aboutsummaryrefslogtreecommitdiff
path: root/sys/dev/advansys/advlib.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/dev/advansys/advlib.c')
-rw-r--r--sys/dev/advansys/advlib.c1654
1 files changed, 1654 insertions, 0 deletions
diff --git a/sys/dev/advansys/advlib.c b/sys/dev/advansys/advlib.c
new file mode 100644
index 000000000000..365f3432c1ba
--- /dev/null
+++ b/sys/dev/advansys/advlib.c
@@ -0,0 +1,1654 @@
+/*
+ * Low level routines for the Advanced Systems Inc. SCSI controllers chips
+ *
+ * Copyright (c) 1996 Justin T. Gibbs.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice immediately at the beginning of the file, without modification,
+ * this list of conditions, and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. The name of the author may not be used to endorse or promote products
+ * derived from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
+ * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * $Id$
+ */
+/*
+ * Ported from:
+ * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
+ *
+ * Copyright (c) 1995-1996 Advanced System Products, Inc.
+ * All Rights Reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that redistributions of source
+ * code retain the above copyright notice and this comment without
+ * modification.
+ */
+
+#include <sys/param.h>
+#include <sys/systm.h>
+
+#include <machine/clock.h>
+
+#include <scsi/scsi_all.h>
+#include <scsi/scsi_message.h>
+#include <scsi/scsi_disk.h>
+
+#include <vm/vm.h>
+#include <vm/vm_param.h>
+#include <vm/pmap.h>
+
+#include <dev/advansys/advlib.h>
+#include <dev/advansys/advmcode.h>
+
+/*
+ * Allowable periods in ns
+ */
+u_int8_t adv_sdtr_period_tbl[] =
+{
+ 25,
+ 30,
+ 35,
+ 40,
+ 50,
+ 60,
+ 70,
+ 85
+};
+
+struct sdtr_xmsg {
+ u_int8_t msg_type;
+ u_int8_t msg_len;
+ u_int8_t msg_req;
+ u_int8_t xfer_period;
+ u_int8_t req_ack_offset;
+ u_int8_t res;
+};
+
+/*
+ * Some of the early PCI adapters have problems with
+ * async transfers. Instead try to use an offset of
+ * 1.
+ */
+#define ASYN_SDTR_DATA_FIX 0x41
+
+/* LRAM routines */
+static void adv_read_lram_16_multi __P((struct adv_softc *adv, u_int16_t s_addr,
+ u_int16_t *buffer, int count));
+static void adv_write_lram_16_multi __P((struct adv_softc *adv,
+ u_int16_t s_addr, u_int16_t *buffer,
+ int count));
+static void adv_mset_lram_16 __P((struct adv_softc *adv,
+ u_int16_t s_addr, u_int16_t set_value,
+ int count));
+static u_int32_t adv_msum_lram_16 __P((struct adv_softc *adv, u_int16_t s_addr, int count));
+
+static int adv_write_and_verify_lram_16 __P((struct adv_softc *adv,
+ u_int16_t addr, u_int16_t value));
+static u_int32_t adv_read_lram_32 __P((struct adv_softc *adv, u_int16_t addr));
+
+
+static void adv_write_lram_32 __P((struct adv_softc *adv, u_int16_t addr,
+ u_int32_t value));
+static void adv_write_lram_32_multi __P((struct adv_softc *adv, u_int16_t s_addr,
+ u_int32_t *buffer, int count));
+
+/* EEPROM routines */
+static u_int16_t adv_read_eeprom_16 __P((struct adv_softc *adv, u_int8_t addr));
+static u_int16_t adv_write_eeprom_16 __P((struct adv_softc *adv, u_int8_t addr, u_int16_t value));
+static int adv_write_eeprom_cmd_reg __P((struct adv_softc *adv, u_int8_t cmd_reg));
+static int adv_set_eeprom_config_once __P((struct adv_softc *adv,
+ struct adv_eeprom_config *eeprom_config));
+
+/* Initialization */
+static u_int32_t adv_load_microcode __P((struct adv_softc *adv, u_int16_t s_addr,
+ u_int16_t *mcode_buf, u_int16_t mcode_size));
+static void adv_init_lram __P((struct adv_softc *adv));
+static int adv_init_microcode_var __P((struct adv_softc *adv));
+static void adv_init_qlink_var __P((struct adv_softc *adv));
+
+/* Interrupts */
+static void adv_disable_interrupt __P((struct adv_softc *adv));
+static void adv_enable_interrupt __P((struct adv_softc *adv));
+static void adv_toggle_irq_act __P((struct adv_softc *adv));
+
+/* Chip Control */
+#if UNUSED
+static void adv_start_execution __P((struct adv_softc *adv));
+#endif
+static int adv_start_chip __P((struct adv_softc *adv));
+static int adv_stop_chip __P((struct adv_softc *adv));
+static void adv_set_chip_ih __P((struct adv_softc *adv, u_int16_t ins_code));
+static void adv_set_bank __P((struct adv_softc *adv, u_int8_t bank));
+#if UNUSED
+static u_int8_t adv_get_chip_scsi_ctrl __P((struct adv_softc *adv));
+#endif
+
+/* Queue handling and execution */
+static int adv_sgcount_to_qcount __P((int sgcount));
+static void adv_get_q_info __P((struct adv_softc *adv, u_int16_t s_addr, u_int16_t *inbuf,
+ int words));
+static u_int adv_get_num_free_queues __P((struct adv_softc *adv, u_int8_t n_qs));
+static u_int8_t adv_alloc_free_queues __P((struct adv_softc *adv, u_int8_t free_q_head,
+ u_int8_t n_free_q));
+static u_int8_t adv_alloc_free_queue __P((struct adv_softc *adv, u_int8_t free_q_head));
+static int adv_send_scsi_queue __P((struct adv_softc *adv, struct adv_scsi_q *scsiq,
+ u_int8_t n_q_required));
+static void adv_put_ready_sg_list_queue __P((struct adv_softc *adv, struct adv_scsi_q *scsiq,
+ u_int8_t q_no));
+static void adv_put_ready_queue __P((struct adv_softc *adv, struct adv_scsi_q *scsiq, u_int8_t q_no));
+static void adv_put_scsiq __P((struct adv_softc *adv, u_int16_t s_addr, u_int16_t *buffer, int words));
+
+/* SDTR */
+static u_int8_t adv_msgout_sdtr __P((struct adv_softc *adv, u_int8_t sdtr_period, u_int8_t sdtr_offset));
+static u_int8_t adv_get_card_sync_setting __P((u_int8_t period, u_int8_t offset));
+static void adv_set_chip_sdtr __P((struct adv_softc *adv, u_int8_t sdtr_data,
+ u_int8_t tid_no));
+
+
+/* Exported Function first */
+
+u_int8_t
+adv_read_lram_8(adv, addr)
+ struct adv_softc *adv;
+ u_int16_t addr;
+
+{
+ u_int8_t byte_data;
+ u_int16_t word_data;
+
+ /*
+ * LRAM is accessed on 16bit boundaries.
+ */
+ ADV_OUTW(adv, ADV_LRAM_ADDR, addr & 0xFFFE);
+ word_data = ADV_INW(adv, ADV_LRAM_DATA);
+ if (addr & 1) {
+#if BYTE_ORDER == BIG_ENDIAN
+ byte_data = (u_int8_t)(word_data & 0xFF);
+#else
+ byte_data = (u_int8_t)((word_data >> 8) & 0xFF);
+#endif
+ } else {
+#if BYTE_ORDER == BIG_ENDIAN
+ byte_data = (u_int8_t)((word_data >> 8) & 0xFF);
+#else
+ byte_data = (u_int8_t)(word_data & 0xFF);
+#endif
+ }
+ return (byte_data);
+}
+
+void
+adv_write_lram_8(adv, addr, value)
+ struct adv_softc *adv;
+ u_int16_t addr;
+ u_int8_t value;
+{
+ u_int16_t word_data;
+
+ word_data = adv_read_lram_16(adv, addr & 0xFFFE);
+ if (addr & 1) {
+ word_data &= 0x00FF;
+ word_data |= (((u_int8_t)value << 8) & 0xFF00);
+ } else {
+ word_data &= 0xFF00;
+ word_data |= ((u_int8_t)value & 0x00FF);
+ }
+ adv_write_lram_16(adv, addr & 0xFFFE, word_data);
+}
+
+
+u_int16_t
+adv_read_lram_16(adv, addr)
+ struct adv_softc *adv;
+ u_int16_t addr;
+{
+ ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
+ return (ADV_INW(adv, ADV_LRAM_DATA));
+}
+
+void
+adv_write_lram_16(adv, addr, value)
+ struct adv_softc *adv;
+ u_int16_t addr;
+ u_int16_t value;
+{
+ ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
+ ADV_OUTW(adv, ADV_LRAM_DATA, value);
+}
+
+
+/*
+ * Return the fully qualified board type for the adapter.
