aboutsummaryrefslogtreecommitdiff
path: root/sys/contrib/openzfs/module/icp/algs/modes/gcm.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/contrib/openzfs/module/icp/algs/modes/gcm.c')
-rw-r--r--sys/contrib/openzfs/module/icp/algs/modes/gcm.c371
1 files changed, 293 insertions, 78 deletions
diff --git a/sys/contrib/openzfs/module/icp/algs/modes/gcm.c b/sys/contrib/openzfs/module/icp/algs/modes/gcm.c
index c2a982b5a376..3cfa5b8165ce 100644
--- a/sys/contrib/openzfs/module/icp/algs/modes/gcm.c
+++ b/sys/contrib/openzfs/module/icp/algs/modes/gcm.c
@@ -46,6 +46,9 @@
#define IMPL_CYCLE (UINT32_MAX-1)
#ifdef CAN_USE_GCM_ASM
#define IMPL_AVX (UINT32_MAX-2)
+#if CAN_USE_GCM_ASM >= 2
+#define IMPL_AVX2 (UINT32_MAX-3)
+#endif
#endif
#define GCM_IMPL_READ(i) (*(volatile uint32_t *) &(i))
static uint32_t icp_gcm_impl = IMPL_FASTEST;
@@ -56,17 +59,16 @@ static uint32_t user_sel_impl = IMPL_FASTEST;
boolean_t gcm_avx_can_use_movbe = B_FALSE;
/*
* Whether to use the optimized openssl gcm and ghash implementations.
- * Set to true if module parameter icp_gcm_impl == "avx".
*/
-static boolean_t gcm_use_avx = B_FALSE;
-#define GCM_IMPL_USE_AVX (*(volatile boolean_t *)&gcm_use_avx)
+static gcm_impl gcm_impl_used = GCM_IMPL_GENERIC;
+#define GCM_IMPL_USED (*(volatile gcm_impl *)&gcm_impl_used)
extern boolean_t ASMABI atomic_toggle_boolean_nv(volatile boolean_t *);
static inline boolean_t gcm_avx_will_work(void);
-static inline void gcm_set_avx(boolean_t);
-static inline boolean_t gcm_toggle_avx(void);
-static inline size_t gcm_simd_get_htab_size(boolean_t);
+static inline boolean_t gcm_avx2_will_work(void);
+static inline void gcm_use_impl(gcm_impl impl);
+static inline gcm_impl gcm_toggle_impl(void);
static int gcm_mode_encrypt_contiguous_blocks_avx(gcm_ctx_t *, char *, size_t,
crypto_data_t *, size_t);
@@ -89,7 +91,7 @@ gcm_mode_encrypt_contiguous_blocks(gcm_ctx_t *ctx, char *data, size_t length,
void (*xor_block)(uint8_t *, uint8_t *))
{
#ifdef CAN_USE_GCM_ASM
- if (ctx->gcm_use_avx == B_TRUE)
+ if (ctx->impl != GCM_IMPL_GENERIC)
return (gcm_mode_encrypt_contiguous_blocks_avx(
ctx, data, length, out, block_size));
#endif
@@ -208,7 +210,7 @@ gcm_encrypt_final(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
{
(void) copy_block;
#ifdef CAN_USE_GCM_ASM
- if (ctx->gcm_use_avx == B_TRUE)
+ if (ctx->impl != GCM_IMPL_GENERIC)
return (gcm_encrypt_final_avx(ctx, out, block_size));
#endif
@@ -374,7 +376,7 @@ gcm_decrypt_final(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
void (*xor_block)(uint8_t *, uint8_t *))
{
#ifdef CAN_USE_GCM_ASM
- if (ctx->gcm_use_avx == B_TRUE)
+ if (ctx->impl != GCM_IMPL_GENERIC)
return (gcm_decrypt_final_avx(ctx, out, block_size));
#endif
@@ -631,23 +633,23 @@ gcm_init_ctx(gcm_ctx_t *gcm_ctx, char *param,
((aes_key_t *)gcm_ctx->gcm_keysched)->ops->needs_byteswap;
if (GCM_IMPL_READ(icp_gcm_impl) != IMPL_CYCLE) {
- gcm_ctx->gcm_use_avx = GCM_IMPL_USE_AVX;
+ gcm_ctx->impl = GCM_IMPL_USED;
} else {
/*
- * Handle the "cycle" implementation by creating avx and
- * non-avx contexts alternately.
