aboutsummaryrefslogtreecommitdiff
path: root/sys/dev/ath/ath_hal/ar5416/ar5416_reset.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/dev/ath/ath_hal/ar5416/ar5416_reset.c')
-rw-r--r--sys/dev/ath/ath_hal/ar5416/ar5416_reset.c2899
1 files changed, 2899 insertions, 0 deletions
diff --git a/sys/dev/ath/ath_hal/ar5416/ar5416_reset.c b/sys/dev/ath/ath_hal/ar5416/ar5416_reset.c
new file mode 100644
index 000000000000..e107e88e16ce
--- /dev/null
+++ b/sys/dev/ath/ath_hal/ar5416/ar5416_reset.c
@@ -0,0 +1,2899 @@
+/*-
+ * SPDX-License-Identifier: ISC
+ *
+ * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
+ * Copyright (c) 2002-2008 Atheros Communications, Inc.
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+#include "opt_ah.h"
+
+#include "ah.h"
+#include "ah_internal.h"
+#include "ah_devid.h"
+
+#include "ah_eeprom_v14.h"
+
+#include "ar5416/ar5416.h"
+#include "ar5416/ar5416reg.h"
+#include "ar5416/ar5416phy.h"
+
+/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
+#define EEP_MINOR(_ah) \
+ (AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
+#define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
+#define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
+
+/* Additional Time delay to wait after activiting the Base band */
+#define BASE_ACTIVATE_DELAY 100 /* 100 usec */
+#define PLL_SETTLE_DELAY 300 /* 300 usec */
+#define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */
+
+static void ar5416InitDMA(struct ath_hal *ah);
+static void ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *);
+static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode);
+static void ar5416InitQoS(struct ath_hal *ah);
+static void ar5416InitUserSettings(struct ath_hal *ah);
+static void ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *);
+
+#if 0
+static HAL_BOOL ar5416ChannelChange(struct ath_hal *, const struct ieee80211_channel *);
+#endif
+static void ar5416SetDeltaSlope(struct ath_hal *, const struct ieee80211_channel *);
+
+static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah);
+static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type);
+static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah,
+ struct ar5416eeprom *pEepData,
+ const struct ieee80211_channel *chan, int16_t *ratesArray,
+ uint16_t cfgCtl, uint16_t AntennaReduction,
+ uint16_t twiceMaxRegulatoryPower,
+ uint16_t powerLimit);
+static void ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan);
+static void ar5416MarkPhyInactive(struct ath_hal *ah);
+static void ar5416SetIFSTiming(struct ath_hal *ah,
+ const struct ieee80211_channel *chan);
+
+/*
+ * Places the device in and out of reset and then places sane
+ * values in the registers based on EEPROM config, initialization
+ * vectors (as determined by the mode), and station configuration
+ *
+ * bChannelChange is used to preserve DMA/PCU registers across
+ * a HW Reset during channel change.
+ */
+HAL_BOOL
+ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode,
+ struct ieee80211_channel *chan,
+ HAL_BOOL bChannelChange,
+ HAL_RESET_TYPE resetType,
+ HAL_STATUS *status)
+{
+#define N(a) (sizeof (a) / sizeof (a[0]))
+#define FAIL(_code) do { ecode = _code; goto bad; } while (0)
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ HAL_CHANNEL_INTERNAL *ichan;
+ uint32_t saveDefAntenna, saveLedState;
+ uint32_t macStaId1;
+ uint16_t rfXpdGain[2];
+ HAL_STATUS ecode;
+ uint32_t powerVal, rssiThrReg;
+ uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
+ int i;
+ uint64_t tsf = 0;
+
+ OS_MARK(ah, AH_MARK_RESET, bChannelChange);
+
+ /* Bring out of sleep mode */
+ if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
+ __func__);
+ FAIL(HAL_EIO);
+ }
+
+ /*
+ * Map public channel to private.
+ */
+ ichan = ath_hal_checkchannel(ah, chan);
+ if (ichan == AH_NULL)
+ FAIL(HAL_EINVAL);
+ switch (opmode) {
+ case HAL_M_STA:
+ case HAL_M_IBSS:
+ case HAL_M_HOSTAP:
+ case HAL_M_MONITOR:
+ break;
+ default:
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
+ __func__, opmode);
+ FAIL(HAL_EINVAL);
+ break;
+ }
+ HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
+
+ /* Blank the channel survey statistics */
+ ath_hal_survey_clear(ah);
+
+ /* XXX Turn on fast channel change for 5416 */
+
+ /*
+ * Preserve the bmiss rssi threshold and count threshold
+ * across resets
+ */
+ rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR);
+ /* If reg is zero, first time thru set to default val */
+ if (rssiThrReg == 0)
+ rssiThrReg = INIT_RSSI_THR;
+
+ /*
+ * Preserve the antenna on a channel change
+ */
+ saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
+
+ /*
+ * Don't do this for the AR9285 - it breaks RX for single
+ * antenna designs when diversity is disabled.
+ *
+ * I'm not sure what this was working around; it may be
+ * something to do with the AR5416. Certainly this register
+ * isn't supposed to be used by the MIMO chips for anything
+ * except for defining the default antenna when an external
+ * phase array / smart antenna is connected.
+ *
+ * See PR: kern/179269 .
+ */
+ if ((! AR_SREV_KITE(ah)) && saveDefAntenna == 0) /* XXX magic constants */
+ saveDefAntenna = 1;
+
+ /* Save hardware flag before chip reset clears the register */
+ macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
+ (AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
+
+ /* Save led state from pci config register */
+ saveLedState = OS_REG_READ(ah, AR_MAC_LED) &
+ (AR_MAC_LED_ASSOC | AR_MAC_LED_MODE |
+ AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW);
+
+ /* For chips on which the RTC reset is done, save TSF before it gets cleared */
+ if (AR_SREV_HOWL(ah) ||
+ (AR_SREV_MERLIN(ah) &&
+ ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) ||
+ (resetType == HAL_RESET_FORCE_COLD) ||
+ (resetType == HAL_RESET_BBPANIC) ||
+ (ah->ah_config.ah_force_full_reset))
+ tsf = ar5416GetTsf64(ah);
+
+ /* Mark PHY as inactive; marked active in ar5416InitBB() */
+ ar5416MarkPhyInactive(ah);
+
+ if (!ar5416ChipReset(ah, chan, resetType)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
+ FAIL(HAL_EIO);
+ }
+
+ /* Restore TSF */
+ if (tsf)
+ ar5416SetTsf64(ah, tsf);
+
+ OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
+ if (AR_SREV_MERLIN_10_OR_LATER(ah))
+ OS_REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
+
+ AH5416(ah)->ah_writeIni(ah, chan);
+
+ if(AR_SREV_KIWI_13_OR_LATER(ah) ) {
+ /* Enable ASYNC FIFO */
+ OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
+ AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
+ OS_REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
+ OS_REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
+ AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
+ OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
+ AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
+ }
+
+ /* Override ini values (that can be overridden in this fashion) */
+ ar5416OverrideIni(ah, chan);
+
+ /* Setup 11n MAC/Phy mode registers */
+ ar5416Set11nRegs(ah, chan);
+
+ OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
+
+ /*
+ * Some AR91xx SoC devices frequently fail to accept TSF writes
+ * right after the chip reset. When that happens, write a new
+ * value after the initvals have been applied, with an offset
+ * based on measured time difference
+ */
+ if (AR_SREV_HOWL(ah) && (ar5416GetTsf64(ah) < tsf)) {
+ tsf += 1500;
+ ar5416SetTsf64(ah, tsf);
+ }
+
+ HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n",
+ __func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK));
+ HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n",
+ __func__, OS_REG_READ(ah,AR_PHY_ADC_CTL));
+
+ /*
+ * This routine swaps the analog chains - it should be done
+ * before any radio register twiddling is done.
+ */
+ ar5416InitChainMasks(ah);
+
+ /* Setup the open-loop power calibration if required */
+ if (ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
+ AH5416(ah)->ah_olcInit(ah);
+ AH5416(ah)->ah_olcTempCompensation(ah);
+ }
+
+ /* Setup the transmit power values. */
+ if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: error init'ing transmit power\n", __func__);
+ FAIL(HAL_EIO);
+ }
+
+ /* Write the analog registers */
+ if (!ahp->ah_rfHal->setRfRegs(ah, chan,
+ IEEE80211_IS_CHAN_2GHZ(chan) ? 2: 1, rfXpdGain)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: ar5212SetRfRegs failed\n", __func__);
+ FAIL(HAL_EIO);
+ }
+
+ /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
+ if (IEEE80211_IS_CHAN_OFDM(chan)|| IEEE80211_IS_CHAN_HT(chan))
+ ar5416SetDeltaSlope(ah, chan);
+
+ AH5416(ah)->ah_spurMitigate(ah, chan);
+
+ /* Setup board specific options for EEPROM version 3 */
+ if (!ah->ah_setBoardValues(ah, chan)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: error setting board options\n", __func__);
+ FAIL(HAL_EIO);
+ }
+
+ OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
+
+ OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
+ OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
+ | macStaId1
+ | AR_STA_ID1_RTS_USE_DEF
+ | ahp->ah_staId1Defaults
+ );
+ ar5212SetOperatingMode(ah, opmode);
+
+ /* Set Venice BSSID mask according to current state */
+ OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
+ OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
+
+ /* Restore previous led state */
+ if (AR_SREV_HOWL(ah))
+ OS_REG_WRITE(ah, AR_MAC_LED,
+ AR_MAC_LED_ASSOC_ACTIVE | AR_CFG_SCLK_32KHZ);
+ else
+ OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) |
+ saveLedState);
+
+ /* Start TSF2 for generic timer 8-15 */
+#ifdef NOTYET
+ if (AR_SREV_KIWI(ah))
+ ar5416StartTsf2(ah);
+#endif
+
+ /*
+ * Enable Bluetooth Coexistence if it's enabled.
+ */
+ if (AH5416(ah)->ah_btCoexConfigType != HAL_BT_COEX_CFG_NONE)
+ ar5416InitBTCoex(ah);
+
+ /* Restore previous antenna */
+ OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
+
+ /* then our BSSID and associate id */
+ OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
+ OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
+ (ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S);
+
+ /* Restore bmiss rssi & count thresholds */
+ OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
+
+ OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
+
+ /* Restore bmiss rssi & count thresholds */
+ OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg);
+
+ if (!ar5212SetChannel(ah, chan))
+ FAIL(HAL_EIO);
+
+ OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
+
+ /* Set 1:1 QCU to DCU mapping for all queues */
+ for (i = 0; i < AR_NUM_DCU; i++)
+ OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
+
+ ahp->ah_intrTxqs = 0;
+ for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
+ ah->ah_resetTxQueue(ah, i);
+
+ ar5416InitIMR(ah, opmode);
+ ar5416SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
+ ar5416InitQoS(ah);
+ /* This may override the AR_DIAG_SW register */
+ ar5416InitUserSettings(ah);
+
+ /* XXX this won't work for AR9287! */
+ if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
+ ar5416SetIFSTiming(ah, chan);
+#if 0
+ /*
+ * AR5413?
+ * Force window_length for 1/2 and 1/4 rate channels,
+ * the ini file sets this to zero otherwise.
