aboutsummaryrefslogtreecommitdiff
path: root/sys/amd64/vmm/vmm_instruction_emul.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/amd64/vmm/vmm_instruction_emul.c')
-rw-r--r--sys/amd64/vmm/vmm_instruction_emul.c2940
1 files changed, 2940 insertions, 0 deletions
diff --git a/sys/amd64/vmm/vmm_instruction_emul.c b/sys/amd64/vmm/vmm_instruction_emul.c
new file mode 100644
index 000000000000..c54b6e6d0074
--- /dev/null
+++ b/sys/amd64/vmm/vmm_instruction_emul.c
@@ -0,0 +1,2940 @@
+/*-
+ * SPDX-License-Identifier: BSD-2-Clause
+ *
+ * Copyright (c) 2012 Sandvine, Inc.
+ * Copyright (c) 2012 NetApp, Inc.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include <sys/cdefs.h>
+#ifdef _KERNEL
+#include <sys/param.h>
+#include <sys/pcpu.h>
+#include <sys/systm.h>
+#include <sys/proc.h>
+
+#include <vm/vm.h>
+#include <vm/pmap.h>
+
+#include <machine/vmparam.h>
+#include <machine/vmm.h>
+
+#include <dev/vmm/vmm_mem.h>
+#else /* !_KERNEL */
+#include <sys/types.h>
+#include <sys/errno.h>
+#include <sys/_iovec.h>
+
+#include <machine/vmm.h>
+
+#include <err.h>
+#include <assert.h>
+#include <stdbool.h>
+#include <stddef.h>
+#include <stdio.h>
+#include <string.h>
+#include <strings.h>
+#include <vmmapi.h>
+#define __diagused
+#define KASSERT(exp,msg) assert((exp))
+#define panic(...) errx(4, __VA_ARGS__)
+#endif /* _KERNEL */
+
+#include <machine/vmm_instruction_emul.h>
+#include <x86/psl.h>
+#include <x86/specialreg.h>
+
+/* struct vie_op.op_flags */
+#define VIE_OP_F_IMM (1 << 0) /* 16/32-bit immediate operand */
+#define VIE_OP_F_IMM8 (1 << 1) /* 8-bit immediate operand */
+#define VIE_OP_F_MOFFSET (1 << 2) /* 16/32/64-bit immediate moffset */
+#define VIE_OP_F_NO_MODRM (1 << 3)
+#define VIE_OP_F_NO_GLA_VERIFICATION (1 << 4)
+
+static const struct vie_op three_byte_opcodes_0f38[256] = {
+ [0xF7] = {
+ .op_byte = 0xF7,
+ .op_type = VIE_OP_TYPE_BEXTR,
+ },
+};
+
+static const struct vie_op two_byte_opcodes[256] = {
+ [0xAE] = {
+ .op_byte = 0xAE,
+ .op_type = VIE_OP_TYPE_TWOB_GRP15,
+ },
+ [0xB6] = {
+ .op_byte = 0xB6,
+ .op_type = VIE_OP_TYPE_MOVZX,
+ },
+ [0xB7] = {
+ .op_byte = 0xB7,
+ .op_type = VIE_OP_TYPE_MOVZX,
+ },
+ [0xBA] = {
+ .op_byte = 0xBA,
+ .op_type = VIE_OP_TYPE_BITTEST,
+ .op_flags = VIE_OP_F_IMM8,
+ },
+ [0xBE] = {
+ .op_byte = 0xBE,
+ .op_type = VIE_OP_TYPE_MOVSX,
+ },
+};
+
+static const struct vie_op one_byte_opcodes[256] = {
+ [0x03] = {
+ .op_byte = 0x03,
+ .op_type = VIE_OP_TYPE_ADD,
+ },
+ [0x0F] = {
+ .op_byte = 0x0F,
+ .op_type = VIE_OP_TYPE_TWO_BYTE
+ },
+ [0x0B] = {
+ .op_byte = 0x0B,
+ .op_type = VIE_OP_TYPE_OR,
+ },
+ [0x2B] = {
+ .op_byte = 0x2B,
+ .op_type = VIE_OP_TYPE_SUB,
+ },
+ [0x39] = {
+ .op_byte = 0x39,
+ .op_type = VIE_OP_TYPE_CMP,
+ },
+ [0x3B] = {
+ .op_byte = 0x3B,
+ .op_type = VIE_OP_TYPE_CMP,
+ },
+ [0x6E] = {
+ .op_byte = 0x6E,
+ .op_type = VIE_OP_TYPE_OUTS,
+ .op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION,
+ },
+ [0x6F] = {
+ .op_byte = 0x6F,
+ .op_type = VIE_OP_TYPE_OUTS,
+ .op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION,
+ },
+ [0x88] = {
+ .op_byte = 0x88,
+ .op_type = VIE_OP_TYPE_MOV,
+ },
+ [0x89] = {
+ .op_byte = 0x89,
+ .op_type = VIE_OP_TYPE_MOV,
+ },
+ [0x8A] = {
+ .op_byte = 0x8A,
+ .op_type = VIE_OP_TYPE_MOV,
+ },
+ [0x8B] = {
+ .op_byte = 0x8B,
+ .op_type = VIE_OP_TYPE_MOV,
+ },
+ [0xA1] = {
+ .op_byte = 0xA1,
+ .op_type = VIE_OP_TYPE_MOV,
+ .op_flags = VIE_OP_F_MOFFSET | VIE_OP_F_NO_MODRM,
+ },
+ [0xA3] = {
+ .op_byte = 0xA3,
+ .op_type = VIE_OP_TYPE_MOV,
+ .op_flags = VIE_OP_F_MOFFSET | VIE_OP_F_NO_MODRM,
+ },
+ [0xA4] = {
+ .op_byte = 0xA4,
+ .op_type = VIE_OP_TYPE_MOVS,
+ .op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
+ },
+ [0xA5] = {
+ .op_byte = 0xA5,
+ .op_type = VIE_OP_TYPE_MOVS,
+ .op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
+ },
+ [0xAA] = {
+ .op_byte = 0xAA,
+ .op_type = VIE_OP_TYPE_STOS,
+ .op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
+ },
+ [0xAB] = {
+ .op_byte = 0xAB,
+ .op_type = VIE_OP_TYPE_STOS,
+ .op_flags = VIE_OP_F_NO_MODRM | VIE_OP_F_NO_GLA_VERIFICATION
+ },
+ [0xC6] = {
+ /* XXX Group 11 extended opcode - not just MOV */
+ .op_byte = 0xC6,
+ .op_type = VIE_OP_TYPE_MOV,
+ .op_flags = VIE_OP_F_IMM8,
+ },
+ [0xC7] = {
+ .op_byte = 0xC7,
+ .op_type = VIE_OP_TYPE_MOV,
+ .op_flags = VIE_OP_F_IMM,
+ },
+ [0x23] = {
+ .op_byte = 0x23,
+ .op_type = VIE_OP_TYPE_AND,
+ },
+ [0x80] = {
+ /* Group 1 extended opcode */
+ .op_byte = 0x80,
+ .op_type = VIE_OP_TYPE_GROUP1,
+ .op_flags = VIE_OP_F_IMM8,
+ },
+ [0x81] = {
+ /* Group 1 extended opcode */
+ .op_byte = 0x81,
+ .op_type = VIE_OP_TYPE_GROUP1,
+ .op_flags = VIE_OP_F_IMM,
+ },
+ [0x83] = {
+ /* Group 1 extended opcode */
+ .op_byte = 0x83,
+ .op_type = VIE_OP_TYPE_GROUP1,
+ .op_flags = VIE_OP_F_IMM8,
+ },
+ [0x8F] = {
+ /* XXX Group 1A extended opcode - not just POP */
+ .op_byte = 0x8F,
+ .op_type = VIE_OP_TYPE_POP,
+ },
+ [0xF6] = {
+ /* XXX Group 3 extended opcode - not just TEST */
+ .op_byte = 0xF6,
+ .op_type = VIE_OP_TYPE_TEST,
+ .op_flags = VIE_OP_F_IMM8,
+ },
+ [0xF7] = {
+ /* XXX Group 3 extended opcode - not just TEST */
+ .op_byte = 0xF7,
+ .op_type = VIE_OP_TYPE_TEST,
+ .op_flags = VIE_OP_F_IMM,
+ },
+ [0xFF] = {
+ /* XXX Group 5 extended opcode - not just PUSH */
+ .op_byte = 0xFF,
+ .op_type = VIE_OP_TYPE_PUSH,
+ }
+};
+
+/* struct vie.mod */
+#define VIE_MOD_INDIRECT 0
+#define VIE_MOD_INDIRECT_DISP8 1
+#define VIE_MOD_INDIRECT_DISP32 2
+#define VIE_MOD_DIRECT 3
+
+/* struct vie.rm */
+#define VIE_RM_SIB 4
+#define VIE_RM_DISP32 5
+
+#define GB (1024 * 1024 * 1024)
+
+static enum vm_reg_name gpr_map[16] = {
+ VM_REG_GUEST_RAX,
+ VM_REG_GUEST_RCX,
+ VM_REG_GUEST_RDX,
+ VM_REG_GUEST_RBX,
+ VM_REG_GUEST_RSP,
+ VM_REG_GUEST_RBP,
+ VM_REG_GUEST_RSI,
+ VM_REG_GUEST_RDI,
+ VM_REG_GUEST_R8,
+ VM_REG_GUEST_R9,
+ VM_REG_GUEST_R10,
+ VM_REG_GUEST_R11,
+ VM_REG_GUEST_R12,
+ VM_REG_GUEST_R13,
+ VM_REG_GUEST_R14,
+ VM_REG_GUEST_R15
+};
+
+static uint64_t size2mask[] = {
+ [1] = 0xff,
+ [2] = 0xffff,
+ [4] = 0xffffffff,
+ [8] = 0xffffffffffffffff,
+};
+
+static int
+vie_read_register(struct vcpu *vcpu, enum vm_reg_name reg, uint64_t *rval)
+{
+ int error;
+
+ error = vm_get_register(vcpu, reg, rval);
+
+ return (error);
+}
+
+static void
+vie_calc_bytereg(struct vie *vie, enum vm_reg_name *reg, int *lhbr)
+{
+ *lhbr = 0;
+ *reg = gpr_map[vie->reg];
+
+ /*
+ * 64-bit mode imposes limitations on accessing legacy high byte
+ * registers (lhbr).
+ *
+ * The legacy high-byte registers cannot be addressed if the REX
+ * prefix is present. In this case the values 4, 5, 6 and 7 of the
+ * 'ModRM:reg' field address %spl, %bpl, %sil and %dil respectively.
+ *
+ * If the REX prefix is not present then the values 4, 5, 6 and 7
+ * of the 'ModRM:reg' field address the legacy high-byte registers,
+ * %ah, %ch, %dh and %bh respectively.
+ */
+ if (!vie->rex_present) {
+ if (vie->reg & 0x4) {
+ *lhbr = 1;
+ *reg = gpr_map[vie->reg & 0x3];
+ }
+ }
+}
+
+static int
+vie_read_bytereg(struct vcpu *vcpu, struct vie *vie, uint8_t *rval)
+{
+ uint64_t val;
+ int error, lhbr;
+ enum vm_reg_name reg;
+
+ vie_calc_bytereg(vie, &reg, &lhbr);
+ error = vm_get_register(vcpu, reg, &val);
+
+ /*
+ * To obtain the value of a legacy high byte register shift the
+ * base register right by 8 bits (%ah = %rax >> 8).
+ */
+ if (lhbr)
+ *rval = val >> 8;
+ else
+ *rval = val;
+ return (error);
+}
+
+static int
+vie_write_bytereg(struct vcpu *vcpu, struct vie *vie, uint8_t byte)
+{
+ uint64_t origval, val, mask;
+ int error, lhbr;
+ enum vm_reg_name reg;
+
+ vie_calc_bytereg(vie, &reg, &lhbr);
+ error = vm_get_register(vcpu, reg, &origval);
+ if (error == 0) {
+ val = byte;
+ mask = 0xff;
+ if (lhbr) {
+ /*
+ * Shift left by 8 to store 'byte' in a legacy high
+ * byte register.
