aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/X86/X86CodeEmitter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/X86/X86CodeEmitter.cpp')
-rw-r--r--lib/Target/X86/X86CodeEmitter.cpp786
1 files changed, 629 insertions, 157 deletions
diff --git a/lib/Target/X86/X86CodeEmitter.cpp b/lib/Target/X86/X86CodeEmitter.cpp
index ee3de9a3f6fe..d7050495f89c 100644
--- a/lib/Target/X86/X86CodeEmitter.cpp
+++ b/lib/Target/X86/X86CodeEmitter.cpp
@@ -53,12 +53,12 @@ namespace {
public:
static char ID;
explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce)
- : MachineFunctionPass(ID), II(0), TD(0), TM(tm),
+ : MachineFunctionPass(ID), II(0), TD(0), TM(tm),
MCE(mce), PICBaseOffset(0), Is64BitMode(false),
IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
Emitter(X86TargetMachine &tm, CodeEmitter &mce,
const X86InstrInfo &ii, const TargetData &td, bool is64)
- : MachineFunctionPass(ID), II(&ii), TD(&td), TM(tm),
+ : MachineFunctionPass(ID), II(&ii), TD(&td), TM(tm),
MCE(mce), PICBaseOffset(0), Is64BitMode(is64),
IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
@@ -68,8 +68,20 @@ namespace {
return "X86 Machine Code Emitter";
}
+ void emitOpcodePrefix(uint64_t TSFlags, int MemOperand,
+ const MachineInstr &MI,
+ const MCInstrDesc *Desc) const;
+
+ void emitVEXOpcodePrefix(uint64_t TSFlags, int MemOperand,
+ const MachineInstr &MI,
+ const MCInstrDesc *Desc) const;
+
+ void emitSegmentOverridePrefix(uint64_t TSFlags,
+ int MemOperand,
+ const MachineInstr &MI) const;
+
void emitInstruction(MachineInstr &MI, const MCInstrDesc *Desc);
-
+
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<MachineModuleInfo>();
@@ -115,17 +127,17 @@ template<class CodeEmitter>
bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
MMI = &getAnalysis<MachineModuleInfo>();
MCE.setModuleInfo(MMI);
-
+
II = TM.getInstrInfo();
TD = TM.getTargetData();
Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit();
IsPIC = TM.getRelocationModel() == Reloc::PIC_;
-
+
do {
- DEBUG(dbgs() << "JITTing function '"
+ DEBUG(dbgs() << "JITTing function '"
<< MF.getFunction()->getName() << "'\n");
MCE.startFunction(MF);
- for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
+ for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
MBB != E; ++MBB) {
MCE.StartMachineBasicBlock(MBB);
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
@@ -149,18 +161,18 @@ bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
static unsigned determineREX(const MachineInstr &MI) {
unsigned REX = 0;
const MCInstrDesc &Desc = MI.getDesc();
-
+
// Pseudo instructions do not need REX prefix byte.
if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
return 0;
if (Desc.TSFlags & X86II::REX_W)
REX |= 1 << 3;
-
+
unsigned NumOps = Desc.getNumOperands();
if (NumOps) {
bool isTwoAddr = NumOps > 1 &&
- Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
-
+ Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
+
// If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
unsigned i = isTwoAddr ? 1 : 0;
for (unsigned e = NumOps; i != e; ++i) {
@@ -171,7 +183,7 @@ static unsigned determineREX(const MachineInstr &MI) {
REX |= 0x40;
}
}
-
+
switch (Desc.TSFlags & X86II::FormMask) {
case X86II::MRMInitReg:
if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
@@ -362,7 +374,7 @@ void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) {
}
template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitSIBByte(unsigned SS,
+void Emitter<CodeEmitter>::emitSIBByte(unsigned SS,
unsigned Index,
unsigned Base) {
// SIB byte is in the same format as the ModRMByte...
@@ -378,8 +390,8 @@ void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) {
}
}
-/// isDisp8 - Return true if this signed displacement fits in a 8-bit
-/// sign-extended field.
+/// isDisp8 - Return true if this signed displacement fits in a 8-bit
+/// sign-extended field.
static bool isDisp8(int Value) {
return Value == (signed char)Value;
}
@@ -388,10 +400,10 @@ static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp,
const TargetMachine &TM) {
// For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer
// mechanism as 32-bit mode.
- if (TM.getSubtarget<X86Subtarget>().is64Bit() &&
+ if (TM.getSubtarget<X86Subtarget>().is64Bit() &&
!TM.getSubtarget<X86Subtarget>().isTargetDarwin())
return false;
-
+
// Return true if this is a reference to a stub containing the address of the
// global, not the global itself.
return isGlobalStubReference(GVOp.getTargetFlags());
@@ -417,7 +429,7 @@ void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp,
if (RelocOp->isGlobal()) {
// In 64-bit static small code model, we could potentially emit absolute.
// But it's probably not beneficial. If the MCE supports using RIP directly
- // do it, otherwise fallback to absolute (this is determined by IsPCRel).
+ // do it, otherwise fallback to absolute (this is determined by IsPCRel).