+ * Handle the "cycle" implementation by creating different
+ * contexts, one per implementation.
*/
- gcm_ctx->gcm_use_avx = gcm_toggle_avx();
+ gcm_ctx->impl = gcm_toggle_impl();
- /* The avx impl. doesn't handle byte swapped key schedules. */
- if (gcm_ctx->gcm_use_avx == B_TRUE && needs_bswap == B_TRUE) {
- gcm_ctx->gcm_use_avx = B_FALSE;
+ /* The AVX impl. doesn't handle byte swapped key schedules. */
+ if (needs_bswap == B_TRUE) {
+ gcm_ctx->impl = GCM_IMPL_GENERIC;
}
/*
- * If this is a GCM context, use the MOVBE and the BSWAP
+ * If this is an AVX context, use the MOVBE and the BSWAP
* variants alternately.
*/
- if (gcm_ctx->gcm_use_avx == B_TRUE &&
+ if (gcm_ctx->impl == GCM_IMPL_AVX &&
zfs_movbe_available() == B_TRUE) {
(void) atomic_toggle_boolean_nv(
(volatile boolean_t *)&gcm_avx_can_use_movbe);
@@ -658,12 +660,13 @@ gcm_init_ctx(gcm_ctx_t *gcm_ctx, char *param,
* still they could be created by the aes generic implementation.
* Make sure not to use them since we'll corrupt data if we do.
*/
- if (gcm_ctx->gcm_use_avx == B_TRUE && needs_bswap == B_TRUE) {
- gcm_ctx->gcm_use_avx = B_FALSE;
+ if (gcm_ctx->impl != GCM_IMPL_GENERIC && needs_bswap == B_TRUE) {
+ gcm_ctx->impl = GCM_IMPL_GENERIC;
cmn_err_once(CE_WARN,
"ICP: Can't use the aes generic or cycle implementations "
- "in combination with the gcm avx implementation!");
+ "in combination with the gcm avx or avx2-vaes "
+ "implementation!");
cmn_err_once(CE_WARN,
"ICP: Falling back to a compatible implementation, "
"aes-gcm performance will likely be degraded.");
@@ -672,36 +675,20 @@ gcm_init_ctx(gcm_ctx_t *gcm_ctx, char *param,
"restore performance.");
}
- /* Allocate Htab memory as needed. */
- if (gcm_ctx->gcm_use_avx == B_TRUE) {
- size_t htab_len = gcm_simd_get_htab_size(gcm_ctx->gcm_use_avx);
-
- if (htab_len == 0) {
- return (CRYPTO_MECHANISM_PARAM_INVALID);
- }
- gcm_ctx->gcm_htab_len = htab_len;
- gcm_ctx->gcm_Htable =
- kmem_alloc(htab_len, KM_SLEEP);
-
- if (gcm_ctx->gcm_Htable == NULL) {
- return (CRYPTO_HOST_MEMORY);
- }
+ /*
+ * AVX implementations use Htable with sizes depending on
+ * implementation.
+ */
+ if (gcm_ctx->impl != GCM_IMPL_GENERIC) {
+ rv = gcm_init_avx(gcm_ctx, iv, iv_len, aad, aad_len,
+ block_size);
}
- /* Avx and non avx context initialization differs from here on. */
- if (gcm_ctx->gcm_use_avx == B_FALSE) {
+ else
#endif /* ifdef CAN_USE_GCM_ASM */
- if (gcm_init(gcm_ctx, iv, iv_len, aad, aad_len, block_size,
- encrypt_block, copy_block, xor_block) != CRYPTO_SUCCESS) {
- rv = CRYPTO_MECHANISM_PARAM_INVALID;
- }
-#ifdef CAN_USE_GCM_ASM
- } else {
- if (gcm_init_avx(gcm_ctx, iv, iv_len, aad, aad_len,
- block_size) != CRYPTO_SUCCESS) {
- rv = CRYPTO_MECHANISM_PARAM_INVALID;
- }
+ if (gcm_init(gcm_ctx, iv, iv_len, aad, aad_len, block_size,
+ encrypt_block, copy_block, xor_block) != CRYPTO_SUCCESS) {
+ rv = CRYPTO_MECHANISM_PARAM_INVALID;
}
-#endif /* ifdef CAN_USE_GCM_ASM */
return (rv);
}
@@ -767,6 +754,9 @@ gcm_impl_get_ops(void)
break;
#ifdef CAN_USE_GCM_ASM
case IMPL_AVX:
+#if CAN_USE_GCM_ASM >= 2
+ case IMPL_AVX2:
+#endif
/*
* Make sure that we return a valid implementation while
* switching to the avx implementation since there still
@@ -828,6 +818,13 @@ gcm_impl_init(void)
* Use the avx implementation if it's available and the implementation
* hasn't changed from its default value of fastest on module load.