+ */
+ val <<= 8;
+ mask <<= 8;
+ }
+ val |= origval & ~mask;
+ error = vm_set_register(vcpu, reg, val);
+ }
+ return (error);
+}
+
+int
+vie_update_register(struct vcpu *vcpu, enum vm_reg_name reg,
+ uint64_t val, int size)
+{
+ int error;
+ uint64_t origval;
+
+ switch (size) {
+ case 1:
+ case 2:
+ error = vie_read_register(vcpu, reg, &origval);
+ if (error)
+ return (error);
+ val &= size2mask[size];
+ val |= origval & ~size2mask[size];
+ break;
+ case 4:
+ val &= 0xffffffffUL;
+ break;
+ case 8:
+ break;
+ default:
+ return (EINVAL);
+ }
+
+ error = vm_set_register(vcpu, reg, val);
+ return (error);
+}
+
+#define RFLAGS_STATUS_BITS (PSL_C | PSL_PF | PSL_AF | PSL_Z | PSL_N | PSL_V)
+
+/*
+ * Return the status flags that would result from doing (x - y).
+ */
+#define GETCC(sz) \
+static u_long \
+getcc##sz(uint##sz##_t x, uint##sz##_t y) \
+{ \
+ u_long rflags; \
+ \
+ __asm __volatile("sub %2,%1; pushfq; popq %0" : \
+ "=r" (rflags), "+r" (x) : "m" (y)); \
+ return (rflags); \
+} struct __hack
+
+GETCC(8);
+GETCC(16);
+GETCC(32);
+GETCC(64);
+
+static u_long
+getcc(int opsize, uint64_t x, uint64_t y)
+{
+ KASSERT(opsize == 1 || opsize == 2 || opsize == 4 || opsize == 8,
+ ("getcc: invalid operand size %d", opsize));
+
+ if (opsize == 1)
+ return (getcc8(x, y));
+ else if (opsize == 2)
+ return (getcc16(x, y));
+ else if (opsize == 4)
+ return (getcc32(x, y));
+ else
+ return (getcc64(x, y));
+}
+
+/*
+ * Macro creation of functions getaddflags{8,16,32,64}
+ */
+#define GETADDFLAGS(sz) \
+static u_long \
+getaddflags##sz(uint##sz##_t x, uint##sz##_t y) \
+{ \
+ u_long rflags; \
+ \
+ __asm __volatile("add %2,%1; pushfq; popq %0" : \
+ "=r" (rflags), "+r" (x) : "m" (y)); \
+ return (rflags); \
+} struct __hack
+
+GETADDFLAGS(8);
+GETADDFLAGS(16);
+GETADDFLAGS(32);
+GETADDFLAGS(64);
+
+static u_long
+getaddflags(int opsize, uint64_t x, uint64_t y)
+{
+ KASSERT(opsize == 1 || opsize == 2 || opsize == 4 || opsize == 8,
+ ("getaddflags: invalid operand size %d", opsize));
+
+ if (opsize == 1)
+ return (getaddflags8(x, y));
+ else if (opsize == 2)
+ return (getaddflags16(x, y));
+ else if (opsize == 4)
+ return (getaddflags32(x, y));
+ else
+ return (getaddflags64(x, y));
+}
+
+/*
+ * Return the status flags that would result from doing (x & y).
+ */
+#define GETANDFLAGS(sz) \
+static u_long \
+getandflags##sz(uint##sz##_t x, uint##sz##_t y) \
+{ \
+ u_long rflags; \
+ \
+ __asm __volatile("and %2,%1; pushfq; popq %0" : \
+ "=r" (rflags), "+r" (x) : "m" (y)); \
+ return (rflags); \
+} struct __hack
+
+GETANDFLAGS(8);
+GETANDFLAGS(16);
+GETANDFLAGS(32);
+GETANDFLAGS(64);
+
+static u_long
+getandflags(int opsize, uint64_t x, uint64_t y)
+{
+ KASSERT(opsize == 1 || opsize == 2 || opsize == 4 || opsize == 8,
+ ("getandflags: invalid operand size %d", opsize));
+
+ if (opsize == 1)
+ return (getandflags8(x, y));
+ else if (opsize == 2)
+ return (getandflags16(x, y));
+ else if (opsize == 4)
+ return (getandflags32(x, y));
+ else
+ return (getandflags64(x, y));
+}
+
+static int
+emulate_mov(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
+ mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
+{
+ int error, size;
+ enum vm_reg_name reg;
+ uint8_t byte;
+ uint64_t val;
+
+ size = vie->opsize;
+ error = EINVAL;
+
+ switch (vie->op.op_byte) {
+ case 0x88:
+ /*
+ * MOV byte from reg (ModRM:reg) to mem (ModRM:r/m)
+ * 88/r: mov r/m8, r8
+ * REX + 88/r: mov r/m8, r8 (%ah, %ch, %dh, %bh not available)
+ */
+ size = 1; /* override for byte operation */
+ error = vie_read_bytereg(vcpu, vie, &byte);
+ if (error == 0)
+ error = memwrite(vcpu, gpa, byte, size, arg);
+ break;
+ case 0x89:
+ /*
+ * MOV from reg (ModRM:reg) to mem (ModRM:r/m)
+ * 89/r: mov r/m16, r16
+ * 89/r: mov r/m32, r32
+ * REX.W + 89/r mov r/m64, r64
+ */
+ reg = gpr_map[vie->reg];
+ error = vie_read_register(vcpu, reg, &val);
+ if (error == 0) {
+ val &= size2mask[size];
+ error = memwrite(vcpu, gpa, val, size, arg);
+ }
+ break;
+ case 0x8A:
+ /*
+ * MOV byte from mem (ModRM:r/m) to reg (ModRM:reg)
+ * 8A/r: mov r8, r/m8
+ * REX + 8A/r: mov r8, r/m8
+ */
+ size = 1; /* override for byte operation */
+ error = memread(vcpu, gpa, &val, size, arg);
+ if (error == 0)
+ error = vie_write_bytereg(vcpu, vie, val);
+ break;
+ case 0x8B:
+ /*
+ * MOV from mem (ModRM:r/m) to reg (ModRM:reg)
+ * 8B/r: mov r16, r/m16
+ * 8B/r: mov r32, r/m32
+ * REX.W 8B/r: mov r64, r/m64
+ */
+ error = memread(vcpu, gpa, &val, size, arg);
+ if (error == 0) {
+ reg = gpr_map[vie->reg];
+ error = vie_update_register(vcpu, reg, val, size);
+ }
+ break;
+ case 0xA1:
+ /*
+ * MOV from seg:moffset to AX/EAX/RAX
+ * A1: mov AX, moffs16
+ * A1: mov EAX, moffs32
+ * REX.W + A1: mov RAX, moffs64
+ */
+ error = memread(vcpu, gpa, &val, size, arg);
+ if (error == 0) {
+ reg = VM_REG_GUEST_RAX;
+ error = vie_update_register(vcpu, reg, val, size);
+ }
+ break;
+ case 0xA3:
+ /*
+ * MOV from AX/EAX/RAX to seg:moffset
+ * A3: mov moffs16, AX
+ * A3: mov moffs32, EAX
+ * REX.W + A3: mov moffs64, RAX
+ */
+ error = vie_read_register(vcpu, VM_REG_GUEST_RAX, &val);
+ if (error == 0) {
+ val &= size2mask[size];
+ error = memwrite(vcpu, gpa, val, size, arg);
+ }
+ break;
+ case 0xC6:
+ /*
+ * MOV from imm8 to mem (ModRM:r/m)
+ * C6/0 mov r/m8, imm8
+ * REX + C6/0 mov r/m8, imm8
+ */
+ size = 1; /* override for byte operation */
+ error = memwrite(vcpu, gpa, vie->immediate, size, arg);
+ break;
+ case 0xC7:
+ /*
+ * MOV from imm16/imm32 to mem (ModRM:r/m)
+ * C7/0 mov r/m16, imm16
+ * C7/0 mov r/m32, imm32
+ * REX.W + C7/0 mov r/m64, imm32 (sign-extended to 64-bits)
+ */
+ val = vie->immediate & size2mask[size];
+ error = memwrite(vcpu, gpa, val, size, arg);
+ break;
+ default:
+ break;
+ }
+
+ return (error);
+}
+
+static int
+emulate_movx(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
+ mem_region_read_t memread, mem_region_write_t memwrite __unused, void *arg)
+{
+ int error, size;
+ enum vm_reg_name reg;
+ uint64_t val;
+
+ size = vie->opsize;
+ error = EINVAL;
+
+ switch (vie->op.op_byte) {
+ case 0xB6:
+ /*
+ * MOV and zero extend byte from mem (ModRM:r/m) to
+ * reg (ModRM:reg).
+ *
+ * 0F B6/r movzx r16, r/m8
+ * 0F B6/r movzx r32, r/m8
+ * REX.W + 0F B6/r movzx r64, r/m8
+ */
+
+ /* get the first operand */
+ error = memread(vcpu, gpa, &val, 1, arg);
+ if (error)
+ break;
+
+ /* get the second operand */
+ reg = gpr_map[vie->reg];
+
+ /* zero-extend byte */
+ val = (uint8_t)val;
+
+ /* write the result */
+ error = vie_update_register(vcpu, reg, val, size);
+ break;
+ case 0xB7:
+ /*
+ * MOV and zero extend word from mem (ModRM:r/m) to
+ * reg (ModRM:reg).
+ *
+ * 0F B7/r movzx r32, r/m16
+ * REX.W + 0F B7/r movzx r64, r/m16
+ */
+ error = memread(vcpu, gpa, &val, 2, arg);
+ if (error)
+ return (error);
+
+ reg = gpr_map[vie->reg];
+
+ /* zero-extend word */
+ val = (uint16_t)val;
+
+ error = vie_update_register(vcpu, reg, val, size);
+ break;
+ case 0xBE:
+ /*
+ * MOV and sign extend byte from mem (ModRM:r/m) to
+ * reg (ModRM:reg).
+ *
+ * 0F BE/r movsx r16, r/m8
+ * 0F BE/r movsx r32, r/m8
+ * REX.W + 0F BE/r movsx r64, r/m8
+ */
+
+ /* get the first operand */
+ error = memread(vcpu, gpa, &val, 1, arg);
+ if (error)
+ break;
+
+ /* get the second operand */
+ reg = gpr_map[vie->reg];
+
+ /* sign extend byte */
+ val = (int8_t)val;
+
+ /* write the result */
+ error = vie_update_register(vcpu, reg, val, size);
+ break;
+ default:
+ break;
+ }
+ return (error);
+}
+
+/*
+ * Helper function to calculate and validate a linear address.
