diff options
Diffstat (limited to 'secure/lib/libcrypto/man/man3/PEM_read_bio_PrivateKey.3')
-rw-r--r-- | secure/lib/libcrypto/man/man3/PEM_read_bio_PrivateKey.3 | 613 |
1 files changed, 613 insertions, 0 deletions
diff --git a/secure/lib/libcrypto/man/man3/PEM_read_bio_PrivateKey.3 b/secure/lib/libcrypto/man/man3/PEM_read_bio_PrivateKey.3 new file mode 100644 index 000000000000..675bfcce7eb5 --- /dev/null +++ b/secure/lib/libcrypto/man/man3/PEM_read_bio_PrivateKey.3 @@ -0,0 +1,613 @@ +.\" Automatically generated by Pod::Man 4.11 (Pod::Simple 3.39) +.\" +.\" Standard preamble: +.\" ======================================================================== +.de Sp \" Vertical space (when we can't use .PP) +.if t .sp .5v +.if n .sp +.. +.de Vb \" Begin verbatim text +.ft CW +.nf +.ne \\$1 +.. +.de Ve \" End verbatim text +.ft R +.fi +.. +.\" Set up some character translations and predefined strings. \*(-- will +.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left +.\" double quote, and \*(R" will give a right double quote. \*(C+ will +.\" give a nicer C++. Capital omega is used to do unbreakable dashes and +.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, +.\" nothing in troff, for use with C<>. +.tr \(*W- +.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' +.ie n \{\ +. ds -- \(*W- +. ds PI pi +. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch +. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch +. ds L" "" +. ds R" "" +. ds C` "" +. ds C' "" +'br\} +.el\{\ +. ds -- \|\(em\| +. ds PI \(*p +. ds L" `` +. ds R" '' +. ds C` +. ds C' +'br\} +.\" +.\" Escape single quotes in literal strings from groff's Unicode transform. +.ie \n(.g .ds Aq \(aq +.el .ds Aq ' +.\" +.\" If the F register is >0, we'll generate index entries on stderr for +.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index +.\" entries marked with X<> in POD. Of course, you'll have to process the +.\" output yourself in some meaningful fashion. +.\" +.\" Avoid warning from groff about undefined register 'F'. +.de IX +.. +.nr rF 0 +.if \n(.g .if rF .nr rF 1 +.if (\n(rF:(\n(.g==0)) \{\ +. if \nF \{\ +. de IX +. tm Index:\\$1\t\\n%\t"\\$2" +.. +. if !\nF==2 \{\ +. nr % 0 +. nr F 2 +. \} +. \} +.\} +.rr rF +.\" +.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). +.\" Fear. Run. Save yourself. No user-serviceable parts. +. \" fudge factors for nroff and troff +.if n \{\ +. ds #H 0 +. ds #V .8m +. ds #F .3m +. ds #[ \f1 +. ds #] \fP +.\} +.if t \{\ +. ds #H ((1u-(\\\\n(.fu%2u))*.13m) +. ds #V .6m +. ds #F 0 +. ds #[ \& +. ds #] \& +.\} +. \" simple accents for nroff and troff +.if n \{\ +. ds ' \& +. ds ` \& +. ds ^ \& +. ds , \& +. ds ~ ~ +. ds / +.\} +.if t \{\ +. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" +. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' +. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' +. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' +. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' +. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' +.\} +. \" troff and (daisy-wheel) nroff accents +.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' +.ds 8 \h'\*(#H'\(*b\h'-\*(#H' +.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] +.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' +.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' +.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] +.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] +.ds ae a\h'-(\w'a'u*4/10)'e +.ds Ae A\h'-(\w'A'u*4/10)'E +. \" corrections for vroff +.