aboutsummaryrefslogtreecommitdiff
path: root/sys/dev/ath/ath_hal/ar5212/ar5212_reset.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/dev/ath/ath_hal/ar5212/ar5212_reset.c')
-rw-r--r--sys/dev/ath/ath_hal/ar5212/ar5212_reset.c2798
1 files changed, 2798 insertions, 0 deletions
diff --git a/sys/dev/ath/ath_hal/ar5212/ar5212_reset.c b/sys/dev/ath/ath_hal/ar5212/ar5212_reset.c
new file mode 100644
index 000000000000..21991f55cc6d
--- /dev/null
+++ b/sys/dev/ath/ath_hal/ar5212/ar5212_reset.c
@@ -0,0 +1,2798 @@
+/*-
+ * SPDX-License-Identifier: ISC
+ *
+ * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
+ * Copyright (c) 2002-2008 Atheros Communications, Inc.
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+#include "opt_ah.h"
+
+#include "ah.h"
+#include "ah_internal.h"
+#include "ah_devid.h"
+
+#include "ar5212/ar5212.h"
+#include "ar5212/ar5212reg.h"
+#include "ar5212/ar5212phy.h"
+
+#include "ah_eeprom_v3.h"
+
+/* Additional Time delay to wait after activiting the Base band */
+#define BASE_ACTIVATE_DELAY 100 /* 100 usec */
+#define PLL_SETTLE_DELAY 300 /* 300 usec */
+
+static HAL_BOOL ar5212SetResetReg(struct ath_hal *, uint32_t resetMask);
+/* NB: public for 5312 use */
+HAL_BOOL ar5212IsSpurChannel(struct ath_hal *,
+ const struct ieee80211_channel *);
+HAL_BOOL ar5212ChannelChange(struct ath_hal *,
+ const struct ieee80211_channel *);
+int16_t ar5212GetNf(struct ath_hal *, struct ieee80211_channel *);
+HAL_BOOL ar5212SetBoardValues(struct ath_hal *,
+ const struct ieee80211_channel *);
+void ar5212SetDeltaSlope(struct ath_hal *,
+ const struct ieee80211_channel *);
+HAL_BOOL ar5212SetTransmitPower(struct ath_hal *ah,
+ const struct ieee80211_channel *chan, uint16_t *rfXpdGain);
+static HAL_BOOL ar5212SetRateTable(struct ath_hal *,
+ const struct ieee80211_channel *, int16_t tpcScaleReduction,
+ int16_t powerLimit,
+ HAL_BOOL commit, int16_t *minPower, int16_t *maxPower);
+static void ar5212CorrectGainDelta(struct ath_hal *, int twiceOfdmCckDelta);
+static void ar5212GetTargetPowers(struct ath_hal *,
+ const struct ieee80211_channel *,
+ const TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
+ TRGT_POWER_INFO *pNewPower);
+static uint16_t ar5212GetMaxEdgePower(uint16_t channel,
+ const RD_EDGES_POWER *pRdEdgesPower);
+void ar5212SetRateDurationTable(struct ath_hal *,
+ const struct ieee80211_channel *);
+void ar5212SetIFSTiming(struct ath_hal *,
+ const struct ieee80211_channel *);
+
+/* NB: public for RF backend use */
+void ar5212GetLowerUpperValues(uint16_t value,
+ uint16_t *pList, uint16_t listSize,
+ uint16_t *pLowerValue, uint16_t *pUpperValue);
+void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
+ uint32_t numBits, uint32_t firstBit, uint32_t column);
+
+static int
+write_common(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
+ HAL_BOOL bChannelChange, int writes)
+{
+#define IS_NO_RESET_TIMER_ADDR(x) \
+ ( (((x) >= AR_BEACON) && ((x) <= AR_CFP_DUR)) || \
+ (((x) >= AR_SLEEP1) && ((x) <= AR_SLEEP3)))
+#define V(r, c) (ia)->data[((r)*(ia)->cols) + (c)]
+ int r;
+
+ /* Write Common Array Parameters */
+ for (r = 0; r < ia->rows; r++) {
+ uint32_t reg = V(r, 0);
+ /* XXX timer/beacon setup registers? */
+ /* On channel change, don't reset the PCU registers */
+ if (!(bChannelChange && IS_NO_RESET_TIMER_ADDR(reg))) {
+ OS_REG_WRITE(ah, reg, V(r, 1));
+ DMA_YIELD(writes);
+ }
+ }
+ return writes;
+#undef IS_NO_RESET_TIMER_ADDR
+#undef V
+}
+
+#define IS_DISABLE_FAST_ADC_CHAN(x) (((x) == 2462) || ((x) == 2467))
+
+/*
+ * XXX NDIS 5.x code had MAX_RESET_WAIT set to 2000 for AP code
+ * and 10 for Client code
+ */
+#define MAX_RESET_WAIT 10
+
+#define TX_QUEUEPEND_CHECK 1
+#define TX_ENABLE_CHECK 2
+#define RX_ENABLE_CHECK 4
+
+/*
+ * Places the device in and out of reset and then places sane
+ * values in the registers based on EEPROM config, initialization
+ * vectors (as determined by the mode), and station configuration
+ *
+ * bChannelChange is used to preserve DMA/PCU registers across
+ * a HW Reset during channel change.
+ */
+HAL_BOOL
+ar5212Reset(struct ath_hal *ah, HAL_OPMODE opmode,
+ struct ieee80211_channel *chan,
+ HAL_BOOL bChannelChange,
+ HAL_RESET_TYPE resetType,
+ HAL_STATUS *status)
+{
+#define N(a) (sizeof (a) / sizeof (a[0]))
+#define FAIL(_code) do { ecode = _code; goto bad; } while (0)
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ HAL_CHANNEL_INTERNAL *ichan = AH_NULL;
+ const HAL_EEPROM *ee;
+ uint32_t softLedCfg, softLedState;
+ uint32_t saveFrameSeqCount, saveDefAntenna, saveLedState;
+ uint32_t macStaId1, synthDelay, txFrm2TxDStart;
+ uint16_t rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
+ int16_t cckOfdmPwrDelta = 0;
+ u_int modesIndex, freqIndex;
+ HAL_STATUS ecode;
+ int i, regWrites;
+ uint32_t testReg, powerVal;
+ int8_t twiceAntennaGain, twiceAntennaReduction;
+ uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
+ HAL_BOOL isBmode = AH_FALSE;
+
+ HALASSERT(ah->ah_magic == AR5212_MAGIC);
+ ee = AH_PRIVATE(ah)->ah_eeprom;
+
+ OS_MARK(ah, AH_MARK_RESET, bChannelChange);
+
+ /* Bring out of sleep mode */
+ if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
+ __func__);
+ FAIL(HAL_EIO);
+ }
+
+ /*
+ * Map public channel to private.
+ */
+ ichan = ath_hal_checkchannel(ah, chan);
+ if (ichan == AH_NULL)
+ FAIL(HAL_EINVAL);
+ switch (opmode) {
+ case HAL_M_STA:
+ case HAL_M_IBSS:
+ case HAL_M_HOSTAP:
+ case HAL_M_MONITOR:
+ break;
+ default:
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
+ __func__, opmode);
+ FAIL(HAL_EINVAL);
+ break;
+ }
+ HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
+
+ SAVE_CCK(ah, chan, isBmode);
+
+ /* Preserve certain DMA hardware registers on a channel change */
+ if (bChannelChange) {
+ /*
+ * On Venice, the TSF is almost preserved across a reset;
+ * it requires doubling writes to the RESET_TSF
+ * bit in the AR_BEACON register; it also has the quirk
+ * of the TSF going back in time on the station (station
+ * latches onto the last beacon's tsf during a reset 50%
+ * of the times); the latter is not a problem for adhoc
+ * stations since as long as the TSF is behind, it will
+ * get resynchronized on receiving the next beacon; the
+ * TSF going backwards in time could be a problem for the
+ * sleep operation (supported on infrastructure stations
+ * only) - the best and most general fix for this situation
+ * is to resynchronize the various sleep/beacon timers on
+ * the receipt of the next beacon i.e. when the TSF itself
+ * gets resynchronized to the AP's TSF - power save is
+ * needed to be temporarily disabled until that time
+ *
+ * Need to save the sequence number to restore it after
+ * the reset!
+ */
+ saveFrameSeqCount = OS_REG_READ(ah, AR_D_SEQNUM);
+ } else
+ saveFrameSeqCount = 0; /* NB: silence compiler */
+
+ /* Blank the channel survey statistics */
+ ath_hal_survey_clear(ah);
+
+#if 0
+ /*
+ * XXX disable for now; this appears to sometimes cause OFDM
+ * XXX timing error floods when ani is enabled and bg scanning
+ * XXX kicks in
+ */
+ /* If the channel change is across the same mode - perform a fast channel change */
+ if (IS_2413(ah) || IS_5413(ah)) {
+ /*
+ * Fast channel change can only be used when:
+ * -channel change requested - so it's not the initial reset.
+ * -it's not a change to the current channel -
+ * often called when switching modes on a channel
+ * -the modes of the previous and requested channel are the
+ * same
+ * XXX opmode shouldn't change either?
+ */
+ if (bChannelChange &&
+ (AH_PRIVATE(ah)->ah_curchan != AH_NULL) &&
+ (chan->ic_freq != AH_PRIVATE(ah)->ah_curchan->ic_freq) &&
+ ((chan->ic_flags & IEEE80211_CHAN_ALLTURBO) ==
+ (AH_PRIVATE(ah)->ah_curchan->ic_flags & IEEE80211_CHAN_ALLTURBO))) {
+ if (ar5212ChannelChange(ah, chan)) {
+ /* If ChannelChange completed - skip the rest of reset */
+ /* XXX ani? */
+ goto done;
+ }
+ }
+ }
+#endif
+ /*
+ * Preserve the antenna on a channel change
+ */
+ saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
+ if (saveDefAntenna == 0) /* XXX magic constants */
+ saveDefAntenna = 1;
+
+ /* Save hardware flag before chip reset clears the register */
+ macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
+ (AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
+
+ /* Save led state from pci config register */
+ saveLedState = OS_REG_READ(ah, AR_PCICFG) &
+ (AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
+ AR_PCICFG_LEDSLOW);
+ softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
+ softLedState = OS_REG_READ(ah, AR_GPIODO);
+
+ ar5212RestoreClock(ah, opmode); /* move to refclk operation */
+
+ /*
+ * Adjust gain parameters before reset if
+ * there's an outstanding gain updated.
+ */
+ (void) ar5212GetRfgain(ah);
+
+ if (!ar5212ChipReset(ah, chan)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
+ FAIL(HAL_EIO);
+ }
+
+ /* Setup the indices for the next set of register array writes */
+ if (IEEE80211_IS_CHAN_2GHZ(chan)) {
+ freqIndex = 2;
+ if (IEEE80211_IS_CHAN_108G(chan))
+ modesIndex = 5;
+ else if (IEEE80211_IS_CHAN_G(chan))
+ modesIndex = 4;
+ else if (IEEE80211_IS_CHAN_B(chan))
+ modesIndex = 3;
+ else {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: invalid channel %u/0x%x\n",
+ __func__, chan->ic_freq, chan->ic_flags);
+ FAIL(HAL_EINVAL);
+ }
+ } else {
+ freqIndex = 1;
+ if (IEEE80211_IS_CHAN_TURBO(chan))
+ modesIndex = 2;
+ else if (IEEE80211_IS_CHAN_A(chan))
+ modesIndex = 1;
+ else {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: invalid channel %u/0x%x\n",
+ __func__, chan->ic_freq, chan->ic_flags);
+ FAIL(HAL_EINVAL);
+ }
+ }
+
+ OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
+
+ /* Set correct Baseband to analog shift setting to access analog chips. */
+ OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
+
+ regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_modes, modesIndex, 0);
+ regWrites = write_common(ah, &ahp->ah_ini_common, bChannelChange,
+ regWrites);
+#ifdef AH_RXCFG_SDMAMW_4BYTES
+ /*
+ * Nala doesn't work with 128 byte bursts on pb42(hydra) (ar71xx),
+ * use 4 instead. Enabling it on all platforms would hurt performance,
+ * so we only enable it on the ones that are affected by it.
+ */
+ OS_REG_WRITE(ah, AR_RXCFG, 0);
+#endif
+ ahp->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites);
+
+ OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
+
+ if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
+ ar5212SetIFSTiming(ah, chan);
+ if (IS_5413(ah)) {
+ /*
+ * Force window_length for 1/2 and 1/4 rate channels,
+ * the ini file sets this to zero otherwise.