+ */
+static int
+get_gla(struct vcpu *vcpu, struct vie *vie __unused,
+ struct vm_guest_paging *paging, int opsize, int addrsize, int prot,
+ enum vm_reg_name seg, enum vm_reg_name gpr, uint64_t *gla, int *fault)
+{
+ struct seg_desc desc;
+ uint64_t cr0, val, rflags;
+ int error __diagused;
+
+ error = vie_read_register(vcpu, VM_REG_GUEST_CR0, &cr0);
+ KASSERT(error == 0, ("%s: error %d getting cr0", __func__, error));
+
+ error = vie_read_register(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
+ KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
+
+ error = vm_get_seg_desc(vcpu, seg, &desc);
+ KASSERT(error == 0, ("%s: error %d getting segment descriptor %d",
+ __func__, error, seg));
+
+ error = vie_read_register(vcpu, gpr, &val);
+ KASSERT(error == 0, ("%s: error %d getting register %d", __func__,
+ error, gpr));
+
+ if (vie_calculate_gla(paging->cpu_mode, seg, &desc, val, opsize,
+ addrsize, prot, gla)) {
+ if (seg == VM_REG_GUEST_SS)
+ vm_inject_ss(vcpu, 0);
+ else
+ vm_inject_gp(vcpu);
+ goto guest_fault;
+ }
+
+ if (vie_canonical_check(paging->cpu_mode, *gla)) {
+ if (seg == VM_REG_GUEST_SS)
+ vm_inject_ss(vcpu, 0);
+ else
+ vm_inject_gp(vcpu);
+ goto guest_fault;
+ }
+
+ if (vie_alignment_check(paging->cpl, opsize, cr0, rflags, *gla)) {
+ vm_inject_ac(vcpu, 0);
+ goto guest_fault;
+ }
+
+ *fault = 0;
+ return (0);
+
+guest_fault:
+ *fault = 1;
+ return (0);
+}
+
+static int
+emulate_movs(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
+ struct vm_guest_paging *paging, mem_region_read_t memread,
+ mem_region_write_t memwrite, void *arg)
+{
+#ifdef _KERNEL
+ struct vm_copyinfo copyinfo[2];
+#else
+ struct iovec copyinfo[2];
+#endif
+ uint64_t dstaddr, srcaddr, dstgpa, srcgpa, val;
+ uint64_t rcx, rdi, rsi, rflags;
+ int error, fault, opsize, seg, repeat;
+
+ opsize = (vie->op.op_byte == 0xA4) ? 1 : vie->opsize;
+ val = 0;
+ error = 0;
+
+ /*
+ * XXX although the MOVS instruction is only supposed to be used with
+ * the "rep" prefix some guests like FreeBSD will use "repnz" instead.
+ *
+ * Empirically the "repnz" prefix has identical behavior to "rep"
+ * and the zero flag does not make a difference.
+ */
+ repeat = vie->repz_present | vie->repnz_present;
+
+ if (repeat) {
+ error = vie_read_register(vcpu, VM_REG_GUEST_RCX, &rcx);
+ KASSERT(!error, ("%s: error %d getting rcx", __func__, error));
+
+ /*
+ * The count register is %rcx, %ecx or %cx depending on the
+ * address size of the instruction.
+ */
+ if ((rcx & vie_size2mask(vie->addrsize)) == 0) {
+ error = 0;
+ goto done;
+ }
+ }
+
+ /*
+ * Source Destination Comments
+ * --------------------------------------------
+ * (1) memory memory n/a
+ * (2) memory mmio emulated
+ * (3) mmio memory emulated
+ * (4) mmio mmio emulated
+ *
+ * At this point we don't have sufficient information to distinguish
+ * between (2), (3) and (4). We use 'vm_copy_setup()' to tease this
+ * out because it will succeed only when operating on regular memory.
+ *
+ * XXX the emulation doesn't properly handle the case where 'gpa'
+ * is straddling the boundary between the normal memory and MMIO.
+ */
+
+ seg = vie->segment_override ? vie->segment_register : VM_REG_GUEST_DS;
+ error = get_gla(vcpu, vie, paging, opsize, vie->addrsize,
+ PROT_READ, seg, VM_REG_GUEST_RSI, &srcaddr, &fault);
+ if (error || fault)
+ goto done;
+
+ error = vm_copy_setup(vcpu, paging, srcaddr, opsize, PROT_READ,
+ copyinfo, nitems(copyinfo), &fault);
+ if (error == 0) {
+ if (fault)
+ goto done; /* Resume guest to handle fault */
+
+ /*
+ * case (2): read from system memory and write to mmio.
+ */
+ vm_copyin(copyinfo, &val, opsize);
+ vm_copy_teardown(copyinfo, nitems(copyinfo));
+ error = memwrite(vcpu, gpa, val, opsize, arg);
+ if (error)
+ goto done;
+ } else {
+ /*
+ * 'vm_copy_setup()' is expected to fail for cases (3) and (4)
+ * if 'srcaddr' is in the mmio space.
+ */
+
+ error = get_gla(vcpu, vie, paging, opsize, vie->addrsize,
+ PROT_WRITE, VM_REG_GUEST_ES, VM_REG_GUEST_RDI, &dstaddr,
+ &fault);
+ if (error || fault)
+ goto done;
+
+ error = vm_copy_setup(vcpu, paging, dstaddr, opsize,
+ PROT_WRITE, copyinfo, nitems(copyinfo), &fault);
+ if (error == 0) {
+ if (fault)
+ goto done; /* Resume guest to handle fault */
+
+ /*
+ * case (3): read from MMIO and write to system memory.
+ *
+ * A MMIO read can have side-effects so we
+ * commit to it only after vm_copy_setup() is
+ * successful. If a page-fault needs to be
+ * injected into the guest then it will happen
+ * before the MMIO read is attempted.
+ */
+ error = memread(vcpu, gpa, &val, opsize, arg);
+ if (error)
+ goto done;
+
+ vm_copyout(&val, copyinfo, opsize);
+ vm_copy_teardown(copyinfo, nitems(copyinfo));
+ } else {
+ /*
+ * Case (4): read from and write to mmio.
+ *
+ * Commit to the MMIO read/write (with potential
+ * side-effects) only after we are sure that the
+ * instruction is not going to be restarted due
+ * to address translation faults.
+ */
+ error = vm_gla2gpa(vcpu, paging, srcaddr,
+ PROT_READ, &srcgpa, &fault);
+ if (error || fault)
+ goto done;
+
+ error = vm_gla2gpa(vcpu, paging, dstaddr,
+ PROT_WRITE, &dstgpa, &fault);
+ if (error || fault)
+ goto done;
+
+ error = memread(vcpu, srcgpa, &val, opsize, arg);
+ if (error)
+ goto done;
+
+ error = memwrite(vcpu, dstgpa, val, opsize, arg);
+ if (error)
+ goto done;
+ }
+ }
+
+ error = vie_read_register(vcpu, VM_REG_GUEST_RSI, &rsi);
+ KASSERT(error == 0, ("%s: error %d getting rsi", __func__, error));
+
+ error = vie_read_register(vcpu, VM_REG_GUEST_RDI, &rdi);
+ KASSERT(error == 0, ("%s: error %d getting rdi", __func__, error));
+
+ error = vie_read_register(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
+ KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
+
+ if (rflags & PSL_D) {
+ rsi -= opsize;
+ rdi -= opsize;
+ } else {
+ rsi += opsize;
+ rdi += opsize;
+ }
+
+ error = vie_update_register(vcpu, VM_REG_GUEST_RSI, rsi,
+ vie->addrsize);
+ KASSERT(error == 0, ("%s: error %d updating rsi", __func__, error));
+
+ error = vie_update_register(vcpu, VM_REG_GUEST_RDI, rdi,
+ vie->addrsize);
+ KASSERT(error == 0, ("%s: error %d updating rdi", __func__, error));
+
+ if (repeat) {
+ rcx = rcx - 1;
+ error = vie_update_register(vcpu, VM_REG_GUEST_RCX,
+ rcx, vie->addrsize);
+ KASSERT(!error, ("%s: error %d updating rcx", __func__, error));
+
+ /*
+ * Repeat the instruction if the count register is not zero.
+ */
+ if ((rcx & vie_size2mask(vie->addrsize)) != 0)
+ vm_restart_instruction(vcpu);
+ }
+done:
+ KASSERT(error == 0 || error == EFAULT, ("%s: unexpected error %d",
+ __func__, error));
+ return (error);
+}
+
+static int
+emulate_stos(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
+ struct vm_guest_paging *paging __unused, mem_region_read_t memread __unused,
+ mem_region_write_t memwrite, void *arg)
+{
+ int error, opsize, repeat;
+ uint64_t val;
+ uint64_t rcx, rdi, rflags;
+
+ opsize = (vie->op.op_byte == 0xAA) ? 1 : vie->opsize;
+ repeat = vie->repz_present | vie->repnz_present;
+
+ if (repeat) {
+ error = vie_read_register(vcpu, VM_REG_GUEST_RCX, &rcx);
+ KASSERT(!error, ("%s: error %d getting rcx", __func__, error));
+
+ /*
+ * The count register is %rcx, %ecx or %cx depending on the
+ * address size of the instruction.
+ */
+ if ((rcx & vie_size2mask(vie->addrsize)) == 0)
+ return (0);
+ }
+
+ error = vie_read_register(vcpu, VM_REG_GUEST_RAX, &val);
+ KASSERT(!error, ("%s: error %d getting rax", __func__, error));
+
+ error = memwrite(vcpu, gpa, val, opsize, arg);
+ if (error)
+ return (error);
+
+ error = vie_read_register(vcpu, VM_REG_GUEST_RDI, &rdi);
+ KASSERT(error == 0, ("%s: error %d getting rdi", __func__, error));
+
+ error = vie_read_register(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
+ KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
+
+ if (rflags & PSL_D)
+ rdi -= opsize;
+ else
+ rdi += opsize;
+
+ error = vie_update_register(vcpu, VM_REG_GUEST_RDI, rdi,
+ vie->addrsize);
+ KASSERT(error == 0, ("%s: error %d updating rdi", __func__, error));
+
+ if (repeat) {
+ rcx = rcx - 1;
+ error = vie_update_register(vcpu, VM_REG_GUEST_RCX,
+ rcx, vie->addrsize);
+ KASSERT(!error, ("%s: error %d updating rcx", __func__, error));
+
+ /*
+ * Repeat the instruction if the count register is not zero.
+ */
+ if ((rcx & vie_size2mask(vie->addrsize)) != 0)
+ vm_restart_instruction(vcpu);
+ }
+
+ return (0);
+}
+
+static int
+emulate_and(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
+ mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
+{
+ int error, size;
+ enum vm_reg_name reg;
+ uint64_t result, rflags, rflags2, val1, val2;
+
+ size = vie->opsize;
+ error = EINVAL;
+
+ switch (vie->op.op_byte) {
+ case 0x23:
+ /*
+ * AND reg (ModRM:reg) and mem (ModRM:r/m) and store the
+ * result in reg.
+ *
+ * 23/r and r16, r/m16
+ * 23/r and r32, r/m32
+ * REX.W + 23/r and r64, r/m64
+ */
+
+ /* get the first operand */
+ reg = gpr_map[vie->reg];
+ error = vie_read_register(vcpu, reg, &val1);
+ if (error)
+ break;
+
+ /* get the second operand */
+ error = memread(vcpu, gpa, &val2, size, arg);
+ if (error)
+ break;
+
+ /* perform the operation and write the result */
+ result = val1 & val2;
+ error = vie_update_register(vcpu, reg, result, size);
+ break;
+ case 0x81:
+ case 0x83:
+ /*
+ * AND mem (ModRM:r/m) with immediate and store the
+ * result in mem.
+ *
+ * 81 /4 and r/m16, imm16
+ * 81 /4 and r/m32, imm32
+ * REX.W + 81 /4 and r/m64, imm32 sign-extended to 64
+ *
+ * 83 /4 and r/m16, imm8 sign-extended to 16
+ * 83 /4 and r/m32, imm8 sign-extended to 32
+ * REX.W + 83/4 and r/m64, imm8 sign-extended to 64
+ */
+
+ /* get the first operand */
+ error = memread(vcpu, gpa, &val1, size, arg);
+ if (error)
+ break;
+
+ /*
+ * perform the operation with the pre-fetched immediate
+ * operand and write the result
+ */
+ result = val1 & vie->immediate;
+ error = memwrite(vcpu, gpa, result, size, arg);
+ break;
+ default:
+ break;
+ }
+ if (error)
+ return (error);
+
+ error = vie_read_register(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
+ if (error)
+ return (error);
+
+ /*
+ * OF and CF are cleared; the SF, ZF and PF flags are set according
+ * to the result; AF is undefined.
+ *
+ * The updated status flags are obtained by subtracting 0 from 'result'.