// 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
// 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
@@ -441,7 +453,7 @@ void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
const MachineOperand &Op3 = MI.getOperand(Op+3);
int DispVal = 0;
const MachineOperand *DispForReloc = 0;
-
+
// Figure out what sort of displacement we have to handle here.
if (Op3.isGlobal()) {
DispForReloc = &Op3;
@@ -469,7 +481,7 @@ void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
const MachineOperand &IndexReg = MI.getOperand(Op+2);
unsigned BaseReg = Base.getReg();
-
+
// Handle %rip relative addressing.
if (BaseReg == X86::RIP ||
(Is64BitMode && DispForReloc)) { // [disp32+RIP] in X86-64 mode
@@ -486,7 +498,7 @@ void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
bool IsPCRel = MCE.earlyResolveAddresses() ? true : false;
// Is a SIB byte needed?
- // If no BaseReg, issue a RIP relative instruction only if the MCE can
+ // If no BaseReg, issue a RIP relative instruction only if the MCE can
// resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
// 2-7) and absolute references.
unsigned BaseRegNo = -1U;
@@ -494,7 +506,7 @@ void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
BaseRegNo = X86_MC::getX86RegNum(BaseReg);
if (// The SIB byte must be used if there is an index register.
- IndexReg.getReg() == 0 &&
+ IndexReg.getReg() == 0 &&
// The SIB byte must be used if the base is ESP/RSP/R12, all of which
// encode to an R/M value of 4, which indicates that a SIB byte is
// present.
@@ -508,7 +520,7 @@ void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
return;
}
-
+
// If the base is not EBP/ESP and there is no displacement, use simple
// indirect register encoding, this handles addresses like [EAX]. The
// encoding for [EBP] with no displacement means [disp32] so we handle it
@@ -517,20 +529,20 @@ void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
return;
}
-
+
// Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
if (!DispForReloc && isDisp8(DispVal)) {
MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
emitConstant(DispVal, 1);
return;
}
-
+
// Otherwise, emit the most general non-SIB encoding: [REG+disp32]
MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
return;
}
-
+
// Otherwise we need a SIB byte, so start by outputting the ModR/M byte first.
assert(IndexReg.getReg() != X86::ESP &&
IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
@@ -563,7 +575,7 @@ void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
unsigned SS = SSTable[Scale.getImm()];
if (BaseReg == 0) {
- // Handle the SIB byte for the case where there is no base, see Intel
+ // Handle the SIB byte for the case where there is no base, see Intel
// Manual 2A, table 2-7. The displacement has already been output.
unsigned IndexRegNo;
if (IndexReg.getReg())
@@ -596,94 +608,116 @@ static const MCInstrDesc *UpdateOp(MachineInstr &MI, const X86InstrInfo *II,
return Desc;
}
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
- const MCInstrDesc *Desc) {
- DEBUG(dbgs() << MI);
-
- // If this is a pseudo instruction, lower it.
- switch (Desc->getOpcode()) {
- case X86::ADD16rr_DB: Desc = UpdateOp(MI, II, X86::OR16rr); break;
- case X86::ADD32rr_DB: Desc = UpdateOp(MI, II, X86::OR32rr); break;
- case X86::ADD64rr_DB: Desc = UpdateOp(MI, II, X86::OR64rr); break;
- case X86::ADD16ri_DB: Desc = UpdateOp(MI, II, X86::OR16ri); break;
- case X86::ADD32ri_DB: Desc = UpdateOp(MI, II, X86::OR32ri); break;
- case X86::ADD64ri32_DB: Desc = UpdateOp(MI, II, X86::OR64ri32); break;
- case X86::ADD16ri8_DB: Desc = UpdateOp(MI, II, X86::OR16ri8); break;
- case X86::ADD32ri8_DB: Desc = UpdateOp(MI, II, X86::OR32ri8); break;
- case X86::ADD64ri8_DB: Desc = UpdateOp(MI, II, X86::OR64ri8); break;
- case X86::ACQUIRE_MOV8rm: Desc = UpdateOp(MI, II, X86::MOV8rm); break;
- case X86::ACQUIRE_MOV16rm: Desc = UpdateOp(MI, II, X86::MOV16rm); break;
- case X86::ACQUIRE_MOV32rm: Desc = UpdateOp(MI, II, X86::MOV32rm); break;
- case X86::ACQUIRE_MOV64rm: Desc = UpdateOp(MI, II, X86::MOV64rm); break;
- case X86::RELEASE_MOV8mr: Desc = UpdateOp(MI, II, X86::MOV8mr); break;
- case X86::RELEASE_MOV16mr: Desc = UpdateOp(MI, II, X86::MOV16mr); break;
- case X86::RELEASE_MOV32mr: Desc = UpdateOp(MI, II, X86::MOV32mr); break;
- case X86::RELEASE_MOV64mr: Desc = UpdateOp(MI, II, X86::MOV64mr); break;
- }
-
+/// Is16BitMemOperand - Return true if the specified instruction has
+/// a 16-bit memory operand. Op specifies the operand # of the memoperand.