+ */
+ OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
+ AR_PHY_FRAME_CTL_WINLEN, 3);
+ }
+ }
+
+ /* Overwrite INI values for revised chipsets */
+ if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
+ /* ADC_CTL */
+ OS_REG_WRITE(ah, AR_PHY_ADC_CTL,
+ SM(2, AR_PHY_ADC_CTL_OFF_INBUFGAIN) |
+ SM(2, AR_PHY_ADC_CTL_ON_INBUFGAIN) |
+ AR_PHY_ADC_CTL_OFF_PWDDAC |
+ AR_PHY_ADC_CTL_OFF_PWDADC);
+
+ /* TX_PWR_ADJ */
+ if (ichan->channel == 2484) {
+ cckOfdmPwrDelta = SCALE_OC_DELTA(
+ ee->ee_cckOfdmPwrDelta -
+ ee->ee_scaledCh14FilterCckDelta);
+ } else {
+ cckOfdmPwrDelta = SCALE_OC_DELTA(
+ ee->ee_cckOfdmPwrDelta);
+ }
+
+ if (IEEE80211_IS_CHAN_G(chan)) {
+ OS_REG_WRITE(ah, AR_PHY_TXPWRADJ,
+ SM((ee->ee_cckOfdmPwrDelta*-1),
+ AR_PHY_TXPWRADJ_CCK_GAIN_DELTA) |
+ SM((cckOfdmPwrDelta*-1),
+ AR_PHY_TXPWRADJ_CCK_PCDAC_INDEX));
+ } else {
+ OS_REG_WRITE(ah, AR_PHY_TXPWRADJ, 0);
+ }
+
+ /* Add barker RSSI thresh enable as disabled */
+ OS_REG_CLR_BIT(ah, AR_PHY_DAG_CTRLCCK,
+ AR_PHY_DAG_CTRLCCK_EN_RSSI_THR);
+ OS_REG_RMW_FIELD(ah, AR_PHY_DAG_CTRLCCK,
+ AR_PHY_DAG_CTRLCCK_RSSI_THR, 2);
+
+ /* Set the mute mask to the correct default */
+ OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
+ }
+
+ if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
+ /* Clear reg to alllow RX_CLEAR line debug */
+ OS_REG_WRITE(ah, AR_PHY_BLUETOOTH, 0);
+ }
+ if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
+#ifdef notyet
+ /* Enable burst prefetch for the data queues */
+ OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
+ /* Enable double-buffering */
+ OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
+#endif
+ }
+
+ /* Set ADC/DAC select values */
+ OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
+
+ if (IS_5413(ah) || IS_2417(ah)) {
+ uint32_t newReg = 1;
+ if (IS_DISABLE_FAST_ADC_CHAN(ichan->channel))
+ newReg = 0;
+ /* As it's a clock changing register, only write when the value needs to be changed */
+ if (OS_REG_READ(ah, AR_PHY_FAST_ADC) != newReg)
+ OS_REG_WRITE(ah, AR_PHY_FAST_ADC, newReg);
+ }
+
+ /* Setup the transmit power values. */
+ if (!ar5212SetTransmitPower(ah, chan, rfXpdGain)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: error init'ing transmit power\n", __func__);
+ FAIL(HAL_EIO);
+ }
+
+ /* Write the analog registers */
+ if (!ahp->ah_rfHal->setRfRegs(ah, chan, modesIndex, rfXpdGain)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5212SetRfRegs failed\n",
+ __func__);
+ FAIL(HAL_EIO);
+ }
+
+ /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
+ if (IEEE80211_IS_CHAN_OFDM(chan)) {
+ if (IS_5413(ah) ||
+ AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)
+ ar5212SetSpurMitigation(ah, chan);
+ ar5212SetDeltaSlope(ah, chan);
+ }
+
+ /* Setup board specific options for EEPROM version 3 */
+ if (!ar5212SetBoardValues(ah, chan)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: error setting board options\n", __func__);
+ FAIL(HAL_EIO);
+ }
+
+ /* Restore certain DMA hardware registers on a channel change */
+ if (bChannelChange)
+ OS_REG_WRITE(ah, AR_D_SEQNUM, saveFrameSeqCount);
+
+ OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
+
+ OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
+ OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
+ | macStaId1
+ | AR_STA_ID1_RTS_USE_DEF
+ | ahp->ah_staId1Defaults
+ );
+ ar5212SetOperatingMode(ah, opmode);
+
+ /* Set Venice BSSID mask according to current state */
+ OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
+ OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
+
+ /* Restore previous led state */
+ OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | saveLedState);
+
+ /* Restore soft Led state to GPIO */
+ OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
+ OS_REG_WRITE(ah, AR_GPIODO, softLedState);
+
+ /* Restore previous antenna */
+ OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
+
+ /* then our BSSID and associate id */
+ OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
+ OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
+ (ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S);
+
+ /* Restore bmiss rssi & count thresholds */
+ OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
+
+ OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
+
+ if (!ar5212SetChannel(ah, chan))
+ FAIL(HAL_EIO);
+
+ OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
+
+ ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
+
+ ar5212SetRateDurationTable(ah, chan);
+
+ /* Set Tx frame start to tx data start delay */
+ if (IS_RAD5112_ANY(ah) &&
+ (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan))) {
+ txFrm2TxDStart =
+ IEEE80211_IS_CHAN_HALF(chan) ?
+ TX_FRAME_D_START_HALF_RATE:
+ TX_FRAME_D_START_QUARTER_RATE;
+ OS_REG_RMW_FIELD(ah, AR_PHY_TX_CTL,
+ AR_PHY_TX_FRAME_TO_TX_DATA_START, txFrm2TxDStart);
+ }
+
+ /*
+ * Setup fast diversity.
+ * Fast diversity can be enabled or disabled via regadd.txt.
+ * Default is enabled.
+ * For reference,
+ * Disable: reg val
+ * 0x00009860 0x00009d18 (if 11a / 11g, else no change)
+ * 0x00009970 0x192bb514
+ * 0x0000a208 0xd03e4648
+ *
+ * Enable: 0x00009860 0x00009d10 (if 11a / 11g, else no change)
+ * 0x00009970 0x192fb514
+ * 0x0000a208 0xd03e6788
+ */
+
+ /* XXX Setup pre PHY ENABLE EAR additions */
+ /*
+ * Wait for the frequency synth to settle (synth goes on
+ * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
+ * Value is in 100ns increments.
+ */
+ synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
+ if (IEEE80211_IS_CHAN_B(chan)) {
+ synthDelay = (4 * synthDelay) / 22;
+ } else {
+ synthDelay /= 10;
+ }
+
+ /* Activate the PHY (includes baseband activate and synthesizer on) */
+ OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
+
+ /*
+ * There is an issue if the AP starts the calibration before
+ * the base band timeout completes. This could result in the
+ * rx_clear false triggering. As a workaround we add delay an
+ * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
+ * does not happen.
+ */
+ if (IEEE80211_IS_CHAN_HALF(chan)) {
+ OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
+ } else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
+ OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
+ } else {
+ OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
+ }
+
+ /*
+ * The udelay method is not reliable with notebooks.
+ * Need to check to see if the baseband is ready
+ */
+ testReg = OS_REG_READ(ah, AR_PHY_TESTCTRL);
+ /* Selects the Tx hold */
+ OS_REG_WRITE(ah, AR_PHY_TESTCTRL, AR_PHY_TESTCTRL_TXHOLD);
+ i = 0;
+ while ((i++ < 20) &&
+ (OS_REG_READ(ah, 0x9c24) & 0x10)) /* test if baseband not ready */ OS_DELAY(200);
+ OS_REG_WRITE(ah, AR_PHY_TESTCTRL, testReg);
+
+ /* Calibrate the AGC and start a NF calculation */
+ OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
+ OS_REG_READ(ah, AR_PHY_AGC_CONTROL)
+ | AR_PHY_AGC_CONTROL_CAL
+ | AR_PHY_AGC_CONTROL_NF);
+
+ if (!IEEE80211_IS_CHAN_B(chan) && ahp->ah_bIQCalibration != IQ_CAL_DONE) {
+ /* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
+ OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
+ AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
+ INIT_IQCAL_LOG_COUNT_MAX);
+ OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
+ AR_PHY_TIMING_CTRL4_DO_IQCAL);
+ ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
+ } else
+ ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
+
+ /* Setup compression registers */
+ ar5212SetCompRegs(ah);
+
+ /* Set 1:1 QCU to DCU mapping for all queues */
+ for (i = 0; i < AR_NUM_DCU; i++)
+ OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
+
+ ahp->ah_intrTxqs = 0;
+ for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
+ ar5212ResetTxQueue(ah, i);
+
+ /*
+ * Setup interrupt handling. Note that ar5212ResetTxQueue
+ * manipulates the secondary IMR's as queues are enabled
+ * and disabled. This is done with RMW ops to insure the
+ * settings we make here are preserved.
+ */
+ ahp->ah_maskReg = AR_IMR_TXOK | AR_IMR_TXERR | AR_IMR_TXURN
+ | AR_IMR_RXOK | AR_IMR_RXERR | AR_IMR_RXORN
+ | AR_IMR_HIUERR
+ ;
+ if (opmode == HAL_M_HOSTAP)
+ ahp->ah_maskReg |= AR_IMR_MIB;
+ OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
+ /* Enable bus errors that are OR'd to set the HIUERR bit */
+ OS_REG_WRITE(ah, AR_IMR_S2,
+ OS_REG_READ(ah, AR_IMR_S2)
+ | AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
+
+ if (AH_PRIVATE(ah)->ah_rfkillEnabled)
+ ar5212EnableRfKill(ah);
+
+ if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: offset calibration failed to complete in 1ms;"
+ " noisy environment?\n", __func__);
+ }
+
+ /*
+ * Set clocks back to 32kHz if they had been using refClk, then
+ * use an external 32kHz crystal when sleeping, if one exists.
+ */
+ ar5212SetupClock(ah, opmode);
+
+ /*
+ * Writing to AR_BEACON will start timers. Hence it should
+ * be the last register to be written. Do not reset tsf, do
+ * not enable beacons at this point, but preserve other values
+ * like beaconInterval.
+ */
+ OS_REG_WRITE(ah, AR_BEACON,
+ (OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
+
+ /* XXX Setup post reset EAR additions */
+
+ /* QoS support */
+ if (AH_PRIVATE(ah)->ah_macVersion > AR_SREV_VERSION_VENICE ||
+ (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_VENICE &&
+ AH_PRIVATE(ah)->ah_macRev >= AR_SREV_GRIFFIN_LITE)) {
+ OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */
+ OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */
+ }
+
+ /* Turn on NOACK Support for QoS packets */
+ OS_REG_WRITE(ah, AR_NOACK,
+ SM(2, AR_NOACK_2BIT_VALUE) |
+ SM(5, AR_NOACK_BIT_OFFSET) |
+ SM(0, AR_NOACK_BYTE_OFFSET));
+
+ /* Get Antenna Gain reduction */
+ if (IEEE80211_IS_CHAN_5GHZ(chan)) {
+ ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
+ } else {
+ ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
+ }
+ twiceAntennaReduction =
+ ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
+
+ /* TPC for self-generated frames */
+
+ ackTpcPow = MS(ahp->ah_macTPC, AR_TPC_ACK);
+ if ((ackTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
+ ackTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
+
+ if (ackTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
+ ackTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
+ + ahp->ah_txPowerIndexOffset;
+
+ ctsTpcPow = MS(ahp->ah_macTPC, AR_TPC_CTS);
+ if ((ctsTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
+ ctsTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
+
+ if (ctsTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
+ ctsTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
+ + ahp->ah_txPowerIndexOffset;
+
+ chirpTpcPow = MS(ahp->ah_macTPC, AR_TPC_CHIRP);
+ if ((chirpTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
+ chirpTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
+
+ if (chirpTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
+ chirpTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
+ + ahp->ah_txPowerIndexOffset;
+
+ if (ackTpcPow > 63)
+ ackTpcPow = 63;
+ if (ctsTpcPow > 63)
+ ctsTpcPow = 63;
+ if (chirpTpcPow > 63)
+ chirpTpcPow = 63;
+
+ powerVal = SM(ackTpcPow, AR_TPC_ACK) |
+ SM(ctsTpcPow, AR_TPC_CTS) |
+ SM(chirpTpcPow, AR_TPC_CHIRP);
+
+ OS_REG_WRITE(ah, AR_TPC, powerVal);
+
+ /* Restore user-specified settings */
+ if (ahp->ah_miscMode != 0)
+ OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
+ if (ahp->ah_sifstime != (u_int) -1)
+ ar5212SetSifsTime(ah, ahp->ah_sifstime);
+ if (ahp->ah_slottime != (u_int) -1)
+ ar5212SetSlotTime(ah, ahp->ah_slottime);
+ if (ahp->ah_acktimeout != (u_int) -1)
+ ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
+ if (ahp->ah_ctstimeout != (u_int) -1)
+ ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
+ if (AH_PRIVATE(ah)->ah_diagreg != 0)
+ OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
+
+ AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
+#if 0
+done:
+#endif
+ if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
+ chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
+
+ HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
+
+ RESTORE_CCK(ah, chan, isBmode);
+
+ OS_MARK(ah, AH_MARK_RESET_DONE, 0);
+
+ return AH_TRUE;
+bad:
+ RESTORE_CCK(ah, chan, isBmode);
+
+ OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
+ if (status != AH_NULL)
+ *status = ecode;
+ return AH_FALSE;
+#undef FAIL
+#undef N
+}
+
+/*
+ * Call the rf backend to change the channel.