+ */
+ rflags2 = getcc(size, result, 0);
+ rflags &= ~RFLAGS_STATUS_BITS;
+ rflags |= rflags2 & (PSL_PF | PSL_Z | PSL_N);
+
+ error = vie_update_register(vcpu, VM_REG_GUEST_RFLAGS, rflags, 8);
+ return (error);
+}
+
+static int
+emulate_or(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
+ mem_region_read_t memread, mem_region_write_t memwrite, void *arg)
+{
+ int error, size;
+ enum vm_reg_name reg;
+ uint64_t result, rflags, rflags2, val1, val2;
+
+ size = vie->opsize;
+ error = EINVAL;
+
+ switch (vie->op.op_byte) {
+ case 0x0B:
+ /*
+ * OR reg (ModRM:reg) and mem (ModRM:r/m) and store the
+ * result in reg.
+ *
+ * 0b/r or r16, r/m16
+ * 0b/r or r32, r/m32
+ * REX.W + 0b/r or r64, r/m64
+ */
+
+ /* get the first operand */
+ reg = gpr_map[vie->reg];
+ error = vie_read_register(vcpu, reg, &val1);
+ if (error)
+ break;
+
+ /* get the second operand */
+ error = memread(vcpu, gpa, &val2, size, arg);
+ if (error)
+ break;
+
+ /* perform the operation and write the result */
+ result = val1 | val2;
+ error = vie_update_register(vcpu, reg, result, size);
+ break;
+ case 0x81:
+ case 0x83:
+ /*
+ * OR mem (ModRM:r/m) with immediate and store the
+ * result in mem.
+ *
+ * 81 /1 or r/m16, imm16
+ * 81 /1 or r/m32, imm32
+ * REX.W + 81 /1 or r/m64, imm32 sign-extended to 64
+ *
+ * 83 /1 or r/m16, imm8 sign-extended to 16
+ * 83 /1 or r/m32, imm8 sign-extended to 32
+ * REX.W + 83/1 or r/m64, imm8 sign-extended to 64
+ */
+
+ /* get the first operand */
+ error = memread(vcpu, gpa, &val1, size, arg);
+ if (error)
+ break;
+
+ /*
+ * perform the operation with the pre-fetched immediate
+ * operand and write the result
+ */
+ result = val1 | vie->immediate;
+ error = memwrite(vcpu, gpa, result, size, arg);
+ break;
+ default:
+ break;
+ }
+ if (error)
+ return (error);
+
+ error = vie_read_register(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
+ if (error)
+ return (error);
+
+ /*
+ * OF and CF are cleared; the SF, ZF and PF flags are set according
+ * to the result; AF is undefined.
+ *
+ * The updated status flags are obtained by subtracting 0 from 'result'.
+ */
+ rflags2 = getcc(size, result, 0);
+ rflags &= ~RFLAGS_STATUS_BITS;
+ rflags |= rflags2 & (PSL_PF | PSL_Z | PSL_N);
+
+ error = vie_update_register(vcpu, VM_REG_GUEST_RFLAGS, rflags, 8);
+ return (error);
+}
+
+static int
+emulate_cmp(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
+ mem_region_read_t memread, mem_region_write_t memwrite __unused, void *arg)
+{
+ int error, size;
+ uint64_t regop, memop, op1, op2, rflags, rflags2;
+ enum vm_reg_name reg;
+
+ size = vie->opsize;
+ switch (vie->op.op_byte) {
+ case 0x39:
+ case 0x3B:
+ /*
+ * 39/r CMP r/m16, r16
+ * 39/r CMP r/m32, r32
+ * REX.W 39/r CMP r/m64, r64
+ *
+ * 3B/r CMP r16, r/m16
+ * 3B/r CMP r32, r/m32
+ * REX.W + 3B/r CMP r64, r/m64
+ *
+ * Compare the first operand with the second operand and
+ * set status flags in EFLAGS register. The comparison is
+ * performed by subtracting the second operand from the first
+ * operand and then setting the status flags.
+ */
+
+ /* Get the register operand */
+ reg = gpr_map[vie->reg];
+ error = vie_read_register(vcpu, reg, &regop);
+ if (error)
+ return (error);
+
+ /* Get the memory operand */
+ error = memread(vcpu, gpa, &memop, size, arg);
+ if (error)
+ return (error);
+
+ if (vie->op.op_byte == 0x3B) {
+ op1 = regop;
+ op2 = memop;
+ } else {
+ op1 = memop;
+ op2 = regop;
+ }
+ rflags2 = getcc(size, op1, op2);
+ break;
+ case 0x80:
+ case 0x81:
+ case 0x83:
+ /*
+ * 80 /7 cmp r/m8, imm8
+ * REX + 80 /7 cmp r/m8, imm8
+ *
+ * 81 /7 cmp r/m16, imm16
+ * 81 /7 cmp r/m32, imm32
+ * REX.W + 81 /7 cmp r/m64, imm32 sign-extended to 64
+ *
+ * 83 /7 cmp r/m16, imm8 sign-extended to 16
+ * 83 /7 cmp r/m32, imm8 sign-extended to 32
+ * REX.W + 83 /7 cmp r/m64, imm8 sign-extended to 64
+ *
+ * Compare mem (ModRM:r/m) with immediate and set
+ * status flags according to the results. The
+ * comparison is performed by subtracting the
+ * immediate from the first operand and then setting
+ * the status flags.
+ *
+ */
+ if (vie->op.op_byte == 0x80)
+ size = 1;
+
+ /* get the first operand */
+ error = memread(vcpu, gpa, &op1, size, arg);
+ if (error)
+ return (error);
+
+ rflags2 = getcc(size, op1, vie->immediate);
+ break;
+ default:
+ return (EINVAL);
+ }
+ error = vie_read_register(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
+ if (error)
+ return (error);
+ rflags &= ~RFLAGS_STATUS_BITS;
+ rflags |= rflags2 & RFLAGS_STATUS_BITS;
+
+ error = vie_update_register(vcpu, VM_REG_GUEST_RFLAGS, rflags, 8);
+ return (error);
+}
+
+static int
+emulate_test(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
+ mem_region_read_t memread, mem_region_write_t memwrite __unused, void *arg)
+{
+ int error, size;
+ uint64_t op1, rflags, rflags2;
+
+ size = vie->opsize;
+ error = EINVAL;
+
+ switch (vie->op.op_byte) {
+ case 0xF6:
+ /*
+ * F6 /0 test r/m8, imm8
+ */
+ size = 1; /* override for byte operation */
+ /* FALLTHROUGH */
+ case 0xF7:
+ /*
+ * F7 /0 test r/m16, imm16
+ * F7 /0 test r/m32, imm32
+ * REX.W + F7 /0 test r/m64, imm32 sign-extended to 64
+ *
+ * Test mem (ModRM:r/m) with immediate and set status
+ * flags according to the results. The comparison is
+ * performed by anding the immediate from the first
+ * operand and then setting the status flags.
+ */
+ if ((vie->reg & 7) != 0)
+ return (EINVAL);
+
+ error = memread(vcpu, gpa, &op1, size, arg);
+ if (error)
+ return (error);
+
+ rflags2 = getandflags(size, op1, vie->immediate);
+ break;
+ default:
+ return (EINVAL);
+ }
+ error = vie_read_register(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
+ if (error)
+ return (error);
+
+ /*
+ * OF and CF are cleared; the SF, ZF and PF flags are set according
+ * to the result; AF is undefined.
+ */
+ rflags &= ~RFLAGS_STATUS_BITS;
+ rflags |= rflags2 & (PSL_PF | PSL_Z | PSL_N);
+
+ error = vie_update_register(vcpu, VM_REG_GUEST_RFLAGS, rflags, 8);
+ return (error);
+}
+
+static int
+emulate_bextr(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
+ struct vm_guest_paging *paging, mem_region_read_t memread,
+ mem_region_write_t memwrite __unused, void *arg)
+{
+ uint64_t src1, src2, dst, rflags;
+ unsigned start, len, size;
+ int error;
+
+ size = vie->opsize;
+ error = EINVAL;
+
+ /*
+ * VEX.LZ.0F38.W0 F7 /r BEXTR r32a, r/m32, r32b
+ * VEX.LZ.0F38.W1 F7 /r BEXTR r64a, r/m64, r64b
+ *
+ * Destination operand is ModRM:reg. Source operands are ModRM:r/m and
+ * Vex.vvvv.
+ *
+ * Operand size is always 32-bit if not in 64-bit mode (W1 is ignored).
+ */
+ if (size != 4 && paging->cpu_mode != CPU_MODE_64BIT)
+ size = 4;
+
+ /*
+ * Extracts contiguous bits from the first /source/ operand (second
+ * operand) using an index and length specified in the second /source/
+ * operand (third operand).
+ */
+ error = memread(vcpu, gpa, &src1, size, arg);
+ if (error)
+ return (error);
+ error = vie_read_register(vcpu, gpr_map[vie->vex_reg], &src2);
+ if (error)
+ return (error);
+ error = vie_read_register(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
+ if (error)
+ return (error);
+
+ start = (src2 & 0xff);
+ len = (src2 & 0xff00) >> 8;
+
+ /* If no bits are extracted, the destination register is cleared. */
+ dst = 0;
+
+ /* If START exceeds the operand size, no bits are extracted. */
+ if (start > size * 8)
+ goto done;
+ /* Length is bounded by both the destination size and start offset. */
+ if (start + len > size * 8)
+ len = (size * 8) - start;
+ if (len == 0)
+ goto done;
+
+ if (start > 0)
+ src1 = (src1 >> start);
+ if (len < 64)
+ src1 = src1 & ((1ull << len) - 1);
+ dst = src1;
+
+done:
+ error = vie_update_register(vcpu, gpr_map[vie->reg], dst, size);
+ if (error)
+ return (error);
+
+ /*
+ * AMD: OF, CF cleared; SF/AF/PF undefined; ZF set by result.
+ * Intel: ZF is set by result; AF/SF/PF undefined; all others cleared.
+ */
+ rflags &= ~RFLAGS_STATUS_BITS;
+ if (dst == 0)
+ rflags |= PSL_Z;
+ error = vie_update_register(vcpu, VM_REG_GUEST_RFLAGS, rflags,
+ 8);
+ return (error);
+}
+
+static int
+emulate_add(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
+ mem_region_read_t memread, mem_region_write_t memwrite __unused, void *arg)
+{
+ int error, size;
+ uint64_t nval, rflags, rflags2, val1, val2;
+ enum vm_reg_name reg;
+
+ size = vie->opsize;
+ error = EINVAL;
+
+ switch (vie->op.op_byte) {
+ case 0x03:
+ /*
+ * ADD r/m to r and store the result in r
+ *
+ * 03/r ADD r16, r/m16
+ * 03/r ADD r32, r/m32
+ * REX.W + 03/r ADD r64, r/m64
+ */
+
+ /* get the first operand */
+ reg = gpr_map[vie->reg];
+ error = vie_read_register(vcpu, reg, &val1);
+ if (error)
+ break;
+
+ /* get the second operand */
+ error = memread(vcpu, gpa, &val2, size, arg);
+ if (error)
+ break;
+
+ /* perform the operation and write the result */
+ nval = val1 + val2;
+ error = vie_update_register(vcpu, reg, nval, size);
+ break;
+ default:
+ break;
+ }
+
+ if (!error) {
+ rflags2 = getaddflags(size, val1, val2);
+ error = vie_read_register(vcpu, VM_REG_GUEST_RFLAGS,
+ &rflags);
+ if (error)
+ return (error);
+
+ rflags &= ~RFLAGS_STATUS_BITS;
+ rflags |= rflags2 & RFLAGS_STATUS_BITS;
+ error = vie_update_register(vcpu, VM_REG_GUEST_RFLAGS,
+ rflags, 8);
+ }
+
+ return (error);
+}
+
+static int
+emulate_sub(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
+ mem_region_read_t memread, mem_region_write_t memwrite __unused, void *arg)
+{
+ int error, size;
+ uint64_t nval, rflags, rflags2, val1, val2;
+ enum vm_reg_name reg;
+
+ size = vie->opsize;
+ error = EINVAL;
+
+ switch (vie->op.op_byte) {
+ case 0x2B:
+ /*
+ * SUB r/m from r and store the result in r
+ *
+ * 2B/r SUB r16, r/m16
+ * 2B/r SUB r32, r/m32
+ * REX.W + 2B/r SUB r64, r/m64
+ */
+
+ /* get the first operand */
+ reg = gpr_map[vie->reg];
+ error = vie_read_register(vcpu, reg, &val1);
+ if (error)
+ break;
+
+ /* get the second operand */
+ error = memread(vcpu, gpa, &val2, size, arg);
+ if (error)
+ break;
+
+ /* perform the operation and write the result */
+ nval = val1 - val2;
+ error = vie_update_register(vcpu, reg, nval, size);
+ break;
+ default:
+ break;
+ }
+
+ if (!error) {
+ rflags2 = getcc(size, val1, val2);
+ error = vie_read_register(vcpu, VM_REG_GUEST_RFLAGS,
+ &rflags);
+ if (error)
+ return (error);
+
+ rflags &= ~RFLAGS_STATUS_BITS;
+ rflags |= rflags2 & RFLAGS_STATUS_BITS;
+ error = vie_update_register(vcpu, VM_REG_GUEST_RFLAGS,
+ rflags, 8);
+ }
+
+ return (error);
+}
+
+static int
+emulate_stack_op(struct vcpu *vcpu, uint64_t mmio_gpa, struct vie *vie,
+ struct vm_guest_paging *paging, mem_region_read_t memread,
+ mem_region_write_t memwrite, void *arg)
+{
+#ifdef _KERNEL
+ struct vm_copyinfo copyinfo[2];
+#else
+ struct iovec copyinfo[2];
+#endif
+ struct seg_desc ss_desc;
+ uint64_t cr0, rflags, rsp, stack_gla, val;
+ int error, fault, size, stackaddrsize, pushop;
+
+ val = 0;
+ size = vie->opsize;
+ pushop = (vie->op.op_type == VIE_OP_TYPE_PUSH) ? 1 : 0;
+
+ /*
+ * From "Address-Size Attributes for Stack Accesses", Intel SDL, Vol 1
+ */
+ if (paging->cpu_mode == CPU_MODE_REAL) {
+ stackaddrsize = 2;
+ } else if (paging->cpu_mode == CPU_MODE_64BIT) {
+ /*
+ * "Stack Manipulation Instructions in 64-bit Mode", SDM, Vol 3
+ * - Stack pointer size is always 64-bits.
