diff options
Diffstat (limited to 'sys/dev/ath/ath_hal/ar5416/ar5416_reset.c')
-rw-r--r-- | sys/dev/ath/ath_hal/ar5416/ar5416_reset.c | 2899 |
1 files changed, 2899 insertions, 0 deletions
diff --git a/sys/dev/ath/ath_hal/ar5416/ar5416_reset.c b/sys/dev/ath/ath_hal/ar5416/ar5416_reset.c new file mode 100644 index 000000000000..e107e88e16ce --- /dev/null +++ b/sys/dev/ath/ath_hal/ar5416/ar5416_reset.c @@ -0,0 +1,2899 @@ +/*- + * SPDX-License-Identifier: ISC + * + * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting + * Copyright (c) 2002-2008 Atheros Communications, Inc. + * + * Permission to use, copy, modify, and/or distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ +#include "opt_ah.h" + +#include "ah.h" +#include "ah_internal.h" +#include "ah_devid.h" + +#include "ah_eeprom_v14.h" + +#include "ar5416/ar5416.h" +#include "ar5416/ar5416reg.h" +#include "ar5416/ar5416phy.h" + +/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */ +#define EEP_MINOR(_ah) \ + (AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK) +#define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2) +#define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3) + +/* Additional Time delay to wait after activiting the Base band */ +#define BASE_ACTIVATE_DELAY 100 /* 100 usec */ +#define PLL_SETTLE_DELAY 300 /* 300 usec */ +#define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */ + +static void ar5416InitDMA(struct ath_hal *ah); +static void ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *); +static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode); +static void ar5416InitQoS(struct ath_hal *ah); +static void ar5416InitUserSettings(struct ath_hal *ah); +static void ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *); + +#if 0 +static HAL_BOOL ar5416ChannelChange(struct ath_hal *, const struct ieee80211_channel *); +#endif +static void ar5416SetDeltaSlope(struct ath_hal *, const struct ieee80211_channel *); + +static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah); +static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type); +static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah, + struct ar5416eeprom *pEepData, + const struct ieee80211_channel *chan, int16_t *ratesArray, + uint16_t cfgCtl, uint16_t AntennaReduction, + uint16_t twiceMaxRegulatoryPower, + uint16_t powerLimit); +static void ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan); +static void ar5416MarkPhyInactive(struct ath_hal *ah); +static void ar5416SetIFSTiming(struct ath_hal *ah, + const struct ieee80211_channel *chan); + +/* + * Places the device in and out of reset and then places sane + * values in the registers based on EEPROM config, initialization + * vectors (as determined by the mode), and station configuration + * + * bChannelChange is used to preserve DMA/PCU registers across + * a HW Reset during channel change. + */ +HAL_BOOL +ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode, + struct ieee80211_channel *chan, + HAL_BOOL bChannelChange, + HAL_RESET_TYPE resetType, + HAL_STATUS *status) +{ +#define N(a) (sizeof (a) / sizeof (a[0])) +#define FAIL(_code) do { ecode = _code; goto bad; } while (0) + struct ath_hal_5212 *ahp = AH5212(ah); + HAL_CHANNEL_INTERNAL *ichan; + uint32_t saveDefAntenna, saveLedState; + uint32_t macStaId1; + uint16_t rfXpdGain[2]; + HAL_STATUS ecode; + uint32_t powerVal, rssiThrReg; + uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow; + int i; + uint64_t tsf = 0; + + OS_MARK(ah, AH_MARK_RESET, bChannelChange); + + /* Bring out of sleep mode */ + if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) { + HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n", + __func__); + FAIL(HAL_EIO); + } + + /* + * Map public channel to private. + */ + ichan = ath_hal_checkchannel(ah, chan); + if (ichan == AH_NULL) + FAIL(HAL_EINVAL); + switch (opmode) { + case HAL_M_STA: + case HAL_M_IBSS: + case HAL_M_HOSTAP: + case HAL_M_MONITOR: + break; + default: + HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n", + __func__, opmode); + FAIL(HAL_EINVAL); + break; + } + HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1); + + /* Blank the channel survey statistics */ + ath_hal_survey_clear(ah); + + /* XXX Turn on fast channel change for 5416 */ + + /* + * Preserve the bmiss rssi threshold and count threshold + * across resets + */ + rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR); + /* If reg is zero, first time thru set to default val */ + if (rssiThrReg == 0) + rssiThrReg = INIT_RSSI_THR; + + /* + * Preserve the antenna on a channel change + */ + saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA); + + /* + * Don't do this for the AR9285 - it breaks RX for single + * antenna designs when diversity is disabled. + * + * I'm not sure what this was working around; it may be + * something to do with the AR5416. Certainly this register + * isn't supposed to be used by the MIMO chips for anything + * except for defining the default antenna when an external + * phase array / smart antenna is connected. + * + * See PR: kern/179269 . + */ + if ((! AR_SREV_KITE(ah)) && saveDefAntenna == 0) /* XXX magic constants */ + saveDefAntenna = 1; + + /* Save hardware flag before chip reset clears the register */ + macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & + (AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT); + + /* Save led state from pci config register */ + saveLedState = OS_REG_READ(ah, AR_MAC_LED) & + (AR_MAC_LED_ASSOC | AR_MAC_LED_MODE | + AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW); + + /* For chips on which the RTC reset is done, save TSF before it gets cleared */ + if (AR_SREV_HOWL(ah) || + (AR_SREV_MERLIN(ah) && + ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) || + (resetType == HAL_RESET_FORCE_COLD) || + (resetType == HAL_RESET_BBPANIC) || + (ah->ah_config.ah_force_full_reset)) + tsf = ar5416GetTsf64(ah); + + /* Mark PHY as inactive; marked active in ar5416InitBB() */ + ar5416MarkPhyInactive(ah); + + if (!ar5416ChipReset(ah, chan, resetType)) { + HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__); + FAIL(HAL_EIO); + } + + /* Restore TSF */ + if (tsf) + ar5416SetTsf64(ah, tsf); + + OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); + if (AR_SREV_MERLIN_10_OR_LATER(ah)) + OS_REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); + + AH5416(ah)->ah_writeIni(ah, chan); + + if(AR_SREV_KIWI_13_OR_LATER(ah) ) { + /* Enable ASYNC FIFO */ + OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3, + AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL); + OS_REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO); + OS_REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3, + AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET); + OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3, + AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET); + } + + /* Override ini values (that can be overridden in this fashion) */ + ar5416OverrideIni(ah, chan); + + /* Setup 11n MAC/Phy mode registers */ + ar5416Set11nRegs(ah, chan); + + OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); + + /* + * Some AR91xx SoC devices frequently fail to accept TSF writes + * right after the chip reset. When that happens, write a new + * value after the initvals have been applied, with an offset + * based on measured time difference + */ + if (AR_SREV_HOWL(ah) && (ar5416GetTsf64(ah) < tsf)) { + tsf += 1500; + ar5416SetTsf64(ah, tsf); + } + + HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n", + __func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK)); + HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n", + __func__, OS_REG_READ(ah,AR_PHY_ADC_CTL)); + + /* + * This routine swaps the analog chains - it should be done + * before any radio register twiddling is done. + */ + ar5416InitChainMasks(ah); + + /* Setup the open-loop power calibration if required */ + if (ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) { + AH5416(ah)->ah_olcInit(ah); + AH5416(ah)->ah_olcTempCompensation(ah); + } + + /* Setup the transmit power values. */ + if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) { + HALDEBUG(ah, HAL_DEBUG_ANY, + "%s: error init'ing transmit power\n", __func__); + FAIL(HAL_EIO); + } + + /* Write the analog registers */ + if (!ahp->ah_rfHal->setRfRegs(ah, chan, + IEEE80211_IS_CHAN_2GHZ(chan) ? 2: 1, rfXpdGain)) { + HALDEBUG(ah, HAL_DEBUG_ANY, + "%s: ar5212SetRfRegs failed\n", __func__); + FAIL(HAL_EIO); + } + + /* Write delta slope for OFDM enabled modes (A, G, Turbo) */ + if (IEEE80211_IS_CHAN_OFDM(chan)|| IEEE80211_IS_CHAN_HT(chan)) + ar5416SetDeltaSlope(ah, chan); + + AH5416(ah)->ah_spurMitigate(ah, chan); + + /* Setup board specific options for EEPROM version 3 */ + if (!ah->ah_setBoardValues(ah, chan)) { + HALDEBUG(ah, HAL_DEBUG_ANY, + "%s: error setting board options\n", __func__); + FAIL(HAL_EIO); + } + + OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); + + OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr)); + OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4) + | macStaId1 + | AR_STA_ID1_RTS_USE_DEF + | ahp->ah_staId1Defaults + ); + ar5212SetOperatingMode(ah, opmode); + + /* Set Venice BSSID mask according to current state */ + OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask)); + OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4)); + + /* Restore previous led state */ + if (AR_SREV_HOWL(ah)) + OS_REG_WRITE(ah, AR_MAC_LED, + AR_MAC_LED_ASSOC_ACTIVE | AR_CFG_SCLK_32KHZ); + else + OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) | + saveLedState); + + /* Start TSF2 for generic timer 8-15 */ +#ifdef NOTYET + if (AR_SREV_KIWI(ah)) + ar5416StartTsf2(ah); +#endif + + /* + * Enable Bluetooth Coexistence if it's enabled. + */ + if (AH5416(ah)->ah_btCoexConfigType != HAL_BT_COEX_CFG_NONE) + ar5416InitBTCoex(ah); + + /* Restore previous antenna */ + OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); + + /* then our BSSID and associate id */ + OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid)); + OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) | + (ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S); + + /* Restore bmiss rssi & count thresholds */ + OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr); + + OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */ + + /* Restore bmiss rssi & count thresholds */ + OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg); + + if (!ar5212SetChannel(ah, chan)) + FAIL(HAL_EIO); + + OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); + + /* Set 1:1 QCU to DCU mapping for all queues */ + for (i = 0; i < AR_NUM_DCU; i++) + OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); + + ahp->ah_intrTxqs = 0; + for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++) + ah->ah_resetTxQueue(ah, i); + + ar5416InitIMR(ah, opmode); + ar5416SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1); + ar5416InitQoS(ah); + /* This may override the AR_DIAG_SW register */ + ar5416InitUserSettings(ah); + + /* XXX this won't work for AR9287! */ + if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) { + ar5416SetIFSTiming(ah, chan); +#if 0 + /* + * AR5413? + * Force window_length for 1/2 and 1/4 rate channels, + * the ini file sets this to zero otherwise. + */ + OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, + AR_PHY_FRAME_CTL_WINLEN, 