aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/IteratorModeling.cpp
blob: fd8cbd694b2403447bd82e7b41c9035bdc62d0a8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
//===-- IteratorModeling.cpp --------------------------------------*- C++ -*--//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Defines a modeling-checker for modeling STL iterator-like iterators.
//
//===----------------------------------------------------------------------===//
//
// In the code, iterator can be represented as a:
// * type-I: typedef-ed pointer. Operations over such iterator, such as
//           comparisons or increments, are modeled straightforwardly by the
//           analyzer.
// * type-II: structure with its method bodies available.  Operations over such
//            iterator are inlined by the analyzer, and results of modeling
//            these operations are exposing implementation details of the
//            iterators, which is not necessarily helping.
// * type-III: completely opaque structure. Operations over such iterator are
//             modeled conservatively, producing conjured symbols everywhere.
//
// To handle all these types in a common way we introduce a structure called
// IteratorPosition which is an abstraction of the position the iterator
// represents using symbolic expressions. The checker handles all the
// operations on this structure.
//
// Additionally, depending on the circumstances, operators of types II and III
// can be represented as:
// * type-IIa, type-IIIa: conjured structure symbols - when returned by value
//                        from conservatively evaluated methods such as
//                        `.begin()`.
// * type-IIb, type-IIIb: memory regions of iterator-typed objects, such as
//                        variables or temporaries, when the iterator object is
//                        currently treated as an lvalue.
// * type-IIc, type-IIIc: compound values of iterator-typed objects, when the
//                        iterator object is treated as an rvalue taken of a
//                        particular lvalue, eg. a copy of "type-a" iterator
//                        object, or an iterator that existed before the
//                        analysis has started.
//
// To handle any of these three different representations stored in an SVal we
// use setter and getters functions which separate the three cases. To store
// them we use a pointer union of symbol and memory region.
//
// The checker works the following way: We record the begin and the
// past-end iterator for all containers whenever their `.begin()` and `.end()`
// are called. Since the Constraint Manager cannot handle such SVals we need
// to take over its role. We post-check equality and non-equality comparisons
// and record that the two sides are equal if we are in the 'equal' branch
// (true-branch for `==` and false-branch for `!=`).
//
// In case of type-I or type-II iterators we get a concrete integer as a result
// of the comparison (1 or 0) but in case of type-III we only get a Symbol. In
// this latter case we record the symbol and reload it in evalAssume() and do
// the propagation there. We also handle (maybe double) negated comparisons
// which are represented in the form of (x == 0 or x != 0) where x is the
// comparison itself.
//
// Since `SimpleConstraintManager` cannot handle complex symbolic expressions
// we only use expressions of the format S, S+n or S-n for iterator positions
// where S is a conjured symbol and n is an unsigned concrete integer. When
// making an assumption e.g. `S1 + n == S2 + m` we store `S1 - S2 == m - n` as
// a constraint which we later retrieve when doing an actual comparison.

#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"

#include "Iterator.h"

#include <utility>

using namespace clang;
using namespace ento;
using namespace iterator;

namespace {

class IteratorModeling
    : public Checker<check::PostCall, check::PostStmt<UnaryOperator>,
                     check::PostStmt<BinaryOperator>,
                     check::PostStmt<MaterializeTemporaryExpr>,
                     check::Bind, check::LiveSymbols, check::DeadSymbols> {

  using AdvanceFn = void (IteratorModeling::*)(CheckerContext &, const Expr *,
                                               SVal, SVal, SVal) const;

  void handleOverloadedOperator(CheckerContext &C, const CallEvent &Call,
                                OverloadedOperatorKind Op) const;
  void handleAdvanceLikeFunction(CheckerContext &C, const CallEvent &Call,
                                 const Expr *OrigExpr,
                                 const AdvanceFn *Handler) const;