+ * - PUSH/POP of 32-bit values is not possible in 64-bit mode.
+ * - 16-bit PUSH/POP is supported by using the operand size
+ * override prefix (66H).
+ */
+ stackaddrsize = 8;
+ size = vie->opsize_override ? 2 : 8;
+ } else {
+ /*
+ * In protected or compatibility mode the 'B' flag in the
+ * stack-segment descriptor determines the size of the
+ * stack pointer.
+ */
+ error = vm_get_seg_desc(vcpu, VM_REG_GUEST_SS, &ss_desc);
+ KASSERT(error == 0, ("%s: error %d getting SS descriptor",
+ __func__, error));
+ if (SEG_DESC_DEF32(ss_desc.access))
+ stackaddrsize = 4;
+ else
+ stackaddrsize = 2;
+ }
+
+ error = vie_read_register(vcpu, VM_REG_GUEST_CR0, &cr0);
+ KASSERT(error == 0, ("%s: error %d getting cr0", __func__, error));
+
+ error = vie_read_register(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
+ KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
+
+ error = vie_read_register(vcpu, VM_REG_GUEST_RSP, &rsp);
+ KASSERT(error == 0, ("%s: error %d getting rsp", __func__, error));
+ if (pushop) {
+ rsp -= size;
+ }
+
+ if (vie_calculate_gla(paging->cpu_mode, VM_REG_GUEST_SS, &ss_desc,
+ rsp, size, stackaddrsize, pushop ? PROT_WRITE : PROT_READ,
+ &stack_gla)) {
+ vm_inject_ss(vcpu, 0);
+ return (0);
+ }
+
+ if (vie_canonical_check(paging->cpu_mode, stack_gla)) {
+ vm_inject_ss(vcpu, 0);
+ return (0);
+ }
+
+ if (vie_alignment_check(paging->cpl, size, cr0, rflags, stack_gla)) {
+ vm_inject_ac(vcpu, 0);
+ return (0);
+ }
+
+ error = vm_copy_setup(vcpu, paging, stack_gla, size,
+ pushop ? PROT_WRITE : PROT_READ, copyinfo, nitems(copyinfo),
+ &fault);
+ if (error || fault)
+ return (error);
+
+ if (pushop) {
+ error = memread(vcpu, mmio_gpa, &val, size, arg);
+ if (error == 0)
+ vm_copyout(&val, copyinfo, size);
+ } else {
+ vm_copyin(copyinfo, &val, size);
+ error = memwrite(vcpu, mmio_gpa, val, size, arg);
+ rsp += size;
+ }
+ vm_copy_teardown(copyinfo, nitems(copyinfo));
+
+ if (error == 0) {
+ error = vie_update_register(vcpu, VM_REG_GUEST_RSP, rsp,
+ stackaddrsize);
+ KASSERT(error == 0, ("error %d updating rsp", error));
+ }
+ return (error);
+}
+
+static int
+emulate_push(struct vcpu *vcpu, uint64_t mmio_gpa, struct vie *vie,
+ struct vm_guest_paging *paging, mem_region_read_t memread,
+ mem_region_write_t memwrite, void *arg)
+{
+ int error;
+
+ /*
+ * Table A-6, "Opcode Extensions", Intel SDM, Vol 2.
+ *
+ * PUSH is part of the group 5 extended opcodes and is identified
+ * by ModRM:reg = b110.
+ */
+ if ((vie->reg & 7) != 6)
+ return (EINVAL);
+
+ error = emulate_stack_op(vcpu, mmio_gpa, vie, paging, memread,
+ memwrite, arg);
+ return (error);
+}
+
+static int
+emulate_pop(struct vcpu *vcpu, uint64_t mmio_gpa, struct vie *vie,
+ struct vm_guest_paging *paging, mem_region_read_t memread,
+ mem_region_write_t memwrite, void *arg)
+{
+ int error;
+
+ /*
+ * Table A-6, "Opcode Extensions", Intel SDM, Vol 2.
+ *
+ * POP is part of the group 1A extended opcodes and is identified
+ * by ModRM:reg = b000.
+ */
+ if ((vie->reg & 7) != 0)
+ return (EINVAL);
+
+ error = emulate_stack_op(vcpu, mmio_gpa, vie, paging, memread,
+ memwrite, arg);
+ return (error);
+}
+
+static int
+emulate_group1(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
+ struct vm_guest_paging *paging __unused, mem_region_read_t memread,
+ mem_region_write_t memwrite, void *memarg)
+{
+ int error;
+
+ switch (vie->reg & 7) {
+ case 0x1: /* OR */
+ error = emulate_or(vcpu, gpa, vie,
+ memread, memwrite, memarg);
+ break;
+ case 0x4: /* AND */
+ error = emulate_and(vcpu, gpa, vie,
+ memread, memwrite, memarg);
+ break;
+ case 0x7: /* CMP */
+ error = emulate_cmp(vcpu, gpa, vie,
+ memread, memwrite, memarg);
+ break;
+ default:
+ error = EINVAL;
+ break;
+ }
+
+ return (error);
+}
+
+static int
+emulate_bittest(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
+ mem_region_read_t memread, mem_region_write_t memwrite __unused,
+ void *memarg)
+{
+ uint64_t val, rflags;
+ int error, bitmask, bitoff;
+
+ /*
+ * 0F BA is a Group 8 extended opcode.
+ *
+ * Currently we only emulate the 'Bit Test' instruction which is
+ * identified by a ModR/M:reg encoding of 100b.
+ */
+ if ((vie->reg & 7) != 4)
+ return (EINVAL);
+
+ error = vie_read_register(vcpu, VM_REG_GUEST_RFLAGS, &rflags);
+ KASSERT(error == 0, ("%s: error %d getting rflags", __func__, error));
+
+ error = memread(vcpu, gpa, &val, vie->opsize, memarg);
+ if (error)
+ return (error);
+
+ /*
+ * Intel SDM, Vol 2, Table 3-2:
+ * "Range of Bit Positions Specified by Bit Offset Operands"
+ */
+ bitmask = vie->opsize * 8 - 1;
+ bitoff = vie->immediate & bitmask;
+
+ /* Copy the bit into the Carry flag in %rflags */
+ if (val & (1UL << bitoff))
+ rflags |= PSL_C;
+ else
+ rflags &= ~PSL_C;
+
+ error = vie_update_register(vcpu, VM_REG_GUEST_RFLAGS, rflags, 8);
+ KASSERT(error == 0, ("%s: error %d updating rflags", __func__, error));
+
+ return (0);
+}
+
+static int
+emulate_twob_group15(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
+ mem_region_read_t memread, mem_region_write_t memwrite __unused,
+ void *memarg)
+{
+ int error;
+ uint64_t buf;
+
+ switch (vie->reg & 7) {
+ case 0x7: /* CLFLUSH, CLFLUSHOPT, and SFENCE */
+ if (vie->mod == 0x3) {
+ /*
+ * SFENCE. Ignore it, VM exit provides enough
+ * barriers on its own.
+ */
+ error = 0;
+ } else {
+ /*
+ * CLFLUSH, CLFLUSHOPT. Only check for access
+ * rights.
+ */
+ error = memread(vcpu, gpa, &buf, 1, memarg);
+ }
+ break;
+ default:
+ error = EINVAL;
+ break;
+ }
+
+ return (error);
+}
+
+int
+vmm_emulate_instruction(struct vcpu *vcpu, uint64_t gpa, struct vie *vie,
+ struct vm_guest_paging *paging, mem_region_read_t memread,
+ mem_region_write_t memwrite, void *memarg)
+{
+ int error;
+
+ if (!vie->decoded)
+ return (EINVAL);
+
+ switch (vie->op.op_type) {
+ case VIE_OP_TYPE_GROUP1:
+ error = emulate_group1(vcpu, gpa, vie, paging, memread,
+ memwrite, memarg);
+ break;
+ case VIE_OP_TYPE_POP:
+ error = emulate_pop(vcpu, gpa, vie, paging, memread,
+ memwrite, memarg);
+ break;
+ case VIE_OP_TYPE_PUSH:
+ error = emulate_push(vcpu, gpa, vie, paging, memread,
+ memwrite, memarg);
+ break;
+ case VIE_OP_TYPE_CMP:
+ error = emulate_cmp(vcpu, gpa, vie,
+ memread, memwrite, memarg);
+ break;
+ case VIE_OP_TYPE_MOV:
+ error = emulate_mov(vcpu, gpa, vie,
+ memread, memwrite, memarg);
+ break;
+ case VIE_OP_TYPE_MOVSX:
+ case VIE_OP_TYPE_MOVZX:
+ error = emulate_movx(vcpu, gpa, vie,
+ memread, memwrite, memarg);
+ break;
+ case VIE_OP_TYPE_MOVS:
+ error = emulate_movs(vcpu, gpa, vie, paging, memread,
+ memwrite, memarg);
+ break;
+ case VIE_OP_TYPE_STOS:
+ error = emulate_stos(vcpu, gpa, vie, paging, memread,
+ memwrite, memarg);
+ break;
+ case VIE_OP_TYPE_AND:
+ error = emulate_and(vcpu, gpa, vie,
+ memread, memwrite, memarg);
+ break;
+ case VIE_OP_TYPE_OR:
+ error = emulate_or(vcpu, gpa, vie,
+ memread, memwrite, memarg);
+ break;
+ case VIE_OP_TYPE_SUB:
+ error = emulate_sub(vcpu, gpa, vie,
+ memread, memwrite, memarg);
+ break;
+ case VIE_OP_TYPE_BITTEST:
+ error = emulate_bittest(vcpu, gpa, vie,
+ memread, memwrite, memarg);
+ break;
+ case VIE_OP_TYPE_TWOB_GRP15:
+ error = emulate_twob_group15(vcpu, gpa, vie,
+ memread, memwrite, memarg);
+ break;
+ case VIE_OP_TYPE_ADD:
+ error = emulate_add(vcpu, gpa, vie, memread,
+ memwrite, memarg);
+ break;
+ case VIE_OP_TYPE_TEST:
+ error = emulate_test(vcpu, gpa, vie,
+ memread, memwrite, memarg);
+ break;
+ case VIE_OP_TYPE_BEXTR:
+ error = emulate_bextr(vcpu, gpa, vie, paging,
+ memread, memwrite, memarg);
+ break;
+ default:
+ error = EINVAL;
+ break;
+ }
+
+ return (error);
+}
+
+int
+vie_alignment_check(int cpl, int size, uint64_t cr0, uint64_t rf, uint64_t gla)
+{
+ KASSERT(size == 1 || size == 2 || size == 4 || size == 8,
+ ("%s: invalid size %d", __func__, size));
+ KASSERT(cpl >= 0 && cpl <= 3, ("%s: invalid cpl %d", __func__, cpl));
+
+ if (cpl != 3 || (cr0 & CR0_AM) == 0 || (rf & PSL_AC) == 0)
+ return (0);
+
+ return ((gla & (size - 1)) ? 1 : 0);
+}
+
+int
+vie_canonical_check(enum vm_cpu_mode cpu_mode, uint64_t gla)
+{
+ uint64_t mask;
+
+ if (cpu_mode != CPU_MODE_64BIT)
+ return (0);
+
+ /*
+ * The value of the bit 47 in the 'gla' should be replicated in the
+ * most significant 16 bits.