+static bool Is16BitMemOperand(const MachineInstr &MI, unsigned Op) {
+ const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
+ const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
+
+ if ((BaseReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
+ (IndexReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
+ return true;
+ return false;
+}
- MCE.processDebugLoc(MI.getDebugLoc(), true);
+/// Is32BitMemOperand - Return true if the specified instruction has
+/// a 32-bit memory operand. Op specifies the operand # of the memoperand.
+static bool Is32BitMemOperand(const MachineInstr &MI, unsigned Op) {
+ const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
+ const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
+
+ if ((BaseReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
+ (IndexReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
+ return true;
+ return false;
+}
- unsigned Opcode = Desc->Opcode;
+/// Is64BitMemOperand - Return true if the specified instruction has
+/// a 64-bit memory operand. Op specifies the operand # of the memoperand.
+#ifndef NDEBUG
+static bool Is64BitMemOperand(const MachineInstr &MI, unsigned Op) {
+ const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
+ const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
+
+ if ((BaseReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
+ (IndexReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
+ return true;
+ return false;
+}
+#endif
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitOpcodePrefix(uint64_t TSFlags,
+ int MemOperand,
+ const MachineInstr &MI,
+ const MCInstrDesc *Desc) const {
// Emit the lock opcode prefix as needed.
if (Desc->TSFlags & X86II::LOCK)
MCE.emitByte(0xF0);
// Emit segment override opcode prefix as needed.
- switch (Desc->TSFlags & X86II::SegOvrMask) {
- case X86II::FS:
- MCE.emitByte(0x64);
- break;
- case X86II::GS:
- MCE.emitByte(0x65);
- break;
- default: llvm_unreachable("Invalid segment!");
- case 0: break; // No segment override!
- }
+ emitSegmentOverridePrefix(TSFlags, MemOperand, MI);
// Emit the repeat opcode prefix as needed.
if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP)
MCE.emitByte(0xF3);
- // Emit the operand size opcode prefix as needed.
- if (Desc->TSFlags & X86II::OpSize)
- MCE.emitByte(0x66);
-
// Emit the address size opcode prefix as needed.
- if (Desc->TSFlags & X86II::AdSize)
+ bool need_address_override;
+ if (TSFlags & X86II::AdSize) {
+ need_address_override = true;
+ } else if (MemOperand == -1) {
+ need_address_override = false;
+ } else if (Is64BitMode) {
+ assert(!Is16BitMemOperand(MI, MemOperand));
+ need_address_override = Is32BitMemOperand(MI, MemOperand);
+ } else {
+ assert(!Is64BitMemOperand(MI, MemOperand));
+ need_address_override = Is16BitMemOperand(MI, MemOperand);
+ }
+
+ if (need_address_override)
MCE.emitByte(0x67);
+ // Emit the operand size opcode prefix as needed.
+ if (TSFlags & X86II::OpSize)
+ MCE.emitByte(0x66);
+
bool Need0FPrefix = false;
switch (Desc->TSFlags & X86II::Op0Mask) {
- case X86II::TB: // Two-byte opcode prefix
- case X86II::T8: // 0F 38
- case X86II::TA: // 0F 3A
- case X86II::A6: // 0F A6
- case X86II::A7: // 0F A7
- Need0FPrefix = true;
- break;
- case X86II::REP: break; // already handled.
- case X86II::T8XS: // F3 0F 38
- case X86II::XS: // F3 0F
- MCE.emitByte(0xF3);
- Need0FPrefix = true;
- break;
- case X86II::T8XD: // F2 0F 38
- case X86II::TAXD: // F2 0F 3A
- case X86II::XD: // F2 0F
- MCE.emitByte(0xF2);
- Need0FPrefix = true;
- break;
- case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
- case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
- MCE.emitByte(0xD8+
- (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8)
- >> X86II::Op0Shift));
- break; // Two-byte opcode prefix
- default: llvm_unreachable("Invalid prefix!");
- case 0: break; // No prefix!
+ case X86II::TB: // Two-byte opcode prefix
+ case X86II::T8: // 0F 38
+ case X86II::TA: // 0F 3A
+ case X86II::A6: // 0F A6
+ case X86II::A7: // 0F A7
+ Need0FPrefix = true;
+ break;
+ case X86II::REP: break; // already handled.
+ case X86II::T8XS: // F3 0F 38
+ case X86II::XS: // F3 0F
+ MCE.emitByte(0xF3);
+ Need0FPrefix = true;
+ break;
+ case X86II::T8XD: // F2 0F 38
+ case X86II::TAXD: // F2 0F 3A
+ case X86II::XD: // F2 0F
+ MCE.emitByte(0xF2);
+ Need0FPrefix = true;
+ break;
+ case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
+ case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
+ MCE.emitByte(0xD8+
+ (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8)
+ >> X86II::Op0Shift));
+ break; // Two-byte opcode prefix
+ default: llvm_unreachable("Invalid prefix!");
+ case 0: break; // No prefix!
}
// Handle REX prefix.