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' +.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' +. \" for low resolution devices (crt and lpr) +.if \n(.H>23 .if \n(.V>19 \ +\{\ +. ds : e +. ds 8 ss +. ds o a +. ds d- d\h'-1'\(ga +. ds D- D\h'-1'\(hy +. ds th \o'bp' +. ds Th \o'LP' +. ds ae ae +. ds Ae AE +.\} +.rm #[ #] #H #V #F C +.\" ======================================================================== +.\" +.IX Title "PEM_READ_BIO_PRIVATEKEY 3" +.TH PEM_READ_BIO_PRIVATEKEY 3 "2019-09-10" "1.1.1d" "OpenSSL" +.\" For nroff, turn off justification. Always turn off hyphenation; it makes +.\" way too many mistakes in technical documents. +.if n .ad l +.nh +.SH "NAME" +pem_password_cb, PEM_read_bio_PrivateKey, PEM_read_PrivateKey, PEM_write_bio_PrivateKey, PEM_write_bio_PrivateKey_traditional, PEM_write_PrivateKey, PEM_write_bio_PKCS8PrivateKey, PEM_write_PKCS8PrivateKey, PEM_write_bio_PKCS8PrivateKey_nid, PEM_write_PKCS8PrivateKey_nid, PEM_read_bio_PUBKEY, PEM_read_PUBKEY, PEM_write_bio_PUBKEY, PEM_write_PUBKEY, PEM_read_bio_RSAPrivateKey, PEM_read_RSAPrivateKey, PEM_write_bio_RSAPrivateKey, PEM_write_RSAPrivateKey, PEM_read_bio_RSAPublicKey, PEM_read_RSAPublicKey, PEM_write_bio_RSAPublicKey, PEM_write_RSAPublicKey, PEM_read_bio_RSA_PUBKEY, PEM_read_RSA_PUBKEY, PEM_write_bio_RSA_PUBKEY, PEM_write_RSA_PUBKEY, PEM_read_bio_DSAPrivateKey, PEM_read_DSAPrivateKey, PEM_write_bio_DSAPrivateKey, PEM_write_DSAPrivateKey, PEM_read_bio_DSA_PUBKEY, PEM_read_DSA_PUBKEY, PEM_write_bio_DSA_PUBKEY, PEM_write_DSA_PUBKEY, PEM_read_bio_DSAparams, PEM_read_DSAparams, PEM_write_bio_DSAparams, PEM_write_DSAparams, PEM_read_bio_DHparams, PEM_read_DHparams, PEM_write_bio_DHparams, PEM_write_DHparams, PEM_read_bio_X509, PEM_read_X509, PEM_write_bio_X509, PEM_write_X509, PEM_read_bio_X509_AUX, PEM_read_X509_AUX, PEM_write_bio_X509_AUX, PEM_write_X509_AUX, PEM_read_bio_X509_REQ, PEM_read_X509_REQ, PEM_write_bio_X509_REQ, PEM_write_X509_REQ, PEM_write_bio_X509_REQ_NEW, PEM_write_X509_REQ_NEW, PEM_read_bio_X509_CRL, PEM_read_X509_CRL, PEM_write_bio_X509_CRL, PEM_write_X509_CRL, PEM_read_bio_PKCS7, PEM_read_PKCS7, PEM_write_bio_PKCS7, PEM_write_PKCS7 \- PEM routines +.SH "SYNOPSIS" +.IX Header "SYNOPSIS" +.Vb 1 +\& #include <openssl/pem.h> +\& +\& typedef int pem_password_cb(char *buf, int size, int rwflag, void *u); +\& +\& EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x, +\& pem_password_cb *cb, void *u); +\& EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x, +\& pem_password_cb *cb, void *u); +\& int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, +\& unsigned char *kstr, int klen, +\& pem_password_cb *cb, void *u); +\& int PEM_write_bio_PrivateKey_traditional(BIO *bp, EVP_PKEY *x, +\& const EVP_CIPHER *enc, +\& unsigned char *kstr, int klen, +\& pem_password_cb *cb, void *u); +\& int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, +\& unsigned char *kstr, int klen, +\& pem_password_cb *cb, void *u); +\& +\& int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, +\& char *kstr, int klen, +\& pem_password_cb *cb, void *u); +\& int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, +\& char *kstr, int klen, +\& pem_password_cb *cb, void *u); +\& int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid, +\& char *kstr, int klen, +\& pem_password_cb *cb, void *u); +\& int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid, +\& char *kstr, int klen, +\& pem_password_cb *cb, void *u); +\& +\& EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x, +\& pem_password_cb *cb, void *u); +\& EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x, +\& pem_password_cb *cb, void *u); +\& int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x); +\& int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x); +\& +\& RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x, +\& pem_password_cb *cb, void *u); +\& RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x, +\& pem_password_cb *cb, void *u); +\& int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc, +\& unsigned char *kstr, int klen, +\& pem_password_cb *cb, void *u); +\& int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc, +\& unsigned char *kstr, int klen, +\& pem_password_cb *cb, void *u); +\& +\& RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x, +\& pem_password_cb *cb, void *u); +\& RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x, +\& pem_password_cb *cb, void *u); +\& int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x); +\& int PEM_write_RSAPublicKey(FILE *fp, RSA *x); +\& +\& RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x, +\& pem_password_cb *cb, void *u); +\& RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x, +\& pem_password_cb *cb, void *u); +\& int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x); +\& int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x); +\& +\& DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x, +\& pem_password_cb *cb, void *u); +\& DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x, +\& pem_password_cb *cb, void *u); +\& int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc, +\& unsigned char *kstr, int klen, +\& pem_password_cb *cb, void *u); +\& int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc, +\& unsigned char *kstr, int klen, +\& pem_password_cb *cb, void *u); +\& +\& DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x, +\& pem_password_cb *cb, void *u); +\& DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x, +\& pem_password_cb *cb, void *u); +\& int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x); +\& int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x); +\& +\& DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u); +\& DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u); +\& int PEM_write_bio_DSAparams(BIO *bp, DSA *x); +\& int PEM_write_DSAparams(FILE *fp, DSA *x); +\& +\& DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u); +\& DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u); +\& int PEM_write_bio_DHparams(BIO *bp, DH *x); +\& int PEM_write_DHparams(FILE *fp, DH *x); +\& +\& X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u); +\& X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u); +\& int PEM_write_bio_X509(BIO *bp, X509 *x); +\& int PEM_write_X509(FILE *fp, X509 *x); +\& +\& X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u); +\& X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u); +\& int PEM_write_bio_X509_AUX(BIO *bp, X509 *x); +\& int PEM_write_X509_AUX(FILE *fp, X509 *x); +\& +\& X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x, +\& pem_password_cb *cb, void *u); +\& X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x, +\& pem_password_cb *cb, void *u); +\& int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x); +\& int PEM_write_X509_REQ(FILE *fp, X509_REQ *x); +\& int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x); +\& int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x); +\& +\& X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x, +\& pem_password_cb *cb, void *u); +\& X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x, +\& pem_password_cb *cb, void *u); +\& int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x); +\& int PEM_write_X509_CRL(FILE *fp, X509_CRL *x); +\& +\& PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u); +\& PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u); +\& int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x); +\& int PEM_write_PKCS7(FILE *fp, PKCS7 *x); +.Ve +.SH "DESCRIPTION" +.IX Header "DESCRIPTION" +The \s-1PEM\s0 functions read or write structures in \s-1PEM\s0 format. In +this sense \s-1PEM\s0 format is simply base64 encoded data surrounded +by header lines. +.PP +For more details about the meaning of arguments see the +\&\fB\s-1PEM FUNCTION ARGUMENTS\s0\fR section. +.PP +Each operation has four functions associated with it. For +brevity the term "\fB\s-1TYPE\s0\fR functions" will be used below to collectively +refer to the \fBPEM_read_bio_TYPE()\fR, \fBPEM_read_TYPE()\fR, +\&\fBPEM_write_bio_TYPE()\fR, and \fBPEM_write_TYPE()\fR functions. +.PP +The \fBPrivateKey\fR functions read or write a private key in \s-1PEM\s0 format using an +\&\s-1EVP_PKEY\s0 structure. The write routines use PKCS#8 private key format and are +equivalent to \fBPEM_write_bio_PKCS8PrivateKey()\fR.The read functions transparently +handle traditional and PKCS#8 format encrypted and unencrypted keys. +.PP +\&\fBPEM_write_bio_PrivateKey_traditional()\fR writes out a private key in the +\&\*(L"traditional\*(R" format with a simple private key marker and should only +be used for compatibility with legacy programs. +.PP +\&\fBPEM_write_bio_PKCS8PrivateKey()\fR and \fBPEM_write_PKCS8PrivateKey()\fR write a private +key in an \s-1EVP_PKEY\s0 structure in PKCS#8 EncryptedPrivateKeyInfo format using +PKCS#5 v2.0 password based encryption algorithms. The \fBcipher\fR argument +specifies the encryption algorithm to use: unlike some other \s-1PEM\s0 routines the +encryption is applied at the PKCS#8 level and not in the \s-1PEM\s0 headers. If +\&\fBcipher\fR is \s-1NULL\s0 then no encryption is used and a PKCS#8 PrivateKeyInfo +structure is used instead. +.PP +\&\fBPEM_write_bio_PKCS8PrivateKey_nid()\fR and \fBPEM_write_PKCS8PrivateKey_nid()\fR +also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo however +it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead. The algorithm +to use is specified in the \fBnid\fR parameter and should be the \s-1NID\s0 of the +corresponding \s-1OBJECT IDENTIFIER\s0 (see \s-1NOTES\s0 section). +.PP +The \fB\s-1PUBKEY\s0\fR functions process a public key using an \s-1EVP_PKEY\s0 +structure. The public key is encoded as a SubjectPublicKeyInfo +structure. +.PP +The \fBRSAPrivateKey\fR functions process an \s-1RSA\s0 private key using an +\&\s-1RSA\s0 structure. The write routines uses traditional format. The read +routines handles the same formats as the \fBPrivateKey\fR +functions but an error occurs if the private key is not \s-1RSA.\s0 +.PP +The \fBRSAPublicKey\fR functions process an \s-1RSA\s0 public key using an +\&\s-1RSA\s0 structure. The public key is encoded using a PKCS#1 RSAPublicKey +structure. +.PP +The \fB\s-1RSA_PUBKEY\s0\fR functions also process an \s-1RSA\s0 public key using +an \s-1RSA\s0 structure. However the public key is encoded using a +SubjectPublicKeyInfo structure and an error occurs if the public +key is not \s-1RSA.\s0 +.PP +The \fBDSAPrivateKey\fR functions process a \s-1DSA\s0 private key using a +\&\s-1DSA\s0 structure. The write routines uses traditional format. The read +routines handles the same formats as the \fBPrivateKey\fR +functions but an error occurs if the private key is not \s-1DSA.