  void handleComparison(CheckerContext &C, const Expr *CE, SVal RetVal,
                        const SVal &LVal, const SVal &RVal,
                        OverloadedOperatorKind Op) const;
  void processComparison(CheckerContext &C, ProgramStateRef State,
                         SymbolRef Sym1, SymbolRef Sym2, const SVal &RetVal,
                         OverloadedOperatorKind Op) const;
  void handleIncrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
                       bool Postfix) const;
  void handleDecrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
                       bool Postfix) const;
  void handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE,
                              OverloadedOperatorKind Op, const SVal &RetVal,
                              const SVal &LHS, const SVal &RHS) const;
  void handlePtrIncrOrDecr(CheckerContext &C, const Expr *Iterator,
                           OverloadedOperatorKind OK, SVal Offset) const;
  void handleAdvance(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
                     SVal Amount) const;
  void handlePrev(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
                  SVal Amount) const;
  void handleNext(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
                  SVal Amount) const;
  void assignToContainer(CheckerContext &C, const Expr *CE, const SVal &RetVal,
                         const MemRegion *Cont) const;
  bool noChangeInAdvance(CheckerContext &C, SVal Iter, const Expr *CE) const;
  void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
                  const char *Sep) const override;

  // std::advance, std::prev & std::next
  CallDescriptionMap<AdvanceFn> AdvanceLikeFunctions = {
      // template<class InputIt, class Distance>
      // void advance(InputIt& it, Distance n);
      {{{"std", "advance"}, 2}, &IteratorModeling::handleAdvance},

      // template<class BidirIt>
      // BidirIt prev(
      //   BidirIt it,
      //   typename std::iterator_traits<BidirIt>::difference_type n = 1);
      {{{"std", "prev"}, 2}, &IteratorModeling::handlePrev},

      // template<class ForwardIt>
      // ForwardIt next(
      //   ForwardIt it,
      //   typename std::iterator_traits<ForwardIt>::difference_type n = 1);
      {{{"std", "next"}, 2}, &IteratorModeling::handleNext},
  };

public:
  IteratorModeling() = default;

  void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
  void checkBind(SVal Loc, SVal Val, const Stmt *S, CheckerContext &C) const;
  void checkPostStmt(const UnaryOperator *UO, CheckerContext &C) const;
  void checkPostStmt(const BinaryOperator *BO, CheckerContext &C) const;
  void checkPostStmt(const CXXConstructExpr *CCE, CheckerContext &C) const;
  void checkPostStmt(const DeclStmt *DS, CheckerContext &C) const;
  void checkPostStmt(const MaterializeTemporaryExpr *MTE,
                     CheckerContext &C) const;
  void checkLiveSymbols(ProgramStateRef State, SymbolReaper &SR) const;
  void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
};

bool isSimpleComparisonOperator(OverloadedOperatorKind OK);
bool isSimpleComparisonOperator(BinaryOperatorKind OK);
ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val);
ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
                              SymbolRef Sym2, bool Equal);
bool isBoundThroughLazyCompoundVal(const Environment &Env,
                                   const MemRegion *Reg);
const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call);

} // namespace

void IteratorModeling::checkPostCall(const CallEvent &Call,
                                     CheckerContext &C) const {
  // Record new iterator positions and iterator position changes
  const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
  if (!Func)
    return;

  if (Func->isOverloadedOperator()) {
    const auto Op = Func->getOverloadedOperator();
    handleOverloadedOperator(C, Call, Op);
    return;
  }

  const auto *OrigExpr = Call.getOriginExpr();
  if (!OrigExpr)
    return;

  const AdvanceFn *Handler = AdvanceLikeFunctions.lookup(Call);
  if (Handler) {
    handleAdvanceLikeFunction(C, Call, OrigExpr, Handler);
    return;
  }

  if (!isIteratorType(Call.getResultType()))
    return;

  auto State = C.getState();

  // Already bound to container?
  if (getIteratorPosition(State, Call.getReturnValue()))
    return;

  // Copy-like and move constructors
  if (isa<CXXConstructorCall>(&Call) && Call.getNumArgs() == 1) {
    if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(0))) {
      State = setIteratorPosition(State, Call.getReturnValue(), *Pos);
      if (cast<CXXConstructorDecl>(Func)->isMoveConstructor()) {
        State = removeIteratorPosition(State, Call.getArgSVal(0));
      }
      C.addTransition(State);
      return;
    }
  }