@@ -697,50 +731,446 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
MCE.emitByte(0x0F);
switch (Desc->TSFlags & X86II::Op0Mask) {
- case X86II::T8XD: // F2 0F 38
- case X86II::T8XS: // F3 0F 38
- case X86II::T8: // 0F 38
- MCE.emitByte(0x38);
- break;
- case X86II::TAXD: // F2 0F 38
- case X86II::TA: // 0F 3A
- MCE.emitByte(0x3A);
- break;
- case X86II::A6: // 0F A6
- MCE.emitByte(0xA6);
- break;
- case X86II::A7: // 0F A7
- MCE.emitByte(0xA7);
- break;
+ case X86II::T8XD: // F2 0F 38
+ case X86II::T8XS: // F3 0F 38
+ case X86II::T8: // 0F 38
+ MCE.emitByte(0x38);
+ break;
+ case X86II::TAXD: // F2 0F 38
+ case X86II::TA: // 0F 3A
+ MCE.emitByte(0x3A);
+ break;
+ case X86II::A6: // 0F A6
+ MCE.emitByte(0xA6);
+ break;
+ case X86II::A7: // 0F A7
+ MCE.emitByte(0xA7);
+ break;
+ }
+}
+
+// On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
+// 0-7 and the difference between the 2 groups is given by the REX prefix.
+// In the VEX prefix, registers are seen sequencially from 0-15 and encoded
+// in 1's complement form, example:
+//
+// ModRM field => XMM9 => 1
+// VEX.VVVV => XMM9 => ~9
+//
+// See table 4-35 of Intel AVX Programming Reference for details.
+static unsigned char getVEXRegisterEncoding(const MachineInstr &MI,
+ unsigned OpNum) {
+ unsigned SrcReg = MI.getOperand(OpNum).getReg();
+ unsigned SrcRegNum = X86_MC::getX86RegNum(MI.getOperand(OpNum).getReg());
+ if (X86II::isX86_64ExtendedReg(SrcReg))
+ SrcRegNum |= 8;
+
+ // The registers represented through VEX_VVVV should
+ // be encoded in 1's complement form.
+ return (~SrcRegNum) & 0xf;
+}
+
+/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitSegmentOverridePrefix(uint64_t TSFlags,
+ int MemOperand,
+ const MachineInstr &MI) const {
+ switch (TSFlags & X86II::SegOvrMask) {
+ default: llvm_unreachable("Invalid segment!");
+ case 0:
+ // No segment override, check for explicit one on memory operand.
+ if (MemOperand != -1) { // If the instruction has a memory operand.
+ switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
+ default: llvm_unreachable("Unknown segment register!");
+ case 0: break;
+ case X86::CS: MCE.emitByte(0x2E); break;
+ case X86::SS: MCE.emitByte(0x36); break;
+ case X86::DS: MCE.emitByte(0x3E); break;
+ case X86::ES: MCE.emitByte(0x26); break;
+ case X86::FS: MCE.emitByte(0x64); break;
+ case X86::GS: MCE.emitByte(0x65); break;
+ }
+ }
+ break;
+ case X86II::FS:
+ MCE.emitByte(0x64);
+ break;
+ case X86II::GS:
+ MCE.emitByte(0x65);
+ break;
+ }
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitVEXOpcodePrefix(uint64_t TSFlags,
+ int MemOperand,
+ const MachineInstr &MI,
+ const MCInstrDesc *Desc) const {
+ bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
+ bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
+
+ // VEX_R: opcode externsion equivalent to REX.R in
+ // 1's complement (inverted) form
+ //
+ // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
+ // 0: Same as REX_R=1 (64 bit mode only)
+ //
+ unsigned char VEX_R = 0x1;
+
+ // VEX_X: equivalent to REX.X, only used when a
+ // register is used for index in SIB Byte.
+ //
+ // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
+ // 0: Same as REX.X=1 (64-bit mode only)
+ unsigned char VEX_X = 0x1;
+
+ // VEX_B:
+ //
+ // 1: Same as REX_B=0 (ignored in 32-bit mode)
+ // 0: Same as REX_B=1 (64 bit mode only)
+ //
+ unsigned char VEX_B = 0x1;
+
+ // VEX_W: opcode specific (use like REX.W, or used for
+ // opcode extension, or ignored, depending on the opcode byte)
+ unsigned char VEX_W = 0;
+
+ // XOP: Use XOP prefix byte 0x8f instead of VEX.
+ unsigned char XOP = 0;
+
+ // VEX_5M (VEX m-mmmmm field):
+ //
+ // 0b00000: Reserved for future use
+ // 0b00001: implied 0F leading opcode
+ // 0b00010: implied 0F 38 leading opcode bytes
+ // 0b00011: implied 0F 3A leading opcode bytes
+ // 0b00100-0b11111: Reserved for future use
+ // 0b01000: XOP map select - 08h instructions with imm byte
+ // 0b10001: XOP map select - 09h instructions with no imm byte
+ unsigned char VEX_5M = 0x1;
+
+ // VEX_4V (VEX vvvv field): a register specifier
+ // (in 1's complement form) or 1111 if unused.