3); + } +#endif + } + + if (AR_SREV_KIWI_13_OR_LATER(ah)) { + /* + * Enable ASYNC FIFO + * + * If Async FIFO is enabled, the following counters change + * as MAC now runs at 117 Mhz instead of 88/44MHz when + * async FIFO is disabled. + * + * Overwrite the delay/timeouts initialized in ProcessIni() + * above. + */ + OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, + AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR); + OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, + AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR); + OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, + AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR); + + OS_REG_WRITE(ah, AR_TIME_OUT, + AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR); + OS_REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR); + + OS_REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER, + AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768); + OS_REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN, + AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL); + } + + if (AR_SREV_KIWI_13_OR_LATER(ah)) { + /* Enable AGGWEP to accelerate encryption engine */ + OS_REG_SET_BIT(ah, AR_PCU_MISC_MODE2, + AR_PCU_MISC_MODE2_ENABLE_AGGWEP); + } + + /* + * disable seq number generation in hw + */ + OS_REG_WRITE(ah, AR_STA_ID1, + OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM); + + ar5416InitDMA(ah); + + /* + * program OBS bus to see MAC interrupts + */ + OS_REG_WRITE(ah, AR_OBS, 8); + + /* + * Disable the "general" TX/RX mitigation timers. + */ + OS_REG_WRITE(ah, AR_MIRT, 0); + +#ifdef AH_AR5416_INTERRUPT_MITIGATION + /* + * This initialises the RX interrupt mitigation timers. + * + * The mitigation timers begin at idle and are triggered + * upon the RXOK of a single frame (or sub-frame, for A-MPDU.) + * Then, the RX mitigation interrupt will fire: + * + * + 250uS after the last RX'ed frame, or + * + 700uS after the first RX'ed frame + * + * Thus, the LAST field dictates the extra latency + * induced by the RX mitigation method and the FIRST + * field dictates how long to delay before firing an + * RX mitigation interrupt. + * + * Please note this only seems to be for RXOK frames; + * not CRC or PHY error frames. + * + */ + OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 250); + OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 700); +#endif + ar5416InitBB(ah, chan); + + /* Setup compression registers */ + ar5212SetCompRegs(ah); /* XXX not needed? */ + + /* + * 5416 baseband will check the per rate power table + * and select the lower of the two + */ + ackTpcPow = 63; + ctsTpcPow = 63; + chirpTpcPow = 63; + powerVal = SM(ackTpcPow, AR_TPC_ACK) | + SM(ctsTpcPow, AR_TPC_CTS) | + SM(chirpTpcPow, AR_TPC_CHIRP); + OS_REG_WRITE(ah, AR_TPC, powerVal); + + if (!ar5416InitCal(ah, chan)) + FAIL(HAL_ESELFTEST); + + ar5416RestoreChainMask(ah); + + AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */ + + if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan)) + chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT; + + if (AR_SREV_HOWL(ah)) { + /* + * Enable the MBSSID block-ack fix for HOWL. + * This feature is only supported on Howl 1.4, but it is safe to + * set bit 22 of STA_ID1 on other Howl revisions (1.1, 1.2, 1.3), + * since bit 22 is unused in those Howl revisions. + */ + unsigned int reg; + reg = (OS_REG_READ(ah, AR_STA_ID1) | (1<<22)); + OS_REG_WRITE(ah,AR_STA_ID1, reg); + ath_hal_printf(ah, "MBSSID Set bit 22 of AR_STA_ID 0x%x\n", reg); + } + + HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__); + + OS_MARK(ah, AH_MARK_RESET_DONE, 0); + + return AH_TRUE; +bad: + OS_MARK(ah, AH_MARK_RESET_DONE, ecode); + if (status != AH_NULL) + *status = ecode; + return AH_FALSE; +#undef FAIL +#undef N +} + +#if 0 +/* + * This channel change evaluates whether the selected hardware can + * perform a synthesizer-only channel change (no reset). If the + * TX is not stopped, or the RFBus cannot be granted in the given + * time, the function returns false as a reset is necessary + */ +HAL_BOOL +ar5416ChannelChange(struct ath_hal *ah, const structu ieee80211_channel *chan) +{ + uint32_t ulCount; + uint32_t data, synthDelay, qnum; + uint16_t rfXpdGain[4]; + struct ath_hal_5212 *ahp = AH5212(ah); + HAL_CHANNEL_INTERNAL *ichan; + + /* + * Map public channel to private. + */ + ichan = ath_hal_checkchannel(ah, chan); + + /* TX must be stopped or RF Bus grant will not work */ + for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) { + if (ar5212NumTxPending(ah, qnum)) { + HALDEBUG(ah, HAL_DEBUG_ANY, + "%s: frames pending on queue %d\n", __func__, qnum); + return AH_FALSE; + } + } + + /* + * Kill last Baseband Rx Frame - Request analog bus grant + */ + OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST); + if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) { + HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n", + __func__); + return AH_FALSE; + } + + ar5416Set11nRegs(ah, chan); /* NB: setup 5416-specific regs */ + + /* Change the synth */ + if (!ar5212SetChannel(ah, chan)) + return AH_FALSE; + + /* Setup the transmit power values. */ + if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) { + HALDEBUG(ah, HAL_DEBUG_ANY, + "%s: error init'ing transmit power\n", __func__); + return AH_FALSE; + } + + /* + * Wait for the frequency synth to settle (synth goes on + * via PHY_ACTIVE_EN). Read the phy active delay register. + * Value is in 100ns increments. + */ + data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; + if (IS_CHAN_CCK(ichan)) { + synthDelay = (4 * data) / 22; + } else { + synthDelay = data / 10; + } + + OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY); + + /* Release the RFBus Grant */ + OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0); + + /* Write delta slope for OFDM enabled modes (A, G, Turbo) */ + if (IEEE80211_IS_CHAN_OFDM(ichan)|| IEEE80211_IS_CHAN_HT(chan)) { + HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3); + ar5212SetSpurMitigation(ah, chan); + ar5416SetDeltaSlope(ah, chan); + } + + /* XXX spur mitigation for Melin */ + + if (!IEEE80211_IS_CHAN_DFS(chan)) + chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT; + + ichan->channel_time = 0; + ichan->tsf_last = ar5416GetTsf64(ah); + ar5212TxEnable(ah, AH_TRUE); + return AH_TRUE; +} +#endif + +static void +ar5416InitDMA(struct ath_hal *ah) +{ + struct ath_hal_5212 *ahp = AH5212(ah); + + /* + * set AHB_MODE not to do cacheline prefetches + */ + OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN); + + /* + * let mac dma reads be in 128 byte chunks + */ + OS_REG_WRITE(ah, AR_TXCFG, + (OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B); + + /* + * let mac dma writes be in 128 byte chunks + */ + /* + * XXX If you change this, you must change the headroom + * assigned in ah_maxTxTrigLev - see ar5416InitState(). + */ + OS_REG_WRITE(ah, AR_RXCFG, + (OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B); + + /* restore TX trigger level */ + OS_REG_WRITE(ah, AR_TXCFG, + (OS_REG_READ(ah, AR_TXCFG) &~ AR_FTRIG) | + SM(ahp->ah_txTrigLev, AR_FTRIG)); + + /* + * Setup receive FIFO threshold to hold off TX activities + */ + OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); + + /* + * reduce the number of usable entries in PCU TXBUF to avoid + * wrap around. + */ + if (AR_SREV_KITE(ah)) + /* + * For AR9285 the number of Fifos are reduced to half. + * So set the usable tx buf size also to half to + * avoid data/delimiter underruns + */ + OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE); + else + OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE); +} + +static void +ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *chan) +{ + uint32_t synthDelay; + + /* + * Wait for the frequency synth to settle (synth goes on + * via AR_PHY_ACTIVE_EN). Read the phy active delay register. + * Value is in 100ns increments. + */ + synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; + if (IEEE80211_IS_CHAN_CCK(chan)) { + synthDelay = (4 * synthDelay) / 22; + } else { + synthDelay /= 10; + } + + /* Turn on PLL on 5416 */ + HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n", + __func__, IEEE80211_IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz"); + + /* Activate the PHY (includes baseband activate and synthesizer on) */ + OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); + + /* + * If the AP starts the calibration before the base band timeout + * completes we could get rx_clear false triggering. Add an + * extra BASE_ACTIVATE_DELAY usecs to ensure this condition + * does not happen. + */ + if (IEEE80211_IS_CHAN_HALF(chan)) { + OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY); + } else if (IEEE80211_IS_CHAN_QUARTER(chan)) { + OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY); + } else { + OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY); + } +} + +static void +ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode) +{ + struct ath_hal_5212 *ahp = AH5212(ah); + + /* + * Setup interrupt handling. Note that ar5212ResetTxQueue + * manipulates the secondary IMR's as queues are enabled + * and disabled. This is done with RMW ops to insure the + * settings we make here are preserved. + */ + ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN + | AR_IMR_RXERR | AR_IMR_RXORN + | AR_IMR_BCNMISC; + +#ifdef AH_AR5416_INTERRUPT_MITIGATION + ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; +#else + ahp->ah_maskReg |= AR_IMR_RXOK; +#endif + ahp->ah_maskReg |= AR_IMR_TXOK; + + if (opmode == HAL_M_HOSTAP) + ahp->ah_maskReg |= AR_IMR_MIB; + OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg); + +#ifdef ADRIAN_NOTYET + /* This is straight from ath9k */ + if (! AR_SREV_HOWL(ah)) { + OS_REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); + OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT); + OS_REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); + } +#endif + + /* Enable bus errors that are OR'd to set the HIUERR bit */ +#if 0 + OS_REG_WRITE(ah, AR_IMR_S2, + OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST); +#endif +} + +static void +ar5416InitQoS(struct ath_hal *ah) +{ + /* QoS support */ + OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */ + OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */ + + /* Turn on NOACK Support for QoS packets */ + OS_REG_WRITE(ah, AR_NOACK, + SM(2, AR_NOACK_2BIT_VALUE) | + SM(5, AR_NOACK_BIT_OFFSET) | + SM(0, AR_NOACK_BYTE_OFFSET)); + + /* + * initialize TXOP for all TIDs + */ + OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); + OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); + OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); + OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); + OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); +} + +static void +ar5416InitUserSettings(struct ath_hal *ah) +{ + struct ath_hal_5212 *ahp = AH5212(ah); + + /* Restore user-specified settings */ + if (ahp->ah_miscMode != 0) + OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE) + | ahp->ah_miscMode); + if (ahp->ah_sifstime != (u_int) -1) + ar5212SetSifsTime(ah, ahp->ah_sifstime); + if (ahp->ah_slottime != (u_int) -1) + ar5212SetSlotTime(ah, ahp->ah_slottime); + if (ahp->ah_acktimeout != (u_int) -1) + ar5212SetAckTimeout(ah, ahp->ah_acktimeout); + if (ahp->ah_ctstimeout != (u_int) -1) + ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout); + if (AH_PRIVATE(ah)->ah_diagreg != 0) + OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg); + if (AH5416(ah)->ah_globaltxtimeout != (u_int) -1) + ar5416SetGlobalTxTimeout(ah, AH5416(ah)->ah_globaltxtimeout); +} + +static void +ar5416SetRfMode(struct ath_hal *ah, const struct ieee80211_channel *chan) +{ + uint32_t rfMode; + + if (chan == AH_NULL) + return; + + /* treat channel B as channel G , no B mode suport in owl */ + rfMode = IEEE80211_IS_CHAN_CCK(chan) ? + AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM; + + if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) { + /* phy mode bits for 5GHz channels require Fast Clock */ + rfMode |= AR_PHY_MODE_DYNAMIC + | AR_PHY_MODE_DYN_CCK_DISABLE; + } else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) { + rfMode |= IEEE80211_IS_CHAN_5GHZ(chan) ? + AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ; + } + + OS_REG_WRITE(ah, AR_PHY_MODE, rfMode); +} + +/* + * Places the hardware into reset and then pulls it out of reset + */ +HAL_BOOL +ar5416ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan, + HAL_RESET_TYPE resetType) +{ + OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0); + /* + * Warm reset is optimistic for open-loop TX power control. + */ + if (AR_SREV_MERLIN(ah) && + ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) { + if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) + return AH_FALSE; + } else if (ah->ah_config.ah_force_full_reset) { + if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) + return AH_FALSE; + } else if ((resetType == HAL_RESET_FORCE_COLD) || + (resetType == HAL_RESET_BBPANIC)) { + HALDEBUG(ah, HAL_DEBUG_RESET, + "%s: full reset; resetType=%d\n", + __func__, resetType); + if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) + return AH_FALSE; + } else { + if (!ar5416SetResetReg(ah, HAL_RESET_WARM)) + return AH_FALSE; + } + + /* Bring out of sleep mode (AGAIN) */ + if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) + return AH_FALSE; + +#ifdef notyet + ahp->ah_chipFullSleep = AH_FALSE; +#endif + + AH5416(ah)->ah_initPLL(ah, chan); + + /* + * Perform warm reset before the mode/PLL/turbo registers + * are changed in order to deactivate the radio. Mode changes + * with an active radio can result in corrupted shifts to the + * radio device. + */ + ar5416SetRfMode(ah, chan); + + return AH_TRUE; +} + +/* + * Delta slope coefficient computation. + * Required for OFDM operation. + */ +static void +ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled, + uint32_t *coef_mantissa, uint32_t *coef_exponent) +{ +#define COEF_SCALE_S 24 + uint32_t coef_exp, coef_man; + /* + * ALGO -> coef_exp = 14-floor(log2(coef)); + * floor(log2(x)) is the highest set bit position + */ + for (coef_exp = 31; coef_exp > 0; coef_exp--) + if ((coef_scaled >> coef_exp) & 0x1) + break; + /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */ + HALASSERT(coef_exp); + coef_exp = 14 - (coef_exp - COEF_SCALE_S); + + /* + * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5); + * The coefficient is already shifted up for scaling + */ + coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); + + *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); + *coef_exponent = coef_exp - 16; + +#undef COEF_SCALE_S +} + +void +ar5416SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan) +{ +#define INIT_CLOCKMHZSCALED 0x64000000 + uint32_t coef_scaled, ds_coef_exp, ds_coef_man; + uint32_t clockMhzScaled; + + CHAN_CENTERS centers; + + /* half and quarter rate can divide the scaled clock by 2 or 4 respectively */ + /* scale for selected channel bandwidth */ + clockMhzScaled = INIT_CLOCKMHZSCALED; + if (IEEE80211_IS_CHAN_TURBO(chan)) + clockMhzScaled <<= 1; + else if (IEEE80211_IS_CHAN_HALF(chan)) + clockMhzScaled >>= 1; + else if (IEEE80211_IS_CHAN_QUARTER(chan)) + clockMhzScaled >>= 2; + + /* + * ALGO -> coef = 1e8/fcarrier*fclock/40; + * scaled coef to provide precision for this floating calculation + */ + ar5416GetChannelCenters(ah, chan, ¢ers); + coef_scaled = clockMhzScaled / centers.synth_center; + + ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); + + OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3, + AR_PHY_TIMING3_DSC_MAN, ds_coef_man); + OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3, + AR_PHY_TIMING3_DSC_EXP, ds_coef_exp); + + /* + * For Short GI, + * scaled coeff is 9/10 that of normal coeff + */ + coef_scaled = (9 * coef_scaled)/10; + + ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); + + /* for short gi */ + OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI, + AR_PHY_HALFGI_DSC_MAN, ds_coef_man); + OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI, + AR_PHY_HALFGI_DSC_EXP, ds_coef_exp); +#undef INIT_CLOCKMHZSCALED +} + +/* + * Set a limit on the overall output power. Used for dynamic + * transmit power control and the like. + * + * NB: limit is in units of 0.5 dbM. + */ +HAL_BOOL +ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit) +{ + uint16_t dummyXpdGains[2]; + + AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER); + return ah->ah_setTxPower(ah, AH_PRIVATE(ah)->ah_curchan, + dummyXpdGains); +} + +HAL_BOOL +ar5416GetChipPowerLimits(struct ath_hal *ah, + struct ieee80211_channel *chan) +{ + struct ath_hal_5212 *ahp = AH5212(ah); + int16_t minPower, maxPower; + + /* + * Get Pier table max and min powers. + */ + if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) { + /* NB: rf code returns 1/4 dBm units, convert */ + chan->ic_maxpower = maxPower / 2; + chan->ic_minpower = minPower / 2; + } else { + HALDEBUG(ah, HAL_DEBUG_ANY, + "%s: no min/max power for %u/0x%x\n", + __func__, chan->ic_freq, chan->ic_flags); + chan->ic_maxpower = AR5416_MAX_RATE_POWER; + chan->ic_minpower = 0; + } + HALDEBUG(ah, HAL_DEBUG_RESET, + "Chan %d: MaxPow = %d MinPow = %d\n", + chan->ic_freq, chan->ic_maxpower, chan->ic_minpower); + return AH_TRUE; +} + +/************************************************************** + * ar5416WriteTxPowerRateRegisters + * + * Write the TX power rate registers from the raw values given + * in ratesArray[]. + * + * The CCK and HT40 rate registers are only written if needed. + * HT20 and 11g/11a OFDM rate registers are always written. + * + * The values written are raw values which should be written + * to the registers - so it's up to the caller to pre-adjust + * them (eg CCK power offset value, or Merlin TX power offset, + * etc.) + */ +void +ar5416WriteTxPowerRateRegisters(struct ath_hal *ah, + const struct ieee80211_channel *chan, const int16_t ratesArray[]) +{ +#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s)) + + /* Write the OFDM power per rate set */ + OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, + POW_SM(ratesArray[rate18mb], 24) + | POW_SM(ratesArray[rate12mb], 16) + | POW_SM(ratesArray[rate9mb], 8) + | POW_SM(ratesArray[rate6mb], 0) + ); + OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, + POW_SM(ratesArray[rate54mb], 24) + | POW_SM(ratesArray[rate48mb], 16) + | POW_SM(ratesArray[rate36mb], 8) + | POW_SM(ratesArray[rate24mb], 0) + ); + + if (IEEE80211_IS_CHAN_2GHZ(chan)) { + /* Write the CCK power per rate set */ + OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, + POW_SM(ratesArray[rate2s], 24) + | POW_SM(ratesArray[rate2l], 16) + | POW_SM(ratesArray[rateXr], 8) /* XR target power */ + | POW_SM(ratesArray[rate1l], 0) + ); + OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, + POW_SM(ratesArray[rate11s], 24) + | POW_SM(ratesArray[rate11l], 16) + | POW_SM(ratesArray[rate5_5s], 8) + | POW_SM(ratesArray[rate5_5l], 0) + ); + HALDEBUG(ah, HAL_DEBUG_RESET, + "%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n", + __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3), + OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4)); + } + + /* Write the HT20 power per rate set */ + OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5, + POW_SM(ratesArray[rateHt20_3], 24) + | POW_SM(ratesArray[rateHt20_2], 16) + | POW_SM(ratesArray[rateHt20_1], 8) + | POW_SM(ratesArray[rateHt20_0], 0) + ); + OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6, + POW_SM(ratesArray[rateHt20_7], 24) + | POW_SM(ratesArray[rateHt20_6], 16) + | POW_SM(ratesArray[rateHt20_5], 8) + | POW_SM(ratesArray[rateHt20_4], 0) + ); + + if (IEEE80211_IS_CHAN_HT40(chan)) { + /* Write the HT40 power per rate set */ + OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7, + POW_SM(ratesArray[rateHt40_3], 24) + | POW_SM(ratesArray[rateHt40_2], 16) + | POW_SM(ratesArray[rateHt40_1], 8) + | POW_SM(ratesArray[rateHt40_0], 0) + ); + OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8, + POW_SM(ratesArray[rateHt40_7], 24) + | POW_SM(ratesArray[rateHt40_6], 16) + | POW_SM(ratesArray[rateHt40_5], 8) + | POW_SM(ratesArray[rateHt40_4], 0) + ); + /* Write the Dup/Ext 40 power per rate set */ + OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, + POW_SM(ratesArray[rateExtOfdm], 24) + | POW_SM(ratesArray[rateExtCck], 16) + | POW_SM(ratesArray[rateDupOfdm], 8) + | POW_SM(ratesArray[rateDupCck], 0) + ); + } + + /* + * Set max power to 30 dBm and, optionally, + * enable TPC in tx descriptors. + */ + OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER | + (AH5212(ah)->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0)); +#undef POW_SM +} + +/************************************************************** + * ar5416SetTransmitPower + * + * Set the transmit power in the baseband for the given + * operating channel and mode. + */ +HAL_BOOL +ar5416SetTransmitPower(struct ath_hal *ah, + const struct ieee80211_channel *chan, uint16_t *rfXpdGain) +{ +#define N(a) (sizeof (a) / sizeof (a[0])) +#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s)) + + MODAL_EEP_HEADER *pModal; + struct ath_hal_5212 *ahp = AH5212(ah); + int16_t txPowerIndexOffset = 0; + int i; + + uint16_t cfgCtl; + uint16_t powerLimit; + uint16_t twiceAntennaReduction; + uint16_t twiceMaxRegulatoryPower; + int16_t maxPower; + HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom; + struct ar5416eeprom *pEepData = &ee->ee_base; + + HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1); + + /* + * Default to 2, is overridden based on the EEPROM version / value. + */ + AH5416(ah)->ah_ht40PowerIncForPdadc = 2; + + /* Setup info for the actual eeprom */ + OS_MEMZERO(AH5416(ah)->ah_ratesArray, sizeof(AH5416(ah)->ah_ratesArray)); + cfgCtl = ath_hal_getctl(ah, chan); + powerLimit = chan->ic_maxregpower * 2; + twiceAntennaReduction = chan->ic_maxantgain; + twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit); + pModal = &pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]; + HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n", + __func__,chan->ic_freq, cfgCtl ); + + if (IS_EEP_MINOR_V2(ah)) { + AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc; + } + + if (!ar5416SetPowerPerRateTable(ah, pEepData, chan, + &AH5416(ah)->ah_ratesArray[0], + cfgCtl, + twiceAntennaReduction, + twiceMaxRegulatoryPower, powerLimit)) { + HALDEBUG(ah, HAL_DEBUG_ANY, + "%s: unable to set tx power per rate table\n", __func__); + return AH_FALSE; + } + + if (!AH5416(ah)->ah_setPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) { + HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n", + __func__); + return