aboutsummaryrefslogtreecommitdiff
path: root/lib/msun/bsdsrc/b_tgamma.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/msun/bsdsrc/b_tgamma.c')
-rw-r--r--lib/msun/bsdsrc/b_tgamma.c396
1 files changed, 396 insertions, 0 deletions
diff --git a/lib/msun/bsdsrc/b_tgamma.c b/lib/msun/bsdsrc/b_tgamma.c
new file mode 100644
index 000000000000..a7e97bc777c3
--- /dev/null
+++ b/lib/msun/bsdsrc/b_tgamma.c
@@ -0,0 +1,396 @@
+/*-
+ * SPDX-License-Identifier: BSD-3-Clause
+ *
+ * Copyright (c) 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+/*
+ * The original code, FreeBSD's old svn r93211, contained the following
+ * attribution:
+ *
+ * This code by P. McIlroy, Oct 1992;
+ *
+ * The financial support of UUNET Communications Services is greatfully
+ * acknowledged.
+ *
+ * The algorithm remains, but the code has been re-arranged to facilitate
+ * porting to other precisions.
+ */
+
+#include <float.h>
+
+#include "math.h"
+#include "math_private.h"
+
+/* Used in b_log.c and below. */
+struct Double {
+ double a;
+ double b;
+};
+
+#include "b_log.c"
+#include "b_exp.c"
+
+/*
+ * The range is broken into several subranges. Each is handled by its
+ * helper functions.
+ *
+ * x >= 6.0: large_gam(x)
+ * 6.0 > x >= xleft: small_gam(x) where xleft = 1 + left + x0.
+ * xleft > x > iota: smaller_gam(x) where iota = 1e-17.
+ * iota > x > -itoa: Handle x near 0.
+ * -iota > x : neg_gam
+ *
+ * Special values:
+ * -Inf: return NaN and raise invalid;
+ * negative integer: return NaN and raise invalid;
+ * other x ~< 177.79: return +-0 and raise underflow;
+ * +-0: return +-Inf and raise divide-by-zero;
+ * finite x ~> 171.63: return +Inf and raise overflow;
+ * +Inf: return +Inf;
+ * NaN: return NaN.
+ *
+ * Accuracy: tgamma(x) is accurate to within
+ * x > 0: error provably < 0.9ulp.
+ * Maximum observed in 1,000,000 trials was .87ulp.
+ * x < 0:
+ * Maximum observed error < 4ulp in 1,000,000 trials.
+ */
+
+/*
+ * Constants for large x approximation (x in [6, Inf])
+ * (Accurate to 2.8*10^-19 absolute)
+ */
+
+static const double zero = 0.;
+static const volatile double tiny = 1e-300;
+/*
+ * x >= 6
+ *
+ * Use the asymptotic approximation (Stirling's formula) adjusted fof
+ * equal-ripples:
+ *
+ * log(G(x)) ~= (x-0.5)*(log(x)-1) + 0.5(log(2*pi)-1) + 1/x*P(1/(x*x))
+ *
+ * Keep extra precision in multiplying (x-.5)(log(x)-1), to avoid
+ * premature round-off.
+ *
+ * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
+ */
+static const double
+ ln2pi_hi = 0.41894531250000000,
+ ln2pi_lo = -6.7792953272582197e-6,
+ Pa0 = 8.3333333333333329e-02, /* 0x3fb55555, 0x55555555 */
+ Pa1 = -2.7777777777735404e-03, /* 0xbf66c16c, 0x16c145ec */
+ Pa2 = 7.9365079044114095e-04, /* 0x3f4a01a0, 0x183de82d */
+ Pa3 = -5.9523715464225254e-04, /* 0xbf438136, 0x0e681f62 */
+ Pa4 = 8.4161391899445698e-04, /* 0x3f4b93f8, 0x21042a13 */
+ Pa5 = -1.9065246069191080e-03, /* 0xbf5f3c8b, 0x357cb64e */
+ Pa6 = 5.9047708485785158e-03, /* 0x3f782f99, 0xdaf5d65f */
+ Pa7 = -1.6484018705183290e-02; /* 0xbf90e12f, 0xc4fb4df0 */
+
+static struct Double
+large_gam(double x)
+{
+ double p, z, thi, tlo, xhi, xlo;
+ struct Double u;
+
+ z = 1 / (x * x);
+ p = Pa0 + z * (Pa1 + z * (Pa2 + z * (Pa3 + z * (Pa4 + z * (Pa5 +
+ z * (Pa6 + z * Pa7))))));
+ p = p / x;
+
+ u = __log__D(x);
+ u.a -= 1;
+
+ /* Split (x - 0.5) in high and low parts. */
+ x -= 0.5;
+ xhi = (float)x;
+ xlo = x - xhi;
+
+ /* Compute t = (x-.5)*(log(x)-1) in extra precision. */
+ thi = xhi * u.a;
+ tlo = xlo * u.a + x * u.b;
+
+ /* Compute thi + tlo + ln2pi_hi + ln2pi_lo + p. */
+ tlo += ln2pi_lo;
+ tlo += p;
+ u.a = ln2pi_hi + tlo;
+ u.a += thi;
+ u.b = thi - u.a;
+ u.b += ln2pi_hi;
+ u.b += tlo;
+ return (u);
+}
+/*
+ * Rational approximation, A0 + x * x * P(x) / Q(x), on the interval
+ * [1.066.., 2.066..] accurate to 4.25e-19.
