aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/Sema/SemaConcept.cpp
blob: a92bbde113fcdb6abb2aa0437fff4b1e32a993f6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
//===-- SemaConcept.cpp - Semantic Analysis for Constraints and Concepts --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file implements semantic analysis for C++ constraints and concepts.
//
//===----------------------------------------------------------------------===//

#include "TreeTransform.h"
#include "clang/Sema/SemaConcept.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "clang/Sema/TemplateDeduction.h"
#include "clang/Sema/Template.h"
#include "clang/Sema/Overload.h"
#include "clang/Sema/Initialization.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/ExprConcepts.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/OperatorPrecedence.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/StringExtras.h"
#include <optional>

using namespace clang;
using namespace sema;

namespace {
class LogicalBinOp {
  SourceLocation Loc;
  OverloadedOperatorKind Op = OO_None;
  const Expr *LHS = nullptr;
  const Expr *RHS = nullptr;

public:
  LogicalBinOp(const Expr *E) {
    if (auto *BO = dyn_cast<BinaryOperator>(E)) {
      Op = BinaryOperator::getOverloadedOperator(BO->getOpcode());
      LHS = BO->getLHS();
      RHS = BO->getRHS();
      Loc = BO->getExprLoc();
    } else if (auto *OO = dyn_cast<CXXOperatorCallExpr>(E)) {
      // If OO is not || or && it might not have exactly 2 arguments.
      if (OO->getNumArgs() == 2) {
        Op = OO->getOperator();
        LHS = OO->getArg(0);
        RHS = OO->getArg(1);
        Loc = OO->getOperatorLoc();
      }
    }
  }

  bool isAnd() const { return Op == OO_AmpAmp; }
  bool isOr() const { return Op == OO_PipePipe; }
  explicit operator bool() const { return isAnd() || isOr(); }

  const Expr *getLHS() const { return LHS; }
  const Expr *getRHS() const { return RHS; }

  ExprResult recreateBinOp(Sema &SemaRef, ExprResult LHS) const {
    return recreateBinOp(SemaRef, LHS, const_cast<Expr *>(getRHS()));
  }

  ExprResult recreateBinOp(Sema &SemaRef, ExprResult LHS,
                           ExprResult RHS) const {
    assert((isAnd() || isOr()) && "Not the right kind of op?");
    assert((!LHS.isInvalid() && !RHS.isInvalid()) && "not good expressions?");

    if (!LHS.isUsable() || !RHS.isUsable())
      return ExprEmpty();

    // We should just be able to 'normalize' these to the builtin Binary
    // Operator, since that is how they are evaluated in constriant checks.
    return BinaryOperator::Create(SemaRef.Context, LHS.get(), RHS.get(),
                                  BinaryOperator::getOverloadedOpcode(Op),
                                  SemaRef.Context.BoolTy, VK_PRValue,
                                  OK_Ordinary, Loc, FPOptionsOverride{});
  }
};
}

bool Sema::CheckConstraintExpression(const Expr *ConstraintExpression,
                                     Token NextToken, bool *PossibleNonPrimary,
                                     bool IsTrailingRequiresClause) {
  // C++2a [temp.constr.atomic]p1
  // ..E shall be a constant expression of type bool.

  ConstraintExpression = ConstraintExpression->IgnoreParenImpCasts();

  if (LogicalBinOp BO = ConstraintExpression) {
    return CheckConstraintExpression(BO.getLHS(), NextToken,
                                     PossibleNonPrimary) &&
           CheckConstraintExpression(BO.getRHS(), NextToken,
                                     PossibleNonPrimary);
  } else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpression))
    return CheckConstraintExpression(C->getSubExpr(), NextToken,
                                     PossibleNonPrimary);

  QualType Type = ConstraintExpression->getType();

  auto CheckForNonPrimary = [&] {
    if (PossibleNonPrimary)
      *PossibleNonPrimary =
          // We have the following case:
          // template<typename> requires func(0) struct S { };
          // The user probably isn't aware of the parentheses required around
          // the function call, and we're only going to parse 'func' as the
          // primary-expression, and complain that it is of non-bool type.
          (NextToken.is(tok::l_paren) &&
           (IsTrailingRequiresClause ||
            (Type->isDependentType() &&
             isa<UnresolvedLookupExpr>(ConstraintExpression)) ||
            Type->isFunctionType() ||
            Type->isSpecificBuiltinType(BuiltinType::Overload))) ||
          // We have the following case:
          // template<typename T> requires size_<T> == 0 struct S { };
          // The user probably isn't aware of the parentheses required around
          // the binary operator, and we're only going to parse 'func' as the
          // first operand, and complain that it is of non-bool type.
          getBinOpPrecedence(NextToken.getKind(),
                             /*GreaterThanIsOperator=*/true,
                             getLangOpts().CPlusPlus11) > prec::LogicalAnd;
  };

  // An atomic constraint!
  if (ConstraintExpression->isTypeDependent()) {
    CheckForNonPrimary();
    return true;
  }

  if (!Context.hasSameUnqualifiedType(Type, Context.BoolTy)) {
    Diag(ConstraintExpression->getExprLoc(),
         diag::err_non_bool_atomic_constraint) << Type
        << ConstraintExpression->getSourceRange();
    CheckForNonPrimary();
    return false;
  }

  if (PossibleNonPrimary)
      *PossibleNonPrimary = false;
  return true;
}

namespace {
struct SatisfactionStackRAII {
  Sema &SemaRef;
  bool Inserted = false;
  SatisfactionStackRAII(Sema &SemaRef, const NamedDecl *ND,
                        llvm::FoldingSetNodeID FSNID)
      : SemaRef(SemaRef) {
      if (ND) {
      SemaRef.PushSatisfactionStackEntry(ND, FSNID);
      Inserted = true;
      }
  }
  ~SatisfactionStackRAII() {
        if (Inserted)
          SemaRef.PopSatisfactionStackEntry();
  }
};
} // namespace

template <typename AtomicEvaluator>
static ExprResult
calculateConstraintSatisfaction(Sema &S, const Expr *ConstraintExpr,
                                ConstraintSatisfaction &Satisfaction,
                                AtomicEvaluator &&Evaluator) {
  ConstraintExpr = ConstraintExpr->IgnoreParenImpCasts();

  if (LogicalBinOp BO = ConstraintExpr) {
    ExprResult LHSRes = calculateConstraintSatisfaction(
        S, BO.getLHS(), Satisfaction, Evaluator);

    if (LHSRes.isInvalid())
      return ExprError();

    bool IsLHSSatisfied = Satisfaction.IsSatisfied;

    if (BO.isOr() && IsLHSSatisfied)
      // [temp.constr.op] p3
      //    A disjunction is a constraint taking two operands. To determine if
      //    a disjunction is satisfied, the satisfaction of the first operand
      //    is checked. If that is satisfied, the disjunction is satisfied.
      //    Otherwise, the disjunction is satisfied if and only if the second
      //    operand is satisfied.
      // LHS is instantiated while RHS is not. Skip creating invalid BinaryOp.
      return LHSRes;

    if (BO.isAnd() && !IsLHSSatisfied)
      // [temp.constr.op] p2
      //    A conjunction is a constraint taking two operands. To determine if
      //    a conjunction is satisfied, the satisfaction of the first operand
      //    is checked. If that is not satisfied, the conjunction is not
      //    satisfied. Otherwise, the conjunction is satisfied if and only if
      //    the second operand is satisfied.
      // LHS is instantiated while RHS is not. Skip creating invalid BinaryOp.
      return LHSRes;

    ExprResult RHSRes = calculateConstraintSatisfaction(
        S, BO.getRHS(), Satisfaction, std::forward<AtomicEvaluator>(Evaluator));
    if (RHSRes.isInvalid())
      return ExprError();

    return BO.recreateBinOp(S, LHSRes, RHSRes);
  }

  if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpr)) {
    // These aren't evaluated, so we don't care about cleanups, so we can just
    // evaluate these as if the cleanups didn't exist.
    return calculateConstraintSatisfaction(
        S, C->getSubExpr(), Satisfaction,
        std::forward<AtomicEvaluator>(Evaluator));
  }