+ */
+ mask = ~((1UL << 48) - 1);
+ if (gla & (1UL << 47))
+ return ((gla & mask) != mask);
+ else
+ return ((gla & mask) != 0);
+}
+
+uint64_t
+vie_size2mask(int size)
+{
+ KASSERT(size == 1 || size == 2 || size == 4 || size == 8,
+ ("vie_size2mask: invalid size %d", size));
+ return (size2mask[size]);
+}
+
+int
+vie_calculate_gla(enum vm_cpu_mode cpu_mode, enum vm_reg_name seg,
+ struct seg_desc *desc, uint64_t offset, int length, int addrsize,
+ int prot, uint64_t *gla)
+{
+ uint64_t firstoff, low_limit, high_limit, segbase;
+ int glasize, type;
+
+ KASSERT(seg >= VM_REG_GUEST_ES && seg <= VM_REG_GUEST_GS,
+ ("%s: invalid segment %d", __func__, seg));
+ KASSERT(length == 1 || length == 2 || length == 4 || length == 8,
+ ("%s: invalid operand size %d", __func__, length));
+ KASSERT((prot & ~(PROT_READ | PROT_WRITE)) == 0,
+ ("%s: invalid prot %#x", __func__, prot));
+
+ firstoff = offset;
+ if (cpu_mode == CPU_MODE_64BIT) {
+ KASSERT(addrsize == 4 || addrsize == 8, ("%s: invalid address "
+ "size %d for cpu_mode %d", __func__, addrsize, cpu_mode));
+ glasize = 8;
+ } else {
+ KASSERT(addrsize == 2 || addrsize == 4, ("%s: invalid address "
+ "size %d for cpu mode %d", __func__, addrsize, cpu_mode));
+ glasize = 4;
+ /*
+ * If the segment selector is loaded with a NULL selector
+ * then the descriptor is unusable and attempting to use
+ * it results in a #GP(0).
+ */
+ if (SEG_DESC_UNUSABLE(desc->access))
+ return (-1);
+
+ /*
+ * The processor generates a #NP exception when a segment
+ * register is loaded with a selector that points to a
+ * descriptor that is not present. If this was the case then
+ * it would have been checked before the VM-exit.
+ */
+ KASSERT(SEG_DESC_PRESENT(desc->access),
+ ("segment %d not present: %#x", seg, desc->access));
+
+ /*
+ * The descriptor type must indicate a code/data segment.
+ */
+ type = SEG_DESC_TYPE(desc->access);
+ KASSERT(type >= 16 && type <= 31, ("segment %d has invalid "
+ "descriptor type %#x", seg, type));
+
+ if (prot & PROT_READ) {
+ /* #GP on a read access to a exec-only code segment */
+ if ((type & 0xA) == 0x8)
+ return (-1);
+ }
+
+ if (prot & PROT_WRITE) {
+ /*
+ * #GP on a write access to a code segment or a
+ * read-only data segment.
+ */
+ if (type & 0x8) /* code segment */
+ return (-1);
+
+ if ((type & 0xA) == 0) /* read-only data seg */
+ return (-1);
+ }
+
+ /*
+ * 'desc->limit' is fully expanded taking granularity into
+ * account.
+ */
+ if ((type & 0xC) == 0x4) {
+ /* expand-down data segment */
+ low_limit = desc->limit + 1;
+ high_limit = SEG_DESC_DEF32(desc->access) ?
+ 0xffffffff : 0xffff;
+ } else {
+ /* code segment or expand-up data segment */
+ low_limit = 0;
+ high_limit = desc->limit;
+ }
+
+ while (length > 0) {
+ offset &= vie_size2mask(addrsize);
+ if (offset < low_limit || offset > high_limit)
+ return (-1);
+ offset++;
+ length--;
+ }
+ }
+
+ /*
+ * In 64-bit mode all segments except %fs and %gs have a segment
+ * base address of 0.
+ */
+ if (cpu_mode == CPU_MODE_64BIT && seg != VM_REG_GUEST_FS &&
+ seg != VM_REG_GUEST_GS) {
+ segbase = 0;
+ } else {
+ segbase = desc->base;
+ }
+
+ /*
+ * Truncate 'firstoff' to the effective address size before adding
+ * it to the segment base.
+ */
+ firstoff &= vie_size2mask(addrsize);
+ *gla = (segbase + firstoff) & vie_size2mask(glasize);
+ return (0);
+}
+
+/*
+ * Prepare a partially decoded vie for a 2nd attempt.
+ */
+void
+vie_restart(struct vie *vie)
+{
+ _Static_assert(
+ offsetof(struct vie, inst) < offsetof(struct vie, vie_startzero) &&
+ offsetof(struct vie, num_valid) < offsetof(struct vie, vie_startzero),
+ "restart should not erase instruction length or contents");
+
+ memset((char *)vie + offsetof(struct vie, vie_startzero), 0,
+ sizeof(*vie) - offsetof(struct vie, vie_startzero));
+
+ vie->base_register = VM_REG_LAST;
+ vie->index_register = VM_REG_LAST;
+ vie->segment_register = VM_REG_LAST;
+}
+
+void
+vie_init(struct vie *vie, const char *inst_bytes, int inst_length)
+{
+ KASSERT(inst_length >= 0 && inst_length <= VIE_INST_SIZE,
+ ("%s: invalid instruction length (%d)", __func__, inst_length));
+
+ vie_restart(vie);
+ memset(vie->inst, 0, sizeof(vie->inst));
+ if (inst_length != 0)
+ memcpy(vie->inst, inst_bytes, inst_length);
+ vie->num_valid = inst_length;
+}
+
+#ifdef _KERNEL
+static int
+pf_error_code(int usermode, int prot, int rsvd, uint64_t pte)
+{
+ int error_code = 0;
+
+ if (pte & PG_V)
+ error_code |= PGEX_P;
+ if (prot & VM_PROT_WRITE)
+ error_code |= PGEX_W;
+ if (usermode)
+ error_code |= PGEX_U;
+ if (rsvd)
+ error_code |= PGEX_RSV;
+ if (prot & VM_PROT_EXECUTE)
+ error_code |= PGEX_I;
+
+ return (error_code);
+}
+
+static void
+ptp_release(void **cookie)
+{
+ if (*cookie != NULL) {
+ vm_gpa_release(*cookie);
+ *cookie = NULL;
+ }
+}
+
+static void *
+ptp_hold(struct vcpu *vcpu, vm_paddr_t ptpphys, size_t len, void **cookie)
+{
+ void *ptr;
+
+ ptp_release(cookie);
+ ptr = vm_gpa_hold(vcpu, ptpphys, len, VM_PROT_RW, cookie);
+ return (ptr);
+}
+
+static int
+_vm_gla2gpa(struct vcpu *vcpu, struct vm_guest_paging *paging,
+ uint64_t gla, int prot, uint64_t *gpa, int *guest_fault, bool check_only)
+{
+ int nlevels, pfcode, ptpshift, ptpindex, retval, usermode, writable;
+ u_int retries;
+ uint64_t *ptpbase, ptpphys, pte, pgsize;
+ uint32_t *ptpbase32, pte32;
+ void *cookie;
+
+ *guest_fault = 0;
+
+ usermode = (paging->cpl == 3 ? 1 : 0);
+ writable = prot & VM_PROT_WRITE;
+ cookie = NULL;
+ retval = 0;
+ retries = 0;
+restart:
+ ptpphys = paging->cr3; /* root of the page tables */
+ ptp_release(&cookie);
+ if (retries++ > 0)
+ maybe_yield();
+
+ if (vie_canonical_check(paging->cpu_mode, gla)) {
+ /*
+ * XXX assuming a non-stack reference otherwise a stack fault
+ * should be generated.
+ */
+ if (!check_only)
+ vm_inject_gp(vcpu);
+ goto fault;
+ }
+
+ if (paging->paging_mode == PAGING_MODE_FLAT) {
+ *gpa = gla;
+ goto done;
+ }
+
+ if (paging->paging_mode == PAGING_MODE_32) {
+ nlevels = 2;
+ while (--nlevels >= 0) {
+ /* Zero out the lower 12 bits. */
+ ptpphys &= ~0xfff;
+
+ ptpbase32 = ptp_hold(vcpu, ptpphys, PAGE_SIZE,
+ &cookie);
+
+ if (ptpbase32 == NULL)
+ goto error;
+
+ ptpshift = PAGE_SHIFT + nlevels * 10;
+ ptpindex = (gla >> ptpshift) & 0x3FF;
+ pgsize = 1UL << ptpshift;
+
+ pte32 = ptpbase32[ptpindex];
+
+ if ((pte32 & PG_V) == 0 ||
+ (usermode && (pte32 & PG_U) == 0) ||
+ (writable && (pte32 & PG_RW) == 0)) {
+ if (!check_only) {
+ pfcode = pf_error_code(usermode, prot, 0,
+ pte32);
+ vm_inject_pf(vcpu, pfcode, gla);
+ }
+ goto fault;
+ }
+
+ /*
+ * Emulate the x86 MMU's management of the accessed
+ * and dirty flags. While the accessed flag is set
+ * at every level of the page table, the dirty flag
+ * is only set at the last level providing the guest
+ * physical address.