  // Assumption: if return value is an iterator which is not yet bound to a
  //             container, then look for the first iterator argument of the
  //             same type as the return value and bind the return value to
  //             the same container. This approach works for STL algorithms.
  // FIXME: Add a more conservative mode
  for (unsigned i = 0; i < Call.getNumArgs(); ++i) {
    if (isIteratorType(Call.getArgExpr(i)->getType()) &&
        Call.getArgExpr(i)->getType().getNonReferenceType().getDesugaredType(
            C.getASTContext()).getTypePtr() ==
        Call.getResultType().getDesugaredType(C.getASTContext()).getTypePtr()) {
      if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(i))) {
        assignToContainer(C, OrigExpr, Call.getReturnValue(),
                          Pos->getContainer());
        return;
      }
    }
  }
}

void IteratorModeling::checkBind(SVal Loc, SVal Val, const Stmt *S,
                                 CheckerContext &C) const {
  auto State = C.getState();
  const auto *Pos = getIteratorPosition(State, Val);
  if (Pos) {
    State = setIteratorPosition(State, Loc, *Pos);
    C.addTransition(State);
  } else {
    const auto *OldPos = getIteratorPosition(State, Loc);
    if (OldPos) {
      State = removeIteratorPosition(State, Loc);
      C.addTransition(State);
    }
  }
}

void IteratorModeling::checkPostStmt(const UnaryOperator *UO,
                                     CheckerContext &C) const {
  UnaryOperatorKind OK = UO->getOpcode();
  if (!isIncrementOperator(OK) && !isDecrementOperator(OK))
    return;

  auto &SVB = C.getSValBuilder();
  handlePtrIncrOrDecr(C, UO->getSubExpr(),
                      isIncrementOperator(OK) ? OO_Plus : OO_Minus,
                      SVB.makeArrayIndex(1));
}

void IteratorModeling::checkPostStmt(const BinaryOperator *BO,
                                     CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  BinaryOperatorKind OK = BO->getOpcode();
  SVal RVal = State->getSVal(BO->getRHS(), C.getLocationContext());

  if (isSimpleComparisonOperator(BO->getOpcode())) {
    SVal LVal = State->getSVal(BO->getLHS(), C.getLocationContext());
    SVal Result = State->getSVal(BO, C.getLocationContext());
    handleComparison(C, BO, Result, LVal, RVal,
                     BinaryOperator::getOverloadedOperator(OK));
  } else if (isRandomIncrOrDecrOperator(OK)) {
    handlePtrIncrOrDecr(C, BO->getLHS(),
                        BinaryOperator::getOverloadedOperator(OK), RVal);
  }
}

void IteratorModeling::checkPostStmt(const MaterializeTemporaryExpr *MTE,
                                     CheckerContext &C) const {
  /* Transfer iterator state to temporary objects */
  auto State = C.getState();
  const auto *Pos = getIteratorPosition(State, C.getSVal(MTE->getSubExpr()));
  if (!Pos)
    return;
  State = setIteratorPosition(State, C.getSVal(MTE), *Pos);
  C.addTransition(State);
}

void IteratorModeling::checkLiveSymbols(ProgramStateRef State,
                                        SymbolReaper &SR) const {
  // Keep symbolic expressions of iterator positions alive
  auto RegionMap = State->get<IteratorRegionMap>();
  for (const auto &Reg : RegionMap) {
    const auto Offset = Reg.second.getOffset();
    for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i)
      if (isa<SymbolData>(*i))
        SR.markLive(*i);
  }

  auto SymbolMap = State->get<IteratorSymbolMap>();
  for (const auto &Sym : SymbolMap) {
    const auto Offset = Sym.second.getOffset();
    for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i)
      if (isa<SymbolData>(*i))
        SR.markLive(*i);
  }