  // An atomic constraint expression
  ExprResult SubstitutedAtomicExpr = Evaluator(ConstraintExpr);

  if (SubstitutedAtomicExpr.isInvalid())
    return ExprError();

  if (!SubstitutedAtomicExpr.isUsable())
    // Evaluator has decided satisfaction without yielding an expression.
    return ExprEmpty();

  // We don't have the ability to evaluate this, since it contains a
  // RecoveryExpr, so we want to fail overload resolution.  Otherwise,
  // we'd potentially pick up a different overload, and cause confusing
  // diagnostics. SO, add a failure detail that will cause us to make this
  // overload set not viable.
  if (SubstitutedAtomicExpr.get()->containsErrors()) {
    Satisfaction.IsSatisfied = false;
    Satisfaction.ContainsErrors = true;

    PartialDiagnostic Msg = S.PDiag(diag::note_constraint_references_error);
    SmallString<128> DiagString;
    DiagString = ": ";
    Msg.EmitToString(S.getDiagnostics(), DiagString);
    unsigned MessageSize = DiagString.size();
    char *Mem = new (S.Context) char[MessageSize];
    memcpy(Mem, DiagString.c_str(), MessageSize);
    Satisfaction.Details.emplace_back(
        ConstraintExpr,
        new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{
            SubstitutedAtomicExpr.get()->getBeginLoc(),
            StringRef(Mem, MessageSize)});
    return SubstitutedAtomicExpr;
  }

  EnterExpressionEvaluationContext ConstantEvaluated(
      S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
  SmallVector<PartialDiagnosticAt, 2> EvaluationDiags;
  Expr::EvalResult EvalResult;
  EvalResult.Diag = &EvaluationDiags;
  if (!SubstitutedAtomicExpr.get()->EvaluateAsConstantExpr(EvalResult,
                                                           S.Context) ||
      !EvaluationDiags.empty()) {
    // C++2a [temp.constr.atomic]p1
    //   ...E shall be a constant expression of type bool.
    S.Diag(SubstitutedAtomicExpr.get()->getBeginLoc(),
           diag::err_non_constant_constraint_expression)
        << SubstitutedAtomicExpr.get()->getSourceRange();
    for (const PartialDiagnosticAt &PDiag : EvaluationDiags)
      S.Diag(PDiag.first, PDiag.second);
    return ExprError();
  }

  assert(EvalResult.Val.isInt() &&
         "evaluating bool expression didn't produce int");
  Satisfaction.IsSatisfied = EvalResult.Val.getInt().getBoolValue();
  if (!Satisfaction.IsSatisfied)
    Satisfaction.Details.emplace_back(ConstraintExpr,
                                      SubstitutedAtomicExpr.get());

  return SubstitutedAtomicExpr;
}

static bool
DiagRecursiveConstraintEval(Sema &S, llvm::FoldingSetNodeID &ID,
                            const NamedDecl *Templ, const Expr *E,
                            const MultiLevelTemplateArgumentList &MLTAL) {
  E->Profile(ID, S.Context, /*Canonical=*/true);
  for (const auto &List : MLTAL)
    for (const auto &TemplateArg : List.Args)
      TemplateArg.Profile(ID, S.Context);

  // Note that we have to do this with our own collection, because there are
  // times where a constraint-expression check can cause us to need to evaluate
  // other constriants that are unrelated, such as when evaluating a recovery
  // expression, or when trying to determine the constexpr-ness of special
  // members. Otherwise we could just use the
  // Sema::InstantiatingTemplate::isAlreadyBeingInstantiated function.
  if (S.SatisfactionStackContains(Templ, ID)) {
    S.Diag(E->getExprLoc(), diag::err_constraint_depends_on_self)
        << const_cast<Expr *>(E) << E->getSourceRange();
    return true;
  }

  return false;
}

static ExprResult calculateConstraintSatisfaction(
    Sema &S, const NamedDecl *Template, SourceLocation TemplateNameLoc,
    const MultiLevelTemplateArgumentList &MLTAL, const Expr *ConstraintExpr,
    ConstraintSatisfaction &Satisfaction) {
  return calculateConstraintSatisfaction(
      S, ConstraintExpr, Satisfaction, [&](const Expr *AtomicExpr) {
        EnterExpressionEvaluationContext ConstantEvaluated(
            S, Sema::ExpressionEvaluationContext::ConstantEvaluated,
            Sema::ReuseLambdaContextDecl);

        // Atomic constraint - substitute arguments and check satisfaction.
        ExprResult SubstitutedExpression;
        {
          TemplateDeductionInfo Info(TemplateNameLoc);
          Sema::InstantiatingTemplate Inst(S, AtomicExpr->getBeginLoc(),
              Sema::InstantiatingTemplate::ConstraintSubstitution{},
              const_cast<NamedDecl *>(Template), Info,
              AtomicExpr->getSourceRange());
          if (Inst.isInvalid())
            return ExprError();

          llvm::FoldingSetNodeID ID;
          if (Template &&
              DiagRecursiveConstraintEval(S, ID, Template, AtomicExpr, MLTAL)) {
            Satisfaction.IsSatisfied = false;
            Satisfaction.ContainsErrors = true;
            return ExprEmpty();
          }

          SatisfactionStackRAII StackRAII(S, Template, ID);

          // We do not want error diagnostics escaping here.
          Sema::SFINAETrap Trap(S);
          SubstitutedExpression =
              S.SubstConstraintExpr(const_cast<Expr *>(AtomicExpr), MLTAL);

          if (SubstitutedExpression.isInvalid() || Trap.hasErrorOccurred()) {
            // C++2a [temp.constr.atomic]p1
            //   ...If substitution results in an invalid type or expression, the
            //   constraint is not satisfied.
            if (!Trap.hasErrorOccurred())
              // A non-SFINAE error has occurred as a result of this
              // substitution.
              return ExprError();

            PartialDiagnosticAt SubstDiag{SourceLocation(),
                                          PartialDiagnostic::NullDiagnostic()};
            Info.takeSFINAEDiagnostic(SubstDiag);
            // FIXME: Concepts: This is an unfortunate consequence of there
            //  being no serialization code for PartialDiagnostics and the fact
            //  that serializing them would likely take a lot more storage than
            //  just storing them as strings. We would still like, in the
            //  future, to serialize the proper PartialDiagnostic as serializing
            //  it as a string defeats the purpose of the diagnostic mechanism.
            SmallString<128> DiagString;
            DiagString = ": ";
            SubstDiag.second.EmitToString(S.getDiagnostics(), DiagString);
            unsigned MessageSize = DiagString.size();
            char *Mem = new (S.Context) char[MessageSize];
            memcpy(Mem, DiagString.c_str(), MessageSize);
            Satisfaction.Details.emplace_back(
                AtomicExpr,
                new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{
                        SubstDiag.first, StringRef(Mem, MessageSize)});
            Satisfaction.IsSatisfied = false;
            return ExprEmpty();
          }
        }

        if (!S.CheckConstraintExpression(SubstitutedExpression.get()))
          return ExprError();

        // [temp.constr.atomic]p3: To determine if an atomic constraint is
        // satisfied, the parameter mapping and template arguments are first
        // substituted into its expression.  If substitution results in an
        // invalid type or expression, the constraint is not satisfied.
        // Otherwise, the lvalue-to-rvalue conversion is performed if necessary,
        // and E shall be a constant expression of type bool.
        //
        // Perform the L to R Value conversion if necessary. We do so for all
        // non-PRValue categories, else we fail to extend the lifetime of
        // temporaries, and that fails the constant expression check.
        if (!SubstitutedExpression.get()->isPRValue())
          SubstitutedExpression = ImplicitCastExpr::Create(
              S.Context, SubstitutedExpression.get()->getType(),
              CK_LValueToRValue, SubstitutedExpression.get(),
              /*BasePath=*/nullptr, VK_PRValue, FPOptionsOverride());

        return SubstitutedExpression;
      });
}

static bool CheckConstraintSatisfaction(
    Sema &S, const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
    llvm::SmallVectorImpl<Expr *> &Converted,
    const MultiLevelTemplateArgumentList &TemplateArgsLists,
    SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction) {
  if (ConstraintExprs.empty()) {
    Satisfaction.IsSatisfied = true;
    return false;
  }

  if (TemplateArgsLists.isAnyArgInstantiationDependent()) {
    // No need to check satisfaction for dependent constraint expressions.
    Satisfaction.IsSatisfied = true;
    return false;
  }