+ */
+ if (!check_only && (pte32 & PG_A) == 0) {
+ if (atomic_cmpset_32(&ptpbase32[ptpindex],
+ pte32, pte32 | PG_A) == 0) {
+ goto restart;
+ }
+ }
+
+ /* XXX must be ignored if CR4.PSE=0 */
+ if (nlevels > 0 && (pte32 & PG_PS) != 0)
+ break;
+
+ ptpphys = pte32;
+ }
+
+ /* Set the dirty bit in the page table entry if necessary */
+ if (!check_only && writable && (pte32 & PG_M) == 0) {
+ if (atomic_cmpset_32(&ptpbase32[ptpindex],
+ pte32, pte32 | PG_M) == 0) {
+ goto restart;
+ }
+ }
+
+ /* Zero out the lower 'ptpshift' bits */
+ pte32 >>= ptpshift; pte32 <<= ptpshift;
+ *gpa = pte32 | (gla & (pgsize - 1));
+ goto done;
+ }
+
+ if (paging->paging_mode == PAGING_MODE_PAE) {
+ /* Zero out the lower 5 bits and the upper 32 bits */
+ ptpphys &= 0xffffffe0UL;
+
+ ptpbase = ptp_hold(vcpu, ptpphys, sizeof(*ptpbase) * 4,
+ &cookie);
+ if (ptpbase == NULL)
+ goto error;
+
+ ptpindex = (gla >> 30) & 0x3;
+
+ pte = ptpbase[ptpindex];
+
+ if ((pte & PG_V) == 0) {
+ if (!check_only) {
+ pfcode = pf_error_code(usermode, prot, 0, pte);
+ vm_inject_pf(vcpu, pfcode, gla);
+ }
+ goto fault;
+ }
+
+ ptpphys = pte;
+
+ nlevels = 2;
+ } else if (paging->paging_mode == PAGING_MODE_64_LA57) {
+ nlevels = 5;
+ } else {
+ nlevels = 4;
+ }
+
+ while (--nlevels >= 0) {
+ /* Zero out the lower 12 bits and the upper 12 bits */
+ ptpphys >>= 12; ptpphys <<= 24; ptpphys >>= 12;
+
+ ptpbase = ptp_hold(vcpu, ptpphys, PAGE_SIZE, &cookie);
+ if (ptpbase == NULL)
+ goto error;
+
+ ptpshift = PAGE_SHIFT + nlevels * 9;
+ ptpindex = (gla >> ptpshift) & 0x1FF;
+ pgsize = 1UL << ptpshift;
+
+ pte = ptpbase[ptpindex];
+
+ if ((pte & PG_V) == 0 ||
+ (usermode && (pte & PG_U) == 0) ||
+ (writable && (pte & PG_RW) == 0)) {
+ if (!check_only) {
+ pfcode = pf_error_code(usermode, prot, 0, pte);
+ vm_inject_pf(vcpu, pfcode, gla);
+ }
+ goto fault;
+ }
+
+ /* Set the accessed bit in the page table entry */
+ if (!check_only && (pte & PG_A) == 0) {
+ if (atomic_cmpset_64(&ptpbase[ptpindex],
+ pte, pte | PG_A) == 0) {
+ goto restart;
+ }
+ }
+
+ if (nlevels > 0 && (pte & PG_PS) != 0) {
+ if (pgsize > 1 * GB) {
+ if (!check_only) {
+ pfcode = pf_error_code(usermode, prot, 1,
+ pte);
+ vm_inject_pf(vcpu, pfcode, gla);
+ }
+ goto fault;
+ }
+ break;
+ }
+
+ ptpphys = pte;
+ }
+
+ /* Set the dirty bit in the page table entry if necessary */
+ if (!check_only && writable && (pte & PG_M) == 0) {
+ if (atomic_cmpset_64(&ptpbase[ptpindex], pte, pte | PG_M) == 0)
+ goto restart;
+ }
+
+ /* Zero out the lower 'ptpshift' bits and the upper 12 bits */
+ pte >>= ptpshift; pte <<= (ptpshift + 12); pte >>= 12;
+ *gpa = pte | (gla & (pgsize - 1));
+done:
+ ptp_release(&cookie);
+ KASSERT(retval == 0 || retval == EFAULT, ("%s: unexpected retval %d",
+ __func__, retval));
+ return (retval);
+error:
+ retval = EFAULT;
+ goto done;
+fault:
+ *guest_fault = 1;
+ goto done;
+}
+
+int
+vm_gla2gpa(struct vcpu *vcpu, struct vm_guest_paging *paging,
+ uint64_t gla, int prot, uint64_t *gpa, int *guest_fault)
+{
+
+ return (_vm_gla2gpa(vcpu, paging, gla, prot, gpa, guest_fault,
+ false));
+}
+
+int
+vm_gla2gpa_nofault(struct vcpu *vcpu, struct vm_guest_paging *paging,
+ uint64_t gla, int prot, uint64_t *gpa, int *guest_fault)
+{
+
+ return (_vm_gla2gpa(vcpu, paging, gla, prot, gpa, guest_fault,
+ true));
+}
+
+int
+vmm_fetch_instruction(struct vcpu *vcpu, struct vm_guest_paging *paging,
+ uint64_t rip, int inst_length, struct vie *vie, int *faultptr)
+{
+ struct vm_copyinfo copyinfo[2];
+ int error, prot;
+
+ if (inst_length > VIE_INST_SIZE)
+ panic("vmm_fetch_instruction: invalid length %d", inst_length);
+
+ prot = PROT_READ | PROT_EXEC;
+ error = vm_copy_setup(vcpu, paging, rip, inst_length, prot,
+ copyinfo, nitems(copyinfo), faultptr);
+ if (error || *faultptr)
+ return (error);
+
+ vm_copyin(copyinfo, vie->inst, inst_length);
+ vm_copy_teardown(copyinfo, nitems(copyinfo));
+ vie->num_valid = inst_length;
+ return (0);
+}
+#endif /* _KERNEL */
+
+static int
+vie_peek(struct vie *vie, uint8_t *x)
+{
+
+ if (vie->num_processed < vie->num_valid) {
+ *x = vie->inst[vie->num_processed];
+ return (0);
+ } else
+ return (-1);
+}
+
+static void
+vie_advance(struct vie *vie)
+{
+
+ vie->num_processed++;
+}
+
+static bool
+segment_override(uint8_t x, int *seg)
+{
+
+ switch (x) {
+ case 0x2E:
+ *seg = VM_REG_GUEST_CS;
+ break;
+ case 0x36:
+ *seg = VM_REG_GUEST_SS;
+ break;
+ case 0x3E:
+ *seg = VM_REG_GUEST_DS;
+ break;
+ case 0x26:
+ *seg = VM_REG_GUEST_ES;
+ break;
+ case 0x64:
+ *seg = VM_REG_GUEST_FS;
+ break;
+ case 0x65:
+ *seg = VM_REG_GUEST_GS;
+ break;
+ default:
+ return (false);
+ }
+ return (true);
+}
+
+static int
+decode_prefixes(struct vie *vie, enum vm_cpu_mode cpu_mode, int cs_d)
+{
+ uint8_t x;
+
+ while (1) {
+ if (vie_peek(vie, &x))
+ return (-1);
+
+ if (x == 0x66)
+ vie->opsize_override = 1;
+ else if (x == 0x67)
+ vie->addrsize_override = 1;
+ else if (x == 0xF3)
+ vie->repz_present = 1;
+ else if (x == 0xF2)
+ vie->repnz_present = 1;
+ else if (segment_override(x, &vie->segment_register))
+ vie->segment_override = 1;
+ else
+ break;
+
+ vie_advance(vie);
+ }
+
+ /*
+ * From section 2.2.1, "REX Prefixes", Intel SDM Vol 2:
+ * - Only one REX prefix is allowed per instruction.
+ * - The REX prefix must immediately precede the opcode byte or the
+ * escape opcode byte.
+ * - If an instruction has a mandatory prefix (0x66, 0xF2 or 0xF3)
+ * the mandatory prefix must come before the REX prefix.
+ */
+ if (cpu_mode == CPU_MODE_64BIT && x >= 0x40 && x <= 0x4F) {
+ vie->rex_present = 1;
+ vie->rex_w = x & 0x8 ? 1 : 0;
+ vie->rex_r = x & 0x4 ? 1 : 0;
+ vie->rex_x = x & 0x2 ? 1 : 0;
+ vie->rex_b = x & 0x1 ? 1 : 0;
+ vie_advance(vie);
+ }
+
+ /*
+ * ยง 2.3.5, "The VEX Prefix", SDM Vol 2.
+ */
+ if ((cpu_mode == CPU_MODE_64BIT || cpu_mode == CPU_MODE_COMPATIBILITY)
+ && x == 0xC4) {
+ const struct vie_op *optab;
+
+ /* 3-byte VEX prefix. */
+ vie->vex_present = 1;
+
+ vie_advance(vie);
+ if (vie_peek(vie, &x))
+ return (-1);
+
+ /*
+ * 2nd byte: [R', X', B', mmmmm[4:0]]. Bits are inverted
+ * relative to REX encoding.
+ */
+ vie->rex_r = x & 0x80 ? 0 : 1;
+ vie->rex_x = x & 0x40 ? 0 : 1;
+ vie->rex_b = x & 0x20 ? 0 : 1;
+
+ switch (x & 0x1F) {
+ case 0x2:
+ /* 0F 38. */
+ optab = three_byte_opcodes_0f38;
+ break;
+ case 0x1:
+ /* 0F class - nothing handled here yet. */
+ /* FALLTHROUGH */
+ case 0x3:
+ /* 0F 3A class - nothing handled here yet. */
+ /* FALLTHROUGH */
+ default:
+ /* Reserved (#UD). */
+ return (-1);
+ }
+
+ vie_advance(vie);
+ if (vie_peek(vie, &x))
+ return (-1);
+
+ /* 3rd byte: [W, vvvv[6:3], L, pp[1:0]]. */
+ vie->rex_w = x & 0x80 ? 1 : 0;
+
+ vie->vex_reg = ((~(unsigned)x & 0x78u) >> 3);
+ vie->vex_l = !!(x & 0x4);
+ vie->vex_pp = (x & 0x3);
+
+ /* PP: 1=66 2=F3 3=F2 prefixes. */
+ switch (vie->vex_pp) {
+ case 0x1:
+ vie->opsize_override = 1;
+ break;
+ case 0x2:
+ vie->repz_present = 1;
+ break;
+ case 0x3:
+ vie->repnz_present = 1;
+ break;
+ }
+
+ vie_advance(vie);
+
+ /* Opcode, sans literal prefix prefix. */
+ if (vie_peek(vie, &x))
+ return (-1);
+
+ vie->op = optab[x];
+ if (vie->op.op_type == VIE_OP_TYPE_NONE)
+ return (-1);
+
+ vie_advance(vie);
+ }
+
+ /*
+ * Section "Operand-Size And Address-Size Attributes", Intel SDM, Vol 1
+ */
+ if (cpu_mode == CPU_MODE_64BIT) {
+ /*
+ * Default address size is 64-bits and default operand size
+ * is 32-bits.
+ */
+ vie->addrsize = vie->addrsize_override ? 4 : 8;
+ if (vie->rex_w)
+ vie->opsize = 8;
+ else if (vie->opsize_override)
+ vie->opsize = 2;
+ else
+ vie->opsize = 4;
+ } else if (cs_d) {
+ /* Default address and operand sizes are 32-bits */
+ vie->addrsize = vie->addrsize_override ? 2 : 4;
+ vie->opsize = vie->opsize_override ? 2 : 4;
+ } else {
+ /* Default address and operand sizes are 16-bits */
+ vie->addrsize = vie->addrsize_override ? 4 : 2;
+ vie->opsize = vie->opsize_override ? 4 : 2;
+ }
+ return (0);
+}
+
+static int
+decode_two_byte_opcode(struct vie *vie)
+{
+ uint8_t x;
+
+ if (vie_peek(vie, &x))
+ return (-1);
+
+ vie->op = two_byte_opcodes[x];
+
+ if (vie->op.op_type == VIE_OP_TYPE_NONE)
+ return (-1);
+
+ vie_advance(vie);
+ return (0);
+}
+
+static int
+decode_opcode(struct vie *vie)
+{
+ uint8_t x;
+
+ if (vie_peek(vie, &x))
+ return (-1);
+
+ /* Already did this via VEX prefix. */
+ if (vie->op.op_type != VIE_OP_TYPE_NONE)
+ return (0);
+
+ vie->op = one_byte_opcodes[x];
+
+ if (vie->op.op_type == VIE_OP_TYPE_NONE)
+ return (-1);
+
+ vie_advance(vie);
+
+ if (vie->op.op_type == VIE_OP_TYPE_TWO_BYTE)
+ return (decode_two_byte_opcode(vie));
+
+ return (0);
+}
+
+static int
+decode_modrm(struct vie *vie, enum vm_cpu_mode cpu_mode)
+{
+ uint8_t x;
+
+ if (vie->op.op_flags & VIE_OP_F_NO_MODRM)
+ return (0);
+
+ if (cpu_mode == CPU_MODE_REAL)
+ return (-1);
+
+ if (vie_peek(vie, &x))
+ return (-1);
+
+ vie->mod = (x >> 6) & 0x3;
+ vie->rm = (x >> 0) & 0x7;
+ vie->reg = (x >> 3) & 0x7;
+
+ /*
+ * A direct addressing mode makes no sense in the context of an EPT
+ * fault. There has to be a memory access involved to cause the
+ * EPT fault.