+ * The chip_revision must be set before this function is called.
+ */
+void
+adv_get_board_type(adv)
+ struct adv_softc *adv;
+{
+ if ((adv->chip_version >= ADV_CHIP_MIN_VER_VL) &&
+ (adv->chip_version <= ADV_CHIP_MAX_VER_VL)) {
+ if (((adv->iobase & 0x0C30) == 0x0C30) ||
+ ((adv->iobase & 0x0C50) == 0x0C50)) {
+ adv->type = ADV_EISA;
+ } else
+ adv->type = ADV_VL;
+ } else if ((adv->chip_version >= ADV_CHIP_MIN_VER_ISA) &&
+ (adv->chip_version <= ADV_CHIP_MAX_VER_ISA)) {
+ if (adv->chip_version >= ADV_CHIP_MIN_VER_ISA_PNP) {
+ adv->type = ADV_ISAPNP;
+ } else
+ adv->type = ADV_ISA;
+ } else if ((adv->chip_version >= ADV_CHIP_MIN_VER_PCI) &&
+ (adv->chip_version <= ADV_CHIP_MAX_VER_PCI)) {
+ adv->type = ADV_PCI;
+ } else
+ panic("adv_get_board_type: Unknown board type encountered");
+}
+
+u_int16_t
+adv_get_eeprom_config(adv, eeprom_config)
+ struct adv_softc *adv;
+ struct adv_eeprom_config *eeprom_config;
+{
+ u_int16_t sum;
+ u_int16_t *wbuf;
+ u_int8_t cfg_beg;
+ u_int8_t cfg_end;
+ u_int8_t s_addr;
+
+ wbuf = (u_int16_t *)eeprom_config;
+ sum = 0;
+
+ for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
+ *wbuf = adv_read_eeprom_16(adv, s_addr);
+ sum += *wbuf;
+ }
+
+ if (adv->type & ADV_VL) {
+ cfg_beg = ADV_EEPROM_CFG_BEG_VL;
+ cfg_end = ADV_EEPROM_MAX_ADDR_VL;
+ } else {
+ cfg_beg = ADV_EEPROM_CFG_BEG;
+ cfg_end = ADV_EEPROM_MAX_ADDR;
+ }
+
+ for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
+ *wbuf = adv_read_eeprom_16(adv, s_addr);
+ sum += *wbuf;
+#if ADV_DEBUG_EEPROM
+ printf("Addr 0x%x: 0x%04x\n", s_addr, *wbuf);
+#endif
+ }
+ *wbuf = adv_read_eeprom_16(adv, s_addr);
+ return (sum);
+}
+
+int
+adv_set_eeprom_config(adv, eeprom_config)
+ struct adv_softc *adv;
+ struct adv_eeprom_config *eeprom_config;
+{
+ int retry;
+
+ retry = 0;
+ while (1) {
+ if (adv_set_eeprom_config_once(adv, eeprom_config) == 0) {
+ break;
+ }
+ if (++retry > ADV_EEPROM_MAX_RETRY) {
+ break;
+ }
+ }
+ return (retry > ADV_EEPROM_MAX_RETRY);
+}
+
+int
+adv_reset_chip_and_scsi_bus(adv)
+ struct adv_softc *adv;
+{
+ adv_stop_chip(adv);
+ ADV_OUTB(adv, ADV_CHIP_CTRL, ADV_CC_CHIP_RESET | ADV_CC_SCSI_RESET | ADV_CC_HALT);
+ DELAY(200 * 1000);
+
+ adv_set_chip_ih(adv, ADV_INS_RFLAG_WTM);
+ adv_set_chip_ih(adv, ADV_INS_HALT);
+
+ ADV_OUTB(adv, ADV_CHIP_CTRL, ADV_CC_CHIP_RESET | ADV_CC_HALT);
+ ADV_OUTB(adv, ADV_CHIP_CTRL, ADV_CC_HALT);
+ DELAY(200 * 1000);
+ return (adv_is_chip_halted(adv));
+}
+
+int
+adv_test_external_lram(adv)
+ struct adv_softc* adv;
+{
+ u_int16_t q_addr;
+ u_int16_t saved_value;
+ int success;
+
+ success = 0;
+
+ /* XXX Why 241? */
+ q_addr = ADV_QNO_TO_QADDR(241);
+ saved_value = adv_read_lram_16(adv, q_addr);
+ if (adv_write_and_verify_lram_16(adv, q_addr, 0x55AA) == 0) {
+ success = 1;
+ adv_write_lram_16(adv, q_addr, saved_value);
+ }
+ return (success);
+}
+
+
+int
+adv_init_lram_and_mcode(adv)
+ struct adv_softc *adv;
+{
+ u_int32_t retval;
+ adv_disable_interrupt(adv);
+
+ adv_init_lram(adv);
+
+ retval = adv_load_microcode(adv, 0, (u_int16_t *)adv_mcode, adv_mcode_size);
+ if (retval != adv_mcode_chksum) {
+ printf("adv%d: Microcode download failed checksum!\n",
+ adv->unit);
+ return (1);
+ }
+
+ if (adv_init_microcode_var(adv) != 0)
+ return (1);
+
+ adv_enable_interrupt(adv);
+ return (0);
+}
+
+u_int8_t
+adv_get_chip_irq(adv)
+ struct adv_softc *adv;
+{
+ u_int16_t cfg_lsw;
+ u_int8_t chip_irq;
+
+ cfg_lsw = ADV_INW(adv, ADV_CONFIG_LSW);
+
+ if ((adv->type & ADV_VL) != 0) {
+ chip_irq = (u_int8_t)(((cfg_lsw >> 2) & 0x07));
+ if ((chip_irq == 0) ||
+ (chip_irq == 4) ||
+ (chip_irq == 7)) {
+ return (0);
+ }
+ return (chip_irq + (ADV_MIN_IRQ_NO - 1));
+ }
+ chip_irq = (u_int8_t)(((cfg_lsw >> 2) & 0x03));
+ if (chip_irq == 3)
+ chip_irq += 2;
+ return (chip_irq + ADV_MIN_IRQ_NO);
+}
+
+u_int8_t
+adv_set_chip_irq(adv, irq_no)
+ struct adv_softc *adv;
+ u_int8_t irq_no;
+{
+ u_int16_t cfg_lsw;
+
+ if ((adv->type & ADV_VL) != 0) {
+ if (irq_no != 0) {
+ if ((irq_no < ADV_MIN_IRQ_NO) || (irq_no > ADV_MAX_IRQ_NO)) {
+ irq_no = 0;
+ } else {
+ irq_no -= ADV_MIN_IRQ_NO - 1;
+ }
+ }
+ cfg_lsw = ADV_INW(adv, ADV_CONFIG_LSW) & 0xFFE3;
+ cfg_lsw |= 0x0010;
+ ADV_OUTW(adv, ADV_CONFIG_LSW, cfg_lsw);
+ adv_toggle_irq_act(adv);
+
+ cfg_lsw = ADV_INW(adv, ADV_CONFIG_LSW) & 0xFFE0;
+ cfg_lsw |= (irq_no & 0x07) << 2;
+ ADV_OUTW(adv, ADV_CONFIG_LSW, cfg_lsw);
+ adv_toggle_irq_act(adv);
+ } else if ((adv->type & ADV_ISA) != 0) {
+ if (irq_no == 15)
+ irq_no -= 2;
+ irq_no -= ADV_MIN_IRQ_NO;
+ cfg_lsw = ADV_INW(adv, ADV_CONFIG_LSW) & 0xFFF3;
+ cfg_lsw |= (irq_no & 0x03) << 2;
+ ADV_OUTW(adv, ADV_CONFIG_LSW, cfg_lsw);
+ }