  ArrayRef<TemplateArgument> TemplateArgs =
      TemplateArgsLists.getNumSubstitutedLevels() > 0
          ? TemplateArgsLists.getOutermost()
          : ArrayRef<TemplateArgument> {};
  Sema::InstantiatingTemplate Inst(S, TemplateIDRange.getBegin(),
      Sema::InstantiatingTemplate::ConstraintsCheck{},
      const_cast<NamedDecl *>(Template), TemplateArgs, TemplateIDRange);
  if (Inst.isInvalid())
    return true;

  for (const Expr *ConstraintExpr : ConstraintExprs) {
    ExprResult Res = calculateConstraintSatisfaction(
        S, Template, TemplateIDRange.getBegin(), TemplateArgsLists,
        ConstraintExpr, Satisfaction);
    if (Res.isInvalid())
      return true;

    Converted.push_back(Res.get());
    if (!Satisfaction.IsSatisfied) {
      // Backfill the 'converted' list with nulls so we can keep the Converted
      // and unconverted lists in sync.
      Converted.append(ConstraintExprs.size() - Converted.size(), nullptr);
      // [temp.constr.op] p2
      // [...] To determine if a conjunction is satisfied, the satisfaction
      // of the first operand is checked. If that is not satisfied, the
      // conjunction is not satisfied. [...]
      return false;
    }
  }
  return false;
}

bool Sema::CheckConstraintSatisfaction(
    const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
    llvm::SmallVectorImpl<Expr *> &ConvertedConstraints,
    const MultiLevelTemplateArgumentList &TemplateArgsLists,
    SourceRange TemplateIDRange, ConstraintSatisfaction &OutSatisfaction) {
  if (ConstraintExprs.empty()) {
    OutSatisfaction.IsSatisfied = true;
    return false;
  }
  if (!Template) {
    return ::CheckConstraintSatisfaction(
        *this, nullptr, ConstraintExprs, ConvertedConstraints,
        TemplateArgsLists, TemplateIDRange, OutSatisfaction);
  }

  // A list of the template argument list flattened in a predictible manner for
  // the purposes of caching. The ConstraintSatisfaction type is in AST so it
  // has no access to the MultiLevelTemplateArgumentList, so this has to happen
  // here.
  llvm::SmallVector<TemplateArgument, 4> FlattenedArgs;
  for (auto List : TemplateArgsLists)
    FlattenedArgs.insert(FlattenedArgs.end(), List.Args.begin(),
                         List.Args.end());

  llvm::FoldingSetNodeID ID;
  ConstraintSatisfaction::Profile(ID, Context, Template, FlattenedArgs);
  void *InsertPos;
  if (auto *Cached = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos)) {
    OutSatisfaction = *Cached;
    return false;
  }

  auto Satisfaction =
      std::make_unique<ConstraintSatisfaction>(Template, FlattenedArgs);
  if (::CheckConstraintSatisfaction(*this, Template, ConstraintExprs,
                                    ConvertedConstraints, TemplateArgsLists,
                                    TemplateIDRange, *Satisfaction)) {
    OutSatisfaction = *Satisfaction;
    return true;
  }

  if (auto *Cached = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos)) {
    // The evaluation of this constraint resulted in us trying to re-evaluate it
    // recursively. This isn't really possible, except we try to form a
    // RecoveryExpr as a part of the evaluation.  If this is the case, just
    // return the 'cached' version (which will have the same result), and save
    // ourselves the extra-insert. If it ever becomes possible to legitimately
    // recursively check a constraint, we should skip checking the 'inner' one
    // above, and replace the cached version with this one, as it would be more
    // specific.
    OutSatisfaction = *Cached;
    return false;
  }

  // Else we can simply add this satisfaction to the list.
  OutSatisfaction = *Satisfaction;
  // We cannot use InsertPos here because CheckConstraintSatisfaction might have
  // invalidated it.
  // Note that entries of SatisfactionCache are deleted in Sema's destructor.
  SatisfactionCache.InsertNode(Satisfaction.release());
  return false;
}

bool Sema::CheckConstraintSatisfaction(const Expr *ConstraintExpr,
                                       ConstraintSatisfaction &Satisfaction) {
  return calculateConstraintSatisfaction(
             *this, ConstraintExpr, Satisfaction,
             [this](const Expr *AtomicExpr) -> ExprResult {
               // We only do this to immitate lvalue-to-rvalue conversion.
               return PerformContextuallyConvertToBool(
                   const_cast<Expr *>(AtomicExpr));
             })
      .isInvalid();
}

bool Sema::SetupConstraintScope(
    FunctionDecl *FD, std::optional<ArrayRef<TemplateArgument>> TemplateArgs,
    MultiLevelTemplateArgumentList MLTAL, LocalInstantiationScope &Scope) {
  if (FD->isTemplateInstantiation() && FD->getPrimaryTemplate()) {
    FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate();
    InstantiatingTemplate Inst(
        *this, FD->getPointOfInstantiation(),
        Sema::InstantiatingTemplate::ConstraintsCheck{}, PrimaryTemplate,
        TemplateArgs ? *TemplateArgs : ArrayRef<TemplateArgument>{},
        SourceRange());
    if (Inst.isInvalid())
      return true;

    // addInstantiatedParametersToScope creates a map of 'uninstantiated' to
    // 'instantiated' parameters and adds it to the context. For the case where
    // this function is a template being instantiated NOW, we also need to add
    // the list of current template arguments to the list so that they also can
    // be picked out of the map.
    if (auto *SpecArgs = FD->getTemplateSpecializationArgs()) {
      MultiLevelTemplateArgumentList JustTemplArgs(FD, SpecArgs->asArray(),
                                                   /*Final=*/false);
      if (addInstantiatedParametersToScope(
              FD, PrimaryTemplate->getTemplatedDecl(), Scope, JustTemplArgs))
        return true;
    }

    // If this is a member function, make sure we get the parameters that
    // reference the original primary template.
    if (const auto *FromMemTempl =
            PrimaryTemplate->getInstantiatedFromMemberTemplate()) {
      if (addInstantiatedParametersToScope(FD, FromMemTempl->getTemplatedDecl(),
                                           Scope, MLTAL))
        return true;
    }

    return false;
  }

  if (FD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization ||
      FD->getTemplatedKind() == FunctionDecl::TK_DependentNonTemplate) {
    FunctionDecl *InstantiatedFrom =
        FD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization
            ? FD->getInstantiatedFromMemberFunction()
            : FD->getInstantiatedFromDecl();

    InstantiatingTemplate Inst(
        *this, FD->getPointOfInstantiation(),
        Sema::InstantiatingTemplate::ConstraintsCheck{}, InstantiatedFrom,
        TemplateArgs ? *TemplateArgs : ArrayRef<TemplateArgument>{},
        SourceRange());
    if (Inst.isInvalid())
      return true;

    // Case where this was not a template, but instantiated as a
    // child-function.
    if (addInstantiatedParametersToScope(FD, InstantiatedFrom, Scope, MLTAL))
      return true;
  }

  return false;
}

// This function collects all of the template arguments for the purposes of
// constraint-instantiation and checking.
std::optional<MultiLevelTemplateArgumentList>
Sema::SetupConstraintCheckingTemplateArgumentsAndScope(
    FunctionDecl *FD, std::optional<ArrayRef<TemplateArgument>> TemplateArgs,
    LocalInstantiationScope &Scope) {
  MultiLevelTemplateArgumentList MLTAL;