+ */
+ OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
+ AR_PHY_FRAME_CTL_WINLEN, 3);
+ }
+#endif
+ }
+
+ if (AR_SREV_KIWI_13_OR_LATER(ah)) {
+ /*
+ * Enable ASYNC FIFO
+ *
+ * If Async FIFO is enabled, the following counters change
+ * as MAC now runs at 117 Mhz instead of 88/44MHz when
+ * async FIFO is disabled.
+ *
+ * Overwrite the delay/timeouts initialized in ProcessIni()
+ * above.
+ */
+ OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
+ AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
+ OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
+ AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
+ OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
+ AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
+
+ OS_REG_WRITE(ah, AR_TIME_OUT,
+ AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
+ OS_REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
+
+ OS_REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
+ AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
+ OS_REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
+ AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
+ }
+
+ if (AR_SREV_KIWI_13_OR_LATER(ah)) {
+ /* Enable AGGWEP to accelerate encryption engine */
+ OS_REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
+ AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
+ }
+
+ /*
+ * disable seq number generation in hw
+ */
+ OS_REG_WRITE(ah, AR_STA_ID1,
+ OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
+
+ ar5416InitDMA(ah);
+
+ /*
+ * program OBS bus to see MAC interrupts
+ */
+ OS_REG_WRITE(ah, AR_OBS, 8);
+
+ /*
+ * Disable the "general" TX/RX mitigation timers.
+ */
+ OS_REG_WRITE(ah, AR_MIRT, 0);
+
+#ifdef AH_AR5416_INTERRUPT_MITIGATION
+ /*
+ * This initialises the RX interrupt mitigation timers.
+ *
+ * The mitigation timers begin at idle and are triggered
+ * upon the RXOK of a single frame (or sub-frame, for A-MPDU.)
+ * Then, the RX mitigation interrupt will fire:
+ *
+ * + 250uS after the last RX'ed frame, or
+ * + 700uS after the first RX'ed frame
+ *
+ * Thus, the LAST field dictates the extra latency
+ * induced by the RX mitigation method and the FIRST
+ * field dictates how long to delay before firing an
+ * RX mitigation interrupt.
+ *
+ * Please note this only seems to be for RXOK frames;
+ * not CRC or PHY error frames.
+ *
+ */
+ OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 250);
+ OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 700);
+#endif
+ ar5416InitBB(ah, chan);
+
+ /* Setup compression registers */
+ ar5212SetCompRegs(ah); /* XXX not needed? */
+
+ /*
+ * 5416 baseband will check the per rate power table
+ * and select the lower of the two
+ */
+ ackTpcPow = 63;
+ ctsTpcPow = 63;
+ chirpTpcPow = 63;
+ powerVal = SM(ackTpcPow, AR_TPC_ACK) |
+ SM(ctsTpcPow, AR_TPC_CTS) |
+ SM(chirpTpcPow, AR_TPC_CHIRP);
+ OS_REG_WRITE(ah, AR_TPC, powerVal);
+
+ if (!ar5416InitCal(ah, chan))
+ FAIL(HAL_ESELFTEST);
+
+ ar5416RestoreChainMask(ah);
+
+ AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
+
+ if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
+ chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
+
+ if (AR_SREV_HOWL(ah)) {
+ /*
+ * Enable the MBSSID block-ack fix for HOWL.
+ * This feature is only supported on Howl 1.4, but it is safe to
+ * set bit 22 of STA_ID1 on other Howl revisions (1.1, 1.2, 1.3),
+ * since bit 22 is unused in those Howl revisions.
+ */
+ unsigned int reg;
+ reg = (OS_REG_READ(ah, AR_STA_ID1) | (1<<22));
+ OS_REG_WRITE(ah,AR_STA_ID1, reg);
+ ath_hal_printf(ah, "MBSSID Set bit 22 of AR_STA_ID 0x%x\n", reg);
+ }
+
+ HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
+
+ OS_MARK(ah, AH_MARK_RESET_DONE, 0);
+
+ return AH_TRUE;
+bad:
+ OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
+ if (status != AH_NULL)
+ *status = ecode;
+ return AH_FALSE;
+#undef FAIL
+#undef N
+}
+
+#if 0
+/*
+ * This channel change evaluates whether the selected hardware can
+ * perform a synthesizer-only channel change (no reset). If the
+ * TX is not stopped, or the RFBus cannot be granted in the given
+ * time, the function returns false as a reset is necessary
+ */
+HAL_BOOL
+ar5416ChannelChange(struct ath_hal *ah, const structu ieee80211_channel *chan)
+{
+ uint32_t ulCount;
+ uint32_t data, synthDelay, qnum;
+ uint16_t rfXpdGain[4];
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ HAL_CHANNEL_INTERNAL *ichan;
+
+ /*
+ * Map public channel to private.
+ */
+ ichan = ath_hal_checkchannel(ah, chan);
+
+ /* TX must be stopped or RF Bus grant will not work */
+ for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
+ if (ar5212NumTxPending(ah, qnum)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: frames pending on queue %d\n", __func__, qnum);
+ return AH_FALSE;
+ }
+ }
+
+ /*
+ * Kill last Baseband Rx Frame - Request analog bus grant
+ */
+ OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST);
+ if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n",
+ __func__);
+ return AH_FALSE;
+ }
+
+ ar5416Set11nRegs(ah, chan); /* NB: setup 5416-specific regs */
+
+ /* Change the synth */
+ if (!ar5212SetChannel(ah, chan))
+ return AH_FALSE;
+
+ /* Setup the transmit power values. */
+ if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: error init'ing transmit power\n", __func__);
+ return AH_FALSE;
+ }
+
+ /*
+ * Wait for the frequency synth to settle (synth goes on
+ * via PHY_ACTIVE_EN). Read the phy active delay register.
+ * Value is in 100ns increments.
+ */
+ data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
+ if (IS_CHAN_CCK(ichan)) {
+ synthDelay = (4 * data) / 22;
+ } else {
+ synthDelay = data / 10;
+ }
+
+ OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
+
+ /* Release the RFBus Grant */
+ OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
+
+ /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
+ if (IEEE80211_IS_CHAN_OFDM(ichan)|| IEEE80211_IS_CHAN_HT(chan)) {
+ HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3);
+ ar5212SetSpurMitigation(ah, chan);
+ ar5416SetDeltaSlope(ah, chan);
+ }
+
+ /* XXX spur mitigation for Melin */
+
+ if (!IEEE80211_IS_CHAN_DFS(chan))
+ chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
+
+ ichan->channel_time = 0;
+ ichan->tsf_last = ar5416GetTsf64(ah);
+ ar5212TxEnable(ah, AH_TRUE);
+ return AH_TRUE;
+}
+#endif
+
+static void
+ar5416InitDMA(struct ath_hal *ah)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+
+ /*
+ * set AHB_MODE not to do cacheline prefetches
+ */
+ OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
+
+ /*
+ * let mac dma reads be in 128 byte chunks
+ */
+ OS_REG_WRITE(ah, AR_TXCFG,
+ (OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B);
+
+ /*
+ * let mac dma writes be in 128 byte chunks
+ */
+ /*
+ * XXX If you change this, you must change the headroom
+ * assigned in ah_maxTxTrigLev - see ar5416InitState().
+ */
+ OS_REG_WRITE(ah, AR_RXCFG,
+ (OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B);
+
+ /* restore TX trigger level */
+ OS_REG_WRITE(ah, AR_TXCFG,
+ (OS_REG_READ(ah, AR_TXCFG) &~ AR_FTRIG) |
+ SM(ahp->ah_txTrigLev, AR_FTRIG));
+
+ /*
+ * Setup receive FIFO threshold to hold off TX activities
+ */
+ OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
+
+ /*
+ * reduce the number of usable entries in PCU TXBUF to avoid
+ * wrap around.
+ */
+ if (AR_SREV_KITE(ah))
+ /*
+ * For AR9285 the number of Fifos are reduced to half.
+ * So set the usable tx buf size also to half to
+ * avoid data/delimiter underruns
+ */
+ OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
+ else
+ OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
+}
+
+static void
+ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *chan)
+{
+ uint32_t synthDelay;
+
+ /*
+ * Wait for the frequency synth to settle (synth goes on
+ * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
+ * Value is in 100ns increments.
+ */
+ synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
+ if (IEEE80211_IS_CHAN_CCK(chan)) {
+ synthDelay = (4 * synthDelay) / 22;
+ } else {
+ synthDelay /= 10;
+ }
+
+ /* Turn on PLL on 5416 */
+ HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n",
+ __func__, IEEE80211_IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz");
+
+ /* Activate the PHY (includes baseband activate and synthesizer on) */
+ OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
+
+ /*
+ * If the AP starts the calibration before the base band timeout
+ * completes we could get rx_clear false triggering. Add an
+ * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
+ * does not happen.
+ */
+ if (IEEE80211_IS_CHAN_HALF(chan)) {
+ OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
+ } else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
+ OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
+ } else {
+ OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
+ }
+}
+
+static void
+ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+
+ /*
+ * Setup interrupt handling. Note that ar5212ResetTxQueue
+ * manipulates the secondary IMR's as queues are enabled
+ * and disabled. This is done with RMW ops to insure the
+ * settings we make here are preserved.
+ */
+ ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN
+ | AR_IMR_RXERR | AR_IMR_RXORN
+ | AR_IMR_BCNMISC;
+
+#ifdef AH_AR5416_INTERRUPT_MITIGATION
+ ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
+#else
+ ahp->ah_maskReg |= AR_IMR_RXOK;
+#endif
+ ahp->ah_maskReg |= AR_IMR_TXOK;
+
+ if (opmode == HAL_M_HOSTAP)
+ ahp->ah_maskReg |= AR_IMR_MIB;
+ OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
+
+#ifdef ADRIAN_NOTYET
+ /* This is straight from ath9k */
+ if (! AR_SREV_HOWL(ah)) {
+ OS_REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
+ OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
+ OS_REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
+ }
+#endif
+
+ /* Enable bus errors that are OR'd to set the HIUERR bit */
+#if 0
+ OS_REG_WRITE(ah, AR_IMR_S2,
+ OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST);
+#endif
+}
+
+static void
+ar5416InitQoS(struct ath_hal *ah)
+{
+ /* QoS support */
+ OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */
+ OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */
+
+ /* Turn on NOACK Support for QoS packets */
+ OS_REG_WRITE(ah, AR_NOACK,
+ SM(2, AR_NOACK_2BIT_VALUE) |
+ SM(5, AR_NOACK_BIT_OFFSET) |
+ SM(0, AR_NOACK_BYTE_OFFSET));
+
+ /*
+ * initialize TXOP for all TIDs
+ */
+ OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
+ OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
+ OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
+ OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
+ OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
+}
+
+static void
+ar5416InitUserSettings(struct ath_hal *ah)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+
+ /* Restore user-specified settings */
+ if (ahp->ah_miscMode != 0)
+ OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE)
+ | ahp->ah_miscMode);
+ if (ahp->ah_sifstime != (u_int) -1)
+ ar5212SetSifsTime(ah, ahp->ah_sifstime);
+ if (ahp->ah_slottime != (u_int) -1)
+ ar5212SetSlotTime(ah, ahp->ah_slottime);
+ if (ahp->ah_acktimeout != (u_int) -1)
+ ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
+ if (ahp->ah_ctstimeout != (u_int) -1)
+ ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
+ if (AH_PRIVATE(ah)->ah_diagreg != 0)
+ OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
+ if (AH5416(ah)->ah_globaltxtimeout != (u_int) -1)
+ ar5416SetGlobalTxTimeout(ah, AH5416(ah)->ah_globaltxtimeout);
+}
+
+static void
+ar5416SetRfMode(struct ath_hal *ah, const struct ieee80211_channel *chan)
+{
+ uint32_t rfMode;
+
+ if (chan == AH_NULL)
+ return;
+
+ /* treat channel B as channel G , no B mode suport in owl */
+ rfMode = IEEE80211_IS_CHAN_CCK(chan) ?
+ AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
+
+ if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
+ /* phy mode bits for 5GHz channels require Fast Clock */
+ rfMode |= AR_PHY_MODE_DYNAMIC
+ | AR_PHY_MODE_DYN_CCK_DISABLE;
+ } else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) {
+ rfMode |= IEEE80211_IS_CHAN_5GHZ(chan) ?
+ AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
+ }
+
+ OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
+}
+
+/*
+ * Places the hardware into reset and then pulls it out of reset
+ */
+HAL_BOOL
+ar5416ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan,
+ HAL_RESET_TYPE resetType)
+{
+ OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
+ /*
+ * Warm reset is optimistic for open-loop TX power control.
+ */
+ if (AR_SREV_MERLIN(ah) &&
+ ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
+ if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
+ return AH_FALSE;
+ } else if (ah->ah_config.ah_force_full_reset) {
+ if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
+ return AH_FALSE;
+ } else if ((resetType == HAL_RESET_FORCE_COLD) ||
+ (resetType == HAL_RESET_BBPANIC)) {
+ HALDEBUG(ah, HAL_DEBUG_RESET,
+ "%s: full reset; resetType=%d\n",
+ __func__, resetType);
+ if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
+ return AH_FALSE;
+ } else {
+ if (!ar5416SetResetReg(ah, HAL_RESET_WARM))
+ return AH_FALSE;
+ }
+
+ /* Bring out of sleep mode (AGAIN) */
+ if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
+ return AH_FALSE;
+
+#ifdef notyet
+ ahp->ah_chipFullSleep = AH_FALSE;
+#endif
+
+ AH5416(ah)->ah_initPLL(ah, chan);
+
+ /*
+ * Perform warm reset before the mode/PLL/turbo registers
+ * are changed in order to deactivate the radio. Mode changes
+ * with an active radio can result in corrupted shifts to the
+ * radio device.
+ */
+ ar5416SetRfMode(ah, chan);
+
+ return AH_TRUE;
+}
+
+/*
+ * Delta slope coefficient computation.
+ * Required for OFDM operation.
+ */
+static void
+ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled,
+ uint32_t *coef_mantissa, uint32_t *coef_exponent)
+{
+#define COEF_SCALE_S 24
+ uint32_t coef_exp, coef_man;
+ /*
+ * ALGO -> coef_exp = 14-floor(log2(coef));
+ * floor(log2(x)) is the highest set bit position
+ */
+ for (coef_exp = 31; coef_exp > 0; coef_exp--)
+ if ((coef_scaled >> coef_exp) & 0x1)
+ break;
+ /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
+ HALASSERT(coef_exp);
+ coef_exp = 14 - (coef_exp - COEF_SCALE_S);
+
+ /*
+ * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
+ * The coefficient is already shifted up for scaling
+ */
+ coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
+
+ *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
+ *coef_exponent = coef_exp - 16;
+
+#undef COEF_SCALE_S
+}
+
+void
+ar5416SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan)
+{
+#define INIT_CLOCKMHZSCALED 0x64000000
+ uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
+ uint32_t clockMhzScaled;
+
+ CHAN_CENTERS centers;
+
+ /* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
+ /* scale for selected channel bandwidth */
+ clockMhzScaled = INIT_CLOCKMHZSCALED;
+ if (IEEE80211_IS_CHAN_TURBO(chan))
+ clockMhzScaled <<= 1;
+ else if (IEEE80211_IS_CHAN_HALF(chan))
+ clockMhzScaled >>= 1;
+ else if (IEEE80211_IS_CHAN_QUARTER(chan))
+ clockMhzScaled >>= 2;
+
+ /*
+ * ALGO -> coef = 1e8/fcarrier*fclock/40;
+ * scaled coef to provide precision for this floating calculation
+ */
+ ar5416GetChannelCenters(ah, chan, &centers);
+ coef_scaled = clockMhzScaled / centers.synth_center;
+
+ ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
+
+ OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
+ AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
+ OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
+ AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
+
+ /*
+ * For Short GI,
+ * scaled coeff is 9/10 that of normal coeff
+ */
+ coef_scaled = (9 * coef_scaled)/10;
+
+ ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
+
+ /* for short gi */
+ OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
+ AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
+ OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
+ AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
+#undef INIT_CLOCKMHZSCALED
+}
+
+/*
+ * Set a limit on the overall output power. Used for dynamic
+ * transmit power control and the like.
+ *
+ * NB: limit is in units of 0.5 dbM.
+ */
+HAL_BOOL
+ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
+{
+ uint16_t dummyXpdGains[2];
+
+ AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
+ return ah->ah_setTxPower(ah, AH_PRIVATE(ah)->ah_curchan,
+ dummyXpdGains);
+}
+
+HAL_BOOL
+ar5416GetChipPowerLimits(struct ath_hal *ah,
+ struct ieee80211_channel *chan)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ int16_t minPower, maxPower;
+
+ /*
+ * Get Pier table max and min powers.
+ */
+ if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
+ /* NB: rf code returns 1/4 dBm units, convert */
+ chan->ic_maxpower = maxPower / 2;
+ chan->ic_minpower = minPower / 2;
+ } else {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: no min/max power for %u/0x%x\n",
+ __func__, chan->ic_freq, chan->ic_flags);
+ chan->ic_maxpower = AR5416_MAX_RATE_POWER;
+ chan->ic_minpower = 0;
+ }
+ HALDEBUG(ah, HAL_DEBUG_RESET,
+ "Chan %d: MaxPow = %d MinPow = %d\n",
+ chan->ic_freq, chan->ic_maxpower, chan->ic_minpower);
+ return AH_TRUE;
+}
+
+/**************************************************************
+ * ar5416WriteTxPowerRateRegisters
+ *
+ * Write the TX power rate registers from the raw values given
+ * in ratesArray[].
+ *
+ * The CCK and HT40 rate registers are only written if needed.
+ * HT20 and 11g/11a OFDM rate registers are always written.
+ *
+ * The values written are raw values which should be written
+ * to the registers - so it's up to the caller to pre-adjust
+ * them (eg CCK power offset value, or Merlin TX power offset,
+ * etc.)
+ */
+void
+ar5416WriteTxPowerRateRegisters(struct ath_hal *ah,
+ const struct ieee80211_channel *chan, const int16_t ratesArray[])
+{
+#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
+
+ /* Write the OFDM power per rate set */
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
+ POW_SM(ratesArray[rate18mb], 24)
+ | POW_SM(ratesArray[rate12mb], 16)
+ | POW_SM(ratesArray[rate9mb], 8)
+ | POW_SM(ratesArray[rate6mb], 0)
+ );
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
+ POW_SM(ratesArray[rate54mb], 24)
+ | POW_SM(ratesArray[rate48mb], 16)
+ | POW_SM(ratesArray[rate36mb], 8)
+ | POW_SM(ratesArray[rate24mb], 0)
+ );
+
+ if (IEEE80211_IS_CHAN_2GHZ(chan)) {
+ /* Write the CCK power per rate set */
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
+ POW_SM(ratesArray[rate2s], 24)
+ | POW_SM(ratesArray[rate2l], 16)
+ | POW_SM(ratesArray[rateXr], 8) /* XR target power */
+ | POW_SM(ratesArray[rate1l], 0)
+ );
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
+ POW_SM(ratesArray[rate11s], 24)
+ | POW_SM(ratesArray[rate11l], 16)
+ | POW_SM(ratesArray[rate5_5s], 8)
+ | POW_SM(ratesArray[rate5_5l], 0)
+ );
+ HALDEBUG(ah, HAL_DEBUG_RESET,
+ "%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
+ __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
+ OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
+ }
+
+ /* Write the HT20 power per rate set */
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
+ POW_SM(ratesArray[rateHt20_3], 24)
+ | POW_SM(ratesArray[rateHt20_2], 16)
+ | POW_SM(ratesArray[rateHt20_1], 8)
+ | POW_SM(ratesArray[rateHt20_0], 0)
+ );
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
+ POW_SM(ratesArray[rateHt20_7], 24)
+ | POW_SM(ratesArray[rateHt20_6], 16)
+ | POW_SM(ratesArray[rateHt20_5], 8)
+ | POW_SM(ratesArray[rateHt20_4], 0)
+ );
+
+ if (IEEE80211_IS_CHAN_HT40(chan)) {
+ /* Write the HT40 power per rate set */
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
+ POW_SM(ratesArray[rateHt40_3], 24)
+ | POW_SM(ratesArray[rateHt40_2], 16)
+ | POW_SM(ratesArray[rateHt40_1], 8)
+ | POW_SM(ratesArray[rateHt40_0], 0)
+ );
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
+ POW_SM(ratesArray[rateHt40_7], 24)
+ | POW_SM(ratesArray[rateHt40_6], 16)
+ | POW_SM(ratesArray[rateHt40_5], 8)
+ | POW_SM(ratesArray[rateHt40_4], 0)
+ );
+ /* Write the Dup/Ext 40 power per rate set */
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
+ POW_SM(ratesArray[rateExtOfdm], 24)
+ | POW_SM(ratesArray[rateExtCck], 16)
+ | POW_SM(ratesArray[rateDupOfdm], 8)
+ | POW_SM(ratesArray[rateDupCck], 0)
+ );
+ }
+
+ /*
+ * Set max power to 30 dBm and, optionally,
+ * enable TPC in tx descriptors.
+ */
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER |
+ (AH5212(ah)->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0));
+#undef POW_SM
+}
+
+/**************************************************************
+ * ar5416SetTransmitPower
+ *
+ * Set the transmit power in the baseband for the given
+ * operating channel and mode.
+ */
+HAL_BOOL
+ar5416SetTransmitPower(struct ath_hal *ah,
+ const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
+{
+#define N(a) (sizeof (a) / sizeof (a[0]))
+#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
+
+ MODAL_EEP_HEADER *pModal;
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ int16_t txPowerIndexOffset = 0;
+ int i;
+
+ uint16_t cfgCtl;
+ uint16_t powerLimit;
+ uint16_t twiceAntennaReduction;
+ uint16_t twiceMaxRegulatoryPower;
+ int16_t maxPower;
+ HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
+ struct ar5416eeprom *pEepData = &ee->ee_base;
+
+ HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
+
+ /*
+ * Default to 2, is overridden based on the EEPROM version / value.