+ return (adv_get_chip_irq(adv));
+}
+
+int
+adv_execute_scsi_queue(adv, scsiq)
+ struct adv_softc *adv;
+ struct adv_scsi_q *scsiq;
+{
+ int retval;
+ u_int n_q_required;
+ int s;
+ u_int32_t addr;
+ u_int8_t sg_entry_cnt;
+ u_int8_t target_ix;
+ u_int8_t sg_entry_cnt_minus_one;
+ u_int8_t tid_no;
+ u_int8_t sdtr_data;
+ u_int32_t *p_data_addr;
+ u_int32_t *p_data_bcount;
+
+ scsiq->q1.q_no = 0;
+ retval = 1; /* Default to error case */
+ target_ix = scsiq->q2.target_ix;
+ tid_no = ADV_TIX_TO_TID(target_ix);
+
+ n_q_required = 1;
+
+ s = splbio();
+ if (scsiq->cdbptr->opcode == REQUEST_SENSE) {
+ if (((adv->initiate_sdtr & scsiq->q1.target_id) != 0)
+ && ((adv->sdtr_done & scsiq->q1.target_id) != 0)) {
+ int sdtr_index;
+
+ sdtr_data = adv_read_lram_8(adv, ADVV_SDTR_DATA_BEG + tid_no);
+ sdtr_index = (sdtr_data >> 4);
+ adv_msgout_sdtr(adv, adv_sdtr_period_tbl[sdtr_index],
+ (sdtr_data & ADV_SYN_MAX_OFFSET));
+ scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
+ }
+ }
+
+ if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
+ sg_entry_cnt = scsiq->sg_head->entry_cnt;
+ sg_entry_cnt_minus_one = sg_entry_cnt - 1;
+
+#ifdef DIAGNOSTIC
+ if (sg_entry_cnt <= 1)
+ panic("adv_execute_scsi_queue: Queue with QC_SG_HEAD set but %d segs.", sg_entry_cnt);
+
+ if (sg_entry_cnt > ADV_MAX_SG_LIST)
+ panic("adv_execute_scsi_queue: Queue with too many segs.");
+
+ if (adv->type & (ADV_ISA | ADV_VL | ADV_EISA)) {
+ for (i = 0; i < sg_entry_cnt_minus_one; i++) {
+ addr = scsiq->sg_head->sg_list[i].addr +
+ scsiq->sg_head->sg_list[i].bytes;
+
+ if ((addr & 0x0003) != 0)
+ panic("adv_execute_scsi_queue: SG with odd address or byte count");
+ }
+ }
+#endif
+ p_data_addr = &scsiq->sg_head->sg_list[sg_entry_cnt_minus_one].addr;
+ p_data_bcount = &scsiq->sg_head->sg_list[sg_entry_cnt_minus_one].bytes;
+
+ n_q_required = adv_sgcount_to_qcount(sg_entry_cnt);
+ scsiq->sg_head->queue_cnt = n_q_required - 1;
+ } else {
+ p_data_addr = &scsiq->q1.data_addr;
+ p_data_bcount = &scsiq->q1.data_cnt;
+ n_q_required = 1;
+ }
+
+ if (adv->bug_fix_control & ADV_BUG_FIX_ADD_ONE_BYTE) {
+ addr = *p_data_addr + *p_data_bcount;
+ if ((addr & 0x0003) != 0) {
+ /*
+ * XXX Is this extra test (the one on data_cnt) really only supposed to apply
+ * to the non SG case or was it a bug due to code duplication?
+ */
+ if ((scsiq->q1.cntl & QC_SG_HEAD) != 0 || (scsiq->q1.data_cnt & 0x01FF) == 0) {
+ if ((scsiq->cdbptr->opcode == READ_COMMAND) ||
+ (scsiq->cdbptr->opcode == READ_BIG)) {
+ if ((scsiq->q2.tag_code & ADV_TAG_FLAG_ADD_ONE_BYTE) == 0) {
+ (*p_data_bcount)++;
+ scsiq->q2.tag_code |= ADV_TAG_FLAG_ADD_ONE_BYTE;
+ }
+ }
+
+ }
+ }
+ }
+
+ if ((adv_get_num_free_queues(adv, n_q_required) >= n_q_required)
+ || ((scsiq->q1.cntl & QC_URGENT) != 0))
+ retval = adv_send_scsi_queue(adv, scsiq, n_q_required);
+
+ splx(s);
+ return (retval);
+}
+
+
+u_int8_t
+adv_copy_lram_doneq(adv, q_addr, scsiq, max_dma_count)
+ struct adv_softc *adv;
+ u_int16_t q_addr;
+ struct adv_q_done_info *scsiq;
+ u_int32_t max_dma_count;
+{
+ u_int16_t val;
+ u_int8_t sg_queue_cnt;
+
+ adv_get_q_info(adv, q_addr + ADV_SCSIQ_DONE_INFO_BEG,
+ (u_int16_t *)scsiq,
+ (sizeof(scsiq->d2) + sizeof(scsiq->d3)) / 2);
+
+#if BYTE_ORDER == BIG_ENDIAN
+ adv_adj_endian_qdone_info(scsiq);
+#endif
+
+ val = adv_read_lram_16(adv, q_addr + ADV_SCSIQ_B_STATUS);
+ scsiq->q_status = val & 0xFF;
+ scsiq->q_no = (val >> 8) & 0XFF;
+
+ val = adv_read_lram_16(adv, q_addr + ADV_SCSIQ_B_CNTL);
+ scsiq->cntl = val & 0xFF;
+ sg_queue_cnt = (val >> 8) & 0xFF;
+
+ val = adv_read_lram_16(adv,q_addr + ADV_SCSIQ_B_SENSE_LEN);
+ scsiq->sense_len = val & 0xFF;
+ scsiq->user_def = (val >> 8) & 0xFF;
+
+ scsiq->remain_bytes = adv_read_lram_32(adv,
+ q_addr + ADV_SCSIQ_DW_REMAIN_XFER_CNT);
+ /*
+ * XXX Is this just a safeguard or will the counter really
+ * have bogus upper bits?
+ */
+ scsiq->remain_bytes &= max_dma_count;
+
+ return (sg_queue_cnt);
+}
+
+int
+adv_stop_execution(adv)
+ struct adv_softc *adv;
+{
+ int count;
+
+ count = 0;
+ if (adv_read_lram_8(adv, ADV_STOP_CODE_B) == 0) {
+ adv_write_lram_8(adv, ADV_STOP_CODE_B,
+ ADV_STOP_REQ_RISC_STOP);
+ do {
+ if (adv_read_lram_8(adv, ADV_STOP_CODE_B) &
+ ADV_STOP_ACK_RISC_STOP) {
+ return (1);
+ }
+ DELAY(1000);
+ } while (count++ < 20);
+ }
+ return (0);
+}
+
+int
+adv_is_chip_halted(adv)
+ struct adv_softc *adv;
+{
+ if ((ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_HALTED) != 0) {
+ if ((ADV_INB(adv, ADV_CHIP_CTRL) & ADV_CC_HALT) != 0) {
+ return (1);
+ }
+ }
+ return (0);
+}
+
+/*
+ * XXX The numeric constants and the loops in this routine
+ * need to be documented.