  // Collect the list of template arguments relative to the 'primary' template.
  // We need the entire list, since the constraint is completely uninstantiated
  // at this point.
  MLTAL =
      getTemplateInstantiationArgs(FD, /*Final=*/false, /*Innermost=*/nullptr,
                                   /*RelativeToPrimary=*/true,
                                   /*Pattern=*/nullptr,
                                   /*ForConstraintInstantiation=*/true);
  if (SetupConstraintScope(FD, TemplateArgs, MLTAL, Scope))
    return std::nullopt;

  return MLTAL;
}

bool Sema::CheckFunctionConstraints(const FunctionDecl *FD,
                                    ConstraintSatisfaction &Satisfaction,
                                    SourceLocation UsageLoc,
                                    bool ForOverloadResolution) {
  // Don't check constraints if the function is dependent. Also don't check if
  // this is a function template specialization, as the call to
  // CheckinstantiatedFunctionTemplateConstraints after this will check it
  // better.
  if (FD->isDependentContext() ||
      FD->getTemplatedKind() ==
          FunctionDecl::TK_FunctionTemplateSpecialization) {
    Satisfaction.IsSatisfied = true;
    return false;
  }

  DeclContext *CtxToSave = const_cast<FunctionDecl *>(FD);

  while (isLambdaCallOperator(CtxToSave) || FD->isTransparentContext()) {
    if (isLambdaCallOperator(CtxToSave))
      CtxToSave = CtxToSave->getParent()->getParent();
    else
      CtxToSave = CtxToSave->getNonTransparentContext();
  }

  ContextRAII SavedContext{*this, CtxToSave};
  LocalInstantiationScope Scope(*this, !ForOverloadResolution ||
                                           isLambdaCallOperator(FD));
  std::optional<MultiLevelTemplateArgumentList> MLTAL =
      SetupConstraintCheckingTemplateArgumentsAndScope(
          const_cast<FunctionDecl *>(FD), {}, Scope);

  if (!MLTAL)
    return true;

  Qualifiers ThisQuals;
  CXXRecordDecl *Record = nullptr;
  if (auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
    ThisQuals = Method->getMethodQualifiers();
    Record = const_cast<CXXRecordDecl *>(Method->getParent());
  }
  CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr);
  // We substitute with empty arguments in order to rebuild the atomic
  // constraint in a constant-evaluated context.
  // FIXME: Should this be a dedicated TreeTransform?
  const Expr *RC = FD->getTrailingRequiresClause();
  llvm::SmallVector<Expr *, 1> Converted;

  if (CheckConstraintSatisfaction(
          FD, {RC}, Converted, *MLTAL,
          SourceRange(UsageLoc.isValid() ? UsageLoc : FD->getLocation()),
          Satisfaction))
    return true;

  // FIXME: we need to do this for the function constraints for
  // comparison of constraints to work, but do we also need to do it for
  // CheckInstantiatedFunctionConstraints?  That one is more difficult, but we
  // seem to always just pick up the constraints from the primary template.
  assert(Converted.size() <= 1 && "Got more expressions converted?");
  if (!Converted.empty() && Converted[0] != nullptr)
    const_cast<FunctionDecl *>(FD)->setTrailingRequiresClause(Converted[0]);
  return false;
}


// Figure out the to-translation-unit depth for this function declaration for
// the purpose of seeing if they differ by constraints. This isn't the same as
// getTemplateDepth, because it includes already instantiated parents.
static unsigned
CalculateTemplateDepthForConstraints(Sema &S, const NamedDecl *ND,
                                     bool SkipForSpecialization = false) {
  MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs(
      ND, /*Final=*/false, /*Innermost=*/nullptr, /*RelativeToPrimary=*/true,
      /*Pattern=*/nullptr,
      /*ForConstraintInstantiation=*/true, SkipForSpecialization);
  return MLTAL.getNumSubstitutedLevels();
}

namespace {
  class AdjustConstraintDepth : public TreeTransform<AdjustConstraintDepth> {
  unsigned TemplateDepth = 0;
  public:
  using inherited = TreeTransform<AdjustConstraintDepth>;
  AdjustConstraintDepth(Sema &SemaRef, unsigned TemplateDepth)
      : inherited(SemaRef), TemplateDepth(TemplateDepth) {}

  using inherited::TransformTemplateTypeParmType;
  QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB,
                                         TemplateTypeParmTypeLoc TL, bool) {
    const TemplateTypeParmType *T = TL.getTypePtr();

    TemplateTypeParmDecl *NewTTPDecl = nullptr;
    if (TemplateTypeParmDecl *OldTTPDecl = T->getDecl())
      NewTTPDecl = cast_or_null<TemplateTypeParmDecl>(
          TransformDecl(TL.getNameLoc(), OldTTPDecl));

    QualType Result = getSema().Context.getTemplateTypeParmType(
        T->getDepth() + TemplateDepth, T->getIndex(), T->isParameterPack(),
        NewTTPDecl);
    TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
    NewTL.setNameLoc(TL.getNameLoc());
    return Result;
  }
  };
} // namespace

bool Sema::AreConstraintExpressionsEqual(const NamedDecl *Old,
                                         const Expr *OldConstr,
                                         const NamedDecl *New,
                                         const Expr *NewConstr) {
  if (Old && New && Old != New) {
    unsigned Depth1 = CalculateTemplateDepthForConstraints(
        *this, Old);
    unsigned Depth2 = CalculateTemplateDepthForConstraints(
        *this, New);

    // Adjust the 'shallowest' verison of this to increase the depth to match
    // the 'other'.
    if (Depth2 > Depth1) {
      OldConstr = AdjustConstraintDepth(*this, Depth2 - Depth1)
                      .TransformExpr(const_cast<Expr *>(OldConstr))
                      .get();
    } else if (Depth1 > Depth2) {
      NewConstr = AdjustConstraintDepth(*this, Depth1 - Depth2)
                      .TransformExpr(const_cast<Expr *>(NewConstr))
                      .get();
    }
  }

  llvm::FoldingSetNodeID ID1, ID2;
  OldConstr->Profile(ID1, Context, /*Canonical=*/true);
  NewConstr->Profile(ID2, Context, /*Canonical=*/true);
  return ID1 == ID2;
}

bool Sema::FriendConstraintsDependOnEnclosingTemplate(const FunctionDecl *FD) {
  assert(FD->getFriendObjectKind() && "Must be a friend!");

  // The logic for non-templates is handled in ASTContext::isSameEntity, so we
  // don't have to bother checking 'DependsOnEnclosingTemplate' for a
  // non-function-template.
  assert(FD->getDescribedFunctionTemplate() &&
         "Non-function templates don't need to be checked");

  SmallVector<const Expr *, 3> ACs;
  FD->getDescribedFunctionTemplate()->getAssociatedConstraints(ACs);

  unsigned OldTemplateDepth = CalculateTemplateDepthForConstraints(*this, FD);
  for (const Expr *Constraint : ACs)
    if (ConstraintExpressionDependsOnEnclosingTemplate(FD, OldTemplateDepth,
                                                       Constraint))
      return true;

  return false;
}

bool Sema::EnsureTemplateArgumentListConstraints(
    TemplateDecl *TD, const MultiLevelTemplateArgumentList &TemplateArgsLists,
    SourceRange TemplateIDRange) {
  ConstraintSatisfaction Satisfaction;
  llvm::SmallVector<const Expr *, 3> AssociatedConstraints;
  TD->getAssociatedConstraints(AssociatedConstraints);
  if (CheckConstraintSatisfaction(TD, AssociatedConstraints, TemplateArgsLists,
                                  TemplateIDRange, Satisfaction))
    return true;

  if (!Satisfaction.IsSatisfied) {
    SmallString<128> TemplateArgString;
    TemplateArgString = " ";
    TemplateArgString += getTemplateArgumentBindingsText(
        TD->getTemplateParameters(), TemplateArgsLists.getInnermost().data(),
        TemplateArgsLists.getInnermost().size());