+ */
+ AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
+
+ /* Setup info for the actual eeprom */
+ OS_MEMZERO(AH5416(ah)->ah_ratesArray, sizeof(AH5416(ah)->ah_ratesArray));
+ cfgCtl = ath_hal_getctl(ah, chan);
+ powerLimit = chan->ic_maxregpower * 2;
+ twiceAntennaReduction = chan->ic_maxantgain;
+ twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
+ pModal = &pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
+ HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
+ __func__,chan->ic_freq, cfgCtl );
+
+ if (IS_EEP_MINOR_V2(ah)) {
+ AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
+ }
+
+ if (!ar5416SetPowerPerRateTable(ah, pEepData, chan,
+ &AH5416(ah)->ah_ratesArray[0],
+ cfgCtl,
+ twiceAntennaReduction,
+ twiceMaxRegulatoryPower, powerLimit)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: unable to set tx power per rate table\n", __func__);
+ return AH_FALSE;
+ }
+
+ if (!AH5416(ah)->ah_setPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
+ __func__);
+ return AH_FALSE;
+ }
+
+ maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
+ AH5416(ah)->ah_ratesArray[rateHt20_0]);
+
+ if (IEEE80211_IS_CHAN_2GHZ(chan)) {
+ maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rate1l]);
+ }
+
+ if (IEEE80211_IS_CHAN_HT40(chan)) {
+ maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rateHt40_0]);
+ }
+
+ ahp->ah_tx6PowerInHalfDbm = maxPower;
+ AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
+ ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
+
+ /*
+ * txPowerIndexOffset is set by the SetPowerTable() call -
+ * adjust the rate table (0 offset if rates EEPROM not loaded)
+ */
+ for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
+ AH5416(ah)->ah_ratesArray[i] =
+ (int16_t)(txPowerIndexOffset + AH5416(ah)->ah_ratesArray[i]);
+ if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
+ AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
+ }
+
+#ifdef AH_EEPROM_DUMP
+ /*
+ * Dump the rate array whilst it represents the intended dBm*2
+ * values versus what's being adjusted before being programmed
+ * in. Keep this in mind if you code up this function and enable
+ * this debugging; the values won't necessarily be what's being
+ * programmed into the hardware.
+ */
+ ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
+#endif
+
+ /*
+ * Merlin and later have a power offset, so subtract
+ * pwr_table_offset * 2 from each value. The default
+ * power offset is -5 dBm - ie, a register value of 0
+ * equates to a TX power of -5 dBm.
+ */
+ if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
+ int8_t pwr_table_offset;
+
+ (void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET,
+ &pwr_table_offset);
+ /* Underflow power gets clamped at raw value 0 */
+ /* Overflow power gets camped at AR5416_MAX_RATE_POWER */
+ for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
+ /*
+ * + pwr_table_offset is in dBm
+ * + ratesArray is in 1/2 dBm
+ */
+ AH5416(ah)->ah_ratesArray[i] -= (pwr_table_offset * 2);
+ if (AH5416(ah)->ah_ratesArray[i] < 0)
+ AH5416(ah)->ah_ratesArray[i] = 0;
+ else if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
+ AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
+ }
+ }
+
+ /*
+ * Adjust rates for OLC where needed
+ *
+ * The following CCK rates need adjusting when doing 2.4ghz
+ * CCK transmission.
+ *
+ * + rate2s, rate2l, rate1l, rate11s, rate11l, rate5_5s, rate5_5l
+ * + rateExtCck, rateDupCck
+ *
+ * They're adjusted here regardless. The hardware then gets
+ * programmed as needed. 5GHz operation doesn't program in CCK
+ * rates for legacy mode but they seem to be initialised for
+ * HT40 regardless of channel type.
+ */
+ if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
+ ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
+ int adj[] = {
+ rate2s, rate2l, rate1l, rate11s, rate11l,
+ rate5_5s, rate5_5l, rateExtCck, rateDupCck
+ };
+ int cck_ofdm_delta = 2;
+ int i;
+ for (i = 0; i < N(adj); i++) {
+ AH5416(ah)->ah_ratesArray[adj[i]] -= cck_ofdm_delta;
+ if (AH5416(ah)->ah_ratesArray[adj[i]] < 0)
+ AH5416(ah)->ah_ratesArray[adj[i]] = 0;
+ }
+ }
+
+ /*
+ * Adjust the HT40 power to meet the correct target TX power
+ * for 40MHz mode, based on TX power curves that are established
+ * for 20MHz mode.
+ *
+ * XXX handle overflow/too high power level?
+ */
+ if (IEEE80211_IS_CHAN_HT40(chan)) {
+ AH5416(ah)->ah_ratesArray[rateHt40_0] +=
+ AH5416(ah)->ah_ht40PowerIncForPdadc;
+ AH5416(ah)->ah_ratesArray[rateHt40_1] +=
+ AH5416(ah)->ah_ht40PowerIncForPdadc;
+ AH5416(ah)->ah_ratesArray[rateHt40_2] += AH5416(ah)->ah_ht40PowerIncForPdadc;
+ AH5416(ah)->ah_ratesArray[rateHt40_3] += AH5416(ah)->ah_ht40PowerIncForPdadc;
+ AH5416(ah)->ah_ratesArray[rateHt40_4] += AH5416(ah)->ah_ht40PowerIncForPdadc;
+ AH5416(ah)->ah_ratesArray[rateHt40_5] += AH5416(ah)->ah_ht40PowerIncForPdadc;
+ AH5416(ah)->ah_ratesArray[rateHt40_6] += AH5416(ah)->ah_ht40PowerIncForPdadc;
+ AH5416(ah)->ah_ratesArray[rateHt40_7] += AH5416(ah)->ah_ht40PowerIncForPdadc;
+ }
+
+ /* Write the TX power rate registers */
+ ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
+
+ /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
+ POW_SM(pModal->pwrDecreaseFor3Chain, 6)
+ | POW_SM(pModal->pwrDecreaseFor2Chain, 0)
+ );
+ return AH_TRUE;
+#undef POW_SM
+#undef N
+}
+
+/*
+ * Exported call to check for a recent gain reading and return
+ * the current state of the thermal calibration gain engine.
+ */
+HAL_RFGAIN
+ar5416GetRfgain(struct ath_hal *ah)
+{
+
+ return (HAL_RFGAIN_INACTIVE);
+}
+
+/*
+ * Places all of hardware into reset
+ */
+HAL_BOOL
+ar5416Disable(struct ath_hal *ah)
+{
+
+ if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
+ return AH_FALSE;
+ if (! ar5416SetResetReg(ah, HAL_RESET_COLD))
+ return AH_FALSE;
+
+ AH5416(ah)->ah_initPLL(ah, AH_NULL);
+ return (AH_TRUE);
+}
+
+/*
+ * Places the PHY and Radio chips into reset. A full reset
+ * must be called to leave this state. The PCI/MAC/PCU are
+ * not placed into reset as we must receive interrupt to
+ * re-enable the hardware.
+ */
+HAL_BOOL
+ar5416PhyDisable(struct ath_hal *ah)
+{
+
+ if (! ar5416SetResetReg(ah, HAL_RESET_WARM))
+ return AH_FALSE;
+
+ AH5416(ah)->ah_initPLL(ah, AH_NULL);
+ return (AH_TRUE);
+}
+
+/*
+ * Write the given reset bit mask into the reset register
+ */
+HAL_BOOL
+ar5416SetResetReg(struct ath_hal *ah, uint32_t type)
+{
+ /*
+ * Set force wake
+ */
+ OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
+ AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
+
+ switch (type) {
+ case HAL_RESET_POWER_ON:
+ return ar5416SetResetPowerOn(ah);
+ case HAL_RESET_WARM:
+ case HAL_RESET_COLD:
+ return ar5416SetReset(ah, type);
+ default:
+ HALASSERT(AH_FALSE);
+ return AH_FALSE;
+ }
+}
+
+static HAL_BOOL
+ar5416SetResetPowerOn(struct ath_hal *ah)
+{
+ /* Power On Reset (Hard Reset) */
+
+ /*
+ * Set force wake
+ *
+ * If the MAC was running, previously calling
+ * reset will wake up the MAC but it may go back to sleep
+ * before we can start polling.
+ * Set force wake stops that
+ * This must be called before initiating a hard reset.
+ */
+ OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
+ AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
+
+ /*
+ * PowerOn reset can be used in open loop power control or failure recovery.
+ * If we do RTC reset while DMA is still running, hardware may corrupt memory.
+ * Therefore, we need to reset AHB first to stop DMA.
+ */
+ if (! AR_SREV_HOWL(ah))
+ OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
+ /*
+ * RTC reset and clear
+ */
+ OS_REG_WRITE(ah, AR_RTC_RESET, 0);
+ OS_DELAY(20);
+
+ if (! AR_SREV_HOWL(ah))
+ OS_REG_WRITE(ah, AR_RC, 0);
+
+ OS_REG_WRITE(ah, AR_RTC_RESET, 1);
+
+ /*
+ * Poll till RTC is ON
+ */
+ if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__);
+ return AH_FALSE;
+ }
+
+ return ar5416SetReset(ah, HAL_RESET_COLD);
+}
+
+static HAL_BOOL
+ar5416SetReset(struct ath_hal *ah, int type)
+{
+ uint32_t tmpReg, mask;
+ uint32_t rst_flags;
+
+#ifdef AH_SUPPORT_AR9130 /* Because of the AR9130 specific registers */
+ if (AR_SREV_HOWL(ah)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "[ath] HOWL: Fiddling with derived clk!\n");
+ uint32_t val = OS_REG_READ(ah, AR_RTC_DERIVED_CLK);
+ val &= ~AR_RTC_DERIVED_CLK_PERIOD;
+ val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
+ OS_REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
+ (void) OS_REG_READ(ah, AR_RTC_DERIVED_CLK);
+ }
+#endif /* AH_SUPPORT_AR9130 */
+
+ /*
+ * Force wake
+ */
+ OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
+ AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
+
+#ifdef AH_SUPPORT_AR9130
+ if (AR_SREV_HOWL(ah)) {
+ rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
+ AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
+ } else {
+#endif /* AH_SUPPORT_AR9130 */
+ /*
+ * Reset AHB
+ *
+ * (In case the last interrupt source was a bus timeout.)
+ * XXX TODO: this is not the way to do it! It should be recorded
+ * XXX by the interrupt handler and passed _into_ the
+ * XXX reset path routine so this occurs.
+ */
+ tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
+ if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
+ OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
+ OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
+ } else {
+ OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
+ }
+ rst_flags = AR_RTC_RC_MAC_WARM;
+ if (type == HAL_RESET_COLD)
+ rst_flags |= AR_RTC_RC_MAC_COLD;
+#ifdef AH_SUPPORT_AR9130
+ }
+#endif /* AH_SUPPORT_AR9130 */
+
+ OS_REG_WRITE(ah, AR_RTC_RC, rst_flags);
+
+ if (AR_SREV_HOWL(ah))
+ OS_DELAY(10000);
+ else
+ OS_DELAY(100);
+
+ /*
+ * Clear resets and force wakeup
+ */
+ OS_REG_WRITE(ah, AR_RTC_RC, 0);
+ if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__);
+ return AH_FALSE;
+ }
+
+ /* Clear AHB reset */
+ if (! AR_SREV_HOWL(ah))
+ OS_REG_WRITE(ah, AR_RC, 0);
+
+ if (AR_SREV_HOWL(ah))
+ OS_DELAY(50);
+
+ if (AR_SREV_HOWL(ah)) {
+ uint32_t mask;
+ mask = OS_REG_READ(ah, AR_CFG);
+ if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
+ HALDEBUG(ah, HAL_DEBUG_RESET,
+ "CFG Byte Swap Set 0x%x\n", mask);
+ } else {
+ mask =
+ INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
+ OS_REG_WRITE(ah, AR_CFG, mask);
+ HALDEBUG(ah, HAL_DEBUG_RESET,
+ "Setting CFG 0x%x\n", OS_REG_READ(ah, AR_CFG));
+ }
+ } else {
+ if (type == HAL_RESET_COLD) {
+ if (isBigEndian()) {
+ /*
+ * Set CFG, little-endian for descriptor accesses.