+ */
+void
+adv_ack_interrupt(adv)
+ struct adv_softc *adv;
+{
+ u_int8_t host_flag;
+ u_int8_t risc_flag;
+ int loop;
+
+ loop = 0;
+ do {
+ risc_flag = adv_read_lram_8(adv, ADVV_RISC_FLAG_B);
+ if (loop++ > 0x7FFF) {
+ break;
+ }
+ } while ((risc_flag & ADV_RISC_FLAG_GEN_INT) != 0);
+
+ host_flag = adv_read_lram_8(adv, ADVV_HOST_FLAG_B);
+ adv_write_lram_8(adv, ADVV_HOST_FLAG_B,
+ host_flag | ADV_HOST_FLAG_ACK_INT);
+
+ ADV_OUTW(adv, ADV_CHIP_STATUS, ADV_CIW_INT_ACK);
+ loop = 0;
+ while (ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_INT_PENDING) {
+ ADV_OUTW(adv, ADV_CHIP_STATUS, ADV_CIW_INT_ACK);
+ if (loop++ > 3) {
+ break;
+ }
+ }
+
+ adv_write_lram_8(adv, ADVV_HOST_FLAG_B, host_flag);
+}
+
+/*
+ * Handle all conditions that may halt the chip waiting
+ * for us to intervene.
+ */
+void
+adv_isr_chip_halted(adv)
+ struct adv_softc *adv;
+{
+ u_int16_t int_halt_code;
+ u_int8_t halt_qp;
+ u_int16_t halt_q_addr;
+ u_int8_t target_ix;
+ u_int8_t q_cntl;
+ u_int8_t tid_no;
+ target_bit_vector target_id;
+ target_bit_vector scsi_busy;
+ u_int8_t asyn_sdtr;
+ u_int8_t sdtr_data;
+
+ int_halt_code = adv_read_lram_16(adv, ADVV_HALTCODE_W);
+ halt_qp = adv_read_lram_8(adv, ADVV_CURCDB_B);
+ halt_q_addr = ADV_QNO_TO_QADDR(halt_qp);
+ target_ix = adv_read_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_TARGET_IX);
+ q_cntl = adv_read_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_CNTL);
+ tid_no = ADV_TIX_TO_TID(target_ix);
+ target_id = ADV_TID_TO_TARGET_ID(tid_no);
+ if (adv->needs_async_bug_fix & target_id)
+ asyn_sdtr = ASYN_SDTR_DATA_FIX;
+ else
+ asyn_sdtr = 0;
+ if (int_halt_code == ADV_HALT_EXTMSG_IN) {
+ struct sdtr_xmsg sdtr_xmsg;
+ int sdtr_accept;
+
+ adv_read_lram_16_multi(adv, ADVV_MSGIN_BEG,
+ (u_int16_t *) &sdtr_xmsg,
+ sizeof(sdtr_xmsg) >> 1);
+ if ((sdtr_xmsg.msg_type == MSG_EXTENDED) &&
+ (sdtr_xmsg.msg_len == MSG_EXT_SDTR_LEN)) {
+ sdtr_accept = TRUE;
+ if (sdtr_xmsg.msg_req == MSG_EXT_SDTR) {
+ if (sdtr_xmsg.req_ack_offset > ADV_SYN_MAX_OFFSET) {
+
+ sdtr_accept = FALSE;
+ sdtr_xmsg.req_ack_offset = ADV_SYN_MAX_OFFSET;
+ }
+ sdtr_data = adv_get_card_sync_setting(sdtr_xmsg.xfer_period,
+ sdtr_xmsg.req_ack_offset);
+ if (sdtr_xmsg.req_ack_offset == 0) {
+ q_cntl &= ~QC_MSG_OUT;
+ adv->initiate_sdtr &= ~target_id;
+ adv->sdtr_done &= ~target_id;
+ adv_set_chip_sdtr(adv, asyn_sdtr, tid_no);
+ } else if (sdtr_data == 0) {
+ q_cntl |= QC_MSG_OUT;
+ adv->initiate_sdtr &= ~target_id;
+ adv->sdtr_done &= ~target_id;
+ adv_set_chip_sdtr(adv, asyn_sdtr, tid_no);
+ } else {
+ if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
+ q_cntl &= ~QC_MSG_OUT;
+ adv->sdtr_done |= target_id;
+ adv->initiate_sdtr |= target_id;
+ adv->needs_async_bug_fix &= ~target_id;
+ adv_set_chip_sdtr(adv, sdtr_data, tid_no);
+ } else {
+
+ q_cntl |= QC_MSG_OUT;
+
+ adv_msgout_sdtr(adv,
+ sdtr_xmsg.xfer_period,
+ sdtr_xmsg.req_ack_offset);
+ adv->needs_async_bug_fix &= ~target_id;
+ adv_set_chip_sdtr(adv, sdtr_data, tid_no);
+ adv->sdtr_done |= target_id;
+ adv->initiate_sdtr |= target_id;
+ }
+ }
+
+ adv_write_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_CNTL, q_cntl);
+ }
+ }
+ /*
+ * XXX Hey, shouldn't we be rejecting any messages we don't understand?
+ * The old code also did not un-halt the processor if it recieved
+ * an extended message that it didn't understand. That didn't
+ * seem right, so I changed this routine to always un-halt the
+ * processor at the end.
+ */
+ } else if (int_halt_code == ADV_HALT_CHK_CONDITION) {
+ u_int8_t tag_code;
+ u_int8_t q_status;
+
+ q_cntl |= QC_REQ_SENSE;
+ if (((adv->initiate_sdtr & target_id) != 0) &&
+ ((adv->sdtr_done & target_id) != 0)) {
+
+ sdtr_data = adv_read_lram_8(adv, ADVV_SDTR_DATA_BEG + tid_no);
+ /* XXX Macrotize the extraction of the index from sdtr_data ??? */
+ adv_msgout_sdtr(adv, adv_sdtr_period_tbl[(sdtr_data >> 4) & 0x0F],
+ sdtr_data & ADV_SYN_MAX_OFFSET);
+ q_cntl |= QC_MSG_OUT;
+ }
+ adv_write_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_CNTL, q_cntl);
+
+ /* Don't tag request sense commands */
+ tag_code = adv_read_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_TAG_CODE);
+ tag_code &= ~(MSG_SIMPLE_Q_TAG|MSG_HEAD_OF_Q_TAG|MSG_ORDERED_Q_TAG);
+ adv_write_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_TAG_CODE, tag_code);
+
+ q_status = adv_read_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_STATUS);
+ q_status |= (QS_READY | QS_BUSY);
+ adv_write_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_STATUS, q_status);
+
+ scsi_busy = adv_read_lram_8(adv, ADVV_SCSIBUSY_B);
+ scsi_busy &= ~target_id;
+ adv_write_lram_8(adv, ADVV_SCSIBUSY_B, scsi_busy);
+ } else if (int_halt_code == ADV_HALT_SDTR_REJECTED) {
+ struct sdtr_xmsg out_msg;
+
+ adv_read_lram_16_multi(adv, ADVV_MSGOUT_BEG,
+ (u_int16_t *) &out_msg,
+ sizeof(out_msg)/2);
+
+ if ((out_msg.msg_type == MSG_EXTENDED) &&
+ (out_msg.msg_len == MSG_EXT_SDTR_LEN) &&
+ (out_msg.msg_req == MSG_EXT_SDTR)) {
+
+ adv->initiate_sdtr &= ~target_id;
+ adv->sdtr_done &= ~target_id;
+ adv_set_chip_sdtr(adv, asyn_sdtr, tid_no);
+ }
+ q_cntl &= ~QC_MSG_OUT;
+ adv_write_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_CNTL, q_cntl);
+ } else if (int_halt_code == ADV_HALT_SS_QUEUE_FULL) {
+ u_int8_t cur_dvc_qng;
+ u_int8_t scsi_status;
+
+ /*
+ * XXX It would be nice if we could push the responsibility for handling
+ * this situation onto the generic SCSI layer as other drivers do.
+ * This would be done by completing the command with the status byte
+ * set to QUEUE_FULL, whereupon it will request that any transactions
+ * pending on the target that where scheduled after this one be aborted
+ * (so as to maintain queue ordering) and the number of requests the
+ * upper level will attempt to send this target will be reduced.
+ *
+ * With this current strategy, am I guaranteed that once I unbusy the
+ * target the queued up transactions will be sent in the order they
+ * were queued? If the ASC chip does a round-robin on all queued
+ * transactions looking for queues to run, the order is not guaranteed.