    Diag(TemplateIDRange.getBegin(),
         diag::err_template_arg_list_constraints_not_satisfied)
        << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << TD
        << TemplateArgString << TemplateIDRange;
    DiagnoseUnsatisfiedConstraint(Satisfaction);
    return true;
  }
  return false;
}

bool Sema::CheckInstantiatedFunctionTemplateConstraints(
    SourceLocation PointOfInstantiation, FunctionDecl *Decl,
    ArrayRef<TemplateArgument> TemplateArgs,
    ConstraintSatisfaction &Satisfaction) {
  // In most cases we're not going to have constraints, so check for that first.
  FunctionTemplateDecl *Template = Decl->getPrimaryTemplate();
  // Note - code synthesis context for the constraints check is created
  // inside CheckConstraintsSatisfaction.
  SmallVector<const Expr *, 3> TemplateAC;
  Template->getAssociatedConstraints(TemplateAC);
  if (TemplateAC.empty()) {
    Satisfaction.IsSatisfied = true;
    return false;
  }

  // Enter the scope of this instantiation. We don't use
  // PushDeclContext because we don't have a scope.
  Sema::ContextRAII savedContext(*this, Decl);
  LocalInstantiationScope Scope(*this);

  std::optional<MultiLevelTemplateArgumentList> MLTAL =
      SetupConstraintCheckingTemplateArgumentsAndScope(Decl, TemplateArgs,
                                                       Scope);

  if (!MLTAL)
    return true;

  Qualifiers ThisQuals;
  CXXRecordDecl *Record = nullptr;
  if (auto *Method = dyn_cast<CXXMethodDecl>(Decl)) {
    ThisQuals = Method->getMethodQualifiers();
    Record = Method->getParent();
  }
  CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr);
  FunctionScopeRAII FuncScope(*this);
  if (isLambdaCallOperator(Decl))
    PushLambdaScope();
  else
    FuncScope.disable();

  llvm::SmallVector<Expr *, 1> Converted;
  return CheckConstraintSatisfaction(Template, TemplateAC, Converted, *MLTAL,
                                     PointOfInstantiation, Satisfaction);
}

static void diagnoseUnsatisfiedRequirement(Sema &S,
                                           concepts::ExprRequirement *Req,
                                           bool First) {
  assert(!Req->isSatisfied()
         && "Diagnose() can only be used on an unsatisfied requirement");
  switch (Req->getSatisfactionStatus()) {
    case concepts::ExprRequirement::SS_Dependent:
      llvm_unreachable("Diagnosing a dependent requirement");
      break;
    case concepts::ExprRequirement::SS_ExprSubstitutionFailure: {
      auto *SubstDiag = Req->getExprSubstitutionDiagnostic();
      if (!SubstDiag->DiagMessage.empty())
        S.Diag(SubstDiag->DiagLoc,
               diag::note_expr_requirement_expr_substitution_error)
               << (int)First << SubstDiag->SubstitutedEntity
               << SubstDiag->DiagMessage;
      else
        S.Diag(SubstDiag->DiagLoc,
               diag::note_expr_requirement_expr_unknown_substitution_error)
            << (int)First << SubstDiag->SubstitutedEntity;
      break;
    }
    case concepts::ExprRequirement::SS_NoexceptNotMet:
      S.Diag(Req->getNoexceptLoc(),
             diag::note_expr_requirement_noexcept_not_met)
          << (int)First << Req->getExpr();
      break;
    case concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure: {
      auto *SubstDiag =
          Req->getReturnTypeRequirement().getSubstitutionDiagnostic();
      if (!SubstDiag->DiagMessage.empty())
        S.Diag(SubstDiag->DiagLoc,
               diag::note_expr_requirement_type_requirement_substitution_error)
            << (int)First << SubstDiag->SubstitutedEntity
            << SubstDiag->DiagMessage;
      else
        S.Diag(SubstDiag->DiagLoc,
               diag::note_expr_requirement_type_requirement_unknown_substitution_error)
            << (int)First << SubstDiag->SubstitutedEntity;
      break;
    }
    case concepts::ExprRequirement::SS_ConstraintsNotSatisfied: {
      ConceptSpecializationExpr *ConstraintExpr =
          Req->getReturnTypeRequirementSubstitutedConstraintExpr();
      if (ConstraintExpr->getTemplateArgsAsWritten()->NumTemplateArgs == 1) {
        // A simple case - expr type is the type being constrained and the concept
        // was not provided arguments.
        Expr *e = Req->getExpr();
        S.Diag(e->getBeginLoc(),
               diag::note_expr_requirement_constraints_not_satisfied_simple)
            << (int)First << S.Context.getReferenceQualifiedType(e)
            << ConstraintExpr->getNamedConcept();
      } else {
        S.Diag(ConstraintExpr->getBeginLoc(),
               diag::note_expr_requirement_constraints_not_satisfied)
            << (int)First << ConstraintExpr;
      }
      S.DiagnoseUnsatisfiedConstraint(ConstraintExpr->getSatisfaction());
      break;
    }
    case concepts::ExprRequirement::SS_Satisfied:
      llvm_unreachable("We checked this above");
  }
}

static void diagnoseUnsatisfiedRequirement(Sema &S,
                                           concepts::TypeRequirement *Req,
                                           bool First) {
  assert(!Req->isSatisfied()
         && "Diagnose() can only be used on an unsatisfied requirement");
  switch (Req->getSatisfactionStatus()) {
  case concepts::TypeRequirement::SS_Dependent:
    llvm_unreachable("Diagnosing a dependent requirement");
    return;
  case concepts::TypeRequirement::SS_SubstitutionFailure: {
    auto *SubstDiag = Req->getSubstitutionDiagnostic();
    if (!SubstDiag->DiagMessage.empty())
      S.Diag(SubstDiag->DiagLoc,
             diag::note_type_requirement_substitution_error) << (int)First
          << SubstDiag->SubstitutedEntity << SubstDiag->DiagMessage;
    else
      S.Diag(SubstDiag->DiagLoc,
             diag::note_type_requirement_unknown_substitution_error)
          << (int)First << SubstDiag->SubstitutedEntity;
    return;
  }
  default:
    llvm_unreachable("Unknown satisfaction status");
    return;
  }
}
static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S,
                                                        Expr *SubstExpr,
                                                        bool First = true);

static void diagnoseUnsatisfiedRequirement(Sema &S,
                                           concepts::NestedRequirement *Req,
                                           bool First) {
  using SubstitutionDiagnostic = std::pair<SourceLocation, StringRef>;
  for (auto &Pair : Req->getConstraintSatisfaction()) {
    if (auto *SubstDiag = Pair.second.dyn_cast<SubstitutionDiagnostic *>())
      S.Diag(SubstDiag->first, diag::note_nested_requirement_substitution_error)
          << (int)First << Req->getInvalidConstraintEntity() << SubstDiag->second;
    else
      diagnoseWellFormedUnsatisfiedConstraintExpr(
          S, Pair.second.dyn_cast<Expr *>(), First);
    First = false;
  }
}

static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S,
                                                        Expr *SubstExpr,
                                                        bool First) {
  SubstExpr = SubstExpr->IgnoreParenImpCasts();
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SubstExpr)) {
    switch (BO->getOpcode()) {
    // These two cases will in practice only be reached when using fold
    // expressions with || and &&, since otherwise the || and && will have been
    // broken down into atomic constraints during satisfaction checking.
    case BO_LOr:
      // Or evaluated to false - meaning both RHS and LHS evaluated to false.
      diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);
      diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
                                                  /*First=*/false);
      return;
    case BO_LAnd: {
      bool LHSSatisfied =
          BO->getLHS()->EvaluateKnownConstInt(S.Context).getBoolValue();
      if (LHSSatisfied) {
        // LHS is true, so RHS must be false.
        diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), First);
        return;
      }
      // LHS is false
      diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);