+ unsigned char VEX_4V = 0xf;
+
+ // VEX_L (Vector Length):
+ //
+ // 0: scalar or 128-bit vector
+ // 1: 256-bit vector
+ //
+ unsigned char VEX_L = 0;
+
+ // VEX_PP: opcode extension providing equivalent
+ // functionality of a SIMD prefix
+ //
+ // 0b00: None
+ // 0b01: 66
+ // 0b10: F3
+ // 0b11: F2
+ //
+ unsigned char VEX_PP = 0;
+
+ // Encode the operand size opcode prefix as needed.
+ if (TSFlags & X86II::OpSize)
+ VEX_PP = 0x01;
+
+ if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
+ VEX_W = 1;
+
+ if ((TSFlags >> X86II::VEXShift) & X86II::XOP)
+ XOP = 1;
+
+ if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
+ VEX_L = 1;
+
+ switch (TSFlags & X86II::Op0Mask) {
+ default: llvm_unreachable("Invalid prefix!");
+ case X86II::T8: // 0F 38
+ VEX_5M = 0x2;
+ break;
+ case X86II::TA: // 0F 3A
+ VEX_5M = 0x3;
+ break;
+ case X86II::T8XS: // F3 0F 38
+ VEX_PP = 0x2;
+ VEX_5M = 0x2;
+ break;
+ case X86II::T8XD: // F2 0F 38
+ VEX_PP = 0x3;
+ VEX_5M = 0x2;
+ break;
+ case X86II::TAXD: // F2 0F 3A
+ VEX_PP = 0x3;
+ VEX_5M = 0x3;
+ break;
+ case X86II::XS: // F3 0F
+ VEX_PP = 0x2;
+ break;
+ case X86II::XD: // F2 0F
+ VEX_PP = 0x3;
+ break;
+ case X86II::XOP8:
+ VEX_5M = 0x8;
+ break;
+ case X86II::XOP9:
+ VEX_5M = 0x9;
+ break;
+ case X86II::A6: // Bypass: Not used by VEX
+ case X86II::A7: // Bypass: Not used by VEX
+ case X86II::TB: // Bypass: Not used by VEX
+ case 0:
+ break; // No prefix!
+ }
+
+
+ // Set the vector length to 256-bit if YMM0-YMM15 is used
+ for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
+ if (!MI.getOperand(i).isReg())
+ continue;
+ if (MI.getOperand(i).isImplicit())
+ continue;
+ unsigned SrcReg = MI.getOperand(i).getReg();
+ if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15)
+ VEX_L = 1;
+ }
+
+ // Classify VEX_B, VEX_4V, VEX_R, VEX_X
+ unsigned NumOps = Desc->getNumOperands();
+ unsigned CurOp = 0;
+ if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) == 0)
+ ++CurOp;
+ else if (NumOps > 3 && Desc->getOperandConstraint(2, MCOI::TIED_TO) == 0) {
+ assert(Desc->getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1);
+ // Special case for GATHER with 2 TIED_TO operands
+ // Skip the first 2 operands: dst, mask_wb
+ CurOp += 2;
+ }
+
+ switch (TSFlags & X86II::FormMask) {
+ case X86II::MRMInitReg:
+ // Duplicate register.
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_R = 0x0;
+
+ if (HasVEX_4V)
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_B = 0x0;
+ if (HasVEX_4VOp3)
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+ break;
+ case X86II::MRMDestMem: {
+ // MRMDestMem instructions forms:
+ // MemAddr, src1(ModR/M)
+ // MemAddr, src1(VEX_4V), src2(ModR/M)
+ // MemAddr, src1(ModR/M), imm8
+ //
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg()))
+ VEX_B = 0x0;
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg()))
+ VEX_X = 0x0;
+
+ CurOp = X86::AddrNumOperands;
+ if (HasVEX_4V)
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
+
+ const MachineOperand &MO = MI.getOperand(CurOp);
+ if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
+ VEX_R = 0x0;
+ break;
+ }
+ case X86II::MRMSrcMem:
+ // MRMSrcMem instructions forms:
+ // src1(ModR/M), MemAddr
+ // src1(ModR/M), src2(VEX_4V), MemAddr
+ // src1(ModR/M), MemAddr, imm8
+ // src1(ModR/M), MemAddr, src2(VEX_I8IMM)
+ //
+ // FMA4:
+ // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
+ // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
+ VEX_R = 0x0;
+
+ if (HasVEX_4V)
+ VEX_4V = getVEXRegisterEncoding(MI, 1);
+
+ if (X86II::isX86_64ExtendedReg(
+ MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
+ VEX_B = 0x0;
+ if (X86II::isX86_64ExtendedReg(
+ MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
+ VEX_X = 0x0;
+
+ if (HasVEX_4VOp3)
+ VEX_4V = getVEXRegisterEncoding(MI, X86::AddrNumOperands+1);
+ break;
+ case X86II::MRM0m: case X86II::MRM1m:
+ case X86II::MRM2m: case X86II::MRM3m:
+ case X86II::MRM4m: case X86II::MRM5m:
+ case X86II::MRM6m: case X86II::MRM7m: {
+ // MRM[0-9]m instructions forms:
+ // MemAddr
+ // src1(VEX_4V), MemAddr
+ if (HasVEX_4V)
+ VEX_4V = getVEXRegisterEncoding(MI, 0);
+
+ if (X86II::isX86_64ExtendedReg(
+ MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
+ VEX_B = 0x0;
+ if (X86II::isX86_64ExtendedReg(
+ MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
+ VEX_X = 0x0;
+ break;
+ }
+ case X86II::MRMSrcReg:
+ // MRMSrcReg instructions forms:
+ // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
+ // dst(ModR/M), src1(ModR/M)
+ // dst(ModR/M), src1(ModR/M), imm8
+ //
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_R = 0x0;
+ CurOp++;
+
+ if (HasVEX_4V)
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_B = 0x0;
+ CurOp++;
+ if (HasVEX_4VOp3)
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+ break;
+ case X86II::MRMDestReg:
+ // MRMDestReg instructions forms:
+ // dst(ModR/M), src(ModR/M)
+ // dst(ModR/M), src(ModR/M), imm8
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
+ VEX_B = 0x0;
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
+ VEX_R = 0x0;
+ break;
+ case X86II::MRM0r: case X86II::MRM1r:
+ case X86II::MRM2r: case X86II::MRM3r:
+ case X86II::MRM4r: case X86II::MRM5r:
+ case X86II::MRM6r: case X86II::MRM7r:
+ // MRM0r-MRM7r instructions forms:
+ // dst(VEX_4V), src(ModR/M), imm8
+ VEX_4V = getVEXRegisterEncoding(MI, 0);
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
+ VEX_B = 0x0;
+ break;
+ default: // RawFrm
+ break;
+ }
+
+ // Emit segment override opcode prefix as needed.
+ emitSegmentOverridePrefix(TSFlags, MemOperand, MI);
+
+ // VEX opcode prefix can have 2 or 3 bytes
+ //
+ // 3 bytes:
+ // +-----+ +--------------+ +-------------------+
+ // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
+ // +-----+ +--------------+ +-------------------+
+ // 2 bytes:
+ // +-----+ +-------------------+
+ // | C5h | | R | vvvv | L | pp |
+ // +-----+ +-------------------+
+ //
+ unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
+
+ if (VEX_B && VEX_X && !VEX_W && !XOP && (VEX_5M == 1)) { // 2 byte VEX prefix
+ MCE.emitByte(0xC5);
+ MCE.emitByte(LastByte | (VEX_R << 7));
+ return;
+ }
+
+ // 3 byte VEX prefix
+ MCE.emitByte(XOP ? 0x8F : 0xC4);
+ MCE.emitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M);
+ MCE.emitByte(LastByte | (VEX_W << 7));
+}
+
+template<class CodeEmitter>
+void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
+ const MCInstrDesc *Desc) {
+ DEBUG(dbgs() << MI);
+
+ // If this is a pseudo instruction, lower it.
+ switch (Desc->getOpcode()) {
+ case X86::ADD16rr_DB: Desc = UpdateOp(MI, II, X86::OR16rr); break;
+ case X86::ADD32rr_DB: Desc = UpdateOp(MI, II, X86::OR32rr); break;
+ case X86::ADD64rr_DB: Desc = UpdateOp(MI, II, X86::OR64rr); break;
+ case X86::ADD16ri_DB: Desc = UpdateOp(MI, II, X86::OR16ri); break;
+ case X86::ADD32ri_DB: Desc = UpdateOp(MI, II, X86::OR32ri); break;
+ case X86::ADD64ri32_DB: Desc = UpdateOp(MI, II, X86::OR64ri32); break;
+ case X86::ADD16ri8_DB: Desc = UpdateOp(MI, II, X86::OR16ri8); break;
+ case X86::ADD32ri8_DB: Desc = UpdateOp(MI, II, X86::OR32ri8); break;
+ case X86::ADD64ri8_DB: Desc = UpdateOp(MI, II, X86::OR64ri8); break;
+ case X86::ACQUIRE_MOV8rm: Desc = UpdateOp(MI, II, X86::MOV8rm); break;
+ case X86::ACQUIRE_MOV16rm: Desc = UpdateOp(MI, II, X86::MOV16rm); break;
+ case X86::ACQUIRE_MOV32rm: Desc = UpdateOp(MI, II, X86::MOV32rm); break;
+ case X86::ACQUIRE_MOV64rm: Desc = UpdateOp(MI, II, X86::MOV64rm); break;
+ case X86::RELEASE_MOV8mr: Desc = UpdateOp(MI, II, X86::MOV8mr); break;
+ case X86::RELEASE_MOV16mr: Desc = UpdateOp(MI, II, X86::MOV16mr); break;
+ case X86::RELEASE_MOV32mr: Desc = UpdateOp(MI, II, X86::MOV32mr); break;
+ case X86::RELEASE_MOV64mr: Desc = UpdateOp(MI, II, X86::MOV64mr); break;
}
+
+ MCE.processDebugLoc(MI.getDebugLoc(), true);
+
+ unsigned Opcode = Desc->Opcode;
+
// If this is a two-address instruction, skip one of the register operands.
