > 1) + if (!hasConditional || Conditional > Unconditional) { + // Error out if more than one unconditional branch or + // the conditional branch appears after the unconditional one. + errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_BRANCHES); + addErrInfo(errInfo); + return false; + } + } + + return true; +} + +// Check legal use of predicate registers. +bool HexagonMCChecker::checkPredicates() { + HexagonMCErrInfo errInfo; + // Check for proper use of new predicate registers. + for (const auto& I : NewPreds) { + unsigned P = I; + + if (!Defs.count(P) || LatePreds.count(P)) { + // Error out if the new predicate register is not defined, + // or defined "late" + // (e.g., "{ if (p3.new)... ; p3 = sp1loop0(#r7:2, Rs) }"). + errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_NEWP, P); + addErrInfo(errInfo); + return false; + } + } + + // Check for proper use of auto-anded of predicate registers. + for (const auto& I : LatePreds) { + unsigned P = I; + + if (LatePreds.count(P) > 1 || Defs.count(P)) { + // Error out if predicate register defined "late" multiple times or + // defined late and regularly defined + // (e.g., "{ p3 = sp1loop0(...); p3 = cmp.eq(...) }". + errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, P); + addErrInfo(errInfo); + return false; + } + } + + return true; +} + +// Check legal use of new values. +bool HexagonMCChecker::checkNewValues() { + HexagonMCErrInfo errInfo; + memset(&errInfo, 0, sizeof(errInfo)); + for (auto& I : NewUses) { + unsigned R = I.first; + NewSense &US = I.second; + + if (!hasValidNewValueDef(US, NewDefs[R])) { + errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_NEWV, R); + addErrInfo(errInfo); + return false; + } + } + + return true; +} + +// Check for legal register uses and definitions. +bool HexagonMCChecker::checkRegisters() { + HexagonMCErrInfo errInfo; + // Check for proper register definitions. + for (const auto& I : Defs) { + unsigned R = I.first; + + if (ReadOnly.count(R)) { + // Error out for definitions of read-only registers. + errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_READONLY, R); + addErrInfo(errInfo); + return false; + } + if (isLoopRegister(R) && Defs.count(R) > 1 && + (HexagonMCInstrInfo::isInnerLoop(MCB) || + HexagonMCInstrInfo::isOuterLoop(MCB))) { + // Error out for definitions of loop registers at the end of a loop. + errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_LOOP, R); + addErrInfo(errInfo); + return false; + } + if (SoftDefs.count(R)) { + // Error out for explicit changes to registers also weakly defined + // (e.g., "{ usr = r0; r0 = sfadd(...) }"). + unsigned UsrR = Hexagon::USR; // Silence warning about mixed types in ?:. + unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R; + errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, BadR); + addErrInfo(errInfo); + return false; + } + if (!isPredicateRegister(R) && Defs[R].size() > 1) { + // Check for multiple register definitions. + PredSet &PM = Defs[R]; + + // Check for multiple unconditional register definitions. + if (PM.count(Unconditional)) { + // Error out on an unconditional change when there are any other + // changes, conditional or not. + unsigned UsrR = Hexagon::USR; + unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R; + errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, BadR); + addErrInfo(errInfo); + return false; + } + // Check for multiple conditional register definitions. + for (const auto& J : PM) { + PredSense P = J; + + // Check for multiple uses of the same condition. + if (PM.count(P) > 1) { + // Error out on conditional changes based on the same predicate + // (e.g., "{ if (!p0) r0 =...; if (!p0) r0 =... }"). + errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, R); + addErrInfo(errInfo); + return false; + } + // Check for the use of the complementary condition. + P.second = !P.second; + if (PM.count(P) && PM.size() > 