+ */
+ scsi_status = adv_read_lram_8(adv, halt_q_addr + ADV_SCSIQ_SCSI_STATUS);
+ cur_dvc_qng = adv_read_lram_8(adv, ADV_QADR_BEG + target_ix);
+ printf("adv%d: Queue full - target %d, active transactions %d\n", adv->unit,
+ tid_no, cur_dvc_qng);
+#if 0
+ /* XXX FIX LATER */
+ if ((cur_dvc_qng > 0) && (adv->cur_dvc_qng[tid_no] > 0)) {
+ scsi_busy = adv_read_lram_8(adv, ADVV_SCSIBUSY_B);
+ scsi_busy |= target_id;
+ adv_write_lram_8(adv, ADVV_SCSIBUSY_B, scsi_busy);
+ asc_dvc->queue_full_or_busy |= target_id;
+
+ if (scsi_status == SS_QUEUE_FULL) {
+ if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
+ cur_dvc_qng -= 1;
+ asc_dvc->max_dvc_qng[tid_no] = cur_dvc_qng;
+
+ adv_write_lram_8(adv, ADVV_MAX_DVC_QNG_BEG + tid_no,
+ cur_dvc_qng);
+ }
+ }
+ }
+#endif
+ }
+ adv_write_lram_16(adv, ADVV_HALTCODE_W, 0);
+}
+
+/* Internal Routines */
+
+static void
+adv_read_lram_16_multi(adv, s_addr, buffer, count)
+ struct adv_softc *adv;
+ u_int16_t s_addr;
+ u_int16_t *buffer;
+ int count;
+{
+ ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
+ ADV_INSW(adv, ADV_LRAM_DATA, buffer, count);
+}
+
+static void
+adv_write_lram_16_multi(adv, s_addr, buffer, count)
+ struct adv_softc *adv;
+ u_int16_t s_addr;
+ u_int16_t *buffer;
+ int count;
+{
+ ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
+ ADV_OUTSW(adv, ADV_LRAM_DATA, buffer, count);
+}
+
+static void
+adv_mset_lram_16(adv, s_addr, set_value, count)
+ struct adv_softc *adv;
+ u_int16_t s_addr;
+ u_int16_t set_value;
+ int count;
+{
+ int i;
+
+ ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
+ for (i = 0; i < count; i++)
+ ADV_OUTW(adv, ADV_LRAM_DATA, set_value);
+}
+
+static u_int32_t
+adv_msum_lram_16(adv, s_addr, count)
+ struct adv_softc *adv;
+ u_int16_t s_addr;
+ int count;
+{
+ u_int32_t sum;
+ int i;
+
+ sum = 0;
+ for (i = 0; i < count; i++, s_addr += 2)
+ sum += adv_read_lram_16(adv, s_addr);
+ return (sum);
+}
+
+static int
+adv_write_and_verify_lram_16(adv, addr, value)
+ struct adv_softc *adv;
+ u_int16_t addr;
+ u_int16_t value;
+{
+ int retval;
+
+ retval = 0;
+ ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
+ ADV_OUTW(adv, ADV_LRAM_DATA, value);
+ ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
+ if (value != ADV_INW(adv, ADV_LRAM_DATA))
+ retval = 1;
+ return (retval);
+}
+
+static u_int32_t
+adv_read_lram_32(adv, addr)
+ struct adv_softc *adv;
+ u_int16_t addr;
+{
+ u_int16_t val_low, val_high;
+
+ ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
+
+#if BYTE_ORDER == BIG_ENDIAN
+ val_high = ADV_INW(adv, ADV_LRAM_DATA);
+ val_low = ADV_INW(adv, ADV_LRAM_DATA);
+#else
+ val_low = ADV_INW(adv, ADV_LRAM_DATA);
+ val_high = ADV_INW(adv, ADV_LRAM_DATA);
+#endif
+
+ return (((u_int32_t)val_high << 16) | (u_int32_t)val_low);
+}
+
+static void
+adv_write_lram_32(adv, addr, value)
+ struct adv_softc *adv;
+ u_int16_t addr;
+ u_int32_t value;
+{
+ ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
+
+#if BYTE_ORDER == BIG_ENDIAN
+ ADV_OUTW(adv, ADV_LRAM_DATA, (u_int16_t)((value >> 16) & 0xFFFF));
+ ADV_OUTW(adv, ADV_LRAM_DATA, (u_int16_t)(value & 0xFFFF));
+#else
+ ADV_OUTW(adv, ADV_LRAM_DATA, (u_int16_t)(value & 0xFFFF));
+ ADV_OUTW(adv, ADV_LRAM_DATA, (u_int16_t)((value >> 16) & 0xFFFF));
+#endif
+}
+
+static void
+adv_write_lram_32_multi(adv, s_addr, buffer, count)
+ struct adv_softc *adv;
+ u_int16_t s_addr;
+ u_int32_t *buffer;
+ int count;
+{
+ ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
+ ADV_OUTSW(adv, ADV_LRAM_DATA, buffer, count * 2);
+}
+
+static u_int16_t
+adv_read_eeprom_16(adv, addr)
+ struct adv_softc *adv;
+ u_int8_t addr;
+{
+ u_int16_t read_wval;
+ u_int8_t cmd_reg;
+
+ adv_write_eeprom_cmd_reg(adv, ADV_EEPROM_CMD_WRITE_DISABLE);
+ DELAY(1000);
+ cmd_reg = addr | ADV_EEPROM_CMD_READ;
+ adv_write_eeprom_cmd_reg(adv, cmd_reg);
+ DELAY(1000);
+ read_wval = ADV_INW(adv, ADV_EEPROM_DATA);
+ DELAY(1000);
+ return (read_wval);
+}
+
+static u_int16_t
+adv_write_eeprom_16(adv, addr, value)
+ struct adv_softc *adv;
+ u_int8_t addr;
+ u_int16_t value;
+{
+ u_int16_t read_value;
+
+ read_value = adv_read_eeprom_16(adv, addr);
+ if (read_value != value) {
+ adv_write_eeprom_cmd_reg(adv, ADV_EEPROM_CMD_WRITE_ENABLE);
+ DELAY(1000);
+
+ ADV_OUTW(adv, ADV_EEPROM_DATA, value);
+ DELAY(1000);
+
+ adv_write_eeprom_cmd_reg(adv, ADV_EEPROM_CMD_WRITE | addr);
+ DELAY(20 * 1000);
+
+ adv_write_eeprom_cmd_reg(adv, ADV_EEPROM_CMD_WRITE_DISABLE);
+ DELAY(1000);
+ read_value = adv_read_eeprom_16(adv, addr);
+ }
+ return (read_value);
+}
+
+static int
+adv_write_eeprom_cmd_reg(adv, cmd_reg)
+ struct adv_softc *adv;
+ u_int8_t cmd_reg;
+{
+ u_int8_t read_back;
+ int retry;
+
+ retry = 0;
+ while (1) {
+ ADV_OUTB(adv, ADV_EEPROM_CMD, cmd_reg);
+ DELAY(1000);
+ read_back = ADV_INB(adv, ADV_EEPROM_CMD);
+ if (read_back == cmd_reg) {
+ return (1);
+ }
+ if (retry++ > ADV_EEPROM_MAX_RETRY) {
+ return (0);
+ }
+ }
+}
+
+static int
+adv_set_eeprom_config_once(adv, eeprom_config)
+ struct adv_softc *adv;
+ struct adv_eeprom_config *eeprom_config;
+{
+ int n_error;
+ u_int16_t *wbuf;
+ u_int16_t sum;
+ u_int8_t s_addr;
+ u_int8_t cfg_beg;
+ u_int8_t cfg_end;
+
+ wbuf = (u_int16_t *)eeprom_config;
+ n_error = 0;
+ sum = 0;