unsigned NumOps = Desc->getNumOperands();
unsigned CurOp = 0;
- if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) != -1)
+ if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) == 0)
++CurOp;
- else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1,MCOI::TIED_TO)== 0)
- // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
- --NumOps;
+ else if (NumOps > 3 && Desc->getOperandConstraint(2, MCOI::TIED_TO) == 0) {
+ assert(Desc->getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1);
+ // Special case for GATHER with 2 TIED_TO operands
+ // Skip the first 2 operands: dst, mask_wb
+ CurOp += 2;
+ }
+
+ uint64_t TSFlags = Desc->TSFlags;
+
+ // Is this instruction encoded using the AVX VEX prefix?
+ bool HasVEXPrefix = (TSFlags >> X86II::VEXShift) & X86II::VEX;
+ // It uses the VEX.VVVV field?
+ bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
+ bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
+ bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
+ const unsigned MemOp4_I8IMMOperand = 2;
+
+ // Determine where the memory operand starts, if present.
+ int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
+ if (MemoryOperand != -1) MemoryOperand += CurOp;
+
+ if (!HasVEXPrefix)
+ emitOpcodePrefix(TSFlags, MemoryOperand, MI, Desc);
+ else
+ emitVEXOpcodePrefix(TSFlags, MemoryOperand, MI, Desc);
unsigned char BaseOpcode = X86II::getBaseOpcodeFor(Desc->TSFlags);
- switch (Desc->TSFlags & X86II::FormMask) {
+ switch (TSFlags & X86II::FormMask) {
default:
llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
case X86II::Pseudo:
// Remember the current PC offset, this is the PIC relocation
// base address.
switch (Opcode) {
- default:
+ default:
llvm_unreachable("pseudo instructions should be removed before code"
" emission");
- break;
// Do nothing for Int_MemBarrier - it's just a comment. Add a debug
// to make it slightly easier to see.
case X86::Int_MemBarrier:
DEBUG(dbgs() << "#MEMBARRIER\n");
break;
-
+
case TargetOpcode::INLINEASM:
// We allow inline assembler nodes with empty bodies - they can
// implicitly define registers, which is ok for JIT.
@@ -752,7 +1182,7 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
case TargetOpcode::EH_LABEL:
MCE.emitLabel(MI.getOperand(0).getMCSymbol());
break;
-
+
case TargetOpcode::IMPLICIT_DEF:
case TargetOpcode::KILL:
break;
@@ -774,7 +1204,7 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
if (CurOp == NumOps)
break;
-
+
const MachineOperand &MO = MI.getOperand(CurOp++);
DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n");
@@ -787,13 +1217,13 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
emitPCRelativeBlockAddress(MO.getMBB());
break;
}
-
+
if (MO.isGlobal()) {
emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word,
MO.getOffset(), 0);
break;
}
-
+
if (MO.isSymbol()) {
emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
break;
@@ -804,7 +1234,7 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
emitJumpTableAddress(MO.getIndex(), X86::reloc_pcrel_word);
break;
}
-
+
assert(MO.isImm() && "Unknown RawFrm operand!");
if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) {
// Fix up immediate operand for pc relative calls.
@@ -815,21 +1245,21 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
emitConstant(MO.getImm(), X86II::getSizeOfImm(Desc->TSFlags));
break;
}
-
+
case X86II::AddRegFrm: {
MCE.emitByte(BaseOpcode +
X86_MC::getX86RegNum(MI.getOperand(CurOp++).getReg()));
-
+
if (CurOp == NumOps)
break;
-
+
const MachineOperand &MO1 = MI.getOperand(CurOp++);
unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
if (MO1.isImm()) {
emitConstant(MO1.getImm(), Size);
break;
}
-
+
unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
: (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
if (Opcode == X86::MOV64ri64i32)
@@ -855,46 +1285,57 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
emitRegModRMByte(MI.getOperand(CurOp).getReg(),
X86_MC::getX86RegNum(MI.getOperand(CurOp+1).getReg()));
CurOp += 2;
- if (CurOp != NumOps)
- emitConstant(MI.getOperand(CurOp++).getImm(),
- X86II::getSizeOfImm(Desc->TSFlags));
break;
}
case X86II::MRMDestMem: {
MCE.emitByte(BaseOpcode);
+
+ unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
+ if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
+ SrcRegNum++;
emitMemModRMByte(MI, CurOp,
- X86_MC::getX86RegNum(MI.getOperand(CurOp + X86::AddrNumOperands)
- .getReg()));
- CurOp += X86::AddrNumOperands + 1;
- if (CurOp != NumOps)
- emitConstant(MI.getOperand(CurOp++).getImm(),
- X86II::getSizeOfImm(Desc->TSFlags));