+ */
+HAL_BOOL
+ar5212SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+
+ /* Change the synth */
+ if (!ahp->ah_rfHal->setChannel(ah, chan))
+ return AH_FALSE;
+ return AH_TRUE;
+}
+
+/*
+ * This channel change evaluates whether the selected hardware can
+ * perform a synthesizer-only channel change (no reset). If the
+ * TX is not stopped, or the RFBus cannot be granted in the given
+ * time, the function returns false as a reset is necessary
+ */
+HAL_BOOL
+ar5212ChannelChange(struct ath_hal *ah, const struct ieee80211_channel *chan)
+{
+ uint32_t ulCount;
+ uint32_t data, synthDelay, qnum;
+ uint16_t rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
+ HAL_BOOL txStopped = AH_TRUE;
+ HAL_CHANNEL_INTERNAL *ichan;
+
+ /*
+ * Map public channel to private.
+ */
+ ichan = ath_hal_checkchannel(ah, chan);
+
+ /* TX must be stopped or RF Bus grant will not work */
+ for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
+ if (ar5212NumTxPending(ah, qnum)) {
+ txStopped = AH_FALSE;
+ break;
+ }
+ }
+ if (!txStopped)
+ return AH_FALSE;
+
+ /* Kill last Baseband Rx Frame */
+ OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST); /* Request analog bus grant */
+ for (ulCount = 0; ulCount < 100; ulCount++) {
+ if (OS_REG_READ(ah, AR_PHY_RFBUS_GNT))
+ break;
+ OS_DELAY(5);
+ }
+ if (ulCount >= 100)
+ return AH_FALSE;
+
+ /* Change the synth */
+ if (!ar5212SetChannel(ah, chan))
+ return AH_FALSE;
+
+ /*
+ * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
+ * Read the phy active delay register. Value is in 100ns increments.
+ */
+ data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
+ if (IEEE80211_IS_CHAN_B(chan)) {
+ synthDelay = (4 * data) / 22;
+ } else {
+ synthDelay = data / 10;
+ }
+ OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
+
+ /* Setup the transmit power values. */
+ if (!ar5212SetTransmitPower(ah, chan, rfXpdGain)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: error init'ing transmit power\n", __func__);
+ return AH_FALSE;
+ }
+
+ /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
+ if (IEEE80211_IS_CHAN_OFDM(chan)) {
+ if (IS_5413(ah) ||
+ AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)
+ ar5212SetSpurMitigation(ah, chan);
+ ar5212SetDeltaSlope(ah, chan);
+ }
+
+ /* Release the RFBus Grant */
+ OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
+
+ /* Start Noise Floor Cal */
+ OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
+ return AH_TRUE;
+}
+
+void
+ar5212SetOperatingMode(struct ath_hal *ah, int opmode)
+{
+ uint32_t val;
+
+ val = OS_REG_READ(ah, AR_STA_ID1);
+ val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
+ switch (opmode) {
+ case HAL_M_HOSTAP:
+ OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
+ | AR_STA_ID1_KSRCH_MODE);
+ OS_REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
+ break;
+ case HAL_M_IBSS:
+ OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
+ | AR_STA_ID1_KSRCH_MODE);
+ OS_REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
+ break;
+ case HAL_M_STA:
+ case HAL_M_MONITOR:
+ OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
+ break;
+ }
+}
+
+/*
+ * Places the PHY and Radio chips into reset. A full reset
+ * must be called to leave this state. The PCI/MAC/PCU are
+ * not placed into reset as we must receive interrupt to
+ * re-enable the hardware.
+ */
+HAL_BOOL
+ar5212PhyDisable(struct ath_hal *ah)
+{
+ return ar5212SetResetReg(ah, AR_RC_BB);
+}
+
+/*
+ * Places all of hardware into reset
+ */
+HAL_BOOL
+ar5212Disable(struct ath_hal *ah)
+{
+ if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
+ return AH_FALSE;
+ /*
+ * Reset the HW - PCI must be reset after the rest of the
+ * device has been reset.
+ */
+ return ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI);
+}
+
+/*
+ * Places the hardware into reset and then pulls it out of reset
+ *
+ * TODO: Only write the PLL if we're changing to or from CCK mode
+ *
+ * WARNING: The order of the PLL and mode registers must be correct.
+ */
+HAL_BOOL
+ar5212ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
+{
+
+ OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
+
+ /*
+ * Reset the HW - PCI must be reset after the rest of the
+ * device has been reset
+ */
+ if (!ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
+ return AH_FALSE;
+
+ /* Bring out of sleep mode (AGAIN) */
+ if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
+ return AH_FALSE;
+
+ /* Clear warm reset register */
+ if (!ar5212SetResetReg(ah, 0))
+ return AH_FALSE;
+
+ /*
+ * Perform warm reset before the mode/PLL/turbo registers
+ * are changed in order to deactivate the radio. Mode changes
+ * with an active radio can result in corrupted shifts to the
+ * radio device.
+ */
+
+ /*
+ * Set CCK and Turbo modes correctly.
+ */
+ if (chan != AH_NULL) { /* NB: can be null during attach */
+ uint32_t rfMode, phyPLL = 0, curPhyPLL, turbo;
+
+ if (IS_5413(ah)) { /* NB: =>'s 5424 also */
+ rfMode = AR_PHY_MODE_AR5112;
+ if (IEEE80211_IS_CHAN_HALF(chan))
+ rfMode |= AR_PHY_MODE_HALF;
+ else if (IEEE80211_IS_CHAN_QUARTER(chan))
+ rfMode |= AR_PHY_MODE_QUARTER;
+
+ if (IEEE80211_IS_CHAN_CCK(chan))
+ phyPLL = AR_PHY_PLL_CTL_44_5112;
+ else
+ phyPLL = AR_PHY_PLL_CTL_40_5413;
+ } else if (IS_RAD5111(ah)) {
+ rfMode = AR_PHY_MODE_AR5111;
+ if (IEEE80211_IS_CHAN_CCK(chan))
+ phyPLL = AR_PHY_PLL_CTL_44;
+ else
+ phyPLL = AR_PHY_PLL_CTL_40;
+ if (IEEE80211_IS_CHAN_HALF(chan))
+ phyPLL = AR_PHY_PLL_CTL_HALF;
+ else if (IEEE80211_IS_CHAN_QUARTER(chan))
+ phyPLL = AR_PHY_PLL_CTL_QUARTER;
+ } else { /* 5112, 2413, 2316, 2317 */
+ rfMode = AR_PHY_MODE_AR5112;
+ if (IEEE80211_IS_CHAN_CCK(chan))
+ phyPLL = AR_PHY_PLL_CTL_44_5112;
+ else
+ phyPLL = AR_PHY_PLL_CTL_40_5112;
+ if (IEEE80211_IS_CHAN_HALF(chan))
+ phyPLL |= AR_PHY_PLL_CTL_HALF;
+ else if (IEEE80211_IS_CHAN_QUARTER(chan))
+ phyPLL |= AR_PHY_PLL_CTL_QUARTER;
+ }
+ if (IEEE80211_IS_CHAN_G(chan))
+ rfMode |= AR_PHY_MODE_DYNAMIC;
+ else if (IEEE80211_IS_CHAN_OFDM(chan))
+ rfMode |= AR_PHY_MODE_OFDM;
+ else
+ rfMode |= AR_PHY_MODE_CCK;
+ if (IEEE80211_IS_CHAN_5GHZ(chan))
+ rfMode |= AR_PHY_MODE_RF5GHZ;
+ else
+ rfMode |= AR_PHY_MODE_RF2GHZ;
+ turbo = IEEE80211_IS_CHAN_TURBO(chan) ?
+ (AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT) : 0;
+ curPhyPLL = OS_REG_READ(ah, AR_PHY_PLL_CTL);
+ /*
+ * PLL, Mode, and Turbo values must be written in the correct
+ * order to ensure:
+ * - The PLL cannot be set to 44 unless the CCK or DYNAMIC
+ * mode bit is set
+ * - Turbo cannot be set at the same time as CCK or DYNAMIC
+ */
+ if (IEEE80211_IS_CHAN_CCK(chan)) {
+ OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
+ OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
+ if (curPhyPLL != phyPLL) {
+ OS_REG_WRITE(ah, AR_PHY_PLL_CTL, phyPLL);
+ /* Wait for the PLL to settle */
+ OS_DELAY(PLL_SETTLE_DELAY);
+ }
+ } else {
+ if (curPhyPLL != phyPLL) {
+ OS_REG_WRITE(ah, AR_PHY_PLL_CTL, phyPLL);
+ /* Wait for the PLL to settle */
+ OS_DELAY(PLL_SETTLE_DELAY);
+ }
+ OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
+ OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
+ }
+ }
+ return AH_TRUE;
+}
+
+/*
+ * Recalibrate the lower PHY chips to account for temperature/environment
+ * changes.
+ */
+HAL_BOOL
+ar5212PerCalibrationN(struct ath_hal *ah,
+ struct ieee80211_channel *chan,
+ u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone)
+{
+#define IQ_CAL_TRIES 10
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ HAL_CHANNEL_INTERNAL *ichan;
+ int32_t qCoff, qCoffDenom;
+ int32_t iqCorrMeas, iCoff, iCoffDenom;
+ uint32_t powerMeasQ, powerMeasI;
+ HAL_BOOL isBmode = AH_FALSE;
+
+ OS_MARK(ah, AH_MARK_PERCAL, chan->ic_freq);
+ *isCalDone = AH_FALSE;
+ ichan = ath_hal_checkchannel(ah, chan);
+ if (ichan == AH_NULL) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: invalid channel %u/0x%x; no mapping\n",
+ __func__, chan->ic_freq, chan->ic_flags);
+ return AH_FALSE;
+ }
+ SAVE_CCK(ah, chan, isBmode);
+
+ if (ahp->ah_bIQCalibration == IQ_CAL_DONE ||
+ ahp->ah_bIQCalibration == IQ_CAL_INACTIVE)
+ *isCalDone = AH_TRUE;
+
+ /* IQ calibration in progress. Check to see if it has finished. */
+ if (ahp->ah_bIQCalibration == IQ_CAL_RUNNING &&
+ !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
+ int i;
+
+ /* IQ Calibration has finished. */
+ ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
+ *isCalDone = AH_TRUE;
+
+ /* workaround for misgated IQ Cal results */
+ i = 0;
+ do {
+ /* Read calibration results. */
+ powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
+ powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
+ iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
+ if (powerMeasI && powerMeasQ)
+ break;
+ /* Do we really need this??? */
+ OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
+ AR_PHY_TIMING_CTRL4_DO_IQCAL);
+ } while (++i < IQ_CAL_TRIES);
+
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "%s: IQ cal finished: %d tries\n", __func__, i);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "%s: powerMeasI %u powerMeasQ %u iqCorrMeas %d\n",
+ __func__, powerMeasI, powerMeasQ, iqCorrMeas);
+
+ /*
+ * Prescale these values to remove 64-bit operation
+ * requirement at the loss of a little precision.
+ */
+ iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
+ qCoffDenom = powerMeasQ / 128;
+
+ /* Protect against divide-by-0 and loss of sign bits. */
+ if (iCoffDenom != 0 && qCoffDenom >= 2) {
+ iCoff = (int8_t)(-iqCorrMeas) / iCoffDenom;
+ /* IQCORR_Q_I_COFF is a signed 6 bit number */
+ if (iCoff < -32) {
+ iCoff = -32;
+ } else if (iCoff > 31) {
+ iCoff = 31;
+ }
+
+ /* IQCORR_Q_Q_COFF is a signed 5 bit number */
+ qCoff = (powerMeasI / qCoffDenom) - 128;
+ if (qCoff < -16) {
+ qCoff = -16;
+ } else if (qCoff > 15) {
+ qCoff = 15;
+ }
+
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "%s: iCoff %d qCoff %d\n", __func__, iCoff, qCoff);
+
+ /* Write values and enable correction */
+ OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
+ AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
+ OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
+ AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
+ OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
+ AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
+
+ ahp->ah_bIQCalibration = IQ_CAL_DONE;
+ ichan->privFlags |= CHANNEL_IQVALID;
+ ichan->iCoff = iCoff;
+ ichan->qCoff = qCoff;
+ }
+ } else if (!IEEE80211_IS_CHAN_B(chan) &&
+ ahp->ah_bIQCalibration == IQ_CAL_DONE &&
+ (ichan->privFlags & CHANNEL_IQVALID) == 0) {
+ /*
+ * Start IQ calibration if configured channel has changed.
+ * Use a magic number of 15 based on default value.