+ for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
+ sum += *wbuf;
+ if (*wbuf != adv_write_eeprom_16(adv, s_addr, *wbuf)) {
+ n_error++;
+ }
+ }
+ if (adv->type & ADV_VL) {
+ cfg_beg = ADV_EEPROM_CFG_BEG_VL;
+ cfg_end = ADV_EEPROM_MAX_ADDR_VL;
+ } else {
+ cfg_beg = ADV_EEPROM_CFG_BEG;
+ cfg_end = ADV_EEPROM_MAX_ADDR;
+ }
+
+ for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
+ sum += *wbuf;
+ if (*wbuf != adv_write_eeprom_16(adv, s_addr, *wbuf)) {
+ n_error++;
+ }
+ }
+ *wbuf = sum;
+ if (sum != adv_write_eeprom_16(adv, s_addr, sum)) {
+ n_error++;
+ }
+ wbuf = (u_int16_t *)eeprom_config;
+ for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
+ if (*wbuf != adv_read_eeprom_16(adv, s_addr)) {
+ n_error++;
+ }
+ }
+ for (s_addr = cfg_beg; s_addr <= cfg_end; s_addr++, wbuf++) {
+ if (*wbuf != adv_read_eeprom_16(adv, s_addr)) {
+ n_error++;
+ }
+ }
+ return (n_error);
+}
+
+static u_int32_t
+adv_load_microcode(adv, s_addr, mcode_buf, mcode_size)
+ struct adv_softc *adv;
+ u_int16_t s_addr;
+ u_int16_t *mcode_buf;
+ u_int16_t mcode_size;
+{
+ u_int32_t chksum;
+ u_int16_t mcode_lram_size;
+ u_int16_t mcode_chksum;
+
+ mcode_lram_size = mcode_size >> 1;
+ /* XXX Why zero the memory just before you write the whole thing?? */
+ /* adv_mset_lram_16(adv, s_addr, 0, mcode_lram_size);*/
+ adv_write_lram_16_multi(adv, s_addr, mcode_buf, mcode_lram_size);
+
+ chksum = adv_msum_lram_16(adv, s_addr, mcode_lram_size);
+ mcode_chksum = (u_int16_t)adv_msum_lram_16(adv, ADV_CODE_SEC_BEG,
+ ((mcode_size - s_addr - ADV_CODE_SEC_BEG) >> 1));
+ adv_write_lram_16(adv, ADVV_MCODE_CHKSUM_W, mcode_chksum);
+ adv_write_lram_16(adv, ADVV_MCODE_SIZE_W, mcode_size);
+ return (chksum);
+}
+
+static void
+adv_init_lram(adv)
+ struct adv_softc *adv;
+{
+ u_int8_t i;
+ u_int16_t s_addr;
+
+ adv_mset_lram_16(adv, ADV_QADR_BEG, 0,
+ (u_int16_t)((((int)adv->max_openings + 2 + 1) * 64) >> 1));
+
+ i = ADV_MIN_ACTIVE_QNO;
+ s_addr = ADV_QADR_BEG + ADV_QBLK_SIZE;
+
+ adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_FWD, i + 1);
+ adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_BWD, adv->max_openings);
+ adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_QNO, i);
+ i++;
+ s_addr += ADV_QBLK_SIZE;
+ for (; i < adv->max_openings; i++, s_addr += ADV_QBLK_SIZE) {
+ adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_FWD, i + 1);
+ adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_BWD, i - 1);
+ adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_QNO, i);
+ }
+
+ adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_FWD, ADV_QLINK_END);
+ adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_BWD, adv->max_openings - 1);
+ adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_QNO, adv->max_openings);
+ i++;
+ s_addr += ADV_QBLK_SIZE;
+
+ for (; i <= adv->max_openings + 3; i++, s_addr += ADV_QBLK_SIZE) {
+ adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_FWD, i);
+ adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_BWD, i);
+ adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_QNO, i);
+ }
+}
+
+static int
+adv_init_microcode_var(adv)
+ struct adv_softc *adv;
+{
+ int i;
+
+ for (i = 0; i <= ADV_MAX_TID; i++) {
+ adv_write_lram_8(adv, ADVV_SDTR_DATA_BEG + i,
+ adv->sdtr_data[i]);
+ }
+
+ adv_init_qlink_var(adv);
+
+ /* XXX Again, what about wide busses??? */
+ adv_write_lram_8(adv, ADVV_DISC_ENABLE_B, adv->disc_enable);
+ adv_write_lram_8(adv, ADVV_HOSTSCSI_ID_B, 0x01 << adv->scsi_id);
+
+ /* What are the extra 8 bytes for?? */
+ adv_write_lram_32(adv, ADVV_OVERRUN_PADDR_D, vtophys(&(adv->overrun_buf[0])) + 8);
+
+ adv_write_lram_32(adv, ADVV_OVERRUN_BSIZE_D, ADV_OVERRUN_BSIZE - 8);
+
+#if 0
+ /* If we're going to print anything, RCS ids are more meaningful */
+ mcode_date = adv_read_lram_16(adv, ADVV_MC_DATE_W);
+ mcode_version = adv_read_lram_16(adv, ADVV_MC_VER_W);
+#endif
+ ADV_OUTW(adv, ADV_REG_PROG_COUNTER, ADV_MCODE_START_ADDR);
+ if (ADV_INW(adv, ADV_REG_PROG_COUNTER) != ADV_MCODE_START_ADDR) {
+ printf("adv%d: Unable to set program counter. Aborting.\n", adv->unit);
+ return (1);
+ }
+ if (adv_start_chip(adv) != 1) {
+ printf("adv%d: Unable to start on board processor. Aborting.\n",
+ adv->unit);
+ return (1);
+ }
+ return (0);
+}
+
+static void
+adv_init_qlink_var(adv)
+ struct adv_softc *adv;
+{
+ int i;
+ u_int16_t lram_addr;
+
+ adv_write_lram_8(adv, ADVV_NEXTRDY_B, 1);
+ adv_write_lram_8(adv, ADVV_DONENEXT_B, adv->max_openings);
+
+ adv_write_lram_16(adv, ADVV_FREE_Q_HEAD_W, 1);
+ adv_write_lram_16(adv, ADVV_DONE_Q_TAIL_W, adv->max_openings);
+
+ adv_write_lram_8(adv, ADVV_BUSY_QHEAD_B,
+ (u_int8_t)((int) adv->max_openings + 1));
+ adv_write_lram_8(adv, ADVV_DISC1_QHEAD_B,
+ (u_int8_t)((int) adv->max_openings + 2));
+
+ adv_write_lram_8(adv, ADVV_TOTAL_READY_Q_B, adv->max_openings);
+
+ adv_write_lram_16(adv, ADVV_ASCDVC_ERR_CODE_W, 0);
+ adv_write_lram_16(adv, ADVV_HALTCODE_W, 0);
+ adv_write_lram_8(adv, ADVV_STOP_CODE_B, 0);
+ adv_write_lram_8(adv, ADVV_SCSIBUSY_B, 0);
+ adv_write_lram_8(adv, ADVV_WTM_FLAG_B, 0);
+
+ adv_write_lram_8(adv, ADVV_CDBCNT_B, 0);
+
+ lram_addr = ADV_QADR_BEG;
+ for (i = 0; i < 32; i++, lram_addr += 2)
+ adv_write_lram_16(adv, lram_addr, 0);