+ */
+ mask = INIT_CONFIG_STATUS | AR_CFG_SWRD;
+#ifndef AH_NEED_DESC_SWAP
+ mask |= AR_CFG_SWTD;
+#endif
+ HALDEBUG(ah, HAL_DEBUG_RESET,
+ "%s Applying descriptor swap\n", __func__);
+ OS_REG_WRITE(ah, AR_CFG, mask);
+ } else
+ OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
+ }
+ }
+
+ return AH_TRUE;
+}
+
+void
+ar5416InitChainMasks(struct ath_hal *ah)
+{
+ int rx_chainmask = AH5416(ah)->ah_rx_chainmask;
+
+ /* Flip this for this chainmask regardless of chip */
+ if (rx_chainmask == 0x5)
+ OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
+
+ /*
+ * Workaround for OWL 1.0 calibration failure; enable multi-chain;
+ * then set true mask after calibration.
+ */
+ if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) {
+ OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
+ OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
+ } else {
+ OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
+ OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
+ }
+ OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask);
+
+ if (AH5416(ah)->ah_tx_chainmask == 0x5)
+ OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
+
+ if (AR_SREV_HOWL(ah)) {
+ OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
+ OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
+ }
+}
+
+/*
+ * Work-around for Owl 1.0 calibration failure.
+ *
+ * ar5416InitChainMasks sets the RX chainmask to 0x7 if it's Owl 1.0
+ * due to init calibration failures. ar5416RestoreChainMask restores
+ * these registers to the correct setting.
+ */
+void
+ar5416RestoreChainMask(struct ath_hal *ah)
+{
+ int rx_chainmask = AH5416(ah)->ah_rx_chainmask;
+
+ if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) {
+ OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
+ OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
+ }
+}
+
+void
+ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan)
+{
+ uint32_t pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
+ if (chan != AH_NULL) {
+ if (IEEE80211_IS_CHAN_HALF(chan))
+ pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
+ else if (IEEE80211_IS_CHAN_QUARTER(chan))
+ pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
+
+ if (IEEE80211_IS_CHAN_5GHZ(chan))
+ pll |= SM(0xa, AR_RTC_PLL_DIV);
+ else
+ pll |= SM(0xb, AR_RTC_PLL_DIV);
+ } else
+ pll |= SM(0xb, AR_RTC_PLL_DIV);
+
+ OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
+
+ /* TODO:
+ * For multi-band owl, switch between bands by reiniting the PLL.
+ */
+
+ OS_DELAY(RTC_PLL_SETTLE_DELAY);
+
+ OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
+}
+
+static void
+ar5416SetDefGainValues(struct ath_hal *ah,
+ const MODAL_EEP_HEADER *pModal,
+ const struct ar5416eeprom *eep,
+ uint8_t txRxAttenLocal, int regChainOffset, int i)
+{
+
+ if (IS_EEP_MINOR_V3(ah)) {
+ txRxAttenLocal = pModal->txRxAttenCh[i];
+
+ if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
+ OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
+ AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
+ pModal->bswMargin[i]);
+ OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
+ AR_PHY_GAIN_2GHZ_XATTEN1_DB,
+ pModal->bswAtten[i]);
+ OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
+ AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
+ pModal->xatten2Margin[i]);
+ OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
+ AR_PHY_GAIN_2GHZ_XATTEN2_DB,
+ pModal->xatten2Db[i]);
+ } else {
+ OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
+ AR_PHY_GAIN_2GHZ_BSW_MARGIN,
+ pModal->bswMargin[i]);
+ OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
+ AR_PHY_GAIN_2GHZ_BSW_ATTEN,
+ pModal->bswAtten[i]);
+ }
+ }
+
+ if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_RXGAIN + regChainOffset,
+ AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_RXGAIN + regChainOffset,
+ AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
+ } else {
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_RXGAIN + regChainOffset,
+ AR_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_GAIN_2GHZ + regChainOffset,
+ AR_PHY_GAIN_2GHZ_RXTX_MARGIN, pModal->rxTxMarginCh[i]);
+ }
+}
+
+/*
+ * Get the register chain offset for the given chain.
+ *
+ * Take into account the register chain swapping with AR5416 v2.0.
+ *
+ * XXX make sure that the reg chain swapping is only done for
+ * XXX AR5416 v2.0 or greater, and not later chips?
+ */
+int
+ar5416GetRegChainOffset(struct ath_hal *ah, int i)
+{
+ int regChainOffset;
+
+ if (AR_SREV_5416_V20_OR_LATER(ah) &&
+ (AH5416(ah)->ah_rx_chainmask == 0x5 ||
+ AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
+ /* Regs are swapped from chain 2 to 1 for 5416 2_0 with
+ * only chains 0 and 2 populated
+ */
+ regChainOffset = (i == 1) ? 0x2000 : 0x1000;
+ } else {
+ regChainOffset = i * 0x1000;
+ }
+
+ return regChainOffset;
+}
+
+/*
+ * Read EEPROM header info and program the device for correct operation
+ * given the channel value.
+ */
+HAL_BOOL
+ar5416SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
+{
+ const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
+ const struct ar5416eeprom *eep = &ee->ee_base;
+ const MODAL_EEP_HEADER *pModal;
+ int i, regChainOffset;
+ uint8_t txRxAttenLocal; /* workaround for eeprom versions <= 14.2 */
+
+ HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
+ pModal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
+
+ /* NB: workaround for eeprom versions <= 14.2 */
+ txRxAttenLocal = IEEE80211_IS_CHAN_2GHZ(chan) ? 23 : 44;
+
+ OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
+ for (i = 0; i < AR5416_MAX_CHAINS; i++) {
+ if (AR_SREV_MERLIN(ah)) {
+ if (i >= 2) break;
+ }
+ regChainOffset = ar5416GetRegChainOffset(ah, i);
+
+ OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]);
+
+ OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset,
+ (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) &
+ ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
+ SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
+ SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
+
+ /*
+ * Large signal upgrade,
+ * If 14.3 or later EEPROM, use
+ * txRxAttenLocal = pModal->txRxAttenCh[i]
+ * else txRxAttenLocal is fixed value above.
+ */
+
+ if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah))
+ ar5416SetDefGainValues(ah, pModal, eep, txRxAttenLocal, regChainOffset, i);
+ }
+
+ if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
+ if (IEEE80211_IS_CHAN_2GHZ(chan)) {
+ OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_OB, pModal->ob);
+ OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_DB, pModal->db);
+ OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_OB, pModal->ob_ch1);
+ OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_DB, pModal->db_ch1);
+ } else {
+ OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_OB5, pModal->ob);
+ OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_DB5, pModal->db);
+ OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_OB5, pModal->ob_ch1);
+ OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_DB5, pModal->db_ch1);
+ }
+ OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
+ OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_LOCALBIAS,
+ !!(pModal->flagBits & AR5416_EEP_FLAG_LOCALBIAS));
+ OS_A_REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
+ !!(pModal->flagBits & AR5416_EEP_FLAG_FORCEXPAON));
+ }
+
+ OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
+ OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
+
+ if (! AR_SREV_MERLIN_10_OR_LATER(ah))
+ OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize);
+
+ OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
+ SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
+ | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
+ | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
+ | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
+
+ OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
+ pModal->txEndToRxOn);
+
+ if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
+ OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
+ pModal->thresh62);
+ OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
+ pModal->thresh62);
+ } else {
+ OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
+ pModal->thresh62);
+ OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CCA_THRESH62,
+ pModal->thresh62);
+ }
+
+ /* Minor Version Specific application */
+ if (IS_EEP_MINOR_V2(ah)) {
+ OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START,
+ pModal->txFrameToDataStart);
+ OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON,
+ pModal->txFrameToPaOn);
+ }
+
+ if (IS_EEP_MINOR_V3(ah) && IEEE80211_IS_CHAN_HT40(chan))
+ /* Overwrite switch settling with HT40 value */
+ OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
+ pModal->swSettleHt40);
+
+ if (AR_SREV_MERLIN_20_OR_LATER(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_19)
+ OS_REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, pModal->miscBits);
+
+ if (AR_SREV_MERLIN_20(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_20) {
+ if (IEEE80211_IS_CHAN_2GHZ(chan))
+ OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
+ eep->baseEepHeader.dacLpMode);
+ else if (eep->baseEepHeader.dacHiPwrMode_5G)
+ OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
+ else
+ OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
+ eep->baseEepHeader.dacLpMode);
+
+ OS_DELAY(100);
+
+ OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
+ pModal->miscBits >> 2);
+ OS_REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_DESIRED_SCALE_CCK,
+ eep->baseEepHeader.desiredScaleCCK);
+ }
+
+ return (AH_TRUE);
+}
+
+/*
+ * Helper functions common for AP/CB/XB
+ */
+
+/*
+ * Set the target power array "ratesArray" from the
+ * given set of target powers.
+ *
+ * This is used by the various chipset/EEPROM TX power
+ * setup routines.
+ */
+void
+ar5416SetRatesArrayFromTargetPower(struct ath_hal *ah,
+ const struct ieee80211_channel *chan,
+ int16_t *ratesArray,
+ const CAL_TARGET_POWER_LEG *targetPowerCck,
+ const CAL_TARGET_POWER_LEG *targetPowerCckExt,
+ const CAL_TARGET_POWER_LEG *targetPowerOfdm,
+ const CAL_TARGET_POWER_LEG *targetPowerOfdmExt,
+ const CAL_TARGET_POWER_HT *targetPowerHt20,
+ const CAL_TARGET_POWER_HT *targetPowerHt40)
+{
+#define N(a) (sizeof(a)/sizeof(a[0]))
+ int i;
+
+ /* Blank the rates array, to be consistent */
+ for (i = 0; i < Ar5416RateSize; i++)
+ ratesArray[i] = 0;
+
+ /* Set rates Array from collected data */
+ ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
+ ratesArray[rate18mb] = ratesArray[rate24mb] =
+ targetPowerOfdm->tPow2x[0];
+ ratesArray[rate36mb] = targetPowerOfdm->tPow2x[1];
+ ratesArray[rate48mb] = targetPowerOfdm->tPow2x[2];
+ ratesArray[rate54mb] = targetPowerOfdm->tPow2x[3];
+ ratesArray[rateXr] = targetPowerOfdm->tPow2x[0];
+
+ for (i = 0; i < N(targetPowerHt20->tPow2x); i++) {
+ ratesArray[rateHt20_0 + i] = targetPowerHt20->tPow2x[i];
+ }
+
+ if (IEEE80211_IS_CHAN_2GHZ(chan)) {
+ ratesArray[rate1l] = targetPowerCck->tPow2x[0];
+ ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck->tPow2x[1];
+ ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck->tPow2x[2];
+ ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck->tPow2x[3];
+ }
+ if (IEEE80211_IS_CHAN_HT40(chan)) {
+ for (i = 0; i < N(targetPowerHt40->tPow2x); i++) {
+ ratesArray[rateHt40_0 + i] = targetPowerHt40->tPow2x[i];
+ }
+ ratesArray[rateDupOfdm] = targetPowerHt40->tPow2x[0];
+ ratesArray[rateDupCck] = targetPowerHt40->tPow2x[0];
+ ratesArray[rateExtOfdm] = targetPowerOfdmExt->tPow2x[0];
+ if (IEEE80211_IS_CHAN_2GHZ(chan)) {
+ ratesArray[rateExtCck] = targetPowerCckExt->tPow2x[0];
+ }
+ }
+#undef N
+}
+
+/*
+ * ar5416SetPowerPerRateTable
+ *
+ * Sets the transmit power in the baseband for the given
+ * operating channel and mode.