AH_FALSE; + } + + maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb], + AH5416(ah)->ah_ratesArray[rateHt20_0]); + + if (IEEE80211_IS_CHAN_2GHZ(chan)) { + maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rate1l]); + } + + if (IEEE80211_IS_CHAN_HT40(chan)) { + maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rateHt40_0]); + } + + ahp->ah_tx6PowerInHalfDbm = maxPower; + AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower; + ahp->ah_txPowerIndexOffset = txPowerIndexOffset; + + /* + * txPowerIndexOffset is set by the SetPowerTable() call - + * adjust the rate table (0 offset if rates EEPROM not loaded) + */ + for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) { + AH5416(ah)->ah_ratesArray[i] = + (int16_t)(txPowerIndexOffset + AH5416(ah)->ah_ratesArray[i]); + if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER) + AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER; + } + +#ifdef AH_EEPROM_DUMP + /* + * Dump the rate array whilst it represents the intended dBm*2 + * values versus what's being adjusted before being programmed + * in. Keep this in mind if you code up this function and enable + * this debugging; the values won't necessarily be what's being + * programmed into the hardware. + */ + ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray); +#endif + + /* + * Merlin and later have a power offset, so subtract + * pwr_table_offset * 2 from each value. The default + * power offset is -5 dBm - ie, a register value of 0 + * equates to a TX power of -5 dBm. + */ + if (AR_SREV_MERLIN_20_OR_LATER(ah)) { + int8_t pwr_table_offset; + + (void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET, + &pwr_table_offset); + /* Underflow power gets clamped at raw value 0 */ + /* Overflow power gets camped at AR5416_MAX_RATE_POWER */ + for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) { + /* + * + pwr_table_offset is in dBm + * + ratesArray is in 1/2 dBm + */ + AH5416(ah)->ah_ratesArray[i] -= (pwr_table_offset * 2); + if (AH5416(ah)->ah_ratesArray[i] < 0) + AH5416(ah)->ah_ratesArray[i] = 0; + else if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER) + AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER; + } + } + + /* + * Adjust rates for OLC where needed + * + * The following CCK rates need adjusting when doing 2.4ghz + * CCK transmission. + * + * + rate2s, rate2l, rate1l, rate11s, rate11l, rate5_5s, rate5_5l + * + rateExtCck, rateDupCck + * + * They're adjusted here regardless. The hardware then gets + * programmed as needed. 5GHz operation doesn't program in CCK + * rates for legacy mode but they seem to be initialised for + * HT40 regardless of channel type. + */ + if (AR_SREV_MERLIN_20_OR_LATER(ah) && + ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) { + int adj[] = { + rate2s, rate2l, rate1l, rate11s, rate11l, + rate5_5s, rate5_5l, rateExtCck, rateDupCck + }; + int cck_ofdm_delta = 2; + int i; + for (i = 0; i < N(adj); i++) { + AH5416(ah)->ah_ratesArray[adj[i]] -= cck_ofdm_delta; + if (AH5416(ah)->ah_ratesArray[adj[i]] < 0) + AH5416(ah)->ah_ratesArray[adj[i]] = 0; + } + } + + /* + * Adjust the HT40 power to meet the correct target TX power + * for 40MHz mode, based on TX power curves that are established + * for 20MHz mode. + * + * XXX handle overflow/too high power level? + */ + if (IEEE80211_IS_CHAN_HT40(chan)) { + AH5416(ah)->ah_ratesArray[rateHt40_0] += + AH5416(ah)->ah_ht40PowerIncForPdadc; + AH5416(ah)->ah_ratesArray[rateHt40_1] += + AH5416(ah)->ah_ht40PowerIncForPdadc; + AH5416(ah)->ah_ratesArray[rateHt40_2] += AH5416(ah)->ah_ht40PowerIncForPdadc; + AH5416(ah)->ah_ratesArray[rateHt40_3] += AH5416(ah)->ah_ht40PowerIncForPdadc; + AH5416(ah)->ah_ratesArray[rateHt40_4] += AH5416(ah)->ah_ht40PowerIncForPdadc; + AH5416(ah)->ah_ratesArray[rateHt40_5] += AH5416(ah)->ah_ht40PowerIncForPdadc; + AH5416(ah)->ah_ratesArray[rateHt40_6] += AH5416(ah)->ah_ht40PowerIncForPdadc; + AH5416(ah)->ah_ratesArray[rateHt40_7] += AH5416(ah)->ah_ht40PowerIncForPdadc; + } + + /* Write the TX power rate registers */ + ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray); + + /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */ + OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB, + POW_SM(pModal->pwrDecreaseFor3Chain, 6) + | POW_SM(pModal->pwrDecreaseFor2Chain, 0) + ); + return AH_TRUE; +#undef POW_SM +#undef N +} + +/* + * Exported call to check for a recent gain reading and return + * the current state of the thermal calibration gain engine. + */ +HAL_RFGAIN +ar5416GetRfgain(struct ath_hal *ah) +{ + + return (HAL_RFGAIN_INACTIVE); +} + +/* + * Places all of hardware into reset + */ +HAL_BOOL +ar5416Disable(struct ath_hal *ah) +{ + + if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) + return AH_FALSE; + if (! ar5416SetResetReg(ah, HAL_RESET_COLD)) + return AH_FALSE; + + AH5416(ah)->ah_initPLL(ah, AH_NULL); + return (AH_TRUE); +} + +/* + * Places the PHY and Radio chips into reset. A full reset + * must be called to leave this state. The PCI/MAC/PCU are + * not placed into reset as we must receive interrupt to + * re-enable the hardware. + */ +HAL_BOOL +ar5416PhyDisable(struct ath_hal *ah) +{ + + if (! ar5416SetResetReg(ah, HAL_RESET_WARM)) + return AH_FALSE; + + AH5416(ah)->ah_initPLL(ah, AH_NULL); + return (AH_TRUE); +} + +/* + * Write the given reset bit mask into the reset register + */ +HAL_BOOL +ar5416SetResetReg(struct ath_hal *ah, uint32_t type) +{ + /* + * Set force wake + */ + OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE, + AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); + + switch (type) { + case HAL_RESET_POWER_ON: + return ar5416SetResetPowerOn(ah); + case HAL_RESET_WARM: + case HAL_RESET_COLD: + return ar5416SetReset(ah, type); + default: + HALASSERT(AH_FALSE); + return AH_FALSE; + } +} + +static HAL_BOOL +ar5416SetResetPowerOn(struct ath_hal *ah) +{ + /* Power On Reset (Hard Reset) */ + + /* + * Set force wake + * + * If the MAC was running, previously calling + * reset will wake up the MAC but it may go back to sleep + * before we can start polling. + * Set force wake stops that + * This must be called before initiating a hard reset. + */ + OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE, + AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); + + /* + * PowerOn reset can be used in open loop power control or failure recovery. + * If we do RTC reset while DMA is still running, hardware may corrupt memory. + * Therefore, we need to reset AHB first to stop DMA. + */ + if (! AR_SREV_HOWL(ah)) + OS_REG_WRITE(ah, AR_RC, AR_RC_AHB); + /* + * RTC reset and clear + */ + OS_REG_WRITE(ah, AR_RTC_RESET, 0); + OS_DELAY(20); + + if (! AR_SREV_HOWL(ah)) + OS_REG_WRITE(ah, AR_RC, 0); + + OS_REG_WRITE(ah, AR_RTC_RESET, 1); + + /* + * Poll till RTC is ON + */ + if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) { + HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__); + return AH_FALSE; + } + + return ar5416SetReset(ah, HAL_RESET_COLD); +} + +static HAL_BOOL +ar5416SetReset(struct ath_hal *ah, int type) +{ + uint32_t tmpReg, mask; + uint32_t rst_flags; + +#ifdef AH_SUPPORT_AR9130 /* Because of the AR9130 specific registers */ + if (AR_SREV_HOWL(ah)) { + HALDEBUG(ah, HAL_DEBUG_ANY, "[ath] HOWL: Fiddling with derived clk!\n"); + uint32_t val = OS_REG_READ(ah, AR_RTC_DERIVED_CLK); + val &= ~AR_RTC_DERIVED_CLK_PERIOD; + val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD); + OS_REG_WRITE(ah, AR_RTC_DERIVED_CLK, val); + (void) OS_REG_READ(ah, AR_RTC_DERIVED_CLK); + } +#endif /* AH_SUPPORT_AR9130 */ + + /* + * Force wake + */ + OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE, + AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); + +#ifdef AH_SUPPORT_AR9130 + if (AR_SREV_HOWL(ah)) { + rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | + AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; + } else { +#endif /* AH_SUPPORT_AR9130 */ + /* + * Reset AHB + * + * (In case the last interrupt source was a bus timeout.) + * XXX TODO: this is not the way to do it! It should be recorded + * XXX by the interrupt handler and passed _into_ the + * XXX reset path routine so this occurs. + */ + tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE); + if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) { + OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); + OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF); + } else { + OS_REG_WRITE(ah, AR_RC, AR_RC_AHB); + } + rst_flags = AR_RTC_RC_MAC_WARM; + if (type == HAL_RESET_COLD) + rst_flags |= AR_RTC_RC_MAC_COLD; +#ifdef AH_SUPPORT_AR9130 + } +#endif /* AH_SUPPORT_AR9130 */ + + OS_REG_WRITE(ah, AR_RTC_RC, rst_flags); + + if (AR_SREV_HOWL(ah)) + OS_DELAY(10000); + else + OS_DELAY(100); + + /* + * Clear resets and force wakeup + */ + OS_REG_WRITE(ah, AR_RTC_RC, 0); + if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) { + HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__); + return AH_FALSE; + } + + /* Clear AHB reset */ + if (! AR_SREV_HOWL(ah)) + OS_REG_WRITE(ah, AR_RC, 0); + + if (AR_SREV_HOWL(ah)) + OS_DELAY(50); + + if (AR_SREV_HOWL(ah)) { + uint32_t mask; + mask = OS_REG_READ(ah, AR_CFG); + if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { + HALDEBUG(ah, HAL_DEBUG_RESET, + "CFG Byte Swap Set 0x%x\n", mask); + } else { + mask = + INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; + OS_REG_WRITE(ah, AR_CFG, mask); + HALDEBUG(ah, HAL_DEBUG_RESET, + "Setting CFG 0x%x\n", OS_REG_READ(ah, AR_CFG)); + } + } else { + if (type == HAL_RESET_COLD) { + if (isBigEndian()) { + /* + * Set CFG, little-endian for descriptor accesses. + */ + mask = INIT_CONFIG_STATUS | AR_CFG_SWRD; +#ifndef AH_NEED_DESC_SWAP + mask |= AR_CFG_SWTD; +#endif + HALDEBUG(ah, HAL_DEBUG_RESET, + "%s Applying descriptor swap\n", __func__); + OS_REG_WRITE(ah, AR_CFG, mask); + } else + OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS); + } + } + + return AH_TRUE; +} + +void +ar5416InitChainMasks(struct ath_hal *ah) +{ + int rx_chainmask = AH5416(ah)->ah_rx_chainmask; + + /* Flip this for this chainmask regardless of chip */ + if (rx_chainmask == 0x5) + OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); + + /* + * Workaround for OWL 1.0 calibration failure; enable multi-chain; + * then set true mask after calibration. + */ + if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) { + OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7); + OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7); + } else { + OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask); + OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask); + } + OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask); + + if (AH5416(ah)->ah_tx_chainmask == 0x5) + OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); + + if (AR_SREV_HOWL(ah)) { + OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP, + OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001); + } +} + +/* + * Work-around for Owl 1.0 calibration failure. + * + * ar5416InitChainMasks sets the RX chainmask to 0x7 if it's Owl 1.0 + * due to init calibration failures. ar5416RestoreChainMask restores + * these registers to the correct setting. + */ +void +ar5416RestoreChainMask(struct ath_hal *ah) +{ + int rx_chainmask = AH5416(ah)->ah_rx_chainmask; + + if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) { + OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask); + OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask); + } +} + +void +ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan) +{ + uint32_t pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2; + if (chan != AH_NULL) { + if (IEEE80211_IS_CHAN_HALF(chan)) + pll |= SM(0x1, AR_RTC_PLL_CLKSEL); + else if (IEEE80211_IS_CHAN_QUARTER(chan)) + pll |= SM(0x2, AR_RTC_PLL_CLKSEL); + + if (IEEE80211_IS_CHAN_5GHZ(chan)) + pll |= SM(0xa, AR_RTC_PLL_DIV); + else + pll |= SM(0xb, AR_RTC_PLL_DIV); + } else + pll |= SM(0xb, AR_RTC_PLL_DIV); + + OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); + + /* TODO: + * For multi-band owl, switch between bands by reiniting the PLL. + */ + + OS_DELAY(RTC_PLL_SETTLE_DELAY); + + OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK); +} + +static void +ar5416SetDefGainValues(struct ath_hal *ah, + const MODAL_EEP_HEADER *pModal, + const struct ar5416eeprom *eep, + uint8_t txRxAttenLocal, int regChainOffset, int i) +{ + + if (IS_EEP_MINOR_V3(ah)) { + txRxAttenLocal = pModal->txRxAttenCh[i]; + + if (AR_SREV_MERLIN_10_OR_LATER(ah)) { + OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, + AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, + pModal->bswMargin[i]); + OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, + AR_PHY_GAIN_2GHZ_XATTEN1_DB, + pModal->bswAtten[i]); + OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, + AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, + pModal->xatten2Margin[i]); + OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, + AR_PHY_GAIN_2GHZ_XATTEN2_DB, + pModal->xatten2Db[i]); + } else { + OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, + AR_PHY_GAIN_2GHZ_BSW_MARGIN, + pModal->bswMargin[i]); + OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, + AR_PHY_GAIN_2GHZ_BSW_ATTEN, + pModal->bswAtten[i]); + } + } + + if (AR_SREV_MERLIN_10_OR_LATER(ah)) { + OS_REG_RMW_FIELD(ah, + AR_PHY_RXGAIN + regChainOffset, + AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); + OS_REG_RMW_FIELD(ah, + AR_PHY_RXGAIN + regChainOffset, + AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]); + } else { + OS_REG_RMW_FIELD(ah, + AR_PHY_RXGAIN + regChainOffset, + AR_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); + OS_REG_RMW_FIELD(ah, + AR_PHY_GAIN_2GHZ + regChainOffset, + AR_PHY_GAIN_2GHZ_RXTX_MARGIN, pModal->rxTxMarginCh[i]); + } +} + +/* + * Get the register chain offset for the given chain. + * + * Take into account the register chain swapping with AR5416 v2.0. + * + * XXX make sure that the reg chain swapping is only done for + * XXX AR5416 v2.0 or greater, and not later chips? + */ +int +ar5416GetRegChainOffset(struct ath_hal *ah, int i) +{ + int regChainOffset; + + if (AR_SREV_5416_V20_OR_LATER(ah) && + (AH5416(ah)->ah_rx_chainmask == 0x5 || + AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) { + /* Regs are swapped from chain 2 to 1 for 5416 2_0 with + * only chains 0 and 2 populated + */ + regChainOffset = (i == 1) ? 0x2000 : 0x1000; + } else { + regChainOffset = i * 0x1000; + } + + return regChainOffset; +} + +/* + * Read EEPROM header info and program the device for correct operation + * given the channel value. + */ +HAL_BOOL +ar5416SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan) +{ + const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom; + const struct ar5416eeprom *eep = &ee->ee_base; + const MODAL_EEP_HEADER *pModal; + int i, regChainOffset; + uint8_t txRxAttenLocal; /* workaround for eeprom versions <= 14.2 */ + + HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1); + pModal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]; + + /* NB: workaround for eeprom versions <= 14.2 */ + txRxAttenLocal = IEEE80211_IS_CHAN_2GHZ(chan) ? 23 : 44; + + OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon); + for (i = 0; i < AR5416_MAX_CHAINS; i++) { + if (AR_SREV_MERLIN(ah)) { + if (i >= 2) break; + } + regChainOffset = ar5416GetRegChainOffset(ah, i); + + OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]); + + OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset, + (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) & + ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) | + SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) | + SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF)); + + /* + * Large signal upgrade, + * If 14.3 or later EEPROM, use + * txRxAttenLocal = pModal->txRxAttenCh[i] + * else txRxAttenLocal is fixed value above. + */ + + if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) + ar5416SetDefGainValues(ah, pModal, eep, txRxAttenLocal, regChainOffset, i); + } + + if (AR_SREV_MERLIN_10_OR_LATER(ah)) { + if (IEEE80211_IS_CHAN_2GHZ(chan)) { + OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_OB, pModal->ob); + OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_DB, pModal->db); + OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_OB, pModal->ob_ch1); + OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_DB, pModal->db_ch1); + } else { + OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_OB5, pModal->ob); + OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_DB5, pModal->db); + OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_OB5, pModal->ob_ch1); + OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_DB5, pModal->db_ch1); + } + OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl); + OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_LOCALBIAS, + !!(pModal->flagBits & AR5416_EEP_FLAG_LOCALBIAS)); + OS_A_REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG, + !!(pModal->flagBits & AR5416_EEP_FLAG_FORCEXPAON)); + } + + OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling); + OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize); + + if (! AR_SREV_MERLIN_10_OR_LATER(ah)) + OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize); + + OS_REG_WRITE(ah, AR_PHY_RF_CTL4, + SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) + | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) + | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) + | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON)); + + OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, + pModal->txEndToRxOn); + + if (AR_SREV_MERLIN_10_OR_LATER(ah)) { + OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62, + pModal->thresh62); + OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62, + pModal->thresh62); + } else { + OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62, + pModal->thresh62); + OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CCA_THRESH62, + pModal->thresh62); + } + + /* Minor Version Specific application */ + if (IS_EEP_MINOR_V2(ah)) { + OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START, + pModal->txFrameToDataStart); + OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON, + pModal->txFrameToPaOn); + } + + if (IS_EEP_MINOR_V3(ah) && IEEE80211_IS_CHAN_HT40(chan)) + /* Overwrite switch settling with HT40 value */ + OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, + pModal->swSettleHt40); + + if (AR_SREV_MERLIN_20_OR_LATER(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_19) + OS_REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, pModal->miscBits); + + if (AR_SREV_MERLIN_20(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_20) { + if (IEEE80211_IS_CHAN_2GHZ(chan)) + OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, + eep->baseEepHeader.dacLpMode); + else if (eep->baseEepHeader.dacHiPwrMode_5G) + OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0); + else + OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, + eep->baseEepHeader.dacLpMode); + + OS_DELAY(100); + + OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP, + pModal->miscBits >> 2); + OS_REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_DESIRED_SCALE_CCK, + eep->baseEepHeader.desiredScaleCCK); + } + + return (AH_TRUE); +} + +/* + * Helper functions common for AP/CB/XB + */ + +/* + * Set the target power array "ratesArray" from the + * given set of target powers. + * + * This is used by the various chipset/EEPROM TX power + * setup routines. + */ +void +ar5416SetRatesArrayFromTargetPower(struct ath_hal *ah, + const struct ieee80211_channel *chan, + int16_t *ratesArray, + const CAL_TARGET_POWER_LEG *targetPowerCck, + const CAL_TARGET_POWER_LEG *targetPowerCckExt, + const CAL_TARGET_POWER_LEG *targetPowerOfdm, + const CAL_TARGET_POWER_LEG *targetPowerOfdmExt, + const CAL_TARGET_POWER_HT *targetPowerHt20, + const CAL_TARGET_POWER_HT *targetPowerHt40) +{ +#define N(a) (sizeof(a)/sizeof(a[0])) + int i; + + /* Blank the rates array, to be consistent */ + for (i = 0; i < Ar5416RateSize; i++) + ratesArray[i] = 0; + + /* Set rates Array from collected data */ + ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = + ratesArray[rate18mb] = ratesArray[rate24mb] = + targetPowerOfdm->tPow2x[0]; + ratesArray[rate36mb] = targetPowerOfdm->tPow2x[1]; + ratesArray[rate48mb] = targetPowerOfdm->tPow2x[2]; + ratesArray[rate54mb] = targetPowerOfdm->tPow2x[3]; + ratesArray[rateXr] = targetPowerOfdm->tPow2x[0]; + + for (i = 0; i < N(targetPowerHt20->tPow2x); i++) { + ratesArray[rateHt20_0 + i] = targetPowerHt20->tPow2x[i]; + } + + if (IEEE80211_IS_CHAN_2GHZ(chan)) { + ratesArray[rate1l] = targetPowerCck->tPow2x[0]; + ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck->tPow2x[1]; + ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck->tPow2x[2]; + ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck->tPow2x[3]; + } + if (IEEE80211_IS_CHAN_HT40(chan)) { + for (i = 0; i < N(targetPowerHt40->tPow2x); i++) { + ratesArray[rateHt40_0 + i] = targetPowerHt40->tPow2x[i]; + } + ratesArray[rateDupOfdm] = targetPowerHt40->tPow2x[0]; + ratesArray[rateDupCck] = targetPowerHt40->tPow2x[0]; + ratesArray[rateExtOfdm] = targetPowerOfdmExt->tPow2x[0]; + if (IEEE80211_IS_CHAN_2GHZ(chan)) { + ratesArray[rateExtCck] = targetPowerCckExt->tPow2x[0]; + } + } +#undef N +} + +/* + * ar5416SetPowerPerRateTable + * + * Sets the transmit power in the baseband for the given + * operating channel and mode. + */ +static HAL_BOOL +ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData, + const struct ieee80211_channel *chan, + int16_t *ratesArray, uint16_t cfgCtl, + uint16_t AntennaReduction, + uint16_t twiceMaxRegulatoryPower, + uint16_t powerLimit) +{ +#define N(a) (sizeof(a)/sizeof(a[0])) +/* Local defines to distinguish between extension and control CTL's */ +#define EXT_ADDITIVE (0x8000) +#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE) +#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE) +#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE) + + uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER; + int i; + int16_t twiceLargestAntenna; + CAL_CTL_DATA *rep; + CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}}; + CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}}; + CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}}; + int16_t scaledPower, minCtlPower; + +#define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */ +#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */ + static const uint16_t ctlModesFor11a[] = { + CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 + }; + static const uint16_t ctlModesFor11g[] = { + CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40 + }; + const uint16_t *pCtlMode; + uint16_t