\s0 +.PP +The \fB\s-1DSA_PUBKEY\s0\fR functions process a \s-1DSA\s0 public key using +a \s-1DSA\s0 structure. The public key is encoded using a +SubjectPublicKeyInfo structure and an error occurs if the public +key is not \s-1DSA.\s0 +.PP +The \fBDSAparams\fR functions process \s-1DSA\s0 parameters using a \s-1DSA\s0 +structure. The parameters are encoded using a Dss-Parms structure +as defined in \s-1RFC2459.\s0 +.PP +The \fBDHparams\fR functions process \s-1DH\s0 parameters using a \s-1DH\s0 +structure. The parameters are encoded using a PKCS#3 DHparameter +structure. +.PP +The \fBX509\fR functions process an X509 certificate using an X509 +structure. They will also process a trusted X509 certificate but +any trust settings are discarded. +.PP +The \fBX509_AUX\fR functions process a trusted X509 certificate using +an X509 structure. +.PP +The \fBX509_REQ\fR and \fBX509_REQ_NEW\fR functions process a PKCS#10 +certificate request using an X509_REQ structure. The \fBX509_REQ\fR +write functions use \fB\s-1CERTIFICATE REQUEST\s0\fR in the header whereas +the \fBX509_REQ_NEW\fR functions use \fB\s-1NEW CERTIFICATE REQUEST\s0\fR +(as required by some CAs). The \fBX509_REQ\fR read functions will +handle either form so there are no \fBX509_REQ_NEW\fR read functions. +.PP +The \fBX509_CRL\fR functions process an X509 \s-1CRL\s0 using an X509_CRL +structure. +.PP +The \fB\s-1PKCS7\s0\fR functions process a PKCS#7 ContentInfo using a \s-1PKCS7\s0 +structure. +.SH "PEM FUNCTION ARGUMENTS" +.IX Header "PEM FUNCTION ARGUMENTS" +The \s-1PEM\s0 functions have many common arguments. +.PP +The \fBbp\fR \s-1BIO\s0 parameter (if present) specifies the \s-1BIO\s0 to read from +or write to. +.PP +The \fBfp\fR \s-1FILE\s0 parameter (if present) specifies the \s-1FILE\s0 pointer to +read from or write to. +.PP +The \s-1PEM\s0 read functions all take an argument \fB\s-1TYPE\s0 **x\fR and return +a \fB\s-1TYPE\s0 *\fR pointer. Where \fB\s-1TYPE\s0\fR is whatever structure the function +uses. If \fBx\fR is \s-1NULL\s0 then the parameter is ignored. If \fBx\fR is not +\&\s-1NULL\s0 but \fB*x\fR is \s-1NULL\s0 then the structure returned will be written +to \fB*x\fR. If neither \fBx\fR nor \fB*x\fR is \s-1NULL\s0 then an attempt is made +to reuse the structure at \fB*x\fR (but see \s-1BUGS\s0 and \s-1EXAMPLES\s0 sections). +Irrespective of the value of \fBx\fR a pointer to the structure is always +returned (or \s-1NULL\s0 if an error occurred). +.PP +The \s-1PEM\s0 functions which write private keys take an \fBenc\fR parameter +which specifies the encryption algorithm to use, encryption is done +at the \s-1PEM\s0 level. If this parameter is set to \s-1NULL\s0 then the private +key is written in unencrypted form. +.PP +The \fBcb\fR argument is the callback to use when querying for the pass +phrase used for encrypted \s-1PEM\s0 structures (normally only private keys). +.PP +For the \s-1PEM\s0 write routines if the \fBkstr\fR parameter is not \s-1NULL\s0 then +\&\fBklen\fR bytes at \fBkstr\fR are used as the passphrase and \fBcb\fR is +ignored. +.PP +If the \fBcb\fR parameters is set to \s-1NULL\s0 and the \fBu\fR parameter is not +\&\s-1NULL\s0 then the \fBu\fR parameter is interpreted as a null terminated string +to use as the passphrase. If both \fBcb\fR and \fBu\fR are \s-1NULL\s0 then the +default callback routine is used which will typically prompt for the +passphrase on the current terminal with echoing turned off. +.PP +The default passphrase callback is sometimes inappropriate (for example +in a \s-1GUI\s0 