+ */
+ OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
+ AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
+ INIT_IQCAL_LOG_COUNT_MAX);
+ OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
+ AR_PHY_TIMING_CTRL4_DO_IQCAL);
+ ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
+ }
+ /* XXX EAR */
+
+ if (longCal) {
+ /* Check noise floor results */
+ ar5212GetNf(ah, chan);
+ if (!IEEE80211_IS_CHAN_CWINT(chan)) {
+ /* Perform cal for 5Ghz channels and any OFDM on 5112 */
+ if (IEEE80211_IS_CHAN_5GHZ(chan) ||
+ (IS_RAD5112(ah) && IEEE80211_IS_CHAN_OFDM(chan)))
+ ar5212RequestRfgain(ah);
+ }
+ }
+ RESTORE_CCK(ah, chan, isBmode);
+
+ return AH_TRUE;
+#undef IQ_CAL_TRIES
+}
+
+HAL_BOOL
+ar5212PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
+ HAL_BOOL *isIQdone)
+{
+ return ar5212PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
+}
+
+HAL_BOOL
+ar5212ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
+{
+ HAL_CHANNEL_INTERNAL *ichan;
+
+ ichan = ath_hal_checkchannel(ah, chan);
+ if (ichan == AH_NULL) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: invalid channel %u/0x%x; no mapping\n",
+ __func__, chan->ic_freq, chan->ic_flags);
+ return AH_FALSE;
+ }
+ ichan->privFlags &= ~CHANNEL_IQVALID;
+ return AH_TRUE;
+}
+
+/**************************************************************
+ * ar5212MacStop
+ *
+ * Disables all active QCUs and ensure that the mac is in a
+ * quiessence state.
+ */
+static HAL_BOOL
+ar5212MacStop(struct ath_hal *ah)
+{
+ HAL_BOOL status;
+ uint32_t count;
+ uint32_t pendFrameCount;
+ uint32_t macStateFlag;
+ uint32_t queue;
+
+ status = AH_FALSE;
+
+ /* Disable Rx Operation ***********************************/
+ OS_REG_SET_BIT(ah, AR_CR, AR_CR_RXD);
+
+ /* Disable TX Operation ***********************************/
+#ifdef NOT_YET
+ ar5212SetTxdpInvalid(ah);
+#endif
+ OS_REG_SET_BIT(ah, AR_Q_TXD, AR_Q_TXD_M);
+
+ /* Polling operation for completion of disable ************/
+ macStateFlag = TX_ENABLE_CHECK | RX_ENABLE_CHECK;
+
+ for (count = 0; count < MAX_RESET_WAIT; count++) {
+ if (macStateFlag & RX_ENABLE_CHECK) {
+ if (!OS_REG_IS_BIT_SET(ah, AR_CR, AR_CR_RXE)) {
+ macStateFlag &= ~RX_ENABLE_CHECK;
+ }
+ }
+
+ if (macStateFlag & TX_ENABLE_CHECK) {
+ if (!OS_REG_IS_BIT_SET(ah, AR_Q_TXE, AR_Q_TXE_M)) {
+ macStateFlag &= ~TX_ENABLE_CHECK;
+ macStateFlag |= TX_QUEUEPEND_CHECK;
+ }
+ }
+ if (macStateFlag & TX_QUEUEPEND_CHECK) {
+ pendFrameCount = 0;
+ for (queue = 0; queue < AR_NUM_DCU; queue++) {
+ pendFrameCount += OS_REG_READ(ah,
+ AR_Q0_STS + (queue * 4)) &
+ AR_Q_STS_PEND_FR_CNT;
+ }
+ if (pendFrameCount == 0) {
+ macStateFlag &= ~TX_QUEUEPEND_CHECK;
+ }
+ }
+ if (macStateFlag == 0) {
+ status = AH_TRUE;
+ break;
+ }
+ OS_DELAY(50);
+ }
+
+ if (status != AH_TRUE) {
+ HALDEBUG(ah, HAL_DEBUG_RESET,
+ "%s:Failed to stop the MAC state 0x%x\n",
+ __func__, macStateFlag);
+ }
+
+ return status;
+}
+
+/*
+ * Write the given reset bit mask into the reset register
+ */
+static HAL_BOOL
+ar5212SetResetReg(struct ath_hal *ah, uint32_t resetMask)
+{
+ uint32_t mask = resetMask ? resetMask : ~0;
+ HAL_BOOL rt;
+
+ /* Never reset the PCIE core */
+ if (AH_PRIVATE(ah)->ah_ispcie) {
+ resetMask &= ~AR_RC_PCI;
+ }
+
+ if (resetMask & (AR_RC_MAC | AR_RC_PCI)) {
+ /*
+ * To ensure that the driver can reset the
+ * MAC, wake up the chip
+ */
+ rt = ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE);
+
+ if (rt != AH_TRUE) {
+ return rt;
+ }
+
+ /*
+ * Disable interrupts
+ */
+ OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
+ OS_REG_READ(ah, AR_IER);
+
+ if (ar5212MacStop(ah) != AH_TRUE) {
+ /*
+ * Failed to stop the MAC gracefully; let's be more forceful then
+ */
+
+ /* need some delay before flush any pending MMR writes */
+ OS_DELAY(15);
+ OS_REG_READ(ah, AR_RXDP);
+
+ resetMask |= AR_RC_MAC | AR_RC_BB;
+ /* _Never_ reset PCI Express core */
+ if (! AH_PRIVATE(ah)->ah_ispcie) {
+ resetMask |= AR_RC_PCI;
+ }
+#if 0
+ /*
+ * Flush the park address of the PCI controller
+ */
+ /* Read PCI slot information less than Hainan revision */
+ if (AH_PRIVATE(ah)->ah_bustype == HAL_BUS_TYPE_PCI) {
+ if (!IS_5112_REV5_UP(ah)) {
+#define PCI_COMMON_CONFIG_STATUS 0x06
+ u_int32_t i;
+ u_int16_t reg16;
+
+ for (i = 0; i < 32; i++) {
+ ath_hal_read_pci_config_space(ah,
+ PCI_COMMON_CONFIG_STATUS,
+ &reg16, sizeof(reg16));
+ }
+ }
+#undef PCI_COMMON_CONFIG_STATUS
+ }
+#endif
+ } else {
+ /*
+ * MAC stopped gracefully; no need to warm-reset the PCI bus
+ */
+
+ resetMask &= ~AR_RC_PCI;
+
+ /* need some delay before flush any pending MMR writes */
+ OS_DELAY(15);
+ OS_REG_READ(ah, AR_RXDP);
+ }
+ }
+
+ (void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
+ OS_REG_WRITE(ah, AR_RC, resetMask);
+ OS_DELAY(15); /* need to wait at least 128 clocks
+ when reseting PCI before read */
+ mask &= (AR_RC_MAC | AR_RC_BB);
+ resetMask &= (AR_RC_MAC | AR_RC_BB);
+ rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
+ if ((resetMask & AR_RC_MAC) == 0) {
+ if (isBigEndian()) {
+ /*
+ * Set CFG, little-endian for descriptor accesses.
+ */
+ mask = INIT_CONFIG_STATUS | AR_CFG_SWRD;
+#ifndef AH_NEED_DESC_SWAP
+ mask |= AR_CFG_SWTD;
+#endif
+ OS_REG_WRITE(ah, AR_CFG, mask);
+ } else
+ OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
+ if (ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
+ (void) OS_REG_READ(ah, AR_ISR_RAC);
+ }
+
+ /* track PHY power state so we don't try to r/w BB registers */
+ AH5212(ah)->ah_phyPowerOn = ((resetMask & AR_RC_BB) == 0);
+ return rt;
+}
+
+int16_t
+ar5212GetNoiseFloor(struct ath_hal *ah)
+{
+ int16_t nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
+ if (nf & 0x100)
+ nf = 0 - ((nf ^ 0x1ff) + 1);
+ return nf;
+}
+
+static HAL_BOOL
+getNoiseFloorThresh(struct ath_hal *ah, const struct ieee80211_channel *chan,
+ int16_t *nft)
+{
+ const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
+
+ HALASSERT(ah->ah_magic == AR5212_MAGIC);
+
+ switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
+ case IEEE80211_CHAN_A:
+ *nft = ee->ee_noiseFloorThresh[headerInfo11A];
+ break;
+ case IEEE80211_CHAN_B:
+ *nft = ee->ee_noiseFloorThresh[headerInfo11B];
+ break;
+ case IEEE80211_CHAN_G:
+ case IEEE80211_CHAN_PUREG: /* NB: really 108G */
+ *nft = ee->ee_noiseFloorThresh[headerInfo11G];
+ break;
+ default:
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: invalid channel flags %u/0x%x\n",
+ __func__, chan->ic_freq, chan->ic_flags);
+ return AH_FALSE;
+ }
+ return AH_TRUE;
+}
+
+/*
+ * Setup the noise floor cal history buffer.
+ */
+void
+ar5212InitNfCalHistBuffer(struct ath_hal *ah)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ int i;
+
+ ahp->ah_nfCalHist.first_run = 1;
+ ahp->ah_nfCalHist.currIndex = 0;
+ ahp->ah_nfCalHist.privNF = AR5212_CCA_MAX_GOOD_VALUE;
+ ahp->ah_nfCalHist.invalidNFcount = AR512_NF_CAL_HIST_MAX;
+ for (i = 0; i < AR512_NF_CAL_HIST_MAX; i ++)
+ ahp->ah_nfCalHist.nfCalBuffer[i] = AR5212_CCA_MAX_GOOD_VALUE;
+}
+
+/*
+ * Add a noise floor value to the ring buffer.
+ */
+static __inline void
+updateNFHistBuff(struct ar5212NfCalHist *h, int16_t nf)
+{
+ h->nfCalBuffer[h->currIndex] = nf;
+ if (++h->currIndex >= AR512_NF_CAL_HIST_MAX)
+ h->currIndex = 0;
+}
+
+/*
+ * Return the median noise floor value in the ring buffer.
+ */
+int16_t
+ar5212GetNfHistMid(const int16_t calData[AR512_NF_CAL_HIST_MAX])
+{
+ int16_t sort[AR512_NF_CAL_HIST_MAX];
+ int i, j;
+
+ OS_MEMCPY(sort, calData, AR512_NF_CAL_HIST_MAX*sizeof(int16_t));
+ for (i = 0; i < AR512_NF_CAL_HIST_MAX-1; i ++) {
+ for (j = 1; j < AR512_NF_CAL_HIST_MAX-i; j ++) {
+ if (sort[j] > sort[j-1]) {
+ int16_t nf = sort[j];
+ sort[j] = sort[j-1];
+ sort[j-1] = nf;
+ }
+ }
+ }
+ return sort[(AR512_NF_CAL_HIST_MAX-1)>>1];
+}
+
+/*
+ * Read the NF and check it against the noise floor threshold
+ */
+int16_t
+ar5212GetNf(struct ath_hal *ah, struct ieee80211_channel *chan)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ struct ar5212NfCalHist *h = &ahp->ah_nfCalHist;
+ HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
+ int16_t nf, nfThresh;
+ int32_t val;
+
+ if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: NF did not complete in calibration window\n", __func__);
+ ichan->rawNoiseFloor = h->privNF; /* most recent value */
+ return ichan->rawNoiseFloor;
+ }
+
+ /*
+ * Finished NF cal, check against threshold.
+ */
+ nf = ar5212GetNoiseFloor(ah);
+ if (getNoiseFloorThresh(ah, chan, &nfThresh)) {
+ if (nf > nfThresh) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: noise floor failed detected; detected %u, "
+ "threshold %u\n", __func__, nf, nfThresh);
+ /*
+ * NB: Don't discriminate 2.4 vs 5Ghz, if this
+ * happens it indicates a problem regardless
+ * of the band.
+ */
+ chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
+ nf = 0;
+ }
+ } else
+ nf = 0;
+
+ /*
+ * Pass through histogram and write median value as
+ * calculated from the accrued window. We require a
+ * full window of in-range values to be seen before we
+ * start using the history.