+ *
+ * Returns r.a + r.b = a0 + (z + c)^2 * p / q, with r.a truncated.
+ */
+static const double
+#if 0
+ a0_hi = 8.8560319441088875e-1,
+ a0_lo = -4.9964270364690197e-17,
+#else
+ a0_hi = 8.8560319441088875e-01, /* 0x3fec56dc, 0x82a74aef */
+ a0_lo = -4.9642368725563397e-17, /* 0xbc8c9deb, 0xaa64afc3 */
+#endif
+ P0 = 6.2138957182182086e-1,
+ P1 = 2.6575719865153347e-1,
+ P2 = 5.5385944642991746e-3,
+ P3 = 1.3845669830409657e-3,
+ P4 = 2.4065995003271137e-3,
+ Q0 = 1.4501953125000000e+0,
+ Q1 = 1.0625852194801617e+0,
+ Q2 = -2.0747456194385994e-1,
+ Q3 = -1.4673413178200542e-1,
+ Q4 = 3.0787817615617552e-2,
+ Q5 = 5.1244934798066622e-3,
+ Q6 = -1.7601274143166700e-3,
+ Q7 = 9.3502102357378894e-5,
+ Q8 = 6.1327550747244396e-6;
+
+static struct Double
+ratfun_gam(double z, double c)
+{
+ double p, q, thi, tlo;
+ struct Double r;
+
+ q = Q0 + z * (Q1 + z * (Q2 + z * (Q3 + z * (Q4 + z * (Q5 +
+ z * (Q6 + z * (Q7 + z * Q8)))))));
+ p = P0 + z * (P1 + z * (P2 + z * (P3 + z * P4)));
+ p = p / q;
+
+ /* Split z into high and low parts. */
+ thi = (float)z;
+ tlo = (z - thi) + c;
+ tlo *= (thi + z);
+
+ /* Split (z+c)^2 into high and low parts. */
+ thi *= thi;
+ q = thi;
+ thi = (float)thi;
+ tlo += (q - thi);
+
+ /* Split p/q into high and low parts. */
+ r.a = (float)p;
+ r.b = p - r.a;
+
+ tlo = tlo * p + thi * r.b + a0_lo;
+ thi *= r.a; /* t = (z+c)^2*(P/Q) */
+ r.a = (float)(thi + a0_hi);
+ r.b = ((a0_hi - r.a) + thi) + tlo;
+ return (r); /* r = a0 + t */
+}
+/*
+ * x < 6
+ *
+ * Use argument reduction G(x+1) = xG(x) to reach the range [1.066124,
+ * 2.066124]. Use a rational approximation centered at the minimum
+ * (x0+1) to ensure monotonicity.
+ *
+ * Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.)
+ * It also has correct monotonicity.
+ */
+static const double
+ left = -0.3955078125, /* left boundary for rat. approx */
+ x0 = 4.6163214496836236e-1; /* xmin - 1 */
+
+static double
+small_gam(double x)
+{
+ double t, y, ym1;
+ struct Double yy, r;
+
+ y = x - 1;
+ if (y <= 1 + (left + x0)) {
+ yy = ratfun_gam(y - x0, 0);
+ return (yy.a + yy.b);
+ }
+
+ r.a = (float)y;
+ yy.a = r.a - 1;
+ y = y - 1 ;
+ r.b = yy.b = y - yy.a;
+
+ /* Argument reduction: G(x+1) = x*G(x) */
+ for (ym1 = y - 1; ym1 > left + x0; y = ym1--, yy.a--) {
+ t = r.a * yy.a;
+ r.b = r.a * yy.b + y * r.b;
+ r.a = (float)t;
+ r.b += (t - r.a);
+ }
+
+ /* Return r*tgamma(y). */
+ yy = ratfun_gam(y - x0, 0);
+ y = r.b * (yy.a + yy.b) + r.a * yy.b;
+ y += yy.a * r.a;
+ return (y);
+}
+/*
+ * Good on (0, 1+x0+left]. Accurate to 1 ulp.