+ X86_MC::getX86RegNum(MI.getOperand(SrcRegNum).getReg()));
+ CurOp = SrcRegNum + 1;
break;
}
- case X86II::MRMSrcReg:
+ case X86II::MRMSrcReg: {
MCE.emitByte(BaseOpcode);
- emitRegModRMByte(MI.getOperand(CurOp+1).getReg(),
+
+ unsigned SrcRegNum = CurOp+1;
+ if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
+ ++SrcRegNum;
+
+ if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
+ ++SrcRegNum;
+
+ emitRegModRMByte(MI.getOperand(SrcRegNum).getReg(),
X86_MC::getX86RegNum(MI.getOperand(CurOp).getReg()));
- CurOp += 2;
- if (CurOp != NumOps)
- emitConstant(MI.getOperand(CurOp++).getImm(),
- X86II::getSizeOfImm(Desc->TSFlags));
+ // 2 operands skipped with HasMemOp4, compensate accordingly
+ CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
+ if (HasVEX_4VOp3)
+ ++CurOp;
break;
-
+ }
case X86II::MRMSrcMem: {
int AddrOperands = X86::AddrNumOperands;
+ unsigned FirstMemOp = CurOp+1;
+ if (HasVEX_4V) {
+ ++AddrOperands;
+ ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
+ }
+ if (HasMemOp4) // Skip second register source (encoded in I8IMM)
+ ++FirstMemOp;
+
+ MCE.emitByte(BaseOpcode);
intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
X86II::getSizeOfImm(Desc->TSFlags) : 0;
-
- MCE.emitByte(BaseOpcode);
- emitMemModRMByte(MI, CurOp+1,
+ emitMemModRMByte(MI, FirstMemOp,
X86_MC::getX86RegNum(MI.getOperand(CurOp).getReg()),PCAdj);
CurOp += AddrOperands + 1;
- if (CurOp != NumOps)
- emitConstant(MI.getOperand(CurOp++).getImm(),
- X86II::getSizeOfImm(Desc->TSFlags));
+ if (HasVEX_4VOp3)
+ ++CurOp;
break;
}
@@ -902,20 +1343,22 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
case X86II::MRM2r: case X86II::MRM3r:
case X86II::MRM4r: case X86II::MRM5r:
case X86II::MRM6r: case X86II::MRM7r: {
+ if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
+ ++CurOp;
MCE.emitByte(BaseOpcode);
emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
(Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
if (CurOp == NumOps)
break;
-
+
const MachineOperand &MO1 = MI.getOperand(CurOp++);
unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
if (MO1.isImm()) {
emitConstant(MO1.getImm(), Size);
break;
}
-
+
unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
: (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
if (Opcode == X86::MOV64ri32)
@@ -937,8 +1380,10 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
case X86II::MRM2m: case X86II::MRM3m:
case X86II::MRM4m: case X86II::MRM5m:
case X86II::MRM6m: case X86II::MRM7m: {
+ if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
+ ++CurOp;
intptr_t PCAdj = (CurOp + X86::AddrNumOperands != NumOps) ?
- (MI.getOperand(CurOp+X86::AddrNumOperands).isImm() ?
+ (MI.getOperand(CurOp+X86::AddrNumOperands).isImm() ?
X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0;
MCE.emitByte(BaseOpcode);
@@ -948,14 +1393,14 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
if (CurOp == NumOps)
break;
-
+
const MachineOperand &MO = MI.getOperand(CurOp++);
unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
if (MO.isImm()) {
emitConstant(MO.getImm(), Size);
break;
}
-
+
unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
: (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
if (Opcode == X86::MOV64mi32)
@@ -980,7 +1425,7 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
X86_MC::getX86RegNum(MI.getOperand(CurOp).getReg()));
++CurOp;
break;
-
+
case X86II::MRM_C1:
MCE.emitByte(BaseOpcode);
MCE.emitByte(0xC1);
@@ -1003,6 +1448,33 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
break;
}
+ while (CurOp != NumOps && NumOps - CurOp <= 2) {
+ // The last source register of a 4 operand instruction in AVX is encoded
+ // in bits[7:4] of a immediate byte.
+ if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
+ const MachineOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
+ : CurOp);
+ ++CurOp;
+ unsigned RegNum = X86_MC::getX86RegNum(MO.getReg()) << 4;
+ if (X86II::isX86_64ExtendedReg(MO.getReg()))
+ RegNum |= 1 << 7;
+ // If there is an additional 5th operand it must be an immediate, which
+ // is encoded in bits[3:0]
+ if (CurOp != NumOps) {
+ const MachineOperand &MIMM = MI.getOperand(CurOp++);
+ if (MIMM.isImm()) {
+ unsigned Val = MIMM.getImm();
+ assert(Val < 16 && "Immediate operand value out of range");
+ RegNum |= Val;
+ }
+ }
+ emitConstant(RegNum, 1);
+ } else {
+ emitConstant(MI.getOperand(CurOp++).getImm(),
+ X86II::getSizeOfImm(Desc->TSFlags));
+ }
+ }
+
if (!MI.isVariadic() && CurOp != NumOps) {
#ifndef NDEBUG
dbgs() << "Cannot encode all operands of: " << MI << "\n";