*/
+#if CAN_USE_GCM_ASM >= 2
+ if (gcm_avx2_will_work()) {
+ if (GCM_IMPL_READ(user_sel_impl) == IMPL_FASTEST) {
+ gcm_use_impl(GCM_IMPL_AVX2);
+ }
+ } else
+#endif
if (gcm_avx_will_work()) {
#ifdef HAVE_MOVBE
if (zfs_movbe_available() == B_TRUE) {
@@ -835,7 +832,7 @@ gcm_impl_init(void)
}
#endif
if (GCM_IMPL_READ(user_sel_impl) == IMPL_FASTEST) {
- gcm_set_avx(B_TRUE);
+ gcm_use_impl(GCM_IMPL_AVX);
}
}
#endif
@@ -852,6 +849,7 @@ static const struct {
{ "fastest", IMPL_FASTEST },
#ifdef CAN_USE_GCM_ASM
{ "avx", IMPL_AVX },
+ { "avx2-vaes", IMPL_AVX2 },
#endif
};
@@ -887,7 +885,13 @@ gcm_impl_set(const char *val)
/* Check mandatory options */
for (i = 0; i < ARRAY_SIZE(gcm_impl_opts); i++) {
#ifdef CAN_USE_GCM_ASM
+#if CAN_USE_GCM_ASM >= 2
/* Ignore avx implementation if it won't work. */
+ if (gcm_impl_opts[i].sel == IMPL_AVX2 &&
+ !gcm_avx2_will_work()) {
+ continue;
+ }
+#endif
if (gcm_impl_opts[i].sel == IMPL_AVX && !gcm_avx_will_work()) {
continue;
}
@@ -915,11 +919,17 @@ gcm_impl_set(const char *val)
* Use the avx implementation if available and the requested one is
* avx or fastest.
*/
+#if CAN_USE_GCM_ASM >= 2
+ if (gcm_avx2_will_work() == B_TRUE &&
+ (impl == IMPL_AVX2 || impl == IMPL_FASTEST)) {
+ gcm_use_impl(GCM_IMPL_AVX2);
+ } else
+#endif
if (gcm_avx_will_work() == B_TRUE &&
(impl == IMPL_AVX || impl == IMPL_FASTEST)) {
- gcm_set_avx(B_TRUE);
+ gcm_use_impl(GCM_IMPL_AVX);
} else {
- gcm_set_avx(B_FALSE);
+ gcm_use_impl(GCM_IMPL_GENERIC);
}
#endif
@@ -952,6 +962,12 @@ icp_gcm_impl_get(char *buffer, zfs_kernel_param_t *kp)
for (i = 0; i < ARRAY_SIZE(gcm_impl_opts); i++) {
#ifdef CAN_USE_GCM_ASM
/* Ignore avx implementation if it won't work. */
+#if CAN_USE_GCM_ASM >= 2
+ if (gcm_impl_opts[i].sel == IMPL_AVX2 &&
+ !gcm_avx2_will_work()) {
+ continue;
+ }
+#endif
if (gcm_impl_opts[i].sel == IMPL_AVX && !gcm_avx_will_work()) {
continue;
}
@@ -993,9 +1009,6 @@ MODULE_PARM_DESC(icp_gcm_impl, "Select gcm implementation.");
/* Clear the FPU registers since they hold sensitive internal state. */
#define clear_fpu_regs() clear_fpu_regs_avx()
-#define GHASH_AVX(ctx, in, len) \
- gcm_ghash_avx((ctx)->gcm_ghash, (const uint64_t *)(ctx)->gcm_Htable, \
- in, len)
#define gcm_incr_counter_block(ctx) gcm_incr_counter_block_by(ctx, 1)
@@ -1010,20 +1023,77 @@ MODULE_PARM_DESC(icp_gcm_impl, "Select gcm implementation.");
static uint32_t gcm_avx_chunk_size =
((32 * 1024) / GCM_AVX_MIN_DECRYPT_BYTES) * GCM_AVX_MIN_DECRYPT_BYTES;
+/*
+ * GCM definitions: uint128_t is copied from include/crypto/modes.h
+ * Avoiding u128 because it is already defined in kernel sources.