2) { + // Error out on conditional changes based on the same predicate + // multiple times + // (e.g., "{ if (p0) r0 =...; if (!p0) r0 =... }; if (!p0) r0 =... }"). + errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, R); + addErrInfo(errInfo); + return false; + } + } + } + } + + // Check for use of current definitions. + for (const auto& I : CurDefs) { + unsigned R = I; + + if (!Uses.count(R)) { + // Warn on an unused current definition. + errInfo.setWarning(HexagonMCErrInfo::CHECK_WARN_CURRENT, R); + addErrInfo(errInfo); + return true; + } + } + + // Check for use of temporary definitions. + for (const auto& I : TmpDefs) { + unsigned R = I; + + if (!Uses.count(R)) { + // special case for vhist + bool vHistFound = false; + for (auto const&HMI : HexagonMCInstrInfo::bundleInstructions(MCB)) { + if(llvm::HexagonMCInstrInfo::getType(MCII, *HMI.getInst()) == HexagonII::TypeCVI_HIST) { + vHistFound = true; // vhist() implicitly uses ALL REGxx.tmp + break; + } + } + // Warn on an unused temporary definition. + if (vHistFound == false) { + errInfo.setWarning(HexagonMCErrInfo::CHECK_WARN_TEMPORARY, R); + addErrInfo(errInfo); + return true; + } + } + } + + return true; +} + +// Check for legal use of solo insns. +bool HexagonMCChecker::checkSolo() { + HexagonMCErrInfo errInfo; + if (HexagonMCInstrInfo::isBundle(MCB) && + HexagonMCInstrInfo::bundleSize(MCB) > 1) { + for (auto const&I : HexagonMCInstrInfo::bundleInstructions(MCB)) { + if (llvm::HexagonMCInstrInfo::isSolo(MCII, *I.getInst())) { + errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_SOLO); + addErrInfo(errInfo); + return false; + } + } + } + + return true; +} + +bool HexagonMCChecker::checkShuffle() { + HexagonMCErrInfo errInfo; + // Branch info is lost when duplexing. The unduplexed insns must be + // checked and only branch errors matter for this case. + HexagonMCShuffler MCS(MCII, STI, MCB); + if (!MCS.check()) { + if (MCS.getError() == HexagonShuffler::SHUFFLE_ERROR_BRANCHES) { + errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_SHUFFLE); + errInfo.setShuffleError(MCS.getError()); + addErrInfo(errInfo); + return false; + } + } + HexagonMCShuffler MCSDX(MCII, STI, MCBDX); + if (!MCSDX.check()) { + errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_SHUFFLE); + errInfo.setShuffleError(MCSDX.getError()); + addErrInfo(errInfo); + return false; + } + return true; +} + +void HexagonMCChecker::compoundRegisterMap(unsigned& Register) { + switch (Register) { + default: + break; + case Hexagon::R15: + Register = Hexagon::R23; + break; + case Hexagon::R14: + Register = Hexagon::R22; + break; + case Hexagon::R13: + Register = Hexagon::R21; + break; + case Hexagon::R12: + Register = Hexagon::R20; + break; + case Hexagon::R11: + Register = Hexagon::R19; + break; + case Hexagon::R10: + Register = Hexagon::R18; + break; + case Hexagon::R9: + Register = Hexagon::R17; + break; + case Hexagon::R8: + Register = Hexagon::R16; + break; + } +} + +bool HexagonMCChecker::hasValidNewValueDef(const NewSense &Use, + const NewSenseList &Defs) const { + bool Strict = !RelaxNVChecks; + + for (unsigned i = 0, n = Defs.size(); i < n; ++i) { + const NewSense &Def = Defs[i]; + // NVJ cannot use a new FP value [7.6.1] + if (Use.IsNVJ && (Def.IsFloat || Def.PredReg != 0)) + continue; + // If the definition was not predicated, then it does not matter if + // the use is. + if (Def.PredReg == 0) + return true; + // With the strict checks, both the definition and the use must be + // predicated on the same register and condition. + if (Strict) { + if (Def.PredReg == Use.PredReg && Def.Cond == Use.Cond) + return true; + } else { + // With the relaxed checks, if the definition was predicated, the only + // detectable violation is if the use is predicated on the opposing + // condition, otherwise, it's ok. + if (Def.PredReg != Use.PredReg || Def.Cond == Use.Cond) + return true; + } + } + return false; +} + |