+ */
+static HAL_BOOL
+ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
+ const struct ieee80211_channel *chan,
+ int16_t *ratesArray, uint16_t cfgCtl,
+ uint16_t AntennaReduction,
+ uint16_t twiceMaxRegulatoryPower,
+ uint16_t powerLimit)
+{
+#define N(a) (sizeof(a)/sizeof(a[0]))
+/* Local defines to distinguish between extension and control CTL's */
+#define EXT_ADDITIVE (0x8000)
+#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
+#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
+#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
+
+ uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
+ int i;
+ int16_t twiceLargestAntenna;
+ CAL_CTL_DATA *rep;
+ CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
+ CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
+ CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
+ int16_t scaledPower, minCtlPower;
+
+#define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
+#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
+ static const uint16_t ctlModesFor11a[] = {
+ CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
+ };
+ static const uint16_t ctlModesFor11g[] = {
+ CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
+ };
+ const uint16_t *pCtlMode;
+ uint16_t numCtlModes, ctlMode, freq;
+ CHAN_CENTERS centers;
+
+ ar5416GetChannelCenters(ah, chan, &centers);
+
+ /* Compute TxPower reduction due to Antenna Gain */
+
+ twiceLargestAntenna = AH_MAX(AH_MAX(
+ pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0],
+ pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]),
+ pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
+#if 0
+ /* Turn it back on if we need to calculate per chain antenna gain reduction */
+ /* Use only if the expected gain > 6dbi */
+ /* Chain 0 is always used */
+ twiceLargestAntenna = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0];
+
+ /* Look at antenna gains of Chains 1 and 2 if the TX mask is set */
+ if (ahp->ah_tx_chainmask & 0x2)
+ twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
+ pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
+
+ if (ahp->ah_tx_chainmask & 0x4)
+ twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
+ pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
+#endif
+ twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
+
+ /* XXX setup for 5212 use (really used?) */
+ ath_hal_eepromSet(ah,
+ IEEE80211_IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5,
+ twiceLargestAntenna);
+
+ /*
+ * scaledPower is the minimum of the user input power level and
+ * the regulatory allowed power level
+ */
+ scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
+
+ /* Reduce scaled Power by number of chains active to get to per chain tx power level */
+ /* TODO: better value than these? */
+ switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
+ case 1:
+ break;
+ case 2:
+ scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
+ break;
+ case 3:
+ scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
+ break;
+ default:
+ return AH_FALSE; /* Unsupported number of chains */
+ }
+
+ scaledPower = AH_MAX(0, scaledPower);
+
+ /* Get target powers from EEPROM - our baseline for TX Power */
+ if (IEEE80211_IS_CHAN_2GHZ(chan)) {
+ /* Setup for CTL modes */
+ numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
+ pCtlMode = ctlModesFor11g;
+
+ ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
+ AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
+ ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
+ AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
+ ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20,
+ AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
+
+ if (IEEE80211_IS_CHAN_HT40(chan)) {
+ numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */
+
+ ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40,
+ AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
+ /* Get target powers for extension channels */
+ ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
+ AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
+ ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
+ AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
+ }
+ } else {
+ /* Setup for CTL modes */
+ numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */
+ pCtlMode = ctlModesFor11a;
+
+ ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
+ AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
+ ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT20,
+ AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
+
+ if (IEEE80211_IS_CHAN_HT40(chan)) {
+ numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */
+
+ ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT40,
+ AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
+ ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
+ AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
+ }
+ }
+
+ /*
+ * For MIMO, need to apply regulatory caps individually across dynamically
+ * running modes: CCK, OFDM, HT20, HT40
+ *
+ * The outer loop walks through each possible applicable runtime mode.
+ * The inner loop walks through each ctlIndex entry in EEPROM.
+ * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
+ *
+ */
+ for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
+ HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
+ (pCtlMode[ctlMode] == CTL_2GHT40);
+ if (isHt40CtlMode) {
+ freq = centers.ctl_center;
+ } else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
+ freq = centers.ext_center;
+ } else {
+ freq = centers.ctl_center;
+ }
+
+ /* walk through each CTL index stored in EEPROM */
+ for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
+ uint16_t twiceMinEdgePower;
+
+ /* compare test group from regulatory channel list with test mode from pCtlMode list */
+ if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
+ (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
+ ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
+ rep = &(pEepData->ctlData[i]);
+ twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
+ rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
+ IEEE80211_IS_CHAN_2GHZ(chan));
+ if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
+ /* Find the minimum of all CTL edge powers that apply to this channel */
+ twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
+ } else {
+ /* specific */
+ twiceMaxEdgePower = twiceMinEdgePower;
+ break;
+ }
+ }
+ }
+ minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
+ /* Apply ctl mode to correct target power set */
+ switch(pCtlMode[ctlMode]) {
+ case CTL_11B:
+ for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
+ targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
+ }
+ break;
+ case CTL_11A:
+ case CTL_11G:
+ for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
+ targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
+ }
+ break;
+ case CTL_5GHT20:
+ case CTL_2GHT20:
+ for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
+ targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
+ }
+ break;
+ case CTL_11B_EXT:
+ targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
+ break;
+ case CTL_11A_EXT:
+ case CTL_11G_EXT:
+ targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
+ break;
+ case CTL_5GHT40:
+ case CTL_2GHT40:
+ for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
+ targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
+ }
+ break;
+ default:
+ return AH_FALSE;
+ break;
+ }
+ } /* end ctl mode checking */
+
+ /* Set rates Array from collected data */
+ ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
+ &targetPowerCck,
+ &targetPowerCckExt,
+ &targetPowerOfdm,
+ &targetPowerOfdmExt,
+ &targetPowerHt20,
+ &targetPowerHt40);
+ return AH_TRUE;
+#undef EXT_ADDITIVE
+#undef CTL_11A_EXT
+#undef CTL_11G_EXT
+#undef CTL_11B_EXT
+#undef SUB_NUM_CTL_MODES_AT_5G_40
+#undef SUB_NUM_CTL_MODES_AT_2G_40
+#undef N
+}
+
+/**************************************************************************
+ * fbin2freq
+ *
+ * Get channel value from binary representation held in eeprom
+ * RETURNS: the frequency in MHz
+ */
+static uint16_t
+fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
+{
+ /*
+ * Reserved value 0xFF provides an empty definition both as
+ * an fbin and as a frequency - do not convert
+ */
+ if (fbin == AR5416_BCHAN_UNUSED) {
+ return fbin;
+ }
+
+ return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
+}
+
+/*
+ * ar5416GetMaxEdgePower
+ *
+ * Find the maximum conformance test limit for the given channel and CTL info
+ */
+uint16_t
+ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz)
+{
+ uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
+ int i;
+
+ /* Get the edge power */
+ for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
+ /*
+ * If there's an exact channel match or an inband flag set
+ * on the lower channel use the given rdEdgePower
+ */
+ if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
+ twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
+ break;
+ } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) {
+ if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
+ twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
+ }
+ /* Leave loop - no more affecting edges possible in this monotonic increasing list */
+ break;
+ }
+ }
+ HALASSERT(twiceMaxEdgePower > 0);
+ return twiceMaxEdgePower;
+}
+
+/**************************************************************
+ * ar5416GetTargetPowers
+ *
+ * Return the rates of target power for the given target power table
+ * channel, and number of channels
+ */
+void
+ar5416GetTargetPowers(struct ath_hal *ah, const struct ieee80211_channel *chan,
+ CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels,
+ CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates,
+ HAL_BOOL isHt40Target)
+{
+ uint16_t clo, chi;
+ int i;
+ int matchIndex = -1, lowIndex = -1;
+ uint16_t freq;
+ CHAN_CENTERS centers;
+
+ ar5416GetChannelCenters(ah, chan, &centers);
+ freq = isHt40Target ? centers.synth_center : centers.ctl_center;
+
+ /* Copy the target powers into the temp channel list */
+ if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
+ matchIndex = 0;
+ } else {
+ for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
+ if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
+ matchIndex = i;
+ break;
+ } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
+ (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
+ {
+ lowIndex = i - 1;
+ break;
+ }
+ }
+ if ((matchIndex == -1) && (lowIndex == -1)) {
+ HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
+ matchIndex = i - 1;
+ }
+ }
+
+ if (matchIndex != -1) {
+ OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
+ } else {
+ HALASSERT(lowIndex != -1);
+ /*
+ * Get the lower and upper channels, target powers,
+ * and interpolate between them.
+ */
+ clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
+ chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
+
+ for (i = 0; i < numRates; i++) {
+ pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi,
+ powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
+ }
+ }
+}
+/**************************************************************
+ * ar5416GetTargetPowersLeg
+ *
+ * Return the four rates of target power for the given target power table
+ * channel, and number of channels
+ */
+void
+ar5416GetTargetPowersLeg(struct ath_hal *ah,
+ const struct ieee80211_channel *chan,
+ CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels,
+ CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates,
+ HAL_BOOL isExtTarget)
+{
+ uint16_t clo, chi;
+ int i;
+ int matchIndex = -1, lowIndex = -1;
+ uint16_t freq;
+ CHAN_CENTERS centers;
+
+ ar5416GetChannelCenters(ah, chan, &centers);
+ freq = (isExtTarget) ? centers.ext_center :centers.ctl_center;
+
+ /* Copy the target powers into the temp channel list */
+ if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
+ matchIndex = 0;
+ } else {
+ for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
+ if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
+ matchIndex = i;
+ break;
+ } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
+ (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
+ {
+ lowIndex = i - 1;
+ break;
+ }
+ }
+ if ((matchIndex == -1) && (lowIndex == -1)) {
+ HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
+ matchIndex = i - 1;
+ }
+ }
+
+ if (matchIndex != -1) {
+ OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
+ } else {
+ HALASSERT(lowIndex != -1);
+ /*
+ * Get the lower and upper channels, target powers,
+ * and interpolate between them.
+ */
+ clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
+ chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
+
+ for (i = 0; i < numRates; i++) {
+ pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi,
+ powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
+ }
+ }
+}
+
+/*
+ * Set the gain boundaries for the given radio chain.
+ *
+ * The gain boundaries tell the hardware at what point in the
+ * PDADC array to "switch over" from one PD gain setting
+ * to another. There's also a gain overlap between two
+ * PDADC array gain curves where there's valid PD values
+ * for 2 gain settings.
+ *
+ * The hardware uses the gain overlap and gain boundaries
+ * to determine which gain curve to use for the given
+ * target TX power.
+ */
+void
+ar5416SetGainBoundariesClosedLoop(struct ath_hal *ah, int i,
+ uint16_t pdGainOverlap_t2, uint16_t gainBoundaries[])
+{
+ int regChainOffset;
+
+ regChainOffset = ar5416GetRegChainOffset(ah, i);
+
+ HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: chain %d: gainOverlap_t2: %d,"
+ " gainBoundaries: %d, %d, %d, %d\n", __func__, i, pdGainOverlap_t2,
+ gainBoundaries[0], gainBoundaries[1], gainBoundaries[2],
+ gainBoundaries[3]);
+ OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
+ SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
+ SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
+ SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
+ SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
+ SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
+}
+
+/*
+ * Get the gain values and the number of gain levels given
+ * in xpdMask.