+ */
+typedef struct {
+ uint64_t hi, lo;
+} uint128_t;
+
extern void ASMABI clear_fpu_regs_avx(void);
extern void ASMABI gcm_xor_avx(const uint8_t *src, uint8_t *dst);
extern void ASMABI aes_encrypt_intel(const uint32_t rk[], int nr,
const uint32_t pt[4], uint32_t ct[4]);
extern void ASMABI gcm_init_htab_avx(uint64_t *Htable, const uint64_t H[2]);
+#if CAN_USE_GCM_ASM >= 2
+extern void ASMABI gcm_init_vpclmulqdq_avx2(uint128_t Htable[16],
+ const uint64_t H[2]);
+#endif
extern void ASMABI gcm_ghash_avx(uint64_t ghash[2], const uint64_t *Htable,
const uint8_t *in, size_t len);
+#if CAN_USE_GCM_ASM >= 2
+extern void ASMABI gcm_ghash_vpclmulqdq_avx2(uint64_t ghash[2],
+ const uint64_t *Htable, const uint8_t *in, size_t len);
+#endif
+static inline void GHASH_AVX(gcm_ctx_t *ctx, const uint8_t *in, size_t len)
+{
+ switch (ctx->impl) {
+#if CAN_USE_GCM_ASM >= 2
+ case GCM_IMPL_AVX2:
+ gcm_ghash_vpclmulqdq_avx2(ctx->gcm_ghash,
+ (const uint64_t *)ctx->gcm_Htable, in, len);
+ break;
+#endif
+
+ case GCM_IMPL_AVX:
+ gcm_ghash_avx(ctx->gcm_ghash,
+ (const uint64_t *)ctx->gcm_Htable, in, len);
+ break;
+
+ default:
+ VERIFY(B_FALSE);
+ }
+}
+typedef size_t ASMABI aesni_gcm_encrypt_impl(const uint8_t *, uint8_t *,
+ size_t, const void *, uint64_t *, const uint64_t *Htable, uint64_t *);
extern size_t ASMABI aesni_gcm_encrypt(const uint8_t *, uint8_t *, size_t,
const void *, uint64_t *, uint64_t *);
+#if CAN_USE_GCM_ASM >= 2
+extern void ASMABI aes_gcm_enc_update_vaes_avx2(const uint8_t *in,
+ uint8_t *out, size_t len, const void *key, const uint8_t ivec[16],
+ const uint128_t Htable[16], uint8_t Xi[16]);
+#endif
+typedef size_t ASMABI aesni_gcm_decrypt_impl(const uint8_t *, uint8_t *,
+ size_t, const void *, uint64_t *, const uint64_t *Htable, uint64_t *);
extern size_t ASMABI aesni_gcm_decrypt(const uint8_t *, uint8_t *, size_t,
const void *, uint64_t *, uint64_t *);
+#if CAN_USE_GCM_ASM >= 2
+extern void ASMABI aes_gcm_dec_update_vaes_avx2(const uint8_t *in,
+ uint8_t *out, size_t len, const void *key, const uint8_t ivec[16],
+ const uint128_t Htable[16], uint8_t Xi[16]);
+#endif
+
+static inline boolean_t
+gcm_avx2_will_work(void)
+{
+ return (kfpu_allowed() &&
+ zfs_avx2_available() && zfs_vaes_available() &&
+ zfs_vpclmulqdq_available());
+}
static inline boolean_t
gcm_avx_will_work(void)
@@ -1035,33 +1105,67 @@ gcm_avx_will_work(void)
}
static inline void
-gcm_set_avx(boolean_t val)
+gcm_use_impl(gcm_impl impl)
{
- if (gcm_avx_will_work() == B_TRUE) {
- atomic_swap_32(&gcm_use_avx, val);
+ switch (impl) {
+#if CAN_USE_GCM_ASM >= 2
+ case GCM_IMPL_AVX2:
+ if (gcm_avx2_will_work() == B_TRUE) {
+ atomic_swap_32(&gcm_impl_used, impl);
+ return;
+ }
+
+ zfs_fallthrough;
+#endif
+
+ case GCM_IMPL_AVX:
+ if (gcm_avx_will_work() == B_TRUE) {