+ */
+static double
+smaller_gam(double x)
+{
+ double d, t, xhi, xlo;
+ struct Double r;
+
+ if (x < x0 + left) {
+ t = (float)x;
+ d = (t + x) * (x - t);
+ t *= t;
+ xhi = (float)(t + x);
+ xlo = x - xhi;
+ xlo += t;
+ xlo += d;
+ t = 1 - x0;
+ t += x;
+ d = 1 - x0;
+ d -= t;
+ d += x;
+ x = xhi + xlo;
+ } else {
+ xhi = (float)x;
+ xlo = x - xhi;
+ t = x - x0;
+ d = - x0 - t;
+ d += x;
+ }
+
+ r = ratfun_gam(t, d);
+ d = (float)(r.a / x);
+ r.a -= d * xhi;
+ r.a -= d * xlo;
+ r.a += r.b;
+
+ return (d + r.a / x);
+}
+/*
+ * x < 0
+ *
+ * Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x)).
+ * At negative integers, return NaN and raise invalid.
+ */
+static double
+neg_gam(double x)
+{
+ int sgn = 1;
+ struct Double lg, lsine;
+ double y, z;
+
+ y = ceil(x);
+ if (y == x) /* Negative integer. */
+ return ((x - x) / zero);
+
+ z = y - x;
+ if (z > 0.5)
+ z = 1 - z;
+
+ y = y / 2;
+ if (y == ceil(y))
+ sgn = -1;
+
+ if (z < 0.25)
+ z = sinpi(z);
+ else
+ z = cospi(0.5 - z);
+
+ /* Special case: G(1-x) = Inf; G(x) may be nonzero. */
+ if (x < -170) {
+
+ if (x < -190)
+ return (sgn * tiny * tiny);
+
+ y = 1 - x; /* exact: 128 < |x| < 255 */
+ lg = large_gam(y);
+ lsine = __log__D(M_PI / z); /* = TRUNC(log(u)) + small */
+ lg.a -= lsine.a; /* exact (opposite signs) */
+ lg.b -= lsine.b;
+ y = -(lg.a + lg.b);
+ z = (y + lg.a) + lg.b;
+ y = __exp__D(y, z);
+ if (sgn < 0) y = -y;
+ return (y);
+ }
+
+ y = 1 - x;
+ if (1 - y == x)
+ y = tgamma(y);
+ else /* 1-x is inexact */
+ y = - x * tgamma(-x);
+
+ if (sgn < 0) y = -y;
+ return (M_PI / (y * z));
+}
+/*
+ * xmax comes from lgamma(xmax) - emax * log(2) = 0.
+ * static const float xmax = 35.040095f
+ * static const double xmax = 171.624376956302725;
+ * ld80: LD80C(0xdb718c066b352e20, 10, 1.75554834290446291689e+03L),
+ * ld128: 1.75554834290446291700388921607020320e+03L,
+ *
+ * iota is a sloppy threshold to isolate x = 0.
+ */
+static const double xmax = 171.624376956302725;
+static const double iota = 0x1p-56;
+
+double
+tgamma(double x)
+{
+ struct Double u;
+
+ if (x >= 6) {
+ if (x > xmax)
+ return (x / zero);
+ u = large_gam(x);
+ return (__exp__D(u.a, u.b));
+ }
+
+ if (x >= 1 + left + x0)
+ return (small_gam(x));
+
+ if (x > iota)
+ return (smaller_gam(x));
+
+ if (x > -iota) {
+ if (x != 0.)
+ u.a = 1 - tiny; /* raise inexact */
+ return (1 / x);
+ }
+
+ if (!isfinite(x))
+ return (x - x); /* x is NaN or -Inf */
+
+ return (neg_gam(x));
+}
+
+#if (LDBL_MANT_DIG == 53)
+__weak_reference(tgamma, tgammal);
+#endif