+ */
+ if (vie->mod == VIE_MOD_DIRECT)
+ return (-1);
+
+ if ((vie->mod == VIE_MOD_INDIRECT && vie->rm == VIE_RM_DISP32) ||
+ (vie->mod != VIE_MOD_DIRECT && vie->rm == VIE_RM_SIB)) {
+ /*
+ * Table 2-5: Special Cases of REX Encodings
+ *
+ * mod=0, r/m=5 is used in the compatibility mode to
+ * indicate a disp32 without a base register.
+ *
+ * mod!=3, r/m=4 is used in the compatibility mode to
+ * indicate that the SIB byte is present.
+ *
+ * The 'b' bit in the REX prefix is don't care in
+ * this case.
+ */
+ } else {
+ vie->rm |= (vie->rex_b << 3);
+ }
+
+ vie->reg |= (vie->rex_r << 3);
+
+ /* SIB */
+ if (vie->mod != VIE_MOD_DIRECT && vie->rm == VIE_RM_SIB)
+ goto done;
+
+ vie->base_register = gpr_map[vie->rm];
+
+ switch (vie->mod) {
+ case VIE_MOD_INDIRECT_DISP8:
+ vie->disp_bytes = 1;
+ break;
+ case VIE_MOD_INDIRECT_DISP32:
+ vie->disp_bytes = 4;
+ break;
+ case VIE_MOD_INDIRECT:
+ if (vie->rm == VIE_RM_DISP32) {
+ vie->disp_bytes = 4;
+ /*
+ * Table 2-7. RIP-Relative Addressing
+ *
+ * In 64-bit mode mod=00 r/m=101 implies [rip] + disp32
+ * whereas in compatibility mode it just implies disp32.
+ */
+
+ if (cpu_mode == CPU_MODE_64BIT)
+ vie->base_register = VM_REG_GUEST_RIP;
+ else
+ vie->base_register = VM_REG_LAST;
+ }
+ break;
+ }
+
+done:
+ vie_advance(vie);
+
+ return (0);
+}
+
+static int
+decode_sib(struct vie *vie)
+{
+ uint8_t x;
+
+ /* Proceed only if SIB byte is present */
+ if (vie->mod == VIE_MOD_DIRECT || vie->rm != VIE_RM_SIB)
+ return (0);
+
+ if (vie_peek(vie, &x))
+ return (-1);
+
+ /* De-construct the SIB byte */
+ vie->ss = (x >> 6) & 0x3;
+ vie->index = (x >> 3) & 0x7;
+ vie->base = (x >> 0) & 0x7;
+
+ /* Apply the REX prefix modifiers */
+ vie->index |= vie->rex_x << 3;
+ vie->base |= vie->rex_b << 3;
+
+ switch (vie->mod) {
+ case VIE_MOD_INDIRECT_DISP8:
+ vie->disp_bytes = 1;
+ break;
+ case VIE_MOD_INDIRECT_DISP32:
+ vie->disp_bytes = 4;
+ break;
+ }
+
+ if (vie->mod == VIE_MOD_INDIRECT &&
+ (vie->base == 5 || vie->base == 13)) {
+ /*
+ * Special case when base register is unused if mod = 0
+ * and base = %rbp or %r13.
+ *
+ * Documented in:
+ * Table 2-3: 32-bit Addressing Forms with the SIB Byte
+ * Table 2-5: Special Cases of REX Encodings
+ */
+ vie->disp_bytes = 4;
+ } else {
+ vie->base_register = gpr_map[vie->base];
+ }
+
+ /*
+ * All encodings of 'index' are valid except for %rsp (4).
+ *
+ * Documented in:
+ * Table 2-3: 32-bit Addressing Forms with the SIB Byte
+ * Table 2-5: Special Cases of REX Encodings
+ */
+ if (vie->index != 4)
+ vie->index_register = gpr_map[vie->index];
+
+ /* 'scale' makes sense only in the context of an index register */
+ if (vie->index_register < VM_REG_LAST)
+ vie->scale = 1 << vie->ss;
+
+ vie_advance(vie);
+
+ return (0);
+}
+
+static int
+decode_displacement(struct vie *vie)
+{
+ int n, i;
+ uint8_t x;
+
+ union {
+ char buf[4];
+ int8_t signed8;
+ int32_t signed32;
+ } u;
+
+ if ((n = vie->disp_bytes) == 0)
+ return (0);
+
+ if (n != 1 && n != 4)
+ panic("decode_displacement: invalid disp_bytes %d", n);
+
+ for (i = 0; i < n; i++) {
+ if (vie_peek(vie, &x))
+ return (-1);
+
+ u.buf[i] = x;
+ vie_advance(vie);
+ }
+
+ if (n == 1)
+ vie->displacement = u.signed8; /* sign-extended */
+ else
+ vie->displacement = u.signed32; /* sign-extended */
+
+ return (0);
+}
+
+static int
+decode_immediate(struct vie *vie)
+{
+ int i, n;
+ uint8_t x;
+ union {
+ char buf[4];
+ int8_t signed8;
+ int16_t signed16;
+ int32_t signed32;
+ } u;
+
+ /* Figure out immediate operand size (if any) */
+ if (vie->op.op_flags & VIE_OP_F_IMM) {
+ /*
+ * Section 2.2.1.5 "Immediates", Intel SDM:
+ * In 64-bit mode the typical size of immediate operands
+ * remains 32-bits. When the operand size if 64-bits, the
+ * processor sign-extends all immediates to 64-bits prior
+ * to their use.
+ */
+ if (vie->opsize == 4 || vie->opsize == 8)
+ vie->imm_bytes = 4;
+ else
+ vie->imm_bytes = 2;
+ } else if (vie->op.op_flags & VIE_OP_F_IMM8) {
+ vie->imm_bytes = 1;
+ }
+
+ if ((n = vie->imm_bytes) == 0)
+ return (0);
+
+ KASSERT(n == 1 || n == 2 || n == 4,
+ ("%s: invalid number of immediate bytes: %d", __func__, n));
+
+ for (i = 0; i < n; i++) {
+ if (vie_peek(vie, &x))
+ return (-1);
+
+ u.buf[i] = x;
+ vie_advance(vie);
+ }
+
+ /* sign-extend the immediate value before use */
+ if (n == 1)
+ vie->immediate = u.signed8;
+ else if (n == 2)
+ vie->immediate = u.signed16;
+ else
+ vie->immediate = u.signed32;
+
+ return (0);
+}
+
+static int
+decode_moffset(struct vie *vie)
+{
+ int i, n;
+ uint8_t x;
+ union {
+ char buf[8];
+ uint64_t u64;
+ } u;
+
+ if ((vie->op.op_flags & VIE_OP_F_MOFFSET) == 0)
+ return (0);
+
+ /*
+ * Section 2.2.1.4, "Direct Memory-Offset MOVs", Intel SDM:
+ * The memory offset size follows the address-size of the instruction.
+ */
+ n = vie->addrsize;
+ KASSERT(n == 2 || n == 4 || n == 8, ("invalid moffset bytes: %d", n));
+
+ u.u64 = 0;
+ for (i = 0; i < n; i++) {
+ if (vie_peek(vie, &x))
+ return (-1);
+
+ u.buf[i] = x;
+ vie_advance(vie);
+ }
+ vie->displacement = u.u64;
+ return (0);
+}
+
+#ifdef _KERNEL
+/*
+ * Verify that the 'guest linear address' provided as collateral of the nested
+ * page table fault matches with our instruction decoding.
+ */
+static int
+verify_gla(struct vcpu *vcpu, uint64_t gla, struct vie *vie,
+ enum vm_cpu_mode cpu_mode)
+{
+ int error;
+ uint64_t base, segbase, idx, gla2;
+ enum vm_reg_name seg;
+ struct seg_desc desc;
+
+ /* Skip 'gla' verification */
+ if (gla == VIE_INVALID_GLA)
+ return (0);
+
+ base = 0;
+ if (vie->base_register != VM_REG_LAST) {
+ error = vm_get_register(vcpu, vie->base_register, &base);
+ if (error) {
+ printf("verify_gla: error %d getting base reg %d\n",
+ error, vie->base_register);
+ return (-1);
+ }
+
+ /*
+ * RIP-relative addressing starts from the following
+ * instruction
+ */
+ if (vie->base_register == VM_REG_GUEST_RIP)
+ base += vie->num_processed;
+ }
+
+ idx = 0;
+ if (vie->index_register != VM_REG_LAST) {
+ error = vm_get_register(vcpu, vie->index_register, &idx);
+ if (error) {
+ printf("verify_gla: error %d getting index reg %d\n",
+ error, vie->index_register);
+ return (-1);
+ }
+ }
+
+ /*
+ * From "Specifying a Segment Selector", Intel SDM, Vol 1
+ *
+ * In 64-bit mode, segmentation is generally (but not
+ * completely) disabled. The exceptions are the FS and GS
+ * segments.
+ *
+ * In legacy IA-32 mode, when the ESP or EBP register is used
+ * as the base, the SS segment is the default segment. For
+ * other data references, except when relative to stack or
+ * string destination the DS segment is the default. These
+ * can be overridden to allow other segments to be accessed.
+ */
+ if (vie->segment_override)
+ seg = vie->segment_register;
+ else if (vie->base_register == VM_REG_GUEST_RSP ||
+ vie->base_register == VM_REG_GUEST_RBP)
+ seg = VM_REG_GUEST_SS;
+ else
+ seg = VM_REG_GUEST_DS;
+ if (cpu_mode == CPU_MODE_64BIT && seg != VM_REG_GUEST_FS &&
+ seg != VM_REG_GUEST_GS) {
+ segbase = 0;
+ } else {
+ error = vm_get_seg_desc(vcpu, seg, &desc);
+ if (error) {
+ printf("verify_gla: error %d getting segment"
+ " descriptor %d", error,
+ vie->segment_register);
+ return (-1);
+ }
+ segbase = desc.base;
+ }
+
+ gla2 = segbase + base + vie->scale * idx + vie->displacement;
+ gla2 &= size2mask[vie->addrsize];
+ if (gla != gla2) {
+ printf("verify_gla mismatch: segbase(0x%0lx)"
+ "base(0x%0lx), scale(%d), index(0x%0lx), "
+ "disp(0x%0lx), gla(0x%0lx), gla2(0x%0lx)\n",
+ segbase, base, vie->scale, idx, vie->displacement,
+ gla, gla2);
+ return (-1);
+ }
+
+ return (0);
+}
+#endif /* _KERNEL */
+
+int
+#ifdef _KERNEL
+vmm_decode_instruction(struct vcpu *vcpu, uint64_t gla,
+ enum vm_cpu_mode cpu_mode, int cs_d, struct vie *vie)
+#else
+vmm_decode_instruction(enum vm_cpu_mode cpu_mode, int cs_d, struct vie *vie)
+#endif
+{
+
+ if (decode_prefixes(vie, cpu_mode, cs_d))
+ return (-1);
+
+ if (decode_opcode(vie))
+ return (-1);
+
+ if (decode_modrm(vie, cpu_mode))
+ return (-1);
+
+ if (decode_sib(vie))
+ return (-1);
+
+ if (decode_displacement(vie))
+ return (-1);
+
+ if (decode_immediate(vie))
+ return (-1);
+
+ if (decode_moffset(vie))
+ return (-1);
+
+#ifdef _KERNEL
+ if ((vie->op.op_flags & VIE_OP_F_NO_GLA_VERIFICATION) == 0) {
+ if (verify_gla(vcpu, gla, vie, cpu_mode))
+ return (-1);
+ }
+#endif
+
+ vie->decoded = 1; /* success */
+
+ return (0);
+}