numCtlModes, ctlMode, freq; + CHAN_CENTERS centers; + + ar5416GetChannelCenters(ah, chan, ¢ers); + + /* Compute TxPower reduction due to Antenna Gain */ + + twiceLargestAntenna = AH_MAX(AH_MAX( + pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0], + pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]), + pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]); +#if 0 + /* Turn it back on if we need to calculate per chain antenna gain reduction */ + /* Use only if the expected gain > 6dbi */ + /* Chain 0 is always used */ + twiceLargestAntenna = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0]; + + /* Look at antenna gains of Chains 1 and 2 if the TX mask is set */ + if (ahp->ah_tx_chainmask & 0x2) + twiceLargestAntenna = AH_MAX(twiceLargestAntenna, + pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]); + + if (ahp->ah_tx_chainmask & 0x4) + twiceLargestAntenna = AH_MAX(twiceLargestAntenna, + pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]); +#endif + twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0); + + /* XXX setup for 5212 use (really used?) */ + ath_hal_eepromSet(ah, + IEEE80211_IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5, + twiceLargestAntenna); + + /* + * scaledPower is the minimum of the user input power level and + * the regulatory allowed power level + */ + scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna); + + /* Reduce scaled Power by number of chains active to get to per chain tx power level */ + /* TODO: better value than these? */ + switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) { + case 1: + break; + case 2: + scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain; + break; + case 3: + scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain; + break; + default: + return AH_FALSE; /* Unsupported number of chains */ + } + + scaledPower = AH_MAX(0, scaledPower); + + /* Get target powers from EEPROM - our baseline for TX Power */ + if (IEEE80211_IS_CHAN_2GHZ(chan)) { + /* Setup for CTL modes */ + numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */ + pCtlMode = ctlModesFor11g; + + ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck, + AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE); + ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G, + AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE); + ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20, + AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE); + + if (IEEE80211_IS_CHAN_HT40(chan)) { + numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */ + + ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40, + AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE); + /* Get target powers for extension channels */ + ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck, + AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE); + ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G, + AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE); + } + } else { + /* Setup for CTL modes */ + numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */ + pCtlMode = ctlModesFor11a; + + ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G, + AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE); + ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT20, + AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE); + + if (IEEE80211_IS_CHAN_HT40(chan)) { + numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */ + + ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT40, + AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE); + ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G, + AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE); + } + } + + /* + * For MIMO, need to apply regulatory caps individually across dynamically + * running modes: CCK, OFDM, HT20, HT40 + * + * The outer loop walks through each possible applicable runtime mode. + * The inner loop walks through each ctlIndex entry in EEPROM. + * The ctl value is encoded as [7:4] == test group, [3:0] == test mode. + * + */ + for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { + HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) || + (pCtlMode[ctlMode] == CTL_2GHT40); + if (isHt40CtlMode) { + freq = centers.ctl_center; + } else if (pCtlMode[ctlMode] & EXT_ADDITIVE) { + freq = centers.ext_center; + } else { + freq = centers.ctl_center; + } + + /* walk through each CTL index stored in EEPROM */ + for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) { + uint16_t twiceMinEdgePower; + + /* compare test group from regulatory channel list with test mode from pCtlMode list */ + if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) || + (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == + ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) { + rep = &(pEepData->ctlData[i]); + twiceMinEdgePower = ar5416GetMaxEdgePower(freq, + rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1], + IEEE80211_IS_CHAN_2GHZ(chan)); + if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) { + /* Find the minimum of all CTL edge powers that apply to this channel */ + twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower); + } else { + /* specific */ + twiceMaxEdgePower = twiceMinEdgePower; + break; + } + } + } + minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower); + /* Apply ctl mode to correct target power set */ + switch(pCtlMode[ctlMode]) { + case CTL_11B: + for (i = 0; i < N(targetPowerCck.tPow2x); i++) { + targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower); + } + break; + case CTL_11A: + case CTL_11G: + for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) { + targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower); + } + break; + case CTL_5GHT20: + case CTL_2GHT20: + for (i = 0; i < N(targetPowerHt20.tPow2x); i++) { + targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower); + } + break; + case CTL_11B_EXT: + targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower); + break; + case CTL_11A_EXT: + case CTL_11G_EXT: + targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower); + break; + case CTL_5GHT40: + case CTL_2GHT40: + for (i = 0; i < N(targetPowerHt40.tPow2x); i++) { + targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower); + } + break; + default: + return AH_FALSE; + break; + } + } /* end ctl mode checking */ + + /* Set rates Array from collected data */ + ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray, + &targetPowerCck, + &targetPowerCckExt, + &targetPowerOfdm, + &targetPowerOfdmExt, + &targetPowerHt20, + &targetPowerHt40); + return AH_TRUE; +#undef EXT_ADDITIVE +#undef CTL_11A_EXT +#undef CTL_11G_EXT +#undef CTL_11B_EXT +#undef SUB_NUM_CTL_MODES_AT_5G_40 +#undef SUB_NUM_CTL_MODES_AT_2G_40 +#undef N +} + +/************************************************************************** + * fbin2freq + * + * Get channel value from binary representation held in eeprom + * RETURNS: the frequency in MHz + */ +static uint16_t +fbin2freq(uint8_t fbin, HAL_BOOL is2GHz) +{ + /* + * Reserved value 0xFF provides an empty definition both as + * an fbin and as a frequency - do not convert + */ + if (fbin == AR5416_BCHAN_UNUSED) { + return fbin; + } + + return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin)); +} + +/* + * ar5416GetMaxEdgePower + * + * Find the maximum conformance test limit for the given channel and CTL info + */ +uint16_t +ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz) +{ + uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER; + int i; + + /* Get the edge power */ + for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) { + /* + * If there's an exact channel match or an inband flag set + * on the lower channel use the given rdEdgePower + */ + if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) { + twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER); + break; + } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) { + if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) { + twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER); + } + /* Leave loop - no more affecting edges possible in this monotonic increasing list */ + break; + } + } + HALASSERT(twiceMaxEdgePower > 0); + return twiceMaxEdgePower; +} + +/************************************************************** + * ar5416GetTargetPowers + * + * Return the rates of target power for the given target power table + * channel, and number of channels + */ +void +ar5416GetTargetPowers(struct ath_hal *ah, const struct ieee80211_channel *chan, + CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels, + CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates, + HAL_BOOL isHt40Target) +{ + uint16_t clo, chi; + int i; + int matchIndex = -1, lowIndex = -1; + uint16_t freq; + CHAN_CENTERS centers; + + ar5416GetChannelCenters(ah, chan, ¢ers); + freq = isHt40Target ? centers.synth_center : centers.ctl_center; + + /* Copy the target powers into the temp channel list */ + if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { + matchIndex = 0; + } else { + for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { + if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { + matchIndex = i; + break; + } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) && + (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)))) + { + lowIndex = i - 1; + break; + } + } + if ((matchIndex == -1) && (lowIndex == -1)) { + HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))); + matchIndex = i - 1; + } + } + + if (matchIndex != -1) { + OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower)); + } else { + HALASSERT(lowIndex != -1); + /* + * Get the lower and upper channels, target powers, + * and interpolate between them. + */ + clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); + chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); + + for (i = 0; i < numRates; i++) { + pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi, + powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]); + } + } +} +/************************************************************** + * ar5416GetTargetPowersLeg + * + * Return the four rates of target power for the given target power table + * channel, and number of channels + */ +void +ar5416GetTargetPowersLeg(struct ath_hal *ah, + const struct ieee80211_channel *chan, + CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels, + CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates, + HAL_BOOL isExtTarget) +{ + uint16_t clo, chi; + int i; + int matchIndex = -1, lowIndex = -1; + uint16_t freq; + CHAN_CENTERS centers; + + ar5416GetChannelCenters(ah, chan, ¢ers); + freq = (isExtTarget) ? centers.ext_center :centers.ctl_center; + + /* Copy the target powers into the temp channel list */ + if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { + matchIndex = 0; + } else { + for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { + if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { + matchIndex = i; + break; + } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) && + (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)))) + { + lowIndex = i - 1; + break; + } + } + if ((matchIndex == -1) && (lowIndex == -1)) { + HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))); + matchIndex = i - 1; + } + } + + if (matchIndex != -1) { + OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower)); + } else { + HALASSERT(lowIndex != -1); + /* + * Get the lower and upper channels, target powers, + * and interpolate between them. + */ + clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); + chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); + + for (i = 0; i < numRates; i++) { + pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi, + powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]); + } + } +} + +/* + * Set the gain boundaries for the given radio chain. + * + * The gain boundaries tell the hardware at what point in the + * PDADC array to "switch over" from one PD gain setting + * to another. There's also a gain overlap between two + * PDADC array gain curves where there's valid PD values + * for 2 gain settings. + * + * The hardware uses the gain overlap and gain boundaries + * to determine which gain curve to use for the given + * target TX power. + */ +void +ar5416SetGainBoundariesClosedLoop(struct ath_hal *ah, int i, + uint16_t pdGainOverlap_t2, uint16_t gainBoundaries[]) +{ + int regChainOffset; + + regChainOffset = ar5416GetRegChainOffset(ah, i); + + HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: chain %d: gainOverlap_t2: %d," + " gainBoundaries: %d, %d, %d, %d\n", __func__, i, pdGainOverlap_t2, + gainBoundaries[0], gainBoundaries[1], gainBoundaries[2], + gainBoundaries[3]); + OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset, + SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | + SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | + SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | + SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | + SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); +} + +/* + * Get the gain values and the number of gain levels given + * in xpdMask. + * + * The EEPROM xpdMask determines which power detector gain + * levels were used during calibration. Each of these mask + * bits maps to a fixed gain level in hardware. + */ +uint16_t +ar5416GetXpdGainValues(struct ath_hal *ah, uint16_t xpdMask, + uint16_t xpdGainValues[]) +{ + int i; + uint16_t numXpdGain = 0; + + for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) { + if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) { + if (numXpdGain >= AR5416_NUM_PD_GAINS) { + HALASSERT(0); + break; + } + xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i); + numXpdGain++; + } + } + return numXpdGain; +} + +/* + * Write the detector gain and biases. + * + * There are four power detector gain levels. The xpdMask in the EEPROM + * determines which power detector gain levels have TX power calibration + * data associated with them. This function writes the number of + * PD gain levels and their values into the hardware. + * + * This is valid for all TX chains - the calibration data itself however + * will likely differ per-chain. + */ +void +ar5416WriteDetectorGainBiases(struct ath_hal *ah, uint16_t numXpdGain, + uint16_t xpdGainValues[]) +{ + HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: numXpdGain: %d," + " xpdGainValues: %d, %d, %d\n", __func__, numXpdGain, + xpdGainValues[0], xpdGainValues[1], xpdGainValues[2]); + + OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) & + ~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 | + AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) | + SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) | + SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) | + SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) | + SM(xpdGainValues[2], AR_PHY_TPCRG1_PD_GAIN_3)); +} + +/* + * Write the PDADC array to the given radio chain i. + * + * The 32 PDADC registers are written without any care about + * their contents - so if various chips treat values as "special", + * this routine will not care. + */ +void +ar5416WritePdadcValues(struct ath_hal *ah, int i, uint8_t pdadcValues[]) +{ + int regOffset, regChainOffset; + int j; + int reg32; + + regChainOffset = ar5416GetRegChainOffset(ah, i); + regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset; + + for (j = 0; j < 32; j++) { + reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0) | + ((pdadcValues[4*j + 1] & 0xFF) << 8) | + ((pdadcValues[4*j + 2] & 0xFF) << 16) | + ((pdadcValues[4*j + 3] & 0xFF) << 24) ; + OS_REG_WRITE(ah, regOffset, reg32); + HALDEBUG(ah, HAL_DEBUG_EEPROM, "PDADC: Chain %d |" + " PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d" + " Value %3d | PDADC %3d Value %3d |\n", + i, + 4*j, pdadcValues[4*j], + 4*j+1, pdadcValues[4*j + 1], + 4*j+2, pdadcValues[4*j + 2], + 4*j+3, pdadcValues[4*j + 3]); + regOffset += 4; + } +} + +/************************************************************** + * ar5416SetPowerCalTable + * + * Pull the PDADC piers from cal data and interpolate them across the given + * points as well as from the nearest pier(s) to get a power detector + * linear voltage to power level table. + */ +HAL_BOOL +ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData, + const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset) +{ + CAL_DATA_PER_FREQ *pRawDataset; + uint8_t *pCalBChans = AH_NULL; + uint16_t pdGainOverlap_t2; + static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES]; + uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK]; + uint16_t numPiers, i; + int16_t tMinCalPower; + uint16_t numXpdGain, xpdMask; + uint16_t xpdGainValues[AR5416_NUM_PD_GAINS]; + uint32_t regChainOffset; + + OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues)); + + xpdMask = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].xpdGain; + + if (IS_EEP_MINOR_V2(ah)) { + pdGainOverlap_t2 = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pdGainOverlap; + } else { + pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP)); + } + + if (IEEE80211_IS_CHAN_2GHZ(chan)) { + pCalBChans = pEepData->calFreqPier2G; + numPiers = AR5416_NUM_2G_CAL_PIERS; + } else { + pCalBChans = pEepData->calFreqPier5G; + numPiers = AR5416_NUM_5G_CAL_PIERS; + } + + /* Calculate the value of xpdgains from the xpdGain Mask */ + numXpdGain = ar5416GetXpdGainValues(ah, xpdMask, xpdGainValues); + + /* Write the detector gain biases and their number */ + ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues); + + for (i = 0; i < AR5416_MAX_CHAINS; i++) { + regChainOffset = ar5416GetRegChainOffset(ah, i); + + if (pEepData->baseEepHeader.txMask & (1 << i)) { + if (IEEE80211_IS_CHAN_2GHZ(chan)) { + pRawDataset = pEepData->calPierData2G[i]; + } else { + pRawDataset = pEepData->calPierData5G[i]; + } + + /* Fetch the gain boundaries and the PDADC values */ + ar5416GetGainBoundariesAndPdadcs(ah, chan, pRawDataset, + pCalBChans, numPiers, + pdGainOverlap_t2, + &tMinCalPower, gainBoundaries, + pdadcValues, numXpdGain); + + if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) { + ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2, + gainBoundaries); + } + + /* Write the power values into the baseband power table */ + ar5416WritePdadcValues(ah, i, pdadcValues); + } + } + *pTxPowerIndexOffset = 0; + + return AH_TRUE; +} + +/************************************************************** + * ar5416GetGainBoundariesAndPdadcs + * + * Uses the data points read from EEPROM to reconstruct the pdadc power table + * Called by ar5416SetPowerCalTable only. + */ +void +ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah, + const struct ieee80211_channel *chan, + CAL_DATA_PER_FREQ *pRawDataSet, + uint8_t * bChans, uint16_t availPiers, + uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries, + uint8_t * pPDADCValues, uint16_t numXpdGains) +{ + + int i, j, k; + int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */ + uint16_t idxL, idxR, numPiers; /* Pier indexes */ + + /* filled out Vpd table for all pdGains (chanL) */ + static uint8_t vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB]; + + /* filled out Vpd table for all pdGains (chanR) */ + static uint8_t vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB]; + + /* filled out Vpd table for all pdGains (interpolated) */ + static uint8_t vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB]; + + uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR; + uint8_t minPwrT4[AR5416_NUM_PD_GAINS]; + uint8_t maxPwrT4[AR5416_NUM_PD_GAINS]; + int16_t vpdStep; + int16_t tmpVal; + uint16_t sizeCurrVpdTable, maxIndex, tgtIndex; + HAL_BOOL match; + int16_t minDelta = 0; + CHAN_CENTERS centers; + + ar5416GetChannelCenters(ah, chan, ¢ers); + + /* Trim numPiers for the number of populated channel Piers */ + for (numPiers = 0; numPiers < availPiers; numPiers++) { + if (bChans[numPiers] == AR5416_BCHAN_UNUSED) { + break; + } + } + + /* Find pier indexes around the current channel */ + match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center, + IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR); + + if (match) { + /* Directly fill both vpd tables from the matching index */ + for (i = 0; i < numXpdGains; i++) { + minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0]; + maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4]; + ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i], + pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]); + } + } else { + for (i = 0; i < numXpdGains; i++) { + pVpdL = pRawDataSet[idxL].vpdPdg[i]; + pPwrL = pRawDataSet[idxL].pwrPdg[i]; + pVpdR = pRawDataSet[idxR].vpdPdg[i]; + pPwrR = pRawDataSet[idxR].pwrPdg[i]; + + /* Start Vpd interpolation from the max of the minimum powers */ + minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]); + + /* End Vpd interpolation from the min of the max powers */ + maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]); + HALASSERT(maxPwrT4[i] > minPwrT4[i]); + + /* Fill pier Vpds */ + ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]); + ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]); + + /* Interpolate the final vpd */ + for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) { + vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center, + IEEE80211_IS_CHAN_2GHZ(chan)), + bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j])); + } + } + } + *pMinCalPower = (int16_t)(minPwrT4[0] / 2); + + k = 0; /* index for the final table */ + for (i = 0; i < numXpdGains; i++) { + if (i == (numXpdGains - 1)) { + pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2); + } else { + pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4); + } + + pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]); + + /* NB: only applies to owl 1.0 */ + if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) { + /* + * fix the gain delta, but get a delta that can be applied to min to + * keep the upper power values accurate, don't think max needs to + * be adjusted because should not be at that area of the table? + */ + minDelta = pPdGainBoundaries[0] - 23; + pPdGainBoundaries[0] = 23; + } + else { + minDelta = 0; + } + + /* Find starting index for this pdGain */ + if (i == 0) { + if (AR_SREV_MERLIN_10_OR_LATER(ah)) + ss = (int16_t)(0 - (minPwrT4[i] / 2)); + else + ss = 0; /* for the first pdGain, start from index 0 */ + } else { + /* need overlap entries extrapolated below. */ + ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta); + } + vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]); + vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); + /* + *-ve ss indicates need to extrapolate data below for this pdGain + */ + while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { + tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep); + pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal); + ss++; + } + + sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1); + tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2)); + maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; + + while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { + pPDADCValues[k++] = vpdTableI[i][ss++]; + } + + vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]); + vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); + /* + * for last gain, pdGainBoundary == Pmax_t2, so will + * have to extrapolate + */ + if (tgtIndex >= maxIndex) { /* need to extrapolate above */ + while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { + tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] + + (ss - maxIndex +1) * vpdStep)); + pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal); + ss++; + } + } /* extrapolated above */ + } /* for all pdGainUsed */ + + /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */ + while (i < AR5416_PD_GAINS_IN_MASK) { + pPdGainBoundaries[i] = pPdGainBoundaries[i-1]; + i++; + } + + while (k < AR5416_NUM_PDADC_VALUES) { + pPDADCValues[k] = pPDADCValues[k-1]; + k++; + } + return; +} + +/* + * The linux ath9k driver and (from what I've been told) the reference + * Atheros driver enables the 11n PHY by default whether or not it's + * configured. + */ +static void +ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan) +{ + uint32_t phymode; + uint32_t enableDacFifo = 0; + HAL_HT_MACMODE macmode; /* MAC - 20/40 mode */ + + if (AR_SREV_KITE_10_OR_LATER(ah)) + enableDacFifo = (OS_REG_READ(ah, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO); + + /* Enable 11n HT, 20 MHz */ + phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40 + | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo; + + /* Configure baseband for dynamic 20/40 operation */ + if (IEEE80211_IS_CHAN_HT40(chan)) { + phymode |= AR_PHY_FC_DYN2040_EN; + + /* Configure control (primary) channel at +-10MHz */ + if (IEEE80211_IS_CHAN_HT40U(chan)) + phymode |= AR_PHY_FC_DYN2040_PRI_CH; +#if 0 + /* Configure 20/25 spacing */ + if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25) + phymode |= AR_PHY_FC_DYN2040_EXT_CH; +#endif + macmode = HAL_HT_MACMODE_2040; + } else + macmode = HAL_HT_MACMODE_20; + OS_REG_WRITE(ah, AR_PHY_TURBO, phymode); + + /* Configure MAC for 20/40 operation */ + ar5416Set11nMac2040(ah, macmode); + + /* global transmit timeout (25 TUs default)*/ + /* XXX - put this elsewhere??? */ + OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ; + + /* carrier sense timeout */ + OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC); + OS_REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S); +} + +void +ar5416GetChannelCenters(struct ath_hal *ah, + const struct ieee80211_channel *chan, CHAN_CENTERS *centers) +{ + uint16_t freq = ath_hal_gethwchannel(ah, chan); + + centers->ctl_center = freq; + centers->synth_center = freq; + /* + * In 20/40 phy mode, the center frequency is + * "between" the control and extension channels. + */ + if (IEEE80211_IS_CHAN_HT40U(chan)) { + centers->synth_center += HT40_CHANNEL_CENTER_SHIFT; + centers->ext_center = + centers->synth_center + HT40_CHANNEL_CENTER_SHIFT; + } else if (IEEE80211_IS_CHAN_HT40D(chan)) { + centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT; + centers->ext_center = + centers->synth_center - HT40_CHANNEL_CENTER_SHIFT; + } else { + centers->ext_center = freq; + } +} + +/* + * Override the INI vals being programmed. + */ +static void +ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *chan) +{ + uint32_t val; + + /* + * Set the RX_ABORT and RX_DIS and clear if off only after + * RXE is set for MAC. This prevents frames with corrupted + * descriptor status. + */ + OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); + + if (AR_SREV_MERLIN_10_OR_LATER(ah)) { + val = OS_REG_READ(ah, AR_PCU_MISC_MODE2); + val &= (~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE); + if (!AR_SREV_9271(ah)) + val &= ~AR_PCU_MISC_MODE2_HWWAR1; + + if (AR_SREV_KIWI_10_OR_LATER(ah)) + val = val & (~AR_PCU_MISC_MODE2_HWWAR2); + + OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, val); + } + + /* + * Disable RIFS search on some chips to avoid baseband + * hang issues. + */ + if (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah)) + (void) ar5416SetRifsDelay(ah, chan, AH_FALSE); + + if (!AR_SREV_5416_V20_OR_LATER(ah) || AR_SREV_MERLIN(ah)) + return; + + /* + * Disable BB clock gating + * Necessary to avoid issues on AR5416 2.0 + */ + OS_REG_WRITE(ah, 0x9800 + (651 << 2), 0x11); +} + +struct ini { + uint32_t *data; /* NB: !const */ + int rows, cols; +}; + +/* + * Override XPA bias level based on operating frequency. + * This is a v14 EEPROM specific thing for the AR9160. + */ +void +ar5416EepromSetAddac(struct ath_hal *ah, const struct ieee80211_channel *chan) +{ +#define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt]) + MODAL_EEP_HEADER *pModal; + HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom; + struct ar5416eeprom *eep = &ee->ee_base; + uint8_t biaslevel; + + if (! AR_SREV_SOWL(ah)) + return; + + if (EEP_MINOR(ah) < AR5416_EEP_MINOR_VER_7) + return; + + pModal = &(eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]); + + if (pModal->xpaBiasLvl != 0xff) + biaslevel = pModal->xpaBiasLvl; + else { + uint16_t resetFreqBin, freqBin, freqCount = 0; + CHAN_CENTERS centers; + + ar5416GetChannelCenters(ah, chan, ¢ers); + + resetFreqBin = FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan)); + freqBin = XPA_LVL_FREQ(0) & 0xff; + biaslevel = (uint8_t) (XPA_LVL_FREQ(0) >> 14); + + freqCount++; + + while (freqCount < 3) { + if (XPA_LVL_FREQ(freqCount) == 0x0) + break; + + freqBin = XPA_LVL_FREQ(freqCount) & 0xff; + if (resetFreqBin >= freqBin) + biaslevel = (uint8_t)(XPA_LVL_FREQ(freqCount) >> 14); + else + break; + freqCount++; + } + } + + HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: overriding XPA bias level = %d\n", + __func__, biaslevel); + + /* + * This is a dirty workaround for the const initval data, + * which will upset multiple AR9160's on the same board. + * + * The HAL should likely just have a private copy of the addac + * data per instance. + */ + if (IEEE80211_IS_CHAN_2GHZ(chan)) + HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 7, 1) = + (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3; + else + HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 6, 1) = + (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6; +#undef XPA_LVL_FREQ +} + +static void +ar5416MarkPhyInactive(struct ath_hal *ah) +{ + OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); +} + +#define AR5416_IFS_SLOT_FULL_RATE_40 0x168 /* 9 us half, 40 MHz core clock (9*40) */ +#define AR5416_IFS_SLOT_HALF_RATE_40 0x104 /* 13 us half, 20 MHz core clock (13*20) */ +#define AR5416_IFS_SLOT_QUARTER_RATE_40 0xD2 /* 21 us quarter, 10 MHz core clock (21*10) */ + +#define AR5416_IFS_EIFS_FULL_RATE_40 0xE60 /* (74 + (2 * 9)) * 40MHz core clock */ +#define AR5416_IFS_EIFS_HALF_RATE_40 0xDAC /* (149 + (2 * 13)) * 20MHz core clock */ +#define AR5416_IFS_EIFS_QUARTER_RATE_40 0xD48 /* (298 + (2 * 21)) * 10MHz core clock */ + +#define AR5416_IFS_SLOT_FULL_RATE_44 0x18c /* 9 us half, 44 MHz core clock (9*44) */ +#define AR5416_IFS_SLOT_HALF_RATE_44 0x11e /* 13 us half, 22 MHz core clock (13*22) */ +#define AR5416_IFS_SLOT_QUARTER_RATE_44 0xe7 /* 21 us quarter, 11 MHz core clock (21*11) */ + +#define AR5416_IFS_EIFS_FULL_RATE_44 0xfd0 /* (74 + (2 * 9)) * 44MHz core clock */ +#define AR5416_IFS_EIFS_HALF_RATE_44 0xf0a /* (149 + (2 * 13)) * 22MHz core clock */ +#define AR5416_IFS_EIFS_QUARTER_RATE_44 0xe9c /* (298 + (2 * 21)) * 11MHz core clock */ + +#define AR5416_INIT_USEC_40 40 +#define AR5416_HALF_RATE_USEC_40 19 /* ((40 / 2) - 1 ) */ +#define AR5416_QUARTER_RATE_USEC_40 9 /* ((40 / 4) - 1 ) */ + +#define AR5416_INIT_USEC_44 44 +#define AR5416_HALF_RATE_USEC_44 21 /* ((44 / 2) - 1 ) */ +#define AR5416_QUARTER_RATE_USEC_44 10 /* ((44 / 4) - 1 ) */ + +/* XXX What should these be for 40/44MHz clocks (and half/quarter) ? */ +#define AR5416_RX_NON_FULL_RATE_LATENCY 63 +#define AR5416_TX_HALF_RATE_LATENCY 108 +#define AR5416_TX_QUARTER_RATE_LATENCY 216 + +/* + * Adjust various register settings based on half/quarter rate clock setting. + * This includes: + * + * + USEC, TX/RX latency, + * + IFS params: slot, eifs, misc etc. + * + * TODO: + * + * + Verify which other registers need to be tweaked; + * + Verify the behaviour of this for 5GHz fast and non-fast clock mode; + * + This just plain won't work for long distance links - the coverage class + * code isn't aware of the slot/ifs/ACK/RTS timeout values that need to + * change; + * + Verify whether the 32KHz USEC value needs to be kept for the 802.11n + * series chips? + * + Calculate/derive values for 2GHz, 5GHz, 5GHz fast clock + */ +static void +ar5416SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan) +{ + uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec; + int clk_44 = 0; + + HALASSERT(IEEE80211_IS_CHAN_HALF(chan) || + IEEE80211_IS_CHAN_QUARTER(chan)); + + /* 2GHz and 5GHz fast clock - 44MHz; else 40MHz */ + if (IEEE80211_IS_CHAN_2GHZ(chan)) + clk_44 = 1; + else if (IEEE80211_IS_CHAN_5GHZ(chan) && + IS_5GHZ_FAST_CLOCK_EN(ah, chan)) + clk_44 = 1; + + /* XXX does this need save/restoring for the 11n chips? */ + /* + * XXX TODO: should mask out the txlat/rxlat/usec values? + */ + refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32; + + /* + * XXX This really should calculate things, not use + * hard coded values! Ew. + */ + if (IEEE80211_IS_CHAN_HALF(chan)) { + if (clk_44) { + slot = AR5416_IFS_SLOT_HALF_RATE_44; + rxLat = AR5416_RX_NON_FULL_RATE_LATENCY << + AR5416_USEC_RX_LAT_S; + txLat = AR5416_TX_HALF_RATE_LATENCY << + AR5416_USEC_TX_LAT_S; + usec = AR5416_HALF_RATE_USEC_44; + eifs = AR5416_IFS_EIFS_HALF_RATE_44; + init_usec = AR5416_INIT_USEC_44 >> 1; + } else { + slot = AR5416_IFS_SLOT_HALF_RATE_40; + rxLat = AR5416_RX_NON_FULL_RATE_LATENCY << + AR5416_USEC_RX_LAT_S; + txLat = AR5416_TX_HALF_RATE_LATENCY << + AR5416_USEC_TX_LAT_S; + usec = AR5416_HALF_RATE_USEC_40; + eifs = AR5416_IFS_EIFS_HALF_RATE_40; + init_usec = AR5416_INIT_USEC_40 >> 1; + } + } else { /* quarter rate */ + if (clk_44) { + slot = AR5416_IFS_SLOT_QUARTER_RATE_44; + rxLat = AR5416_RX_NON_FULL_RATE_LATENCY << + AR5416_USEC_RX_LAT_S; + txLat = AR5416_TX_QUARTER_RATE_LATENCY << + AR5416_USEC_TX_LAT_S; + usec = AR5416_QUARTER_RATE_USEC_44; + eifs = AR5416_IFS_EIFS_QUARTER_RATE_44; + init_usec = AR5416_INIT_USEC_44 >> 2; + } else { + slot = AR5416_IFS_SLOT_QUARTER_RATE_40; + rxLat = AR5416_RX_NON_FULL_RATE_LATENCY << + AR5416_USEC_RX_LAT_S; + txLat = AR5416_TX_QUARTER_RATE_LATENCY << + AR5416_USEC_TX_LAT_S; + usec = AR5416_QUARTER_RATE_USEC_40; + eifs = AR5416_IFS_EIFS_QUARTER_RATE_40; + init_usec = AR5416_INIT_USEC_40 >> 2; + } + } + + /* XXX verify these! */ + OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat)); + OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot); + OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs); + OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC, + AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec); +} |