+ */
+ updateNFHistBuff(h, nf);
+ if (h->first_run) {
+ if (nf < AR5212_CCA_MIN_BAD_VALUE ||
+ nf > AR5212_CCA_MAX_HIGH_VALUE) {
+ nf = AR5212_CCA_MAX_GOOD_VALUE;
+ h->invalidNFcount = AR512_NF_CAL_HIST_MAX;
+ } else if (--(h->invalidNFcount) == 0) {
+ h->first_run = 0;
+ h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
+ } else {
+ nf = AR5212_CCA_MAX_GOOD_VALUE;
+ }
+ } else {
+ h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
+ }
+
+ val = OS_REG_READ(ah, AR_PHY(25));
+ val &= 0xFFFFFE00;
+ val |= (((uint32_t)nf << 1) & 0x1FF);
+ OS_REG_WRITE(ah, AR_PHY(25), val);
+ OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
+ OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
+ OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
+
+ if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF, 0)) {
+#ifdef AH_DEBUG
+ ath_hal_printf(ah, "%s: AGC not ready AGC_CONTROL 0x%x\n",
+ __func__, OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
+#endif
+ }
+
+ /*
+ * Now load a high maxCCAPower value again so that we're
+ * not capped by the median we just loaded
+ */
+ val &= 0xFFFFFE00;
+ val |= (((uint32_t)(-50) << 1) & 0x1FF);
+ OS_REG_WRITE(ah, AR_PHY(25), val);
+ OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
+ OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
+ OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
+
+ return (ichan->rawNoiseFloor = nf);
+}
+
+/*
+ * Set up compression configuration registers
+ */
+void
+ar5212SetCompRegs(struct ath_hal *ah)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ int i;
+
+ /* Check if h/w supports compression */
+ if (!AH_PRIVATE(ah)->ah_caps.halCompressSupport)
+ return;
+
+ OS_REG_WRITE(ah, AR_DCCFG, 1);
+
+ OS_REG_WRITE(ah, AR_CCFG,
+ (AR_COMPRESSION_WINDOW_SIZE >> 8) & AR_CCFG_WIN_M);
+
+ OS_REG_WRITE(ah, AR_CCFG,
+ OS_REG_READ(ah, AR_CCFG) | AR_CCFG_MIB_INT_EN);
+ OS_REG_WRITE(ah, AR_CCUCFG,
+ AR_CCUCFG_RESET_VAL | AR_CCUCFG_CATCHUP_EN);
+
+ OS_REG_WRITE(ah, AR_CPCOVF, 0);
+
+ /* reset decompression mask */
+ for (i = 0; i < HAL_DECOMP_MASK_SIZE; i++) {
+ OS_REG_WRITE(ah, AR_DCM_A, i);
+ OS_REG_WRITE(ah, AR_DCM_D, ahp->ah_decompMask[i]);
+ }
+}
+
+HAL_BOOL
+ar5212SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
+ const struct ieee80211_channel *chan)
+{
+#define ANT_SWITCH_TABLE1 AR_PHY(88)
+#define ANT_SWITCH_TABLE2 AR_PHY(89)
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
+ uint32_t antSwitchA, antSwitchB;
+ int ix;
+
+ HALASSERT(ah->ah_magic == AR5212_MAGIC);
+ HALASSERT(ahp->ah_phyPowerOn);
+
+ switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
+ case IEEE80211_CHAN_A:
+ ix = 0;
+ break;
+ case IEEE80211_CHAN_G:
+ case IEEE80211_CHAN_PUREG: /* NB: 108G */
+ ix = 2;
+ break;
+ case IEEE80211_CHAN_B:
+ if (IS_2425(ah) || IS_2417(ah)) {
+ /* NB: Nala/Swan: 11b is handled using 11g */
+ ix = 2;
+ } else
+ ix = 1;
+ break;
+ default:
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
+ __func__, chan->ic_flags);
+ return AH_FALSE;
+ }
+
+ antSwitchA = ee->ee_antennaControl[1][ix]
+ | (ee->ee_antennaControl[2][ix] << 6)
+ | (ee->ee_antennaControl[3][ix] << 12)
+ | (ee->ee_antennaControl[4][ix] << 18)
+ | (ee->ee_antennaControl[5][ix] << 24)
+ ;
+ antSwitchB = ee->ee_antennaControl[6][ix]
+ | (ee->ee_antennaControl[7][ix] << 6)
+ | (ee->ee_antennaControl[8][ix] << 12)
+ | (ee->ee_antennaControl[9][ix] << 18)
+ | (ee->ee_antennaControl[10][ix] << 24)
+ ;
+ /*
+ * For fixed antenna, give the same setting for both switch banks
+ */
+ switch (settings) {
+ case HAL_ANT_FIXED_A:
+ antSwitchB = antSwitchA;
+ break;
+ case HAL_ANT_FIXED_B:
+ antSwitchA = antSwitchB;
+ break;
+ case HAL_ANT_VARIABLE:
+ break;
+ default:
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
+ __func__, settings);
+ return AH_FALSE;
+ }
+ if (antSwitchB == antSwitchA) {
+ HALDEBUG(ah, HAL_DEBUG_RFPARAM,
+ "%s: Setting fast diversity off.\n", __func__);
+ OS_REG_CLR_BIT(ah,AR_PHY_CCK_DETECT,
+ AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
+ ahp->ah_diversity = AH_FALSE;
+ } else {
+ HALDEBUG(ah, HAL_DEBUG_RFPARAM,
+ "%s: Setting fast diversity on.\n", __func__);
+ OS_REG_SET_BIT(ah,AR_PHY_CCK_DETECT,
+ AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
+ ahp->ah_diversity = AH_TRUE;
+ }
+ ahp->ah_antControl = settings;
+
+ OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
+ OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
+
+ return AH_TRUE;
+#undef ANT_SWITCH_TABLE2
+#undef ANT_SWITCH_TABLE1
+}
+
+HAL_BOOL
+ar5212IsSpurChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
+{
+ uint16_t freq = ath_hal_gethwchannel(ah, chan);
+ uint32_t clockFreq =
+ ((IS_5413(ah) || IS_RAD5112_ANY(ah) || IS_2417(ah)) ? 40 : 32);
+ return ( ((freq % clockFreq) != 0)
+ && (((freq % clockFreq) < 10)
+ || (((freq) % clockFreq) > 22)) );
+}
+
+/*
+ * Read EEPROM header info and program the device for correct operation
+ * given the channel value.
+ */
+HAL_BOOL
+ar5212SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
+{
+#define NO_FALSE_DETECT_BACKOFF 2
+#define CB22_FALSE_DETECT_BACKOFF 6
+#define AR_PHY_BIS(_ah, _reg, _mask, _val) \
+ OS_REG_WRITE(_ah, AR_PHY(_reg), \
+ (OS_REG_READ(_ah, AR_PHY(_reg)) & _mask) | (_val));
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
+ int arrayMode, falseDectectBackoff;
+ int is2GHz = IEEE80211_IS_CHAN_2GHZ(chan);
+ HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
+ int8_t adcDesiredSize, pgaDesiredSize;
+ uint16_t switchSettling, txrxAtten, rxtxMargin;
+ int iCoff, qCoff;
+
+ HALASSERT(ah->ah_magic == AR5212_MAGIC);
+
+ switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) {
+ case IEEE80211_CHAN_A:
+ case IEEE80211_CHAN_ST:
+ arrayMode = headerInfo11A;
+ if (!IS_RAD5112_ANY(ah) && !IS_2413(ah) && !IS_5413(ah))
+ OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
+ AR_PHY_FRAME_CTL_TX_CLIP,
+ ahp->ah_gainValues.currStep->paramVal[GP_TXCLIP]);
+ break;
+ case IEEE80211_CHAN_B:
+ arrayMode = headerInfo11B;
+ break;
+ case IEEE80211_CHAN_G:
+ case IEEE80211_CHAN_108G:
+ arrayMode = headerInfo11G;
+ break;
+ default:
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
+ __func__, chan->ic_flags);
+ return AH_FALSE;
+ }
+
+ /* Set the antenna register(s) correctly for the chip revision */
+ AR_PHY_BIS(ah, 68, 0xFFFFFC06,
+ (ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
+
+ ar5212SetAntennaSwitchInternal(ah, ahp->ah_antControl, chan);
+
+ /* Set the Noise Floor Thresh on ar5211 devices */
+ OS_REG_WRITE(ah, AR_PHY(90),
+ (ee->ee_noiseFloorThresh[arrayMode] & 0x1FF)
+ | (1 << 9));
+
+ if (ee->ee_version >= AR_EEPROM_VER5_0 && IEEE80211_IS_CHAN_TURBO(chan)) {
+ switchSettling = ee->ee_switchSettlingTurbo[is2GHz];
+ adcDesiredSize = ee->ee_adcDesiredSizeTurbo[is2GHz];
+ pgaDesiredSize = ee->ee_pgaDesiredSizeTurbo[is2GHz];
+ txrxAtten = ee->ee_txrxAttenTurbo[is2GHz];
+ rxtxMargin = ee->ee_rxtxMarginTurbo[is2GHz];
+ } else {
+ switchSettling = ee->ee_switchSettling[arrayMode];
+ adcDesiredSize = ee->ee_adcDesiredSize[arrayMode];
+ pgaDesiredSize = ee->ee_pgaDesiredSize[is2GHz];
+ txrxAtten = ee->ee_txrxAtten[is2GHz];
+ rxtxMargin = ee->ee_rxtxMargin[is2GHz];
+ }
+
+ OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
+ AR_PHY_SETTLING_SWITCH, switchSettling);
+ OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
+ AR_PHY_DESIRED_SZ_ADC, adcDesiredSize);
+ OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
+ AR_PHY_DESIRED_SZ_PGA, pgaDesiredSize);
+ OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
+ AR_PHY_RXGAIN_TXRX_ATTEN, txrxAtten);
+ OS_REG_WRITE(ah, AR_PHY(13),
+ (ee->ee_txEndToXPAOff[arrayMode] << 24)
+ | (ee->ee_txEndToXPAOff[arrayMode] << 16)
+ | (ee->ee_txFrameToXPAOn[arrayMode] << 8)
+ | ee->ee_txFrameToXPAOn[arrayMode]);
+ AR_PHY_BIS(ah, 10, 0xFFFF00FF,
+ ee->ee_txEndToXLNAOn[arrayMode] << 8);
+ AR_PHY_BIS(ah, 25, 0xFFF80FFF,
+ (ee->ee_thresh62[arrayMode] << 12) & 0x7F000);
+
+ /*
+ * False detect backoff - suspected 32 MHz spur causes false
+ * detects in OFDM, causing Tx Hangs. Decrease weak signal
+ * sensitivity for this card.
+ */
+ falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
+ if (ee->ee_version < AR_EEPROM_VER3_3) {
+ /* XXX magic number */
+ if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
+ IEEE80211_IS_CHAN_OFDM(chan))
+ falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
+ } else {
+ if (ar5212IsSpurChannel(ah, chan))
+ falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
+ }
+ AR_PHY_BIS(ah, 73, 0xFFFFFF01, (falseDectectBackoff << 1) & 0xFE);
+
+ if (ichan->privFlags & CHANNEL_IQVALID) {
+ iCoff = ichan->iCoff;
+ qCoff = ichan->qCoff;
+ } else {
+ iCoff = ee->ee_iqCalI[is2GHz];
+ qCoff = ee->ee_iqCalQ[is2GHz];
+ }
+
+ /* write previous IQ results */
+ OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
+ AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
+ OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
+ AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
+ OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
+ AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
+
+ if (ee->ee_version >= AR_EEPROM_VER4_1) {
+ if (!IEEE80211_IS_CHAN_108G(chan) || ee->ee_version >= AR_EEPROM_VER5_0)
+ OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
+ AR_PHY_GAIN_2GHZ_RXTX_MARGIN, rxtxMargin);
+ }
+ if (ee->ee_version >= AR_EEPROM_VER5_1) {
+ /* for now always disabled */
+ OS_REG_WRITE(ah, AR_PHY_HEAVY_CLIP_ENABLE, 0);
+ }
+
+ return AH_TRUE;
+#undef AR_PHY_BIS
+#undef NO_FALSE_DETECT_BACKOFF
+#undef CB22_FALSE_DETECT_BACKOFF
+}
+
+/*
+ * Apply Spur Immunity to Boards that require it.
+ * Applies only to OFDM RX operation.
