aboutsummaryrefslogtreecommitdiff
path: root/contrib/arm-optimized-routines/math/tools/tgamma128_gen.jl
blob: ecec174110eace9980c61025dd4b2feccde640e4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# -*- julia -*-
#
# Generate tgamma128.h, containing polynomials and constants used by
# tgamma128.c.
#
# Copyright (c) 2006-2023, Arm Limited.
# SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception

# This Julia program depends on the 'Remez' and 'SpecialFunctions'
# library packages. To install them, run this at the interactive Julia
# prompt:
#
#   import Pkg; Pkg.add(["Remez", "SpecialFunctions"])
#
# Tested on Julia 1.4.1 (Ubuntu 20.04) and 1.9.0 (22.04).

import Printf
import Remez
import SpecialFunctions

# Round a BigFloat to 128-bit long double and format it as a C99 hex
# float literal.
function quadhex(x)
    sign = " "
    if x < 0
        sign = "-"
        x = -x
    end

    exponent = BigInt(floor(log2(x)))
    exponent = max(exponent, -16382)
    @assert(exponent <= 16383) # else overflow

    x /= BigFloat(2)^exponent
    @assert(1 <= x < 2)
    x *= BigFloat(2)^112
    mantissa = BigInt(round(x))

    mantstr = string(mantissa, base=16, pad=29)
    return Printf.@sprintf("%s0x%s.%sp%+dL", sign, mantstr[1], mantstr[2:end],
                           exponent)
end

# Round a BigFloat to 128-bit long double and return it still as a
# BigFloat.
function quadval(x, round=0)
    sign = +1
    if x.sign < 0
        sign = -1
        x = -x
    end

    exponent = BigInt(floor(log2(x)))
    exponent = max(exponent, -16382)
    @assert(exponent <= 16383) # else overflow

    x /= BigFloat(2)^exponent
    @assert(1 <= x < 2)
    x *= BigFloat(2)^112
    if round < 0
        mantissa = floor(x)
    elseif round > 0
        mantissa = ceil(x)
    else
        mantissa = round(x)
    end

    return sign * mantissa * BigFloat(2)^(exponent - 112)
end

# Output an array of BigFloats as a C array declaration.
function dumparray(a, name)
    println("static const long double ", name, "[] = {")
    for x in N
        println("    ", quadhex(x), ",")
    end
    println("};")
end

print("/*
 * Polynomial coefficients and other constants for tgamma128.c.
 *
 * Copyright (c) 2006,2009,2023 Arm Limited.
 * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
 */
")

Base.MPFR.setprecision(512)

e = exp(BigFloat(1))

print("
/* The largest positive value for which 128-bit tgamma does not overflow. */
")
lo = BigFloat("1000")
hi = BigFloat("2000")
while true
    global lo
    global hi
    global max_x

    mid = (lo + hi) / 2
    if mid == lo || mid == hi
        max_x = mid
        break
    end
    if SpecialFunctions.logabsgamma(mid)[1] < 16384 * log(BigFloat(2))
        lo = mid
    else
        hi = mid
    end
end
max_x = quadval(max_x, -1)
println("static const long double max_x = ", quadhex(max_x), ";")

print("
/* Coefficients of the polynomial used in the tgamma_large() subroutine */
")
N, D, E, X = Remez.ratfn_minimax(
    x -> x==0 ? sqrt(BigFloat(2)*pi/e) :
                exp(SpecialFunctions.logabsgamma(1/x)[1] +
                    (1/x-0.5)*(1+log(x))),
    (0, 1/BigFloat(8)),
    24, 0,
    (x, y) -> 1/y
)
dumparray(N, "coeffs_large")

print("
/* Coefficients of the polynomial used in the tgamma_tiny() subroutine */
")
N, D, E, X = Remez.ratfn_minimax(
    x -> x==0 ? 1 : 1/(x*SpecialFunctions.gamma(x)),
    (0, 1/BigFloat(32)),
    13, 0,
)
dumparray(N, "coeffs_tiny")

print("
/* The location within the interval [1,2] where gamma has a minimum.
 * Specified as the sum of two 128-bit values, for extra precision. */
")
lo = BigFloat("1.4")
hi = BigFloat("1.5")
while true
    global lo
    global hi
    global min_x

    mid = (lo + hi) / 2
    if mid == lo || mid == hi
        min_x = mid
        break
    end
    if SpecialFunctions.digamma(mid) < 0
        lo = mid
    else
        hi = mid
    end
end
min_x_hi = quadval(min_x, -1)
println("static const long double min_x_hi = ", quadhex(min_x_hi), ";")
println("static const long double min_x_lo = ", quadhex(min_x - min_x_hi), ";")

print("
/* The actual minimum value that gamma takes at that location.
 * Again specified as the sum of two 128-bit values. */
")
min_y = SpecialFunctions.gamma(min_x)
min_y_hi = quadval(min_y, -1)
println("static const long double min_y_hi = ", quadhex(min_y_hi), ";")
println("static const long double min_y_lo = ", quadhex(min_y - min_y_hi), ";")

function taylor_bodge(x)
    # Taylor series generated by Wolfram Alpha for (gamma(min_x+x)-min_y)/x^2.
    # Used in the Remez calls below for x values very near the origin, to avoid
    # significance loss problems when trying to compute it directly via that
    # formula (even in MPFR's extra precision).
    return BigFloat("0.428486815855585429730209907810650582960483696962660010556335457558784421896667728014324097132413696263704801646004585959298743677879606168187061990204432200")+x*(-BigFloat("0.130704158939785761928008749242671025181542078105370084716141350308119418619652583986015464395882363802104154017741656168641240436089858504560718773026275797")+x*(BigFloat("0.160890753325112844190519489594363387594505844658437718135952967735294789599989664428071656484587979507034160383271974554122934842441540146372016567834062876")+x*(-BigFloat("0.092277030213334350126864106458600575084335085690780082222880945224248438672595248111704471182201673989215223667543694847795410779036800385804729955729659506"))))
end

print("
/* Coefficients of the polynomial used in the tgamma_central() subroutine
 * for computing gamma on the interval [1,min_x] */
")
N, D, E, X = Remez.ratfn_minimax(
    x -> x < BigFloat(0x1p-64) ? taylor_bodge(-x) :
        (SpecialFunctions.gamma(min_x - x) - min_y) / (x*x),
    (0, min_x - 1),
    31, 0,
    (x, y) -> x^2,
)
dumparray(N, "coeffs_central_neg")

print("
/* Coefficients of the polynomial used in the tgamma_central() subroutine
 * for computing gamma on the interval [min_x,2] */
")
N, D, E, X = Remez.ratfn_minimax(
    x -> x < BigFloat(0x1p-64) ? taylor_bodge(x) :
        (SpecialFunctions.gamma(min_x + x) - min_y) / (x*x),
    (0, 2 - min_x),
    28, 0,
    (x, y) -> x^2,
)
dumparray(N, "coeffs_central_pos")

print("
/* 128-bit float value of pi, used by the sin_pi_x_over_pi subroutine
 */
")
println("static const long double pi = ", quadhex(BigFloat(pi)), ";")