+}
+static void
+adv_disable_interrupt(adv)
+ struct adv_softc *adv;
+{
+ u_int16_t cfg;
+
+ cfg = ADV_INW(adv, ADV_CONFIG_LSW);
+ ADV_OUTW(adv, ADV_CONFIG_LSW, cfg & ~ADV_CFG_LSW_HOST_INT_ON);
+}
+
+static void
+adv_enable_interrupt(adv)
+ struct adv_softc *adv;
+{
+ u_int16_t cfg;
+
+ cfg = ADV_INW(adv, ADV_CONFIG_LSW);
+ ADV_OUTW(adv, ADV_CONFIG_LSW, cfg | ADV_CFG_LSW_HOST_INT_ON);
+}
+
+static void
+adv_toggle_irq_act(adv)
+ struct adv_softc *adv;
+{
+ ADV_OUTW(adv, ADV_CHIP_STATUS, ADV_CIW_IRQ_ACT);
+ ADV_OUTW(adv, ADV_CHIP_STATUS, 0);
+}
+
+#if UNUSED
+static void
+adv_start_execution(adv)
+ struct adv_softc *adv;
+{
+ if (adv_read_lram_8(adv, ADV_STOP_CODE_B) != 0) {
+ adv_write_lram_8(adv, ADV_STOP_CODE_B, 0);
+ }
+}
+#endif
+
+static int
+adv_start_chip(adv)
+ struct adv_softc *adv;
+{
+ ADV_OUTB(adv, ADV_CHIP_CTRL, 0);
+ if ((ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_HALTED) != 0)
+ return (0);
+ return (1);
+}
+
+static int
+adv_stop_chip(adv)
+ struct adv_softc *adv;
+{
+ u_int8_t cc_val;
+
+ cc_val = ADV_INB(adv, ADV_CHIP_CTRL)
+ & (~(ADV_CC_SINGLE_STEP | ADV_CC_TEST | ADV_CC_DIAG));
+ ADV_OUTB(adv, ADV_CHIP_CTRL, cc_val | ADV_CC_HALT);
+ adv_set_chip_ih(adv, ADV_INS_HALT);
+ adv_set_chip_ih(adv, ADV_INS_RFLAG_WTM);
+ if ((ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_HALTED) == 0) {
+ return (0);
+ }
+ return (1);
+}
+
+static void
+adv_set_chip_ih(adv, ins_code)
+ struct adv_softc *adv;
+ u_int16_t ins_code;
+{
+ adv_set_bank(adv, 1);
+ ADV_OUTW(adv, ADV_REG_IH, ins_code);
+ adv_set_bank(adv, 0);
+}
+
+static void
+adv_set_bank(adv, bank)
+ struct adv_softc *adv;
+ u_int8_t bank;
+{
+ u_int8_t control;
+
+ /*
+ * Start out with the bank reset to 0
+ */
+ control = ADV_INB(adv, ADV_CHIP_CTRL)
+ & (~(ADV_CC_SINGLE_STEP | ADV_CC_TEST
+ | ADV_CC_DIAG | ADV_CC_SCSI_RESET
+ | ADV_CC_CHIP_RESET | ADV_CC_BANK_ONE));
+ if (bank == 1) {
+ control |= ADV_CC_BANK_ONE;
+ } else if (bank == 2) {
+ control |= ADV_CC_DIAG | ADV_CC_BANK_ONE;
+ }
+ ADV_OUTB(adv, ADV_CHIP_CTRL, control);
+}
+
+#if UNUSED
+static u_int8_t
+adv_get_chip_scsi_ctrl(adv)
+ struct adv_softc *adv;
+{
+ u_int8_t scsi_ctrl;
+
+ adv_set_bank(adv, 1);
+ scsi_ctrl = ADV_INB(adv, ADV_REG_SC);
+ adv_set_bank(adv, 0);
+ return (scsi_ctrl);
+}
+#endif
+
+static int
+adv_sgcount_to_qcount(sgcount)
+ int sgcount;
+{
+ int n_sg_list_qs;
+
+ n_sg_list_qs = ((sgcount - 1) / ADV_SG_LIST_PER_Q);
+ if (((sgcount - 1) % ADV_SG_LIST_PER_Q) != 0)
+ n_sg_list_qs++;
+ return (n_sg_list_qs + 1);
+}
+
+/*
+ * XXX Looks like more padding issues in this routine as well.
+ * There has to be a way to turn this into an insw.
+ */
+static void
+adv_get_q_info(adv, s_addr, inbuf, words)
+ struct adv_softc *adv;
+ u_int16_t s_addr;
+ u_int16_t *inbuf;
+ int words;
+{
+ int i;
+
+ ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
+ for (i = 0; i < words; i++, inbuf++) {
+ if (i == 5) {
+ continue;
+ }
+ *inbuf = ADV_INW(adv, ADV_LRAM_DATA);
+ }
+}
+
+static u_int
+adv_get_num_free_queues(adv, n_qs)
+ struct adv_softc *adv;
+ u_int8_t n_qs;
+{
+ u_int cur_used_qs;
+ u_int cur_free_qs;
+
+ if (n_qs == 1)
+ cur_used_qs = adv->cur_active +
+ adv->openings_needed +
+ ADV_MIN_FREE_Q;
+ else
+ cur_used_qs = adv->cur_active +
+ ADV_MIN_FREE_Q;
+
+ if ((cur_used_qs + n_qs) <= adv->max_openings) {
+ cur_free_qs = adv->max_openings - cur_used_qs;
+ return (cur_free_qs);
+ }
+ if (n_qs > 1)
+ if (n_qs > adv->openings_needed)
+ adv->openings_needed = n_qs;
+ return (0);
+}
+
+static u_int8_t
+adv_alloc_free_queues(adv, free_q_head, n_free_q)
+ struct adv_softc *adv;
+ u_int8_t free_q_head;
+ u_int8_t n_free_q;
+{
+ int i;
+
+ for (i = 0; i < n_free_q; i++) {
+ free_q_head = adv_alloc_free_queue(adv, free_q_head);
+ if (free_q_head == ADV_QLINK_END)
+ break;
+ }
+ return (free_q_head);
+}
+
+static u_int8_t
+adv_alloc_free_queue(adv, free_q_head)
+ struct adv_softc *adv;
+ u_int8_t free_q_head;
+{
+ u_int16_t q_addr;
+ u_int8_t next_qp;
+ u_int8_t q_status;
+
+ next_qp = ADV_QLINK_END;
+ q_addr = ADV_QNO_TO_QADDR(free_q_head);
+ q_status = adv_read_lram_8(adv, q_addr + ADV_SCSIQ_B_STATUS);
+
+ if ((q_status & QS_READY) == 0)
+ next_qp = adv_read_lram_8(adv, q_addr + ADV_SCSIQ_B_FWD);
+
+ return (next_qp);
+}
+
+static int
+adv_send_scsi_queue(adv, scsiq, n_q_required)
+ struct adv_softc *adv;
+ struct adv_scsi_q *scsiq;
+ u_int8_t n_q_required;
+{
+ u_int8_t free_q_head;
+ u_int8_t next_qp;
+ u_int8_t tid_no;
+ u_int8_t target_ix;
+ int retval;
+
+ retval = 1;
+ target_ix = scsiq->q2.target_ix;
+ tid_no = ADV_TIX_TO_TID(target_ix);
+ free_q_head = adv_read_lram_16(adv, ADVV_FREE_Q_HEAD_W) & 0xFF;
+ if ((next_qp = adv_alloc_free_queues(adv, free_q_head, n_q_required))
+ != ADV_QLINK_END) {
+ if (n_q_required > 1) {
+ /*
+ * Only reset the shortage value when processing
+ * a "normal" request and not error recovery or
+ * other requests that dip into our reserved queues.
+ * Generally speaking, a normal request will need more
+ * than one queue.
+ */
+ adv->openings_needed = 0;
+ }
+ scsiq->q1.q_no = free_q_head;
+
+ /*
+ * Now that we know our Q number, point our sense
+ * buffer pointer to an area below 16M if we are
+ * an ISA adapter.