      // RHS might also be false
      bool RHSSatisfied =
          BO->getRHS()->EvaluateKnownConstInt(S.Context).getBoolValue();
      if (!RHSSatisfied)
        diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
                                                    /*First=*/false);
      return;
    }
    case BO_GE:
    case BO_LE:
    case BO_GT:
    case BO_LT:
    case BO_EQ:
    case BO_NE:
      if (BO->getLHS()->getType()->isIntegerType() &&
          BO->getRHS()->getType()->isIntegerType()) {
        Expr::EvalResult SimplifiedLHS;
        Expr::EvalResult SimplifiedRHS;
        BO->getLHS()->EvaluateAsInt(SimplifiedLHS, S.Context,
                                    Expr::SE_NoSideEffects,
                                    /*InConstantContext=*/true);
        BO->getRHS()->EvaluateAsInt(SimplifiedRHS, S.Context,
                                    Expr::SE_NoSideEffects,
                                    /*InConstantContext=*/true);
        if (!SimplifiedLHS.Diag && ! SimplifiedRHS.Diag) {
          S.Diag(SubstExpr->getBeginLoc(),
                 diag::note_atomic_constraint_evaluated_to_false_elaborated)
              << (int)First << SubstExpr
              << toString(SimplifiedLHS.Val.getInt(), 10)
              << BinaryOperator::getOpcodeStr(BO->getOpcode())
              << toString(SimplifiedRHS.Val.getInt(), 10);
          return;
        }
      }
      break;

    default:
      break;
    }
  } else if (auto *CSE = dyn_cast<ConceptSpecializationExpr>(SubstExpr)) {
    if (CSE->getTemplateArgsAsWritten()->NumTemplateArgs == 1) {
      S.Diag(
          CSE->getSourceRange().getBegin(),
          diag::
          note_single_arg_concept_specialization_constraint_evaluated_to_false)
          << (int)First
          << CSE->getTemplateArgsAsWritten()->arguments()[0].getArgument()
          << CSE->getNamedConcept();
    } else {
      S.Diag(SubstExpr->getSourceRange().getBegin(),
             diag::note_concept_specialization_constraint_evaluated_to_false)
          << (int)First << CSE;
    }
    S.DiagnoseUnsatisfiedConstraint(CSE->getSatisfaction());
    return;
  } else if (auto *RE = dyn_cast<RequiresExpr>(SubstExpr)) {
    // FIXME: RequiresExpr should store dependent diagnostics.
    for (concepts::Requirement *Req : RE->getRequirements())
      if (!Req->isDependent() && !Req->isSatisfied()) {
        if (auto *E = dyn_cast<concepts::ExprRequirement>(Req))
          diagnoseUnsatisfiedRequirement(S, E, First);
        else if (auto *T = dyn_cast<concepts::TypeRequirement>(Req))
          diagnoseUnsatisfiedRequirement(S, T, First);
        else
          diagnoseUnsatisfiedRequirement(
              S, cast<concepts::NestedRequirement>(Req), First);
        break;
      }
    return;
  }

  S.Diag(SubstExpr->getSourceRange().getBegin(),
         diag::note_atomic_constraint_evaluated_to_false)
      << (int)First << SubstExpr;
}

template<typename SubstitutionDiagnostic>
static void diagnoseUnsatisfiedConstraintExpr(
    Sema &S, const Expr *E,
    const llvm::PointerUnion<Expr *, SubstitutionDiagnostic *> &Record,
    bool First = true) {
  if (auto *Diag = Record.template dyn_cast<SubstitutionDiagnostic *>()){
    S.Diag(Diag->first, diag::note_substituted_constraint_expr_is_ill_formed)
        << Diag->second;
    return;
  }

  diagnoseWellFormedUnsatisfiedConstraintExpr(S,
      Record.template get<Expr *>(), First);
}

void
Sema::DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction& Satisfaction,
                                    bool First) {
  assert(!Satisfaction.IsSatisfied &&
         "Attempted to diagnose a satisfied constraint");
  for (auto &Pair : Satisfaction.Details) {
    diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First);
    First = false;
  }
}

void Sema::DiagnoseUnsatisfiedConstraint(
    const ASTConstraintSatisfaction &Satisfaction,
    bool First) {
  assert(!Satisfaction.IsSatisfied &&
         "Attempted to diagnose a satisfied constraint");
  for (auto &Pair : Satisfaction) {
    diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First);
    First = false;
  }
}

const NormalizedConstraint *
Sema::getNormalizedAssociatedConstraints(
    NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints) {
  auto CacheEntry = NormalizationCache.find(ConstrainedDecl);
  if (CacheEntry == NormalizationCache.end()) {
    auto Normalized =
        NormalizedConstraint::fromConstraintExprs(*this, ConstrainedDecl,
                                                  AssociatedConstraints);
    CacheEntry =
        NormalizationCache
            .try_emplace(ConstrainedDecl,
                         Normalized
                             ? new (Context) NormalizedConstraint(
                                 std::move(*Normalized))
                             : nullptr)
            .first;
  }
  return CacheEntry->second;
}

static bool
substituteParameterMappings(Sema &S, NormalizedConstraint &N,
                            ConceptDecl *Concept,
                            const MultiLevelTemplateArgumentList &MLTAL,
                            const ASTTemplateArgumentListInfo *ArgsAsWritten) {
  if (!N.isAtomic()) {
    if (substituteParameterMappings(S, N.getLHS(), Concept, MLTAL,
                                    ArgsAsWritten))
      return true;
    return substituteParameterMappings(S, N.getRHS(), Concept, MLTAL,
                                       ArgsAsWritten);
  }
  TemplateParameterList *TemplateParams = Concept->getTemplateParameters();

  AtomicConstraint &Atomic = *N.getAtomicConstraint();
  TemplateArgumentListInfo SubstArgs;
  if (!Atomic.ParameterMapping) {
    llvm::SmallBitVector OccurringIndices(TemplateParams->size());
    S.MarkUsedTemplateParameters(Atomic.ConstraintExpr, /*OnlyDeduced=*/false,
                                 /*Depth=*/0, OccurringIndices);
    TemplateArgumentLoc *TempArgs =
        new (S.Context) TemplateArgumentLoc[OccurringIndices.count()];
    for (unsigned I = 0, J = 0, C = TemplateParams->size(); I != C; ++I)
      if (OccurringIndices[I])
        new (&(TempArgs)[J++])
            TemplateArgumentLoc(S.getIdentityTemplateArgumentLoc(
                TemplateParams->begin()[I],
                // Here we assume we do not support things like
                // template<typename A, typename B>
                // concept C = ...;
                //
                // template<typename... Ts> requires C<Ts...>
                // struct S { };
                // The above currently yields a diagnostic.
                // We still might have default arguments for concept parameters.
                ArgsAsWritten->NumTemplateArgs > I
                    ? ArgsAsWritten->arguments()[I].getLocation()
                    : SourceLocation()));
    Atomic.ParameterMapping.emplace(TempArgs,  OccurringIndices.count());
  }
  Sema::InstantiatingTemplate Inst(
      S, ArgsAsWritten->arguments().front().getSourceRange().getBegin(),
      Sema::InstantiatingTemplate::ParameterMappingSubstitution{}, Concept,
      ArgsAsWritten->arguments().front().getSourceRange());
  if (S.SubstTemplateArguments(*Atomic.ParameterMapping, MLTAL, SubstArgs))
    return true;