application) so an alternative can be supplied. The callback +routine has the following form: +.PP +.Vb 1 +\& int cb(char *buf, int size, int rwflag, void *u); +.Ve +.PP +\&\fBbuf\fR is the buffer to write the passphrase to. \fBsize\fR is the maximum +length of the passphrase (i.e. the size of buf). \fBrwflag\fR is a flag +which is set to 0 when reading and 1 when writing. A typical routine +will ask the user to verify the passphrase (for example by prompting +for it twice) if \fBrwflag\fR is 1. The \fBu\fR parameter has the same +value as the \fBu\fR parameter passed to the \s-1PEM\s0 routine. It allows +arbitrary data to be passed to the callback by the application +(for example a window handle in a \s-1GUI\s0 application). The callback +\&\fBmust\fR return the number of characters in the passphrase or \-1 if +an error occurred. +.SH "NOTES" +.IX Header "NOTES" +The old \fBPrivateKey\fR write routines are retained for compatibility. +New applications should write private keys using the +\&\fBPEM_write_bio_PKCS8PrivateKey()\fR or \fBPEM_write_PKCS8PrivateKey()\fR routines +because they are more secure (they use an iteration count of 2048 whereas +the traditional routines use a count of 1) unless compatibility with older +versions of OpenSSL is important. +.PP +The \fBPrivateKey\fR read routines can be used in all applications because +they handle all formats transparently. +.PP +A frequent cause of problems is attempting to use the \s-1PEM\s0 routines like +this: +.PP +.Vb 1 +\& X509 *x; +\& +\& PEM_read_bio_X509(bp, &x, 0, NULL); +.Ve +.PP +this is a bug because an attempt will be made to reuse the data at \fBx\fR +which is an uninitialised pointer. +.PP +These functions make no assumption regarding the pass phrase received from the +password callback. +It will simply be treated as a byte sequence. +.SH "PEM ENCRYPTION FORMAT" +.IX Header "PEM ENCRYPTION FORMAT" +These old \fBPrivateKey\fR routines use a non standard technique for encryption. +.PP +The private key (or other data) takes the following form: +.PP +.Vb 3 +\& \-\-\-\-\-BEGIN RSA PRIVATE KEY\-\-\-\-\- +\& Proc\-Type: 4,ENCRYPTED +\& DEK\-Info: DES\-EDE3\-CBC,3F17F5316E2BAC89 +\& +\& ...base64 encoded data... +\& \-\-\-\-\-END RSA PRIVATE KEY\-\-\-\-\- +.Ve +.PP +The line beginning with \fIProc-Type\fR contains the version and the +protection on the encapsulated data. The line beginning \fIDEK-Info\fR +contains two comma separated values: the encryption algorithm name as +used by \fBEVP_get_cipherbyname()\fR and an initialization vector used by the +cipher encoded as a set of hexadecimal digits. After those two lines is +the base64\-encoded encrypted data. +.PP +The encryption key is derived using \fBEVP_BytesToKey()\fR. The cipher's +initialization vector is passed to \fBEVP_BytesToKey()\fR as the \fBsalt\fR +parameter. Internally, \fB\s-1PKCS5_SALT_LEN\s0\fR bytes of the salt are used +(regardless of the size of the initialization vector). The user's +password is passed to \fBEVP_BytesToKey()\fR using the \fBdata\fR and \fBdatal\fR +parameters. Finally, the library uses an iteration count of 1 for +\&\fBEVP_BytesToKey()\fR. +.PP +The \fBkey\fR derived by \fBEVP_BytesToKey()\fR along with the original initialization +vector is then used to decrypt the encrypted data. The \fBiv\fR produced by +\&\fBEVP_BytesToKey()\fR is not utilized or needed, and \s-1NULL\s0 should be passed to +the function. +.PP +The pseudo code to derive the key would look similar to: +.PP +.Vb 2 +\& EVP_CIPHER* cipher = EVP_des_ede3_cbc(); +\& EVP_MD* md = EVP_md5(); +\& +\& unsigned int