+ *
+ * The EEPROM xpdMask determines which power detector gain
+ * levels were used during calibration. Each of these mask
+ * bits maps to a fixed gain level in hardware.
+ */
+uint16_t
+ar5416GetXpdGainValues(struct ath_hal *ah, uint16_t xpdMask,
+ uint16_t xpdGainValues[])
+{
+ int i;
+ uint16_t numXpdGain = 0;
+
+ for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
+ if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
+ if (numXpdGain >= AR5416_NUM_PD_GAINS) {
+ HALASSERT(0);
+ break;
+ }
+ xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
+ numXpdGain++;
+ }
+ }
+ return numXpdGain;
+}
+
+/*
+ * Write the detector gain and biases.
+ *
+ * There are four power detector gain levels. The xpdMask in the EEPROM
+ * determines which power detector gain levels have TX power calibration
+ * data associated with them. This function writes the number of
+ * PD gain levels and their values into the hardware.
+ *
+ * This is valid for all TX chains - the calibration data itself however
+ * will likely differ per-chain.
+ */
+void
+ar5416WriteDetectorGainBiases(struct ath_hal *ah, uint16_t numXpdGain,
+ uint16_t xpdGainValues[])
+{
+ HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: numXpdGain: %d,"
+ " xpdGainValues: %d, %d, %d\n", __func__, numXpdGain,
+ xpdGainValues[0], xpdGainValues[1], xpdGainValues[2]);
+
+ OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
+ ~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 |
+ AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
+ SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) |
+ SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
+ SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) |
+ SM(xpdGainValues[2], AR_PHY_TPCRG1_PD_GAIN_3));
+}
+
+/*
+ * Write the PDADC array to the given radio chain i.
+ *
+ * The 32 PDADC registers are written without any care about
+ * their contents - so if various chips treat values as "special",
+ * this routine will not care.
+ */
+void
+ar5416WritePdadcValues(struct ath_hal *ah, int i, uint8_t pdadcValues[])
+{
+ int regOffset, regChainOffset;
+ int j;
+ int reg32;
+
+ regChainOffset = ar5416GetRegChainOffset(ah, i);
+ regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
+
+ for (j = 0; j < 32; j++) {
+ reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0) |
+ ((pdadcValues[4*j + 1] & 0xFF) << 8) |
+ ((pdadcValues[4*j + 2] & 0xFF) << 16) |
+ ((pdadcValues[4*j + 3] & 0xFF) << 24) ;
+ OS_REG_WRITE(ah, regOffset, reg32);
+ HALDEBUG(ah, HAL_DEBUG_EEPROM, "PDADC: Chain %d |"
+ " PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d"
+ " Value %3d | PDADC %3d Value %3d |\n",
+ i,
+ 4*j, pdadcValues[4*j],
+ 4*j+1, pdadcValues[4*j + 1],
+ 4*j+2, pdadcValues[4*j + 2],
+ 4*j+3, pdadcValues[4*j + 3]);
+ regOffset += 4;
+ }
+}
+
+/**************************************************************
+ * ar5416SetPowerCalTable
+ *
+ * Pull the PDADC piers from cal data and interpolate them across the given
+ * points as well as from the nearest pier(s) to get a power detector
+ * linear voltage to power level table.
+ */
+HAL_BOOL
+ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
+ const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
+{
+ CAL_DATA_PER_FREQ *pRawDataset;
+ uint8_t *pCalBChans = AH_NULL;
+ uint16_t pdGainOverlap_t2;
+ static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES];
+ uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
+ uint16_t numPiers, i;
+ int16_t tMinCalPower;
+ uint16_t numXpdGain, xpdMask;
+ uint16_t xpdGainValues[AR5416_NUM_PD_GAINS];
+ uint32_t regChainOffset;
+
+ OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
+
+ xpdMask = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].xpdGain;
+
+ if (IS_EEP_MINOR_V2(ah)) {
+ pdGainOverlap_t2 = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pdGainOverlap;
+ } else {
+ pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
+ }
+
+ if (IEEE80211_IS_CHAN_2GHZ(chan)) {
+ pCalBChans = pEepData->calFreqPier2G;
+ numPiers = AR5416_NUM_2G_CAL_PIERS;
+ } else {
+ pCalBChans = pEepData->calFreqPier5G;
+ numPiers = AR5416_NUM_5G_CAL_PIERS;
+ }
+
+ /* Calculate the value of xpdgains from the xpdGain Mask */
+ numXpdGain = ar5416GetXpdGainValues(ah, xpdMask, xpdGainValues);
+
+ /* Write the detector gain biases and their number */
+ ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues);
+
+ for (i = 0; i < AR5416_MAX_CHAINS; i++) {
+ regChainOffset = ar5416GetRegChainOffset(ah, i);
+
+ if (pEepData->baseEepHeader.txMask & (1 << i)) {
+ if (IEEE80211_IS_CHAN_2GHZ(chan)) {
+ pRawDataset = pEepData->calPierData2G[i];
+ } else {
+ pRawDataset = pEepData->calPierData5G[i];
+ }
+
+ /* Fetch the gain boundaries and the PDADC values */
+ ar5416GetGainBoundariesAndPdadcs(ah, chan, pRawDataset,
+ pCalBChans, numPiers,
+ pdGainOverlap_t2,
+ &tMinCalPower, gainBoundaries,
+ pdadcValues, numXpdGain);
+
+ if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
+ ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2,
+ gainBoundaries);
+ }
+
+ /* Write the power values into the baseband power table */
+ ar5416WritePdadcValues(ah, i, pdadcValues);
+ }
+ }
+ *pTxPowerIndexOffset = 0;
+
+ return AH_TRUE;
+}
+
+/**************************************************************
+ * ar5416GetGainBoundariesAndPdadcs
+ *
+ * Uses the data points read from EEPROM to reconstruct the pdadc power table
+ * Called by ar5416SetPowerCalTable only.
+ */
+void
+ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
+ const struct ieee80211_channel *chan,
+ CAL_DATA_PER_FREQ *pRawDataSet,
+ uint8_t * bChans, uint16_t availPiers,
+ uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
+ uint8_t * pPDADCValues, uint16_t numXpdGains)
+{
+
+ int i, j, k;
+ int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */
+ uint16_t idxL, idxR, numPiers; /* Pier indexes */
+
+ /* filled out Vpd table for all pdGains (chanL) */
+ static uint8_t vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
+
+ /* filled out Vpd table for all pdGains (chanR) */
+ static uint8_t vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
+
+ /* filled out Vpd table for all pdGains (interpolated) */
+ static uint8_t vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
+
+ uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR;
+ uint8_t minPwrT4[AR5416_NUM_PD_GAINS];
+ uint8_t maxPwrT4[AR5416_NUM_PD_GAINS];
+ int16_t vpdStep;
+ int16_t tmpVal;
+ uint16_t sizeCurrVpdTable, maxIndex, tgtIndex;
+ HAL_BOOL match;
+ int16_t minDelta = 0;
+ CHAN_CENTERS centers;
+
+ ar5416GetChannelCenters(ah, chan, &centers);
+
+ /* Trim numPiers for the number of populated channel Piers */
+ for (numPiers = 0; numPiers < availPiers; numPiers++) {
+ if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
+ break;
+ }
+ }
+
+ /* Find pier indexes around the current channel */
+ match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center,
+ IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR);
+
+ if (match) {
+ /* Directly fill both vpd tables from the matching index */
+ for (i = 0; i < numXpdGains; i++) {
+ minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
+ maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
+ ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i],
+ pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
+ }
+ } else {
+ for (i = 0; i < numXpdGains; i++) {
+ pVpdL = pRawDataSet[idxL].vpdPdg[i];
+ pPwrL = pRawDataSet[idxL].pwrPdg[i];
+ pVpdR = pRawDataSet[idxR].vpdPdg[i];
+ pPwrR = pRawDataSet[idxR].pwrPdg[i];
+
+ /* Start Vpd interpolation from the max of the minimum powers */
+ minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
+
+ /* End Vpd interpolation from the min of the max powers */
+ maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
+ HALASSERT(maxPwrT4[i] > minPwrT4[i]);
+
+ /* Fill pier Vpds */
+ ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
+ ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
+
+ /* Interpolate the final vpd */
+ for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
+ vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center,
+ IEEE80211_IS_CHAN_2GHZ(chan)),
+ bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
+ }
+ }
+ }
+ *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
+
+ k = 0; /* index for the final table */
+ for (i = 0; i < numXpdGains; i++) {
+ if (i == (numXpdGains - 1)) {
+ pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
+ } else {
+ pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
+ }
+
+ pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
+
+ /* NB: only applies to owl 1.0 */
+ if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) {
+ /*
+ * fix the gain delta, but get a delta that can be applied to min to
+ * keep the upper power values accurate, don't think max needs to
+ * be adjusted because should not be at that area of the table?
+ */
+ minDelta = pPdGainBoundaries[0] - 23;
+ pPdGainBoundaries[0] = 23;
+ }
+ else {
+ minDelta = 0;
+ }
+
+ /* Find starting index for this pdGain */
+ if (i == 0) {
+ if (AR_SREV_MERLIN_10_OR_LATER(ah))
+ ss = (int16_t)(0 - (minPwrT4[i] / 2));
+ else
+ ss = 0; /* for the first pdGain, start from index 0 */
+ } else {
+ /* need overlap entries extrapolated below. */
+ ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
+ }
+ vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
+ vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
+ /*
+ *-ve ss indicates need to extrapolate data below for this pdGain
+ */
+ while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
+ tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
+ pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
+ ss++;
+ }
+
+ sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
+ tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
+ maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
+
+ while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
+ pPDADCValues[k++] = vpdTableI[i][ss++];
+ }
+
+ vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
+ vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
+ /*
+ * for last gain, pdGainBoundary == Pmax_t2, so will
+ * have to extrapolate
+ */
+ if (tgtIndex >= maxIndex) { /* need to extrapolate above */
+ while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
+ tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
+ (ss - maxIndex +1) * vpdStep));
+ pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
+ ss++;
+ }
+ } /* extrapolated above */
+ } /* for all pdGainUsed */
+
+ /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
+ while (i < AR5416_PD_GAINS_IN_MASK) {
+ pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
+ i++;
+ }
+
+ while (k < AR5416_NUM_PDADC_VALUES) {
+ pPDADCValues[k] = pPDADCValues[k-1];
+ k++;
+ }
+ return;
+}
+
+/*
+ * The linux ath9k driver and (from what I've been told) the reference
+ * Atheros driver enables the 11n PHY by default whether or not it's
+ * configured.