  TemplateArgumentLoc *TempArgs =
      new (S.Context) TemplateArgumentLoc[SubstArgs.size()];
  std::copy(SubstArgs.arguments().begin(), SubstArgs.arguments().end(),
            TempArgs);
  Atomic.ParameterMapping.emplace(TempArgs, SubstArgs.size());
  return false;
}

static bool substituteParameterMappings(Sema &S, NormalizedConstraint &N,
                                        const ConceptSpecializationExpr *CSE) {
  TemplateArgumentList TAL{TemplateArgumentList::OnStack,
                           CSE->getTemplateArguments()};
  MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs(
      CSE->getNamedConcept(), /*Final=*/false, &TAL,
      /*RelativeToPrimary=*/true,
      /*Pattern=*/nullptr,
      /*ForConstraintInstantiation=*/true);

  return substituteParameterMappings(S, N, CSE->getNamedConcept(), MLTAL,
                                     CSE->getTemplateArgsAsWritten());
}

std::optional<NormalizedConstraint>
NormalizedConstraint::fromConstraintExprs(Sema &S, NamedDecl *D,
                                          ArrayRef<const Expr *> E) {
  assert(E.size() != 0);
  auto Conjunction = fromConstraintExpr(S, D, E[0]);
  if (!Conjunction)
    return std::nullopt;
  for (unsigned I = 1; I < E.size(); ++I) {
    auto Next = fromConstraintExpr(S, D, E[I]);
    if (!Next)
      return std::nullopt;
    *Conjunction = NormalizedConstraint(S.Context, std::move(*Conjunction),
                                        std::move(*Next), CCK_Conjunction);
  }
  return Conjunction;
}

std::optional<NormalizedConstraint>
NormalizedConstraint::fromConstraintExpr(Sema &S, NamedDecl *D, const Expr *E) {
  assert(E != nullptr);

  // C++ [temp.constr.normal]p1.1
  // [...]
  // - The normal form of an expression (E) is the normal form of E.
  // [...]
  E = E->IgnoreParenImpCasts();

  // C++2a [temp.param]p4:
  //     [...] If T is not a pack, then E is E', otherwise E is (E' && ...).
  // Fold expression is considered atomic constraints per current wording.
  // See http://cplusplus.github.io/concepts-ts/ts-active.html#28

  if (LogicalBinOp BO = E) {
    auto LHS = fromConstraintExpr(S, D, BO.getLHS());
    if (!LHS)
      return std::nullopt;
    auto RHS = fromConstraintExpr(S, D, BO.getRHS());
    if (!RHS)
      return std::nullopt;

    return NormalizedConstraint(S.Context, std::move(*LHS), std::move(*RHS),
                                BO.isAnd() ? CCK_Conjunction : CCK_Disjunction);
  } else if (auto *CSE = dyn_cast<const ConceptSpecializationExpr>(E)) {
    const NormalizedConstraint *SubNF;
    {
      Sema::InstantiatingTemplate Inst(
          S, CSE->getExprLoc(),
          Sema::InstantiatingTemplate::ConstraintNormalization{}, D,
          CSE->getSourceRange());
      // C++ [temp.constr.normal]p1.1
      // [...]
      // The normal form of an id-expression of the form C<A1, A2, ..., AN>,
      // where C names a concept, is the normal form of the
      // constraint-expression of C, after substituting A1, A2, ..., AN for C’s
      // respective template parameters in the parameter mappings in each atomic
      // constraint. If any such substitution results in an invalid type or
      // expression, the program is ill-formed; no diagnostic is required.
      // [...]
      ConceptDecl *CD = CSE->getNamedConcept();
      SubNF = S.getNormalizedAssociatedConstraints(CD,
                                                   {CD->getConstraintExpr()});
      if (!SubNF)
        return std::nullopt;
    }

    std::optional<NormalizedConstraint> New;
    New.emplace(S.Context, *SubNF);

    if (substituteParameterMappings(S, *New, CSE))
      return std::nullopt;

    return New;
  }
  return NormalizedConstraint{new (S.Context) AtomicConstraint(S, E)};
}

using NormalForm =
    llvm::SmallVector<llvm::SmallVector<AtomicConstraint *, 2>, 4>;

static NormalForm makeCNF(const NormalizedConstraint &Normalized) {
  if (Normalized.isAtomic())
    return {{Normalized.getAtomicConstraint()}};

  NormalForm LCNF = makeCNF(Normalized.getLHS());
  NormalForm RCNF = makeCNF(Normalized.getRHS());
  if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Conjunction) {
    LCNF.reserve(LCNF.size() + RCNF.size());
    while (!RCNF.empty())
      LCNF.push_back(RCNF.pop_back_val());
    return LCNF;
  }

  // Disjunction
  NormalForm Res;
  Res.reserve(LCNF.size() * RCNF.size());
  for (auto &LDisjunction : LCNF)
    for (auto &RDisjunction : RCNF) {
      NormalForm::value_type Combined;
      Combined.reserve(LDisjunction.size() + RDisjunction.size());
      std::copy(LDisjunction.begin(), LDisjunction.end(),
                std::back_inserter(Combined));
      std::copy(RDisjunction.begin(), RDisjunction.end(),
                std::back_inserter(Combined));
      Res.emplace_back(Combined);
    }
  return Res;
}

static NormalForm makeDNF(const NormalizedConstraint &Normalized) {
  if (Normalized.isAtomic())
    return {{Normalized.getAtomicConstraint()}};

  NormalForm LDNF = makeDNF(Normalized.getLHS());
  NormalForm RDNF = makeDNF(Normalized.getRHS());
  if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Disjunction) {
    LDNF.reserve(LDNF.size() + RDNF.size());
    while (!RDNF.empty())
      LDNF.push_back(RDNF.pop_back_val());
    return LDNF;
  }

  // Conjunction
  NormalForm Res;
  Res.reserve(LDNF.size() * RDNF.size());
  for (auto &LConjunction : LDNF) {
    for (auto &RConjunction : RDNF) {
      NormalForm::value_type Combined;
      Combined.reserve(LConjunction.size() + RConjunction.size());
      std::copy(LConjunction.begin(), LConjunction.end(),
                std::back_inserter(Combined));
      std::copy(RConjunction.begin(), RConjunction.end(),
                std::back_inserter(Combined));
      Res.emplace_back(Combined);
    }
  }
  return Res;
}

template<typename AtomicSubsumptionEvaluator>
static bool subsumes(NormalForm PDNF, NormalForm QCNF,
                     AtomicSubsumptionEvaluator E) {
  // C++ [temp.constr.order] p2
  //   Then, P subsumes Q if and only if, for every disjunctive clause Pi in the
  //   disjunctive normal form of P, Pi subsumes every conjunctive clause Qj in
  //   the conjuctive normal form of Q, where [...]
  for (const auto &Pi : PDNF) {
    for (const auto &Qj : QCNF) {
      // C++ [temp.constr.order] p2
      //   - [...] a disjunctive clause Pi subsumes a conjunctive clause Qj if
      //     and only if there exists an atomic constraint Pia in Pi for which
      //     there exists an atomic constraint, Qjb, in Qj such that Pia
      //     subsumes Qjb.
      bool Found = false;
      for (const AtomicConstraint *Pia : Pi) {
        for (const AtomicConstraint *Qjb : Qj) {
          if (E(*Pia, *Qjb)) {
            Found = true;
            break;
          }
        }
        if (Found)
          break;
      }
      if (!Found)
        return false;
    }
  }
  return true;
}

template<typename AtomicSubsumptionEvaluator>
static bool subsumes(Sema &S, NamedDecl *DP, ArrayRef<const Expr *> P,
                     NamedDecl *DQ, ArrayRef<const Expr *> Q, bool &Subsumes,
                     AtomicSubsumptionEvaluator E) {
  // C++ [temp.constr.order] p2
  //   In order to determine if a constraint P subsumes a constraint Q, P is
  //   transformed into disjunctive normal form, and Q is transformed into
  //   conjunctive normal form. [...]
  auto *PNormalized = S.getNormalizedAssociatedConstraints(DP, P);
  if (!PNormalized)
    return true;
  const NormalForm PDNF = makeDNF(*PNormalized);

  auto *QNormalized = S.getNormalizedAssociatedConstraints(DQ, Q);
  if (!QNormalized)
    return true;
  const NormalForm QCNF = makeCNF(*QNormalized);