+ atomic_swap_32(&gcm_impl_used, impl);
+ return;
+ }
+
+ zfs_fallthrough;
+
+ default:
+ atomic_swap_32(&gcm_impl_used, GCM_IMPL_GENERIC);
}
}
static inline boolean_t
-gcm_toggle_avx(void)
+gcm_impl_will_work(gcm_impl impl)
{
- if (gcm_avx_will_work() == B_TRUE) {
- return (atomic_toggle_boolean_nv(&GCM_IMPL_USE_AVX));
- } else {
- return (B_FALSE);
+ switch (impl) {
+#if CAN_USE_GCM_ASM >= 2
+ case GCM_IMPL_AVX2:
+ return (gcm_avx2_will_work());
+#endif
+
+ case GCM_IMPL_AVX:
+ return (gcm_avx_will_work());
+
+ default:
+ return (B_TRUE);
}
}
-static inline size_t
-gcm_simd_get_htab_size(boolean_t simd_mode)
+static inline gcm_impl
+gcm_toggle_impl(void)
{
- switch (simd_mode) {
- case B_TRUE:
- return (2 * 6 * 2 * sizeof (uint64_t));
+ gcm_impl current_impl, new_impl;
+ do { /* handle races */
+ current_impl = atomic_load_32(&gcm_impl_used);
+ new_impl = current_impl;
+ while (B_TRUE) { /* handle incompatble implementations */
+ new_impl = (new_impl + 1) % GCM_IMPL_MAX;
+ if (gcm_impl_will_work(new_impl)) {
+ break;
+ }
+ }
- default:
- return (0);
- }
+ } while (atomic_cas_32(&gcm_impl_used, current_impl, new_impl) !=
+ current_impl);
+
+ return (new_impl);
}
@@ -1077,6 +1181,50 @@ gcm_incr_counter_block_by(gcm_ctx_t *ctx, int n)
ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;
}
+static size_t aesni_gcm_encrypt_avx(const uint8_t *in, uint8_t *out,
+ size_t len, const void *key, uint64_t *iv, const uint64_t *Htable,
+ uint64_t *Xip)
+{
+ (void) Htable;
+ return (aesni_gcm_encrypt(in, out, len, key, iv, Xip));
+}
+
+#if CAN_USE_GCM_ASM >= 2
+// kSizeTWithoutLower4Bits is a mask that can be used to zero the lower four
+// bits of a |size_t|.
+// This is from boringssl/crypto/fipsmodule/aes/gcm.cc.inc
+static const size_t kSizeTWithoutLower4Bits = (size_t)-16;
+
+/* The following CRYPTO methods are from boringssl/crypto/internal.h */
+static inline uint32_t CRYPTO_bswap4(uint32_t x) {
+ return (__builtin_bswap32(x));
+}
+
+static inline uint32_t CRYPTO_load_u32_be(const void *in) {
+ uint32_t v;
+ memcpy(&v, in, sizeof (v));
+ return (CRYPTO_bswap4(v));
+}
+
+static inline void CRYPTO_store_u32_be(void *out, uint32_t v) {
+ v = CRYPTO_bswap4(v);
+ memcpy(out, &v, sizeof (v));
+}
+
+static size_t aesni_gcm_encrypt_avx2(const uint8_t *in, uint8_t *out,
+ size_t len, const void *key, uint64_t *iv, const uint64_t *Htable,
+ uint64_t *Xip)
+{
+ uint8_t *ivec = (uint8_t *)iv;
+ len &= kSizeTWithoutLower4Bits;
+ aes_gcm_enc_update_vaes_avx2(in, out, len, key, ivec,
+ (const uint128_t *)Htable, (uint8_t *)Xip);
+ CRYPTO_store_u32_be(&ivec[12],
+ CRYPTO_load_u32_be(&ivec[12]) + len / 16);
+ return (len);
+}
+#endif /* if CAN_USE_GCM_ASM >= 2 */
+
/*
* Encrypt multiple blocks of data in GCM mode.