+ */
+static void
+ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan)
+{
+ uint32_t phymode;
+ uint32_t enableDacFifo = 0;
+ HAL_HT_MACMODE macmode; /* MAC - 20/40 mode */
+
+ if (AR_SREV_KITE_10_OR_LATER(ah))
+ enableDacFifo = (OS_REG_READ(ah, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO);
+
+ /* Enable 11n HT, 20 MHz */
+ phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
+ | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
+
+ /* Configure baseband for dynamic 20/40 operation */
+ if (IEEE80211_IS_CHAN_HT40(chan)) {
+ phymode |= AR_PHY_FC_DYN2040_EN;
+
+ /* Configure control (primary) channel at +-10MHz */
+ if (IEEE80211_IS_CHAN_HT40U(chan))
+ phymode |= AR_PHY_FC_DYN2040_PRI_CH;
+#if 0
+ /* Configure 20/25 spacing */
+ if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25)
+ phymode |= AR_PHY_FC_DYN2040_EXT_CH;
+#endif
+ macmode = HAL_HT_MACMODE_2040;
+ } else
+ macmode = HAL_HT_MACMODE_20;
+ OS_REG_WRITE(ah, AR_PHY_TURBO, phymode);
+
+ /* Configure MAC for 20/40 operation */
+ ar5416Set11nMac2040(ah, macmode);
+
+ /* global transmit timeout (25 TUs default)*/
+ /* XXX - put this elsewhere??? */
+ OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ;
+
+ /* carrier sense timeout */
+ OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC);
+ OS_REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
+}
+
+void
+ar5416GetChannelCenters(struct ath_hal *ah,
+ const struct ieee80211_channel *chan, CHAN_CENTERS *centers)
+{
+ uint16_t freq = ath_hal_gethwchannel(ah, chan);
+
+ centers->ctl_center = freq;
+ centers->synth_center = freq;
+ /*
+ * In 20/40 phy mode, the center frequency is
+ * "between" the control and extension channels.
+ */
+ if (IEEE80211_IS_CHAN_HT40U(chan)) {
+ centers->synth_center += HT40_CHANNEL_CENTER_SHIFT;
+ centers->ext_center =
+ centers->synth_center + HT40_CHANNEL_CENTER_SHIFT;
+ } else if (IEEE80211_IS_CHAN_HT40D(chan)) {
+ centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT;
+ centers->ext_center =
+ centers->synth_center - HT40_CHANNEL_CENTER_SHIFT;
+ } else {
+ centers->ext_center = freq;
+ }
+}
+
+/*
+ * Override the INI vals being programmed.
+ */
+static void
+ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *chan)
+{
+ uint32_t val;
+
+ /*
+ * Set the RX_ABORT and RX_DIS and clear if off only after
+ * RXE is set for MAC. This prevents frames with corrupted
+ * descriptor status.
+ */
+ OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
+
+ if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
+ val = OS_REG_READ(ah, AR_PCU_MISC_MODE2);
+ val &= (~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE);
+ if (!AR_SREV_9271(ah))
+ val &= ~AR_PCU_MISC_MODE2_HWWAR1;
+
+ if (AR_SREV_KIWI_10_OR_LATER(ah))
+ val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
+
+ OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
+ }
+
+ /*
+ * Disable RIFS search on some chips to avoid baseband
+ * hang issues.
+ */
+ if (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah))
+ (void) ar5416SetRifsDelay(ah, chan, AH_FALSE);
+
+ if (!AR_SREV_5416_V20_OR_LATER(ah) || AR_SREV_MERLIN(ah))
+ return;
+
+ /*
+ * Disable BB clock gating
+ * Necessary to avoid issues on AR5416 2.0
+ */
+ OS_REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
+}
+
+struct ini {
+ uint32_t *data; /* NB: !const */
+ int rows, cols;
+};
+
+/*
+ * Override XPA bias level based on operating frequency.
+ * This is a v14 EEPROM specific thing for the AR9160.
+ */
+void
+ar5416EepromSetAddac(struct ath_hal *ah, const struct ieee80211_channel *chan)
+{
+#define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
+ MODAL_EEP_HEADER *pModal;
+ HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
+ struct ar5416eeprom *eep = &ee->ee_base;
+ uint8_t biaslevel;
+
+ if (! AR_SREV_SOWL(ah))
+ return;
+
+ if (EEP_MINOR(ah) < AR5416_EEP_MINOR_VER_7)
+ return;
+
+ pModal = &(eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]);
+
+ if (pModal->xpaBiasLvl != 0xff)
+ biaslevel = pModal->xpaBiasLvl;
+ else {
+ uint16_t resetFreqBin, freqBin, freqCount = 0;
+ CHAN_CENTERS centers;
+
+ ar5416GetChannelCenters(ah, chan, &centers);
+
+ resetFreqBin = FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan));
+ freqBin = XPA_LVL_FREQ(0) & 0xff;
+ biaslevel = (uint8_t) (XPA_LVL_FREQ(0) >> 14);
+
+ freqCount++;
+
+ while (freqCount < 3) {
+ if (XPA_LVL_FREQ(freqCount) == 0x0)
+ break;
+
+ freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
+ if (resetFreqBin >= freqBin)
+ biaslevel = (uint8_t)(XPA_LVL_FREQ(freqCount) >> 14);
+ else
+ break;
+ freqCount++;
+ }
+ }
+
+ HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: overriding XPA bias level = %d\n",
+ __func__, biaslevel);
+
+ /*
+ * This is a dirty workaround for the const initval data,
+ * which will upset multiple AR9160's on the same board.
+ *
+ * The HAL should likely just have a private copy of the addac
+ * data per instance.
+ */
+ if (IEEE80211_IS_CHAN_2GHZ(chan))
+ HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 7, 1) =
+ (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3;
+ else
+ HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 6, 1) =
+ (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6;
+#undef XPA_LVL_FREQ
+}
+
+static void
+ar5416MarkPhyInactive(struct ath_hal *ah)
+{
+ OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
+}
+
+#define AR5416_IFS_SLOT_FULL_RATE_40 0x168 /* 9 us half, 40 MHz core clock (9*40) */
+#define AR5416_IFS_SLOT_HALF_RATE_40 0x104 /* 13 us half, 20 MHz core clock (13*20) */
+#define AR5416_IFS_SLOT_QUARTER_RATE_40 0xD2 /* 21 us quarter, 10 MHz core clock (21*10) */
+
+#define AR5416_IFS_EIFS_FULL_RATE_40 0xE60 /* (74 + (2 * 9)) * 40MHz core clock */
+#define AR5416_IFS_EIFS_HALF_RATE_40 0xDAC /* (149 + (2 * 13)) * 20MHz core clock */
+#define AR5416_IFS_EIFS_QUARTER_RATE_40 0xD48 /* (298 + (2 * 21)) * 10MHz core clock */
+
+#define AR5416_IFS_SLOT_FULL_RATE_44 0x18c /* 9 us half, 44 MHz core clock (9*44) */
+#define AR5416_IFS_SLOT_HALF_RATE_44 0x11e /* 13 us half, 22 MHz core clock (13*22) */
+#define AR5416_IFS_SLOT_QUARTER_RATE_44 0xe7 /* 21 us quarter, 11 MHz core clock (21*11) */
+
+#define AR5416_IFS_EIFS_FULL_RATE_44 0xfd0 /* (74 + (2 * 9)) * 44MHz core clock */
+#define AR5416_IFS_EIFS_HALF_RATE_44 0xf0a /* (149 + (2 * 13)) * 22MHz core clock */
+#define AR5416_IFS_EIFS_QUARTER_RATE_44 0xe9c /* (298 + (2 * 21)) * 11MHz core clock */
+
+#define AR5416_INIT_USEC_40 40
+#define AR5416_HALF_RATE_USEC_40 19 /* ((40 / 2) - 1 ) */
+#define AR5416_QUARTER_RATE_USEC_40 9 /* ((40 / 4) - 1 ) */
+
+#define AR5416_INIT_USEC_44 44
+#define AR5416_HALF_RATE_USEC_44 21 /* ((44 / 2) - 1 ) */
+#define AR5416_QUARTER_RATE_USEC_44 10 /* ((44 / 4) - 1 ) */
+
+/* XXX What should these be for 40/44MHz clocks (and half/quarter) ? */
+#define AR5416_RX_NON_FULL_RATE_LATENCY 63
+#define AR5416_TX_HALF_RATE_LATENCY 108
+#define AR5416_TX_QUARTER_RATE_LATENCY 216
+
+/*
+ * Adjust various register settings based on half/quarter rate clock setting.
+ * This includes:
+ *
+ * + USEC, TX/RX latency,
+ * + IFS params: slot, eifs, misc etc.
+ *
+ * TODO:
+ *
+ * + Verify which other registers need to be tweaked;
+ * + Verify the behaviour of this for 5GHz fast and non-fast clock mode;
+ * + This just plain won't work for long distance links - the coverage class
+ * code isn't aware of the slot/ifs/ACK/RTS timeout values that need to
+ * change;
+ * + Verify whether the 32KHz USEC value needs to be kept for the 802.11n
+ * series chips?
+ * + Calculate/derive values for 2GHz, 5GHz, 5GHz fast clock
+ */
+static void
+ar5416SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan)
+{
+ uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec;
+ int clk_44 = 0;
+
+ HALASSERT(IEEE80211_IS_CHAN_HALF(chan) ||
+ IEEE80211_IS_CHAN_QUARTER(chan));
+
+ /* 2GHz and 5GHz fast clock - 44MHz; else 40MHz */
+ if (IEEE80211_IS_CHAN_2GHZ(chan))
+ clk_44 = 1;
+ else if (IEEE80211_IS_CHAN_5GHZ(chan) &&
+ IS_5GHZ_FAST_CLOCK_EN(ah, chan))
+ clk_44 = 1;
+
+ /* XXX does this need save/restoring for the 11n chips? */
+ /*
+ * XXX TODO: should mask out the txlat/rxlat/usec values?
+ */
+ refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32;
+
+ /*
+ * XXX This really should calculate things, not use
+ * hard coded values! Ew.
+ */
+ if (IEEE80211_IS_CHAN_HALF(chan)) {
+ if (clk_44) {
+ slot = AR5416_IFS_SLOT_HALF_RATE_44;
+ rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
+ AR5416_USEC_RX_LAT_S;
+ txLat = AR5416_TX_HALF_RATE_LATENCY <<
+ AR5416_USEC_TX_LAT_S;
+ usec = AR5416_HALF_RATE_USEC_44;
+ eifs = AR5416_IFS_EIFS_HALF_RATE_44;
+ init_usec = AR5416_INIT_USEC_44 >> 1;
+ } else {
+ slot = AR5416_IFS_SLOT_HALF_RATE_40;
+ rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
+ AR5416_USEC_RX_LAT_S;
+ txLat = AR5416_TX_HALF_RATE_LATENCY <<
+ AR5416_USEC_TX_LAT_S;
+ usec = AR5416_HALF_RATE_USEC_40;
+ eifs = AR5416_IFS_EIFS_HALF_RATE_40;
+ init_usec = AR5416_INIT_USEC_40 >> 1;
+ }
+ } else { /* quarter rate */
+ if (clk_44) {
+ slot = AR5416_IFS_SLOT_QUARTER_RATE_44;
+ rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
+ AR5416_USEC_RX_LAT_S;
+ txLat = AR5416_TX_QUARTER_RATE_LATENCY <<
+ AR5416_USEC_TX_LAT_S;
+ usec = AR5416_QUARTER_RATE_USEC_44;
+ eifs = AR5416_IFS_EIFS_QUARTER_RATE_44;
+ init_usec = AR5416_INIT_USEC_44 >> 2;
+ } else {
+ slot = AR5416_IFS_SLOT_QUARTER_RATE_40;
+ rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
+ AR5416_USEC_RX_LAT_S;
+ txLat = AR5416_TX_QUARTER_RATE_LATENCY <<
+ AR5416_USEC_TX_LAT_S;
+ usec = AR5416_QUARTER_RATE_USEC_40;
+ eifs = AR5416_IFS_EIFS_QUARTER_RATE_40;
+ init_usec = AR5416_INIT_USEC_40 >> 2;
+ }
+ }
+
+ /* XXX verify these! */
+ OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat));
+ OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
+ OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
+ OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC,
+ AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec);
+}