+ */
+
+void
+ar5212SetSpurMitigation(struct ath_hal *ah,
+ const struct ieee80211_channel *chan)
+{
+ uint32_t pilotMask[2] = {0, 0}, binMagMask[4] = {0, 0, 0 , 0};
+ uint16_t i, finalSpur, curChanAsSpur, binWidth = 0, spurDetectWidth, spurChan;
+ int32_t spurDeltaPhase = 0, spurFreqSd = 0, spurOffset, binOffsetNumT16, curBinOffset;
+ int16_t numBinOffsets;
+ static const uint16_t magMapFor4[4] = {1, 2, 2, 1};
+ static const uint16_t magMapFor3[3] = {1, 2, 1};
+ const uint16_t *pMagMap;
+ HAL_BOOL is2GHz = IEEE80211_IS_CHAN_2GHZ(chan);
+ HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
+ uint32_t val;
+
+#define CHAN_TO_SPUR(_f, _freq) ( ((_freq) - ((_f) ? 2300 : 4900)) * 10 )
+ if (IS_2417(ah)) {
+ HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: no spur mitigation\n",
+ __func__);
+ return;
+ }
+
+ curChanAsSpur = CHAN_TO_SPUR(is2GHz, ichan->channel);
+
+ if (ichan->mainSpur) {
+ /* Pull out the saved spur value */
+ finalSpur = ichan->mainSpur;
+ } else {
+ /*
+ * Check if spur immunity should be performed for this channel
+ * Should only be performed once per channel and then saved
+ */
+ finalSpur = AR_NO_SPUR;
+ spurDetectWidth = HAL_SPUR_CHAN_WIDTH;
+ if (IEEE80211_IS_CHAN_TURBO(chan))
+ spurDetectWidth *= 2;
+
+ /* Decide if any spur affects the current channel */
+ for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
+ spurChan = ath_hal_getSpurChan(ah, i, is2GHz);
+ if (spurChan == AR_NO_SPUR) {
+ break;
+ }
+ if ((curChanAsSpur - spurDetectWidth <= (spurChan & HAL_SPUR_VAL_MASK)) &&
+ (curChanAsSpur + spurDetectWidth >= (spurChan & HAL_SPUR_VAL_MASK))) {
+ finalSpur = spurChan & HAL_SPUR_VAL_MASK;
+ break;
+ }
+ }
+ /* Save detected spur (or no spur) for this channel */
+ ichan->mainSpur = finalSpur;
+ }
+
+ /* Write spur immunity data */
+ if (finalSpur == AR_NO_SPUR) {
+ /* Disable Spur Immunity Regs if they appear set */
+ if (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER) {
+ /* Clear Spur Delta Phase, Spur Freq, and enable bits */
+ OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0);
+ val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
+ val &= ~(AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
+ AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
+ AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
+ OS_REG_WRITE(ah, AR_PHY_MASK_CTL, val);
+ OS_REG_WRITE(ah, AR_PHY_TIMING11, 0);
+
+ /* Clear pilot masks */
+ OS_REG_WRITE(ah, AR_PHY_TIMING7, 0);
+ OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, 0);
+ OS_REG_WRITE(ah, AR_PHY_TIMING9, 0);
+ OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, 0);
+
+ /* Clear magnitude masks */
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, 0);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, 0);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, 0);
+ OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, 0);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, 0);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, 0);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, 0);
+ OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, 0);
+ }
+ } else {
+ spurOffset = finalSpur - curChanAsSpur;
+ /*
+ * Spur calculations:
+ * spurDeltaPhase is (spurOffsetIn100KHz / chipFrequencyIn100KHz) << 21
+ * spurFreqSd is (spurOffsetIn100KHz / sampleFrequencyIn100KHz) << 11
+ */
+ if (IEEE80211_IS_CHAN_TURBO(chan)) {
+ /* Chip Frequency & sampleFrequency are 80 MHz */
+ spurDeltaPhase = (spurOffset << 16) / 25;
+ spurFreqSd = spurDeltaPhase >> 10;
+ binWidth = HAL_BIN_WIDTH_TURBO_100HZ;
+ } else if (IEEE80211_IS_CHAN_G(chan)) {
+ /* Chip Frequency is 44MHz, sampleFrequency is 40 MHz */
+ spurFreqSd = (spurOffset << 8) / 55;
+ spurDeltaPhase = (spurOffset << 17) / 25;
+ binWidth = HAL_BIN_WIDTH_BASE_100HZ;
+ } else {
+ HALASSERT(!IEEE80211_IS_CHAN_B(chan));
+ /* Chip Frequency & sampleFrequency are 40 MHz */
+ spurDeltaPhase = (spurOffset << 17) / 25;
+ spurFreqSd = spurDeltaPhase >> 10;
+ binWidth = HAL_BIN_WIDTH_BASE_100HZ;
+ }
+
+ /* Compute Pilot Mask */
+ binOffsetNumT16 = ((spurOffset * 1000) << 4) / binWidth;
+ /* The spur is on a bin if it's remainder at times 16 is 0 */
+ if (binOffsetNumT16 & 0xF) {
+ numBinOffsets = 4;
+ pMagMap = magMapFor4;
+ } else {
+ numBinOffsets = 3;
+ pMagMap = magMapFor3;
+ }
+ for (i = 0; i < numBinOffsets; i++) {
+ if ((binOffsetNumT16 >> 4) > HAL_MAX_BINS_ALLOWED) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "Too man bins in spur mitigation\n");
+ return;
+ }
+
+ /* Get Pilot Mask values */
+ curBinOffset = (binOffsetNumT16 >> 4) + i + 25;
+ if ((curBinOffset >= 0) && (curBinOffset <= 32)) {
+ if (curBinOffset <= 25)
+ pilotMask[0] |= 1 << curBinOffset;
+ else if (curBinOffset >= 27)
+ pilotMask[0] |= 1 << (curBinOffset - 1);
+ } else if ((curBinOffset >= 33) && (curBinOffset <= 52))
+ pilotMask[1] |= 1 << (curBinOffset - 33);
+
+ /* Get viterbi values */
+ if ((curBinOffset >= -1) && (curBinOffset <= 14))
+ binMagMask[0] |= pMagMap[i] << (curBinOffset + 1) * 2;
+ else if ((curBinOffset >= 15) && (curBinOffset <= 30))
+ binMagMask[1] |= pMagMap[i] << (curBinOffset - 15) * 2;
+ else if ((curBinOffset >= 31) && (curBinOffset <= 46))
+ binMagMask[2] |= pMagMap[i] << (curBinOffset -31) * 2;
+ else if((curBinOffset >= 47) && (curBinOffset <= 53))
+ binMagMask[3] |= pMagMap[i] << (curBinOffset -47) * 2;
+ }
+
+ /* Write Spur Delta Phase, Spur Freq, and enable bits */
+ OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0xFF);
+ val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
+ val |= (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
+ AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
+ AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
+ OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, val);
+ OS_REG_WRITE(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_IN_AGC |
+ SM(spurFreqSd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
+ SM(spurDeltaPhase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
+
+ /* Write pilot masks */
+ OS_REG_WRITE(ah, AR_PHY_TIMING7, pilotMask[0]);
+ OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, pilotMask[1]);
+ OS_REG_WRITE(ah, AR_PHY_TIMING9, pilotMask[0]);
+ OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, pilotMask[1]);
+
+ /* Write magnitude masks */
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, binMagMask[0]);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, binMagMask[1]);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, binMagMask[2]);
+ OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, binMagMask[3]);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, binMagMask[0]);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, binMagMask[1]);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, binMagMask[2]);
+ OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, binMagMask[3]);
+ }
+#undef CHAN_TO_SPUR
+}
+
+/*
+ * Delta slope coefficient computation.
+ * Required for OFDM operation.
+ */
+void
+ar5212SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan)
+{
+#define COEF_SCALE_S 24
+#define INIT_CLOCKMHZSCALED 0x64000000
+ uint16_t freq = ath_hal_gethwchannel(ah, chan);
+ unsigned long coef_scaled, coef_exp, coef_man, ds_coef_exp, ds_coef_man;
+ unsigned long clockMhzScaled = INIT_CLOCKMHZSCALED;
+
+ if (IEEE80211_IS_CHAN_TURBO(chan))
+ clockMhzScaled *= 2;
+ /* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
+ /* scale for selected channel bandwidth */
+ if (IEEE80211_IS_CHAN_HALF(chan)) {
+ clockMhzScaled = clockMhzScaled >> 1;
+ } else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
+ clockMhzScaled = clockMhzScaled >> 2;
+ }
+
+ /*
+ * ALGO -> coef = 1e8/fcarrier*fclock/40;
+ * scaled coef to provide precision for this floating calculation
+ */
+ coef_scaled = clockMhzScaled / freq;
+
+ /*
+ * ALGO -> coef_exp = 14-floor(log2(coef));
+ * floor(log2(x)) is the highest set bit position
+ */
+ for (coef_exp = 31; coef_exp > 0; coef_exp--)
+ if ((coef_scaled >> coef_exp) & 0x1)
+ break;
+ /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
+ HALASSERT(coef_exp);
+ coef_exp = 14 - (coef_exp - COEF_SCALE_S);
+
+ /*
+ * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
+ * The coefficient is already shifted up for scaling
+ */
+ coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
+ ds_coef_man = coef_man >> (COEF_SCALE_S - coef_exp);
+ ds_coef_exp = coef_exp - 16;
+
+ OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
+ AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
+ OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
+ AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
+#undef INIT_CLOCKMHZSCALED
+#undef COEF_SCALE_S
+}
+
+/*
+ * Set a limit on the overall output power. Used for dynamic
+ * transmit power control and the like.
+ *
+ * NB: limit is in units of 0.5 dbM.
+ */
+HAL_BOOL
+ar5212SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
+{
+ /* XXX blech, construct local writable copy */
+ struct ieee80211_channel dummy = *AH_PRIVATE(ah)->ah_curchan;
+ uint16_t dummyXpdGains[2];
+ HAL_BOOL isBmode;
+
+ SAVE_CCK(ah, &dummy, isBmode);
+ AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
+ return ar5212SetTransmitPower(ah, &dummy, dummyXpdGains);
+}
+
+/*
+ * Set the transmit power in the baseband for the given
+ * operating channel and mode.
+ */
+HAL_BOOL
+ar5212SetTransmitPower(struct ath_hal *ah,
+ const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
+{
+#define POW_OFDM(_r, _s) (((0 & 1)<< ((_s)+6)) | (((_r) & 0x3f) << (_s)))
+#define POW_CCK(_r, _s) (((_r) & 0x3f) << (_s))
+#define N(a) (sizeof (a) / sizeof (a[0]))
+ static const uint16_t tpcScaleReductionTable[5] =
+ { 0, 3, 6, 9, MAX_RATE_POWER };
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ uint16_t freq = ath_hal_gethwchannel(ah, chan);
+ const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
+ int16_t minPower, maxPower, tpcInDb, powerLimit;
+ int i;
+
+ HALASSERT(ah->ah_magic == AR5212_MAGIC);
+
+ OS_MEMZERO(ahp->ah_pcdacTable, ahp->ah_pcdacTableSize);
+ OS_MEMZERO(ahp->ah_ratesArray, sizeof(ahp->ah_ratesArray));
+
+ powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
+ if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
+ tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
+ else
+ tpcInDb = 0;
+ if (!ar5212SetRateTable(ah, chan, tpcInDb, powerLimit,
+ AH_TRUE, &minPower, &maxPower)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set rate table\n",
+ __func__);
+ return AH_FALSE;
+ }
+ if (!ahp->ah_rfHal->setPowerTable(ah,
+ &minPower, &maxPower, chan, rfXpdGain)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
+ __func__);
+ return AH_FALSE;
+ }
+
+ /*
+ * Adjust XR power/rate up by 2 dB to account for greater peak
+ * to avg ratio - except in newer avg power designs
+ */
+ if (!IS_2413(ah) && !IS_5413(ah))
+ ahp->ah_ratesArray[15] += 4;
+ /*
+ * txPowerIndexOffset is set by the SetPowerTable() call -
+ * adjust the rate table
+ */
+ for (i = 0; i < N(ahp->ah_ratesArray); i++) {
+ ahp->ah_ratesArray[i] += ahp->ah_txPowerIndexOffset;
+ if (ahp->ah_ratesArray[i] > 63)
+ ahp->ah_ratesArray[i] = 63;
+ }
+
+ if (ee->ee_eepMap < 2) {
+ /*
+ * Correct gain deltas for 5212 G operation -
+ * Removed with revised chipset
+ */
+ if (AH_PRIVATE(ah)->ah_phyRev < AR_PHY_CHIP_ID_REV_2 &&
+ IEEE80211_IS_CHAN_G(chan)) {
+ uint16_t cckOfdmPwrDelta;
+
+ if (freq == 2484)
+ cckOfdmPwrDelta = SCALE_OC_DELTA(
+ ee->ee_cckOfdmPwrDelta -
+ ee->ee_scaledCh14FilterCckDelta);
+ else
+ cckOfdmPwrDelta = SCALE_OC_DELTA(
+ ee->ee_cckOfdmPwrDelta);
+ ar5212CorrectGainDelta(ah, cckOfdmPwrDelta);
+ }
+ /*
+ * Finally, write the power values into the
+ * baseband power table
+ */
+ for (i = 0; i < (PWR_TABLE_SIZE/2); i++) {
+ OS_REG_WRITE(ah, AR_PHY_PCDAC_TX_POWER(i),
+ ((((ahp->ah_pcdacTable[2*i + 1] << 8) | 0xff) & 0xffff) << 16)
+ | (((ahp->ah_pcdacTable[2*i] << 8) | 0xff) & 0xffff)
+ );
+ }
+ }
+
+ /* Write the OFDM power per rate set */
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
+ POW_OFDM(ahp->ah_ratesArray[3], 24)
+ | POW_OFDM(ahp->ah_ratesArray[2], 16)
+ | POW_OFDM(ahp->ah_ratesArray[1], 8)
+ | POW_OFDM(ahp->ah_ratesArray[0], 0)
+ );
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
+ POW_OFDM(ahp->ah_ratesArray[7], 24)
+ | POW_OFDM(ahp->ah_ratesArray[6], 16)
+ | POW_OFDM(ahp->ah_ratesArray[5], 8)
+ | POW_OFDM(ahp->ah_ratesArray[4], 0)
+ );
+
+ /* Write the CCK power per rate set */
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
+ POW_CCK(ahp->ah_ratesArray[10], 24)
+ | POW_CCK(ahp->ah_ratesArray[9], 16)
+ | POW_CCK(ahp->ah_ratesArray[15], 8) /* XR target power */
+ | POW_CCK(ahp->ah_ratesArray[8], 0)
+ );
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
+ POW_CCK(ahp->ah_ratesArray[14], 24)
+ | POW_CCK(ahp->ah_ratesArray[13], 16)
+ | POW_CCK(ahp->ah_ratesArray[12], 8)
+ | POW_CCK(ahp->ah_ratesArray[11], 0)
+ );
+
+ /*
+ * Set max power to 30 dBm and, optionally,
+ * enable TPC in tx descriptors.