* This is done in gcm_avx_chunk_size chunks, utilizing AVX assembler routines
@@ -1091,8 +1239,15 @@ gcm_mode_encrypt_contiguous_blocks_avx(gcm_ctx_t *ctx, char *data,
size_t done = 0;
uint8_t *datap = (uint8_t *)data;
size_t chunk_size = (size_t)GCM_CHUNK_SIZE_READ;
+ aesni_gcm_encrypt_impl *encrypt_blocks =
+#if CAN_USE_GCM_ASM >= 2
+ ctx->impl == GCM_IMPL_AVX2 ?
+ aesni_gcm_encrypt_avx2 :
+#endif
+ aesni_gcm_encrypt_avx;
const aes_key_t *key = ((aes_key_t *)ctx->gcm_keysched);
uint64_t *ghash = ctx->gcm_ghash;
+ uint64_t *htable = ctx->gcm_Htable;
uint64_t *cb = ctx->gcm_cb;
uint8_t *ct_buf = NULL;
uint8_t *tmp = (uint8_t *)ctx->gcm_tmp;
@@ -1156,8 +1311,8 @@ gcm_mode_encrypt_contiguous_blocks_avx(gcm_ctx_t *ctx, char *data,
/* Do the bulk encryption in chunk_size blocks. */
for (; bleft >= chunk_size; bleft -= chunk_size) {
kfpu_begin();
- done = aesni_gcm_encrypt(
- datap, ct_buf, chunk_size, key, cb, ghash);
+ done = encrypt_blocks(
+ datap, ct_buf, chunk_size, key, cb, htable, ghash);
clear_fpu_regs();
kfpu_end();
@@ -1180,7 +1335,8 @@ gcm_mode_encrypt_contiguous_blocks_avx(gcm_ctx_t *ctx, char *data,
/* Bulk encrypt the remaining data. */
kfpu_begin();
if (bleft >= GCM_AVX_MIN_ENCRYPT_BYTES) {
- done = aesni_gcm_encrypt(datap, ct_buf, bleft, key, cb, ghash);
+ done = encrypt_blocks(datap, ct_buf, bleft, key, cb, htable,
+ ghash);
if (done == 0) {
rv = CRYPTO_FAILED;
goto out;
@@ -1293,6 +1449,29 @@ gcm_encrypt_final_avx(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size)
return (CRYPTO_SUCCESS);
}
+static size_t aesni_gcm_decrypt_avx(const uint8_t *in, uint8_t *out,
+ size_t len, const void *key, uint64_t *iv, const uint64_t *Htable,
+ uint64_t *Xip)
+{
+ (void) Htable;
+ return (aesni_gcm_decrypt(in, out, len, key, iv, Xip));
+}
+
+#if CAN_USE_GCM_ASM >= 2
+static size_t aesni_gcm_decrypt_avx2(const uint8_t *in, uint8_t *out,
+ size_t len, const void *key, uint64_t *iv, const uint64_t *Htable,
+ uint64_t *Xip)
+{
+ uint8_t *ivec = (uint8_t *)iv;
+ len &= kSizeTWithoutLower4Bits;
+ aes_gcm_dec_update_vaes_avx2(in, out, len, key, ivec,
+ (const uint128_t *)Htable, (uint8_t *)Xip);
+ CRYPTO_store_u32_be(&ivec[12],
+ CRYPTO_load_u32_be(&ivec[12]) + len / 16);
+ return (len);
+}
+#endif /* if CAN_USE_GCM_ASM >= 2 */
+
/*
* Finalize decryption: We just have accumulated crypto text, so now we
* decrypt it here inplace.