nkey = EVP_CIPHER_key_length(cipher); +\& unsigned int niv = EVP_CIPHER_iv_length(cipher); +\& unsigned char key[nkey]; +\& unsigned char iv[niv]; +\& +\& memcpy(iv, HexToBin("3F17F5316E2BAC89"), niv); +\& rc = EVP_BytesToKey(cipher, md, iv /*salt*/, pword, plen, 1, key, NULL /*iv*/); +\& if (rc != nkey) +\& /* Error */ +\& +\& /* On success, use key and iv to initialize the cipher */ +.Ve +.SH "BUGS" +.IX Header "BUGS" +The \s-1PEM\s0 read routines in some versions of OpenSSL will not correctly reuse +an existing structure. Therefore the following: +.PP +.Vb 1 +\& PEM_read_bio_X509(bp, &x, 0, NULL); +.Ve +.PP +where \fBx\fR already contains a valid certificate, may not work, whereas: +.PP +.Vb 2 +\& X509_free(x); +\& x = PEM_read_bio_X509(bp, NULL, 0, NULL); +.Ve +.PP +is guaranteed to work. +.SH "RETURN VALUES" +.IX Header "RETURN VALUES" +The read routines return either a pointer to the structure read or \s-1NULL\s0 +if an error occurred. +.PP +The write routines return 1 for success or 0 for failure. +.SH "EXAMPLES" +.IX Header "EXAMPLES" +Although the \s-1PEM\s0 routines take several arguments in almost all applications +most of them are set to 0 or \s-1NULL.\s0 +.PP +Read a certificate in \s-1PEM\s0 format from a \s-1BIO:\s0 +.PP +.Vb 1 +\& X509 *x; +\& +\& x = PEM_read_bio_X509(bp, NULL, 0, NULL); +\& if (x == NULL) +\& /* Error */ +.Ve +.PP +Alternative method: +.PP +.Vb 1 +\& X509 *x = NULL; +\& +\& if (!PEM_read_bio_X509(bp, &x, 0, NULL)) +\& /* Error */ +.Ve +.PP +Write a certificate to a \s-1BIO:\s0 +.PP +.Vb 2 +\& if (!PEM_write_bio_X509(bp, x)) +\& /* Error */ +.Ve +.PP +Write a private key (using traditional format) to a \s-1BIO\s0 using +triple \s-1DES\s0 encryption, the pass phrase is prompted for: +.PP +.Vb 2 +\& if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL)) +\& /* Error */ +.Ve +.PP +Write a private key (using PKCS#8 format) to a \s-1BIO\s0 using triple +\&\s-1DES\s0 encryption, using the pass phrase \*(L"hello\*(R": +.PP +.Vb 3 +\& if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(), +\& NULL, 0, 0, "hello")) +\& /* Error */ +.Ve +.PP +Read a private key from a \s-1BIO\s0 using a pass phrase callback: +.PP +.Vb 3 +\& key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key"); +\& if (key == NULL) +\& /* Error */ +.Ve +.PP +Skeleton pass phrase callback: +.PP +.Vb 2 +\& int pass_cb(char *buf, int size, int rwflag, void *u) +\& { +\& +\& /* We\*(Aqd probably do something else if \*(Aqrwflag\*(Aq is 1 */ +\& printf("Enter pass phrase for \e"%s\e"\en", (char *)u); +\& +\& /* get pass phrase, length \*(Aqlen\*(Aq into \*(Aqtmp\*(Aq */ +\& char *tmp = "hello"; +\& if (tmp == NULL) /* An error occurred */ +\& return \-1; +\& +\& size_t len = strlen(tmp); +\& +\& if (len > size) +\& len = size; +\& memcpy(buf, tmp, len); +\& return len; +\& } +.Ve +.SH "SEE ALSO" +.IX Header "SEE ALSO" +\&\fBEVP_EncryptInit\fR\|(3), \fBEVP_BytesToKey\fR\|(3), +\&\fBpassphrase\-encoding\fR\|(7) +.SH "HISTORY" +.IX Header "HISTORY" +The old Netscape certificate sequences were no longer documented +in OpenSSL 1.1.0; applications should use the \s-1PKCS7\s0 standard instead +as they will be formally deprecated in a future releases. +.SH "COPYRIGHT" +.IX Header "COPYRIGHT" +Copyright 2001\-2019 The OpenSSL Project Authors. All Rights Reserved. +.PP +Licensed under the OpenSSL license (the \*(L"License\*(R"). You may not use +this file except in compliance with the License. You can obtain a copy +in the file \s-1LICENSE\s0 in the source distribution or at +<https://www.openssl.org/source/license.html>. |