+ */
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER |
+ (ahp->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0));
+
+ return AH_TRUE;
+#undef N
+#undef POW_CCK
+#undef POW_OFDM
+}
+
+/*
+ * Sets the transmit power in the baseband for the given
+ * operating channel and mode.
+ */
+static HAL_BOOL
+ar5212SetRateTable(struct ath_hal *ah, const struct ieee80211_channel *chan,
+ int16_t tpcScaleReduction, int16_t powerLimit, HAL_BOOL commit,
+ int16_t *pMinPower, int16_t *pMaxPower)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ uint16_t freq = ath_hal_gethwchannel(ah, chan);
+ const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
+ uint16_t *rpow = ahp->ah_ratesArray;
+ uint16_t twiceMaxEdgePower = MAX_RATE_POWER;
+ uint16_t twiceMaxEdgePowerCck = MAX_RATE_POWER;
+ uint16_t twiceMaxRDPower = MAX_RATE_POWER;
+ int i;
+ uint8_t cfgCtl;
+ int8_t twiceAntennaGain, twiceAntennaReduction;
+ const RD_EDGES_POWER *rep;
+ TRGT_POWER_INFO targetPowerOfdm, targetPowerCck;
+ int16_t scaledPower, maxAvailPower = 0;
+ int16_t r13, r9, r7, r0;
+
+ HALASSERT(ah->ah_magic == AR5212_MAGIC);
+
+ twiceMaxRDPower = chan->ic_maxregpower * 2;
+ *pMaxPower = -MAX_RATE_POWER;
+ *pMinPower = MAX_RATE_POWER;
+
+ /* Get conformance test limit maximum for this channel */
+ cfgCtl = ath_hal_getctl(ah, chan);
+ for (i = 0; i < ee->ee_numCtls; i++) {
+ uint16_t twiceMinEdgePower;
+
+ if (ee->ee_ctl[i] == 0)
+ continue;
+ if (ee->ee_ctl[i] == cfgCtl ||
+ cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
+ rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
+ twiceMinEdgePower = ar5212GetMaxEdgePower(freq, rep);
+ if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
+ /* Find the minimum of all CTL edge powers that apply to this channel */
+ twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
+ } else {
+ twiceMaxEdgePower = twiceMinEdgePower;
+ break;
+ }
+ }
+ }
+
+ if (IEEE80211_IS_CHAN_G(chan)) {
+ /* Check for a CCK CTL for 11G CCK powers */
+ cfgCtl = (cfgCtl & ~CTL_MODE_M) | CTL_11B;
+ for (i = 0; i < ee->ee_numCtls; i++) {
+ uint16_t twiceMinEdgePowerCck;
+
+ if (ee->ee_ctl[i] == 0)
+ continue;
+ if (ee->ee_ctl[i] == cfgCtl ||
+ cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
+ rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
+ twiceMinEdgePowerCck = ar5212GetMaxEdgePower(freq, rep);
+ if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
+ /* Find the minimum of all CTL edge powers that apply to this channel */
+ twiceMaxEdgePowerCck = AH_MIN(twiceMaxEdgePowerCck, twiceMinEdgePowerCck);
+ } else {
+ twiceMaxEdgePowerCck = twiceMinEdgePowerCck;
+ break;
+ }
+ }
+ }
+ } else {
+ /* Set the 11B cck edge power to the one found before */
+ twiceMaxEdgePowerCck = twiceMaxEdgePower;
+ }
+
+ /* Get Antenna Gain reduction */
+ if (IEEE80211_IS_CHAN_5GHZ(chan)) {
+ ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
+ } else {
+ ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
+ }
+ twiceAntennaReduction =
+ ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
+
+ if (IEEE80211_IS_CHAN_OFDM(chan)) {
+ /* Get final OFDM target powers */
+ if (IEEE80211_IS_CHAN_2GHZ(chan)) {
+ ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11g,
+ ee->ee_numTargetPwr_11g, &targetPowerOfdm);
+ } else {
+ ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11a,
+ ee->ee_numTargetPwr_11a, &targetPowerOfdm);
+ }
+
+ /* Get Maximum OFDM power */
+ /* Minimum of target and edge powers */
+ scaledPower = AH_MIN(twiceMaxEdgePower,
+ twiceMaxRDPower - twiceAntennaReduction);
+
+ /*
+ * If turbo is set, reduce power to keep power
+ * consumption under 2 Watts. Note that we always do
+ * this unless specially configured. Then we limit
+ * power only for non-AP operation.
+ */
+ if (IEEE80211_IS_CHAN_TURBO(chan)
+#ifdef AH_ENABLE_AP_SUPPORT
+ && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
+#endif
+ ) {
+ /*
+ * If turbo is set, reduce power to keep power
+ * consumption under 2 Watts
+ */
+ if (ee->ee_version >= AR_EEPROM_VER3_1)
+ scaledPower = AH_MIN(scaledPower,
+ ee->ee_turbo2WMaxPower5);
+ /*
+ * EEPROM version 4.0 added an additional
+ * constraint on 2.4GHz channels.
+ */
+ if (ee->ee_version >= AR_EEPROM_VER4_0 &&
+ IEEE80211_IS_CHAN_2GHZ(chan))
+ scaledPower = AH_MIN(scaledPower,
+ ee->ee_turbo2WMaxPower2);
+ }
+
+ maxAvailPower = AH_MIN(scaledPower,
+ targetPowerOfdm.twicePwr6_24);
+
+ /* Reduce power by max regulatory domain allowed restrictions */
+ scaledPower = maxAvailPower - (tpcScaleReduction * 2);
+ scaledPower = (scaledPower < 0) ? 0 : scaledPower;
+ scaledPower = AH_MIN(scaledPower, powerLimit);
+
+ if (commit) {
+ /* Set OFDM rates 9, 12, 18, 24 */
+ r0 = rpow[0] = rpow[1] = rpow[2] = rpow[3] = rpow[4] = scaledPower;
+
+ /* Set OFDM rates 36, 48, 54, XR */
+ rpow[5] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr36);
+ rpow[6] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr48);
+ r7 = rpow[7] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr54);
+
+ if (ee->ee_version >= AR_EEPROM_VER4_0) {
+ /* Setup XR target power from EEPROM */
+ rpow[15] = AH_MIN(scaledPower, IEEE80211_IS_CHAN_2GHZ(chan) ?
+ ee->ee_xrTargetPower2 : ee->ee_xrTargetPower5);
+ } else {
+ /* XR uses 6mb power */
+ rpow[15] = rpow[0];
+ }
+ ahp->ah_ofdmTxPower = *pMaxPower;
+
+ } else {
+ r0 = scaledPower;
+ r7 = AH_MIN(r0, targetPowerOfdm.twicePwr54);
+ }
+ *pMinPower = r7;
+ *pMaxPower = r0;
+
+ HALDEBUG(ah, HAL_DEBUG_RFPARAM,
+ "%s: MaxRD: %d TurboMax: %d MaxCTL: %d "
+ "TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
+ __func__, twiceMaxRDPower, ee->ee_turbo2WMaxPower5,
+ twiceMaxEdgePower, tpcScaleReduction * 2,
+ chan->ic_freq, chan->ic_flags,
+ maxAvailPower, targetPowerOfdm.twicePwr6_24, *pMaxPower);
+ }
+
+ if (IEEE80211_IS_CHAN_CCK(chan)) {
+ /* Get final CCK target powers */
+ ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11b,
+ ee->ee_numTargetPwr_11b, &targetPowerCck);
+
+ /* Reduce power by max regulatory domain allowed restrictions */
+ scaledPower = AH_MIN(twiceMaxEdgePowerCck,
+ twiceMaxRDPower - twiceAntennaReduction);
+ if (maxAvailPower < AH_MIN(scaledPower, targetPowerCck.twicePwr6_24))
+ maxAvailPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
+
+ /* Reduce power by user selection */
+ scaledPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24) - (tpcScaleReduction * 2);
+ scaledPower = (scaledPower < 0) ? 0 : scaledPower;
+ scaledPower = AH_MIN(scaledPower, powerLimit);
+
+ if (commit) {
+ /* Set CCK rates 2L, 2S, 5.5L, 5.5S, 11L, 11S */
+ rpow[8] = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
+ r9 = rpow[9] = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
+ rpow[10] = rpow[9];
+ rpow[11] = AH_MIN(scaledPower, targetPowerCck.twicePwr48);
+ rpow[12] = rpow[11];
+ r13 = rpow[13] = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
+ rpow[14] = rpow[13];
+ } else {
+ r9 = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
+ r13 = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
+ }
+
+ /* Set min/max power based off OFDM values or initialization */
+ if (r13 < *pMinPower)
+ *pMinPower = r13;
+ if (r9 > *pMaxPower)
+ *pMaxPower = r9;
+
+ HALDEBUG(ah, HAL_DEBUG_RFPARAM,
+ "%s: cck: MaxRD: %d MaxCTL: %d "
+ "TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
+ __func__, twiceMaxRDPower, twiceMaxEdgePowerCck,
+ tpcScaleReduction * 2, chan->ic_freq, chan->ic_flags,
+ maxAvailPower, targetPowerCck.twicePwr6_24, *pMaxPower);
+ }
+ if (commit) {
+ ahp->ah_tx6PowerInHalfDbm = *pMaxPower;
+ AH_PRIVATE(ah)->ah_maxPowerLevel = ahp->ah_tx6PowerInHalfDbm;
+ }
+ return AH_TRUE;
+}
+
+HAL_BOOL
+ar5212GetChipPowerLimits(struct ath_hal *ah, struct ieee80211_channel *chan)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+#if 0
+ static const uint16_t tpcScaleReductionTable[5] =
+ { 0, 3, 6, 9, MAX_RATE_POWER };
+ int16_t tpcInDb, powerLimit;
+#endif
+ int16_t minPower, maxPower;
+
+ /*
+ * Get Pier table max and min powers.
+ */
+ if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
+ /* NB: rf code returns 1/4 dBm units, convert */
+ chan->ic_maxpower = maxPower / 2;
+ chan->ic_minpower = minPower / 2;
+ } else {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: no min/max power for %u/0x%x\n",
+ __func__, chan->ic_freq, chan->ic_flags);
+ chan->ic_maxpower = MAX_RATE_POWER;
+ chan->ic_minpower = 0;
+ }
+#if 0
+ /*
+ * Now adjust to reflect any global scale and/or CTL's.
+ * (XXX is that correct?)
+ */
+ powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
+ if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
+ tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
+ else
+ tpcInDb = 0;
+ if (!ar5212SetRateTable(ah, chan, tpcInDb, powerLimit,
+ AH_FALSE, &minPower, &maxPower)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: unable to find max/min power\n",__func__);
+ return AH_FALSE;
+ }
+ if (maxPower < chan->ic_maxpower)
+ chan->ic_maxpower = maxPower;
+ if (minPower < chan->ic_minpower)
+ chan->ic_minpower = minPower;
+ HALDEBUG(ah, HAL_DEBUG_RESET,
+ "Chan %d: MaxPow = %d MinPow = %d\n",
+ chan->ic_freq, chan->ic_maxpower, chans->ic_minpower);
+#endif
+ return AH_TRUE;
+}
+
+/*
+ * Correct for the gain-delta between ofdm and cck mode target
+ * powers. Write the results to the rate table and the power table.
+ *
+ * Conventions :
+ * 1. rpow[ii] is the integer value of 2*(desired power
+ * for the rate ii in dBm) to provide 0.5dB resolution. rate
+ * mapping is as following :
+ * [0..7] --> ofdm 6, 9, .. 48, 54
+ * [8..14] --> cck 1L, 2L, 2S, .. 11L, 11S
+ * [15] --> XR (all rates get the same power)
+ * 2. powv[ii] is the pcdac corresponding to ii/2 dBm.