+ */
+ if (adv->sense_buffers != NULL)
+ scsiq->q1.sense_addr = (u_int32_t)vtophys(&(adv->sense_buffers[free_q_head]));
+ adv_put_ready_sg_list_queue(adv, scsiq, free_q_head);
+ adv_write_lram_16(adv, ADVV_FREE_Q_HEAD_W, next_qp);
+ adv->cur_active += n_q_required;
+ retval = 0;
+ }
+ return (retval);
+}
+
+
+static void
+adv_put_ready_sg_list_queue(adv, scsiq, q_no)
+ struct adv_softc *adv;
+ struct adv_scsi_q *scsiq;
+ u_int8_t q_no;
+{
+ u_int8_t sg_list_dwords;
+ u_int8_t sg_index, i;
+ u_int8_t sg_entry_cnt;
+ u_int8_t next_qp;
+ u_int16_t q_addr;
+ struct adv_sg_head *sg_head;
+ struct adv_sg_list_q scsi_sg_q;
+
+ sg_head = scsiq->sg_head;
+
+ if (sg_head) {
+ sg_entry_cnt = sg_head->entry_cnt - 1;
+#ifdef DIAGNOSTIC
+ if (sg_entry_cnt == 0)
+ panic("adv_put_ready_sg_list_queue: ScsiQ with a SG list but only one element");
+ if ((scsiq->q1.cntl & QC_SG_HEAD) == 0)
+ panic("adv_put_ready_sg_list_queue: ScsiQ with a SG list but QC_SG_HEAD not set");
+#endif
+ q_addr = ADV_QNO_TO_QADDR(q_no);
+ sg_index = 1;
+ scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
+ scsi_sg_q.sg_head_qp = q_no;
+ scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
+ for (i = 0; i < sg_head->queue_cnt; i++) {
+ u_int8_t segs_this_q;
+
+ if (sg_entry_cnt > ADV_SG_LIST_PER_Q)
+ segs_this_q = ADV_SG_LIST_PER_Q;
+ else {
+ /* This will be the last segment then */
+ segs_this_q = sg_entry_cnt;
+ scsi_sg_q.cntl |= QCSG_SG_XFER_END;
+ }
+ scsi_sg_q.seq_no = i + 1;
+ sg_list_dwords = segs_this_q * 2;
+ if (i == 0) {
+ scsi_sg_q.sg_list_cnt = segs_this_q;
+ scsi_sg_q.sg_cur_list_cnt = segs_this_q;
+ } else {
+ scsi_sg_q.sg_list_cnt = segs_this_q - 1;
+ scsi_sg_q.sg_cur_list_cnt = segs_this_q - 1;
+ }
+ next_qp = adv_read_lram_8(adv, q_addr + ADV_SCSIQ_B_FWD);
+ scsi_sg_q.q_no = next_qp;
+ q_addr = ADV_QNO_TO_QADDR(next_qp);
+
+ adv_write_lram_16_multi(adv, q_addr + ADV_SCSIQ_SGHD_CPY_BEG,
+ (u_int16_t *)&scsi_sg_q,
+ sizeof(scsi_sg_q) >> 1);
+ adv_write_lram_32_multi(adv, q_addr + ADV_SGQ_LIST_BEG,
+ (u_int32_t *)&sg_head->sg_list[sg_index],
+ sg_list_dwords);
+ sg_entry_cnt -= segs_this_q;
+ sg_index += ADV_SG_LIST_PER_Q;
+ }
+ }
+ adv_put_ready_queue(adv, scsiq, q_no);
+}
+
+static void
+adv_put_ready_queue(adv, scsiq, q_no)
+ struct adv_softc *adv;
+ struct adv_scsi_q *scsiq;
+ u_int8_t q_no;
+{
+ u_int16_t q_addr;
+ u_int8_t tid_no;
+ u_int8_t sdtr_data;
+ u_int8_t syn_period_ix;
+ u_int8_t syn_offset;
+
+ if (((adv->initiate_sdtr & scsiq->q1.target_id) != 0) &&
+ ((adv->sdtr_done & scsiq->q1.target_id) == 0)) {
+
+ tid_no = ADV_TIX_TO_TID(scsiq->q2.target_ix);
+
+ sdtr_data = adv_read_lram_8(adv, ADVV_SDTR_DATA_BEG + tid_no);
+ syn_period_ix = (sdtr_data >> 4) & (ADV_SYN_XFER_NO - 1);
+ syn_offset = sdtr_data & ADV_SYN_MAX_OFFSET;
+ adv_msgout_sdtr(adv, adv_sdtr_period_tbl[syn_period_ix],
+ syn_offset);
+
+ scsiq->q1.cntl |= QC_MSG_OUT;
+ }
+ q_addr = ADV_QNO_TO_QADDR(q_no);
+
+ scsiq->q1.status = QS_FREE;
+
+ adv_write_lram_16_multi(adv, q_addr + ADV_SCSIQ_CDB_BEG,
+ (u_int16_t *)scsiq->cdbptr,
+ scsiq->q2.cdb_len >> 1);
+
+#if BYTE_ORDER == BIG_ENDIAN
+ adv_adj_scsiq_endian(scsiq);
+#endif
+
+ adv_put_scsiq(adv, q_addr + ADV_SCSIQ_CPY_BEG,
+ (u_int16_t *) &scsiq->q1.cntl,
+ ((sizeof(scsiq->q1) + sizeof(scsiq->q2)) / 2) - 1);
+
+#if CC_WRITE_IO_COUNT
+ adv_write_lram_16(adv, q_addr + ADV_SCSIQ_W_REQ_COUNT,
+ adv->req_count);
+#endif
+
+#if CC_CLEAR_DMA_REMAIN
+
+ adv_write_lram_32(adv, q_addr + ADV_SCSIQ_DW_REMAIN_XFER_ADDR, 0);
+ adv_write_lram_32(adv, q_addr + ADV_SCSIQ_DW_REMAIN_XFER_CNT, 0);
+#endif
+
+ adv_write_lram_16(adv, q_addr + ADV_SCSIQ_B_STATUS,
+ (scsiq->q1.q_no << 8) | QS_READY);
+}
+
+static void
+adv_put_scsiq(adv, s_addr, buffer, words)
+ struct adv_softc *adv;
+ u_int16_t s_addr;
+ u_int16_t *buffer;
+ int words;
+{
+ int i;
+
+ /*
+ * XXX This routine makes *gross* assumptions
+ * about padding in the data structures.
+ * Either the data structures should have explicit
+ * padding members added, or they should have padding
+ * turned off via compiler attributes depending on
+ * which yields better overall performance. My hunch
+ * would be that turning off padding would be the
+ * faster approach as an outsw is much faster than
+ * this crude loop and accessing un-aligned data
+ * members isn't *that* expensive. The other choice
+ * would be to modify the ASC script so that the
+ * the adv_scsiq_1 structure can be re-arranged so
+ * padding isn't required.
+ */
+ ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
+ for (i = 0; i < words; i++, buffer++) {
+ if (i == 2 || i == 10) {
+ continue;
+ }
+ ADV_OUTW(adv, ADV_LRAM_DATA, *buffer);
+ }
+}
+
+static u_int8_t
+adv_msgout_sdtr(adv, sdtr_period, sdtr_offset)
+ struct adv_softc *adv;
+ u_int8_t sdtr_period;
+ u_int8_t sdtr_offset;
+{
+ struct sdtr_xmsg sdtr_buf;
+
+ sdtr_buf.msg_type = MSG_EXTENDED;
+ sdtr_buf.msg_len = MSG_EXT_SDTR_LEN;
+ sdtr_buf.msg_req = MSG_EXT_SDTR;
+ sdtr_buf.xfer_period = sdtr_period;
+ sdtr_offset &= ADV_SYN_MAX_OFFSET;
+ sdtr_buf.req_ack_offset = sdtr_offset;
+ adv_write_lram_16_multi(adv, ADVV_MSGOUT_BEG,
+ (u_int16_t *) &sdtr_buf,
+ sizeof(sdtr_buf) / 2);
+
+ return (adv_get_card_sync_setting(sdtr_period, sdtr_offset));
+}
+
+static u_int8_t
+adv_get_card_sync_setting(period, offset)
+ u_int8_t period;
+ u_int8_t offset;
+{
+ u_int i;
+
+ if (period >= adv_sdtr_period_tbl[0]) {
+ for (i = 0; i < sizeof(adv_sdtr_period_tbl); i++) {
+ if (period <= adv_sdtr_period_tbl[i])
+ return ((adv_sdtr_period_tbl[i] << 4) | offset);
+ }
+ }
+ return (0);
+}
+
+static void
+adv_set_chip_sdtr(adv, sdtr_data, tid_no)
+ struct adv_softc *adv;
+ u_int8_t sdtr_data;
+ u_int8_t tid_no;
+{
+ ADV_OUTB(adv, ADV_SYN_OFFSET, sdtr_data);
+ adv_write_lram_8(adv, ADVV_SDTR_DONE_BEG + tid_no, sdtr_data);
+}