@@ -1306,10 +1485,17 @@ gcm_decrypt_final_avx(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size)
B_FALSE);
size_t chunk_size = (size_t)GCM_CHUNK_SIZE_READ;
+ aesni_gcm_decrypt_impl *decrypt_blocks =
+#if CAN_USE_GCM_ASM >= 2
+ ctx->impl == GCM_IMPL_AVX2 ?
+ aesni_gcm_decrypt_avx2 :
+#endif
+ aesni_gcm_decrypt_avx;
size_t pt_len = ctx->gcm_processed_data_len - ctx->gcm_tag_len;
uint8_t *datap = ctx->gcm_pt_buf;
const aes_key_t *key = ((aes_key_t *)ctx->gcm_keysched);
uint32_t *cb = (uint32_t *)ctx->gcm_cb;
+ uint64_t *htable = ctx->gcm_Htable;
uint64_t *ghash = ctx->gcm_ghash;
uint32_t *tmp = (uint32_t *)ctx->gcm_tmp;
int rv = CRYPTO_SUCCESS;
@@ -1322,8 +1508,8 @@ gcm_decrypt_final_avx(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size)
*/
for (bleft = pt_len; bleft >= chunk_size; bleft -= chunk_size) {
kfpu_begin();
- done = aesni_gcm_decrypt(datap, datap, chunk_size,
- (const void *)key, ctx->gcm_cb, ghash);
+ done = decrypt_blocks(datap, datap, chunk_size,
+ (const void *)key, ctx->gcm_cb, htable, ghash);
clear_fpu_regs();
kfpu_end();
if (done != chunk_size) {
@@ -1334,8 +1520,8 @@ gcm_decrypt_final_avx(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size)
/* Decrypt remainder, which is less than chunk size, in one go. */
kfpu_begin();
if (bleft >= GCM_AVX_MIN_DECRYPT_BYTES) {
- done = aesni_gcm_decrypt(datap, datap, bleft,
- (const void *)key, ctx->gcm_cb, ghash);
+ done = decrypt_blocks(datap, datap, bleft,
+ (const void *)key, ctx->gcm_cb, htable, ghash);
if (done == 0) {
clear_fpu_regs();
kfpu_end();
@@ -1424,13 +1610,42 @@ gcm_init_avx(gcm_ctx_t *ctx, const uint8_t *iv, size_t iv_len,
ASSERT3S(((aes_key_t *)ctx->gcm_keysched)->ops->needs_byteswap, ==,
B_FALSE);
+ size_t htab_len = 0;
+#if CAN_USE_GCM_ASM >= 2
+ if (ctx->impl == GCM_IMPL_AVX2) {
+ /*
+ * BoringSSL's API specifies uint128_t[16] for htab; but only
+ * uint128_t[12] are used.
+ * See https://github.com/google/boringssl/blob/
+ * 813840dd094f9e9c1b00a7368aa25e656554221f1/crypto/fipsmodule/
+ * modes/asm/aes-gcm-avx2-x86_64.pl#L198-L200
+ */
+ htab_len = (2 * 8 * sizeof (uint128_t));
+ } else
+#endif /* CAN_USE_GCM_ASM >= 2 */
+ {
+ htab_len = (2 * 6 * sizeof (uint128_t));
+ }
+
+ ctx->gcm_Htable = kmem_alloc(htab_len, KM_SLEEP);
+ if (ctx->gcm_Htable == NULL) {
+ return (CRYPTO_HOST_MEMORY);
+ }
+
/* Init H (encrypt zero block) and create the initial counter block. */
memset(H, 0, sizeof (ctx->gcm_H));
kfpu_begin();
aes_encrypt_intel(keysched, aes_rounds,
(const uint32_t *)H, (uint32_t *)H);
- gcm_init_htab_avx(ctx->gcm_Htable, H);
+#if CAN_USE_GCM_ASM >= 2
+ if (ctx->impl == GCM_IMPL_AVX2) {
+ gcm_init_vpclmulqdq_avx2((uint128_t *)ctx->gcm_Htable, H);
+ } else
+#endif /* if CAN_USE_GCM_ASM >= 2 */
+ {
+ gcm_init_htab_avx(ctx->gcm_Htable, H);
+ }
if (iv_len == 12) {
memcpy(cb, iv, 12);