+ */
+static void
+ar5212CorrectGainDelta(struct ath_hal *ah, int twiceOfdmCckDelta)
+{
+#define N(_a) (sizeof(_a) / sizeof(_a[0]))
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
+ int16_t ratesIndex[N(ahp->ah_ratesArray)];
+ uint16_t ii, jj, iter;
+ int32_t cckIndex;
+ int16_t gainDeltaAdjust;
+
+ HALASSERT(ah->ah_magic == AR5212_MAGIC);
+
+ gainDeltaAdjust = ee->ee_cckOfdmGainDelta;
+
+ /* make a local copy of desired powers as initial indices */
+ OS_MEMCPY(ratesIndex, ahp->ah_ratesArray, sizeof(ratesIndex));
+
+ /* fix only the CCK indices */
+ for (ii = 8; ii < 15; ii++) {
+ /* apply a gain_delta correction of -15 for CCK */
+ ratesIndex[ii] -= gainDeltaAdjust;
+
+ /* Now check for contention with all ofdm target powers */
+ jj = 0;
+ iter = 0;
+ /* indicates not all ofdm rates checked forcontention yet */
+ while (jj < 16) {
+ if (ratesIndex[ii] < 0)
+ ratesIndex[ii] = 0;
+ if (jj == 8) { /* skip CCK rates */
+ jj = 15;
+ continue;
+ }
+ if (ratesIndex[ii] == ahp->ah_ratesArray[jj]) {
+ if (ahp->ah_ratesArray[jj] == 0)
+ ratesIndex[ii]++;
+ else if (iter > 50) {
+ /*
+ * To avoid pathological case of of
+ * dm target powers 0 and 0.5dBm
+ */
+ ratesIndex[ii]++;
+ } else
+ ratesIndex[ii]--;
+ /* check with all rates again */
+ jj = 0;
+ iter++;
+ } else
+ jj++;
+ }
+ if (ratesIndex[ii] >= PWR_TABLE_SIZE)
+ ratesIndex[ii] = PWR_TABLE_SIZE -1;
+ cckIndex = ahp->ah_ratesArray[ii] - twiceOfdmCckDelta;
+ if (cckIndex < 0)
+ cckIndex = 0;
+
+ /*
+ * Validate that the indexes for the powv are not
+ * out of bounds.
+ */
+ HALASSERT(cckIndex < PWR_TABLE_SIZE);
+ HALASSERT(ratesIndex[ii] < PWR_TABLE_SIZE);
+ ahp->ah_pcdacTable[ratesIndex[ii]] =
+ ahp->ah_pcdacTable[cckIndex];
+ }
+ /* Override rate per power table with new values */
+ for (ii = 8; ii < 15; ii++)
+ ahp->ah_ratesArray[ii] = ratesIndex[ii];
+#undef N
+}
+
+/*
+ * Find the maximum conformance test limit for the given channel and CTL info
+ */
+static uint16_t
+ar5212GetMaxEdgePower(uint16_t channel, const RD_EDGES_POWER *pRdEdgesPower)
+{
+ /* temp array for holding edge channels */
+ uint16_t tempChannelList[NUM_EDGES];
+ uint16_t clo, chi, twiceMaxEdgePower;
+ int i, numEdges;
+
+ /* Get the edge power */
+ for (i = 0; i < NUM_EDGES; i++) {
+ if (pRdEdgesPower[i].rdEdge == 0)
+ break;
+ tempChannelList[i] = pRdEdgesPower[i].rdEdge;
+ }
+ numEdges = i;
+
+ ar5212GetLowerUpperValues(channel, tempChannelList,
+ numEdges, &clo, &chi);
+ /* Get the index for the lower channel */
+ for (i = 0; i < numEdges && clo != tempChannelList[i]; i++)
+ ;
+ /* Is lower channel ever outside the rdEdge? */
+ HALASSERT(i != numEdges);
+
+ if ((clo == chi && clo == channel) || (pRdEdgesPower[i].flag)) {
+ /*
+ * If there's an exact channel match or an inband flag set
+ * on the lower channel use the given rdEdgePower
+ */
+ twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
+ HALASSERT(twiceMaxEdgePower > 0);
+ } else
+ twiceMaxEdgePower = MAX_RATE_POWER;
+ return twiceMaxEdgePower;
+}
+
+/*
+ * Returns interpolated or the scaled up interpolated value
+ */
+static uint16_t
+interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
+ uint16_t targetLeft, uint16_t targetRight)
+{
+ uint16_t rv;
+ int16_t lRatio;
+
+ /* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
+ if ((targetLeft * targetRight) == 0)
+ return 0;
+
+ if (srcRight != srcLeft) {
+ /*
+ * Note the ratio always need to be scaled,
+ * since it will be a fraction.
+ */
+ lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
+ if (lRatio < 0) {
+ /* Return as Left target if value would be negative */
+ rv = targetLeft;
+ } else if (lRatio > EEP_SCALE) {
+ /* Return as Right target if Ratio is greater than 100% (SCALE) */
+ rv = targetRight;
+ } else {
+ rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
+ targetLeft) / EEP_SCALE;
+ }
+ } else {
+ rv = targetLeft;
+ }
+ return rv;
+}
+
+/*
+ * Return the four rates of target power for the given target power table
+ * channel, and number of channels
+ */
+static void
+ar5212GetTargetPowers(struct ath_hal *ah, const struct ieee80211_channel *chan,
+ const TRGT_POWER_INFO *powInfo,
+ uint16_t numChannels, TRGT_POWER_INFO *pNewPower)
+{
+ uint16_t freq = ath_hal_gethwchannel(ah, chan);
+ /* temp array for holding target power channels */
+ uint16_t tempChannelList[NUM_TEST_FREQUENCIES];
+ uint16_t clo, chi, ixlo, ixhi;
+ int i;
+
+ /* Copy the target powers into the temp channel list */
+ for (i = 0; i < numChannels; i++)
+ tempChannelList[i] = powInfo[i].testChannel;
+
+ ar5212GetLowerUpperValues(freq, tempChannelList,
+ numChannels, &clo, &chi);
+
+ /* Get the indices for the channel */
+ ixlo = ixhi = 0;
+ for (i = 0; i < numChannels; i++) {
+ if (clo == tempChannelList[i]) {
+ ixlo = i;
+ }
+ if (chi == tempChannelList[i]) {
+ ixhi = i;
+ break;
+ }
+ }
+
+ /*
+ * Get the lower and upper channels, target powers,
+ * and interpolate between them.
+ */
+ pNewPower->twicePwr6_24 = interpolate(freq, clo, chi,
+ powInfo[ixlo].twicePwr6_24, powInfo[ixhi].twicePwr6_24);
+ pNewPower->twicePwr36 = interpolate(freq, clo, chi,
+ powInfo[ixlo].twicePwr36, powInfo[ixhi].twicePwr36);
+ pNewPower->twicePwr48 = interpolate(freq, clo, chi,
+ powInfo[ixlo].twicePwr48, powInfo[ixhi].twicePwr48);
+ pNewPower->twicePwr54 = interpolate(freq, clo, chi,
+ powInfo[ixlo].twicePwr54, powInfo[ixhi].twicePwr54);
+}
+
+static uint32_t
+udiff(uint32_t u, uint32_t v)
+{
+ return (u >= v ? u - v : v - u);
+}
+
+/*
+ * Search a list for a specified value v that is within
+ * EEP_DELTA of the search values. Return the closest
+ * values in the list above and below the desired value.
+ * EEP_DELTA is a factional value; everything is scaled
+ * so only integer arithmetic is used.
+ *
+ * NB: the input list is assumed to be sorted in ascending order
+ */
+void
+ar5212GetLowerUpperValues(uint16_t v, uint16_t *lp, uint16_t listSize,
+ uint16_t *vlo, uint16_t *vhi)
+{
+ uint32_t target = v * EEP_SCALE;
+ uint16_t *ep = lp+listSize;
+
+ /*
+ * Check first and last elements for out-of-bounds conditions.
+ */
+ if (target < (uint32_t)(lp[0] * EEP_SCALE - EEP_DELTA)) {
+ *vlo = *vhi = lp[0];
+ return;
+ }
+ if (target > (uint32_t)(ep[-1] * EEP_SCALE + EEP_DELTA)) {
+ *vlo = *vhi = ep[-1];
+ return;
+ }
+
+ /* look for value being near or between 2 values in list */
+ for (; lp < ep; lp++) {
+ /*
+ * If value is close to the current value of the list
+ * then target is not between values, it is one of the values
+ */
+ if (udiff(lp[0] * EEP_SCALE, target) < EEP_DELTA) {
+ *vlo = *vhi = lp[0];
+ return;
+ }
+ /*
+ * Look for value being between current value and next value
+ * if so return these 2 values
+ */
+ if (target < (uint32_t)(lp[1] * EEP_SCALE - EEP_DELTA)) {
+ *vlo = lp[0];
+ *vhi = lp[1];
+ return;
+ }
+ }
+ HALASSERT(AH_FALSE); /* should not reach here */
+}
+
+/*
+ * Perform analog "swizzling" of parameters into their location
+ *
+ * NB: used by RF backends
+ */
+void
+ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, uint32_t numBits,
+ uint32_t firstBit, uint32_t column)
+{
+#define MAX_ANALOG_START 319 /* XXX */
+ uint32_t tmp32, mask, arrayEntry, lastBit;
+ int32_t bitPosition, bitsLeft;
+
+ HALASSERT(column <= 3);
+ HALASSERT(numBits <= 32);
+ HALASSERT(firstBit + numBits <= MAX_ANALOG_START);
+
+ tmp32 = ath_hal_reverseBits(reg32, numBits);
+ arrayEntry = (firstBit - 1) / 8;
+ bitPosition = (firstBit - 1) % 8;
+ bitsLeft = numBits;
+ while (bitsLeft > 0) {
+ lastBit = (bitPosition + bitsLeft > 8) ?
+ 8 : bitPosition + bitsLeft;
+ mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
+ (column * 8);
+ rfBuf[arrayEntry] &= ~mask;
+ rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
+ (column * 8)) & mask;
+ bitsLeft -= 8 - bitPosition;
+ tmp32 = tmp32 >> (8 - bitPosition);
+ bitPosition = 0;
+ arrayEntry++;
+ }
+#undef MAX_ANALOG_START
+}
+
+/*
+ * Sets the rate to duration values in MAC - used for multi-
+ * rate retry.
+ * The rate duration table needs to cover all valid rate codes;
+ * the 11g table covers all ofdm rates, while the 11b table
+ * covers all cck rates => all valid rates get covered between
+ * these two mode's ratetables!
+ * But if we're turbo, the ofdm phy is replaced by the turbo phy
+ * and cck is not valid with turbo => all rates get covered
+ * by the turbo ratetable only
+ */
+void
+ar5212SetRateDurationTable(struct ath_hal *ah,
+ const struct ieee80211_channel *chan)
+{
+ const HAL_RATE_TABLE *rt;
+ int i;
+
+ /* NB: band doesn't matter for 1/2 and 1/4 rate */
+ if (IEEE80211_IS_CHAN_HALF(chan)) {
+ rt = ar5212GetRateTable(ah, HAL_MODE_11A_HALF_RATE);
+ } else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
+ rt = ar5212GetRateTable(ah, HAL_MODE_11A_QUARTER_RATE);
+ } else {
+ rt = ar5212GetRateTable(ah,
+ IEEE80211_IS_CHAN_TURBO(chan) ? HAL_MODE_TURBO : HAL_MODE_11G);
+ }
+
+ for (i = 0; i < rt->rateCount; ++i)
+ OS_REG_WRITE(ah,
+ AR_RATE_DURATION(rt->info[i].rateCode),
+ ath_hal_computetxtime(ah, rt,
+ WLAN_CTRL_FRAME_SIZE,
+ rt->info[i].controlRate, AH_FALSE, AH_TRUE));
+ if (!IEEE80211_IS_CHAN_TURBO(chan)) {
+ /* 11g Table is used to cover the CCK rates. */
+ rt = ar5212GetRateTable(ah, HAL_MODE_11G);
+ for (i = 0; i < rt->rateCount; ++i) {
+ uint32_t reg = AR_RATE_DURATION(rt->info[i].rateCode);
+
+ if (rt->info[i].phy != IEEE80211_T_CCK)
+ continue;
+
+ OS_REG_WRITE(ah, reg,
+ ath_hal_computetxtime(ah, rt,
+ WLAN_CTRL_FRAME_SIZE,
+ rt->info[i].controlRate, AH_FALSE,
+ AH_TRUE));
+ /* cck rates have short preamble option also */
+ if (rt->info[i].shortPreamble) {
+ reg += rt->info[i].shortPreamble << 2;
+ OS_REG_WRITE(ah, reg,
+ ath_hal_computetxtime(ah, rt,
+ WLAN_CTRL_FRAME_SIZE,
+ rt->info[i].controlRate,
+ AH_TRUE, AH_TRUE));
+ }
+ }
+ }
+}
+
+/* Adjust various register settings based on half/quarter rate clock setting.
+ * This includes: +USEC, TX/RX latency,
+ * + IFS params: slot, eifs, misc etc.
+ */
+void
+ar5212SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan)
+{
+ uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec;
+
+ HALASSERT(IEEE80211_IS_CHAN_HALF(chan) ||
+ IEEE80211_IS_CHAN_QUARTER(chan));
+
+ refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32;
+ if (IEEE80211_IS_CHAN_HALF(chan)) {
+ slot = IFS_SLOT_HALF_RATE;
+ rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
+ txLat = TX_HALF_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
+ usec = HALF_RATE_USEC;
+ eifs = IFS_EIFS_HALF_RATE;
+ init_usec = INIT_USEC >> 1;
+ } else { /* quarter rate */
+ slot = IFS_SLOT_QUARTER_RATE;
+ rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
+ txLat = TX_QUARTER_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
+ usec = QUARTER_RATE_USEC;
+ eifs = IFS_EIFS_QUARTER_RATE;
+ init_usec = INIT_USEC >> 2;
+ }
+
+ OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat));
+ OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
+ OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
+ OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC,
+ AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec);
+}