  Subsumes = subsumes(PDNF, QCNF, E);
  return false;
}

bool Sema::IsAtLeastAsConstrained(NamedDecl *D1,
                                  MutableArrayRef<const Expr *> AC1,
                                  NamedDecl *D2,
                                  MutableArrayRef<const Expr *> AC2,
                                  bool &Result) {
  if (const auto *FD1 = dyn_cast<FunctionDecl>(D1)) {
    auto IsExpectedEntity = [](const FunctionDecl *FD) {
      FunctionDecl::TemplatedKind Kind = FD->getTemplatedKind();
      return Kind == FunctionDecl::TK_NonTemplate ||
             Kind == FunctionDecl::TK_FunctionTemplate;
    };
    const auto *FD2 = dyn_cast<FunctionDecl>(D2);
    (void)IsExpectedEntity;
    (void)FD1;
    (void)FD2;
    assert(IsExpectedEntity(FD1) && FD2 && IsExpectedEntity(FD2) &&
           "use non-instantiated function declaration for constraints partial "
           "ordering");
  }

  if (AC1.empty()) {
    Result = AC2.empty();
    return false;
  }
  if (AC2.empty()) {
    // TD1 has associated constraints and TD2 does not.
    Result = true;
    return false;
  }

  std::pair<NamedDecl *, NamedDecl *> Key{D1, D2};
  auto CacheEntry = SubsumptionCache.find(Key);
  if (CacheEntry != SubsumptionCache.end()) {
    Result = CacheEntry->second;
    return false;
  }

  unsigned Depth1 = CalculateTemplateDepthForConstraints(*this, D1, true);
  unsigned Depth2 = CalculateTemplateDepthForConstraints(*this, D2, true);

  for (size_t I = 0; I != AC1.size() && I != AC2.size(); ++I) {
    if (Depth2 > Depth1) {
      AC1[I] = AdjustConstraintDepth(*this, Depth2 - Depth1)
                   .TransformExpr(const_cast<Expr *>(AC1[I]))
                   .get();
    } else if (Depth1 > Depth2) {
      AC2[I] = AdjustConstraintDepth(*this, Depth1 - Depth2)
                   .TransformExpr(const_cast<Expr *>(AC2[I]))
                   .get();
    }
  }

  if (subsumes(*this, D1, AC1, D2, AC2, Result,
        [this] (const AtomicConstraint &A, const AtomicConstraint &B) {
          return A.subsumes(Context, B);
        }))
    return true;
  SubsumptionCache.try_emplace(Key, Result);
  return false;
}

bool Sema::MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1,
    ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2) {
  if (isSFINAEContext())
    // No need to work here because our notes would be discarded.
    return false;

  if (AC1.empty() || AC2.empty())
    return false;

  auto NormalExprEvaluator =
      [this] (const AtomicConstraint &A, const AtomicConstraint &B) {
        return A.subsumes(Context, B);
      };

  const Expr *AmbiguousAtomic1 = nullptr, *AmbiguousAtomic2 = nullptr;
  auto IdenticalExprEvaluator =
      [&] (const AtomicConstraint &A, const AtomicConstraint &B) {
        if (!A.hasMatchingParameterMapping(Context, B))
          return false;
        const Expr *EA = A.ConstraintExpr, *EB = B.ConstraintExpr;
        if (EA == EB)
          return true;

        // Not the same source level expression - are the expressions
        // identical?
        llvm::FoldingSetNodeID IDA, IDB;
        EA->Profile(IDA, Context, /*Canonical=*/true);
        EB->Profile(IDB, Context, /*Canonical=*/true);
        if (IDA != IDB)
          return false;

        AmbiguousAtomic1 = EA;
        AmbiguousAtomic2 = EB;
        return true;
      };

  {
    // The subsumption checks might cause diagnostics
    SFINAETrap Trap(*this);
    auto *Normalized1 = getNormalizedAssociatedConstraints(D1, AC1);
    if (!Normalized1)
      return false;
    const NormalForm DNF1 = makeDNF(*Normalized1);
    const NormalForm CNF1 = makeCNF(*Normalized1);

    auto *Normalized2 = getNormalizedAssociatedConstraints(D2, AC2);
    if (!Normalized2)
      return false;
    const NormalForm DNF2 = makeDNF(*Normalized2);
    const NormalForm CNF2 = makeCNF(*Normalized2);

    bool Is1AtLeastAs2Normally = subsumes(DNF1, CNF2, NormalExprEvaluator);
    bool Is2AtLeastAs1Normally = subsumes(DNF2, CNF1, NormalExprEvaluator);
    bool Is1AtLeastAs2 = subsumes(DNF1, CNF2, IdenticalExprEvaluator);
    bool Is2AtLeastAs1 = subsumes(DNF2, CNF1, IdenticalExprEvaluator);
    if (Is1AtLeastAs2 == Is1AtLeastAs2Normally &&
        Is2AtLeastAs1 == Is2AtLeastAs1Normally)
      // Same result - no ambiguity was caused by identical atomic expressions.
      return false;
  }

  // A different result! Some ambiguous atomic constraint(s) caused a difference
  assert(AmbiguousAtomic1 && AmbiguousAtomic2);

  Diag(AmbiguousAtomic1->getBeginLoc(), diag::note_ambiguous_atomic_constraints)
      << AmbiguousAtomic1->getSourceRange();
  Diag(AmbiguousAtomic2->getBeginLoc(),
       diag::note_ambiguous_atomic_constraints_similar_expression)
      << AmbiguousAtomic2->getSourceRange();
  return true;
}

concepts::ExprRequirement::ExprRequirement(
    Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
    ReturnTypeRequirement Req, SatisfactionStatus Status,
    ConceptSpecializationExpr *SubstitutedConstraintExpr) :
    Requirement(IsSimple ? RK_Simple : RK_Compound, Status == SS_Dependent,
                Status == SS_Dependent &&
                (E->containsUnexpandedParameterPack() ||
                 Req.containsUnexpandedParameterPack()),
                Status == SS_Satisfied), Value(E), NoexceptLoc(NoexceptLoc),
    TypeReq(Req), SubstitutedConstraintExpr(SubstitutedConstraintExpr),
    Status(Status) {
  assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&
         "Simple requirement must not have a return type requirement or a "
         "noexcept specification");
  assert((Status > SS_TypeRequirementSubstitutionFailure && Req.isTypeConstraint()) ==
         (SubstitutedConstraintExpr != nullptr));
}

concepts::ExprRequirement::ExprRequirement(
    SubstitutionDiagnostic *ExprSubstDiag, bool IsSimple,
    SourceLocation NoexceptLoc, ReturnTypeRequirement Req) :
    Requirement(IsSimple ? RK_Simple : RK_Compound, Req.isDependent(),
                Req.containsUnexpandedParameterPack(), /*IsSatisfied=*/false),
    Value(ExprSubstDiag), NoexceptLoc(NoexceptLoc), TypeReq(Req),
    Status(SS_ExprSubstitutionFailure) {
  assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&
         "Simple requirement must not have a return type requirement or a "
         "noexcept specification");
}

concepts::ExprRequirement::ReturnTypeRequirement::
ReturnTypeRequirement(TemplateParameterList *TPL) :
    TypeConstraintInfo(TPL, false) {
  assert(TPL->size() == 1);
  const TypeConstraint *TC =
      cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint();
  assert(TC &&
         "TPL must have a template type parameter with a type constraint");
  auto *Constraint =
      cast<ConceptSpecializationExpr>(TC->getImmediatelyDeclaredConstraint());
  bool Dependent =
      Constraint->getTemplateArgsAsWritten() &&
      TemplateSpecializationType::anyInstantiationDependentTemplateArguments(
          Constraint->getTemplateArgsAsWritten()->arguments().drop_front(1));
  TypeConstraintInfo.setInt(Dependent ? true : false);
}

concepts::TypeRequirement::TypeRequirement(TypeSourceInfo *T) :
    Requirement(RK_Type, T->getType()->isInstantiationDependentType(),
                T->getType()->containsUnexpandedParameterPack(),
                // We reach this ctor with either dependent types (in which
                // IsSatisfied doesn't matter) or with non-dependent type in
                // which the existence of the type indicates satisfaction.
                /*IsSatisfied=*/true),
    Value(T),
    Status(T->getType()->isInstantiationDependentType() ? SS_Dependent
                                                        : SS_Satisfied) {}