}

void IteratorModeling::checkDeadSymbols(SymbolReaper &SR,
                                        CheckerContext &C) const {
  // Cleanup
  auto State = C.getState();

  auto RegionMap = State->get<IteratorRegionMap>();
  for (const auto &Reg : RegionMap) {
    if (!SR.isLiveRegion(Reg.first)) {
      // The region behind the `LazyCompoundVal` is often cleaned up before
      // the `LazyCompoundVal` itself. If there are iterator positions keyed
      // by these regions their cleanup must be deferred.
      if (!isBoundThroughLazyCompoundVal(State->getEnvironment(), Reg.first)) {
        State = State->remove<IteratorRegionMap>(Reg.first);
      }
    }
  }

  auto SymbolMap = State->get<IteratorSymbolMap>();
  for (const auto &Sym : SymbolMap) {
    if (!SR.isLive(Sym.first)) {
      State = State->remove<IteratorSymbolMap>(Sym.first);
    }
  }

  C.addTransition(State);
}

void
IteratorModeling::handleOverloadedOperator(CheckerContext &C,
                                           const CallEvent &Call,
                                           OverloadedOperatorKind Op) const {
    if (isSimpleComparisonOperator(Op)) {
      const auto *OrigExpr = Call.getOriginExpr();
      if (!OrigExpr)
        return;

      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
        handleComparison(C, OrigExpr, Call.getReturnValue(),
                         InstCall->getCXXThisVal(), Call.getArgSVal(0), Op);
        return;
      }

      handleComparison(C, OrigExpr, Call.getReturnValue(), Call.getArgSVal(0),
                         Call.getArgSVal(1), Op);
      return;
    } else if (isRandomIncrOrDecrOperator(Op)) {
      const auto *OrigExpr = Call.getOriginExpr();
      if (!OrigExpr)
        return;

      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
        if (Call.getNumArgs() >= 1 &&
              Call.getArgExpr(0)->getType()->isIntegralOrEnumerationType()) {
          handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(),
                                 InstCall->getCXXThisVal(), Call.getArgSVal(0));
          return;
        }
      } else {
        if (Call.getNumArgs() >= 2 &&
              Call.getArgExpr(1)->getType()->isIntegralOrEnumerationType()) {
          handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(),
                                 Call.getArgSVal(0), Call.getArgSVal(1));
          return;
        }
      }
    } else if (isIncrementOperator(Op)) {
      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
        handleIncrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
                        Call.getNumArgs());
        return;
      }

      handleIncrement(C, Call.getReturnValue(), Call.getArgSVal(0),
                      Call.getNumArgs());
      return;
    } else if (isDecrementOperator(Op)) {
      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
        handleDecrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
                        Call.getNumArgs());
        return;
      }

      handleDecrement(C, Call.getReturnValue(), Call.getArgSVal(0),
                        Call.getNumArgs());
      return;
    }
}

void
IteratorModeling::handleAdvanceLikeFunction(CheckerContext &C,
                                            const CallEvent &Call,
                                            const Expr *OrigExpr,
                                            const AdvanceFn *Handler) const {
  if (!C.wasInlined) {
    (this->**Handler)(C, OrigExpr, Call.getReturnValue(),
                      Call.getArgSVal(0), Call.getArgSVal(1));
    return;
  }

  // If std::advance() was inlined, but a non-standard function it calls inside
  // was not, then we have to model it explicitly
  const auto *IdInfo = cast<FunctionDecl>(Call.getDecl())->getIdentifier();
  if (IdInfo) {
    if (IdInfo->getName() == "advance") {
      if (noChangeInAdvance(C, Call.getArgSVal(0), OrigExpr)) {
        (this->**Handler)(C, OrigExpr, Call.getReturnValue(),
                          Call.getArgSVal(0), Call.getArgSVal(1));
      }
    }
  }
}

void IteratorModeling::handleComparison(CheckerContext &C, const Expr *CE,
                                       SVal RetVal, const SVal &LVal,
                                       const SVal &RVal,
                                       OverloadedOperatorKind Op) const {
  // Record the operands and the operator of the comparison for the next
  // evalAssume, if the result is a symbolic expression. If it is a concrete
  // value (only one branch is possible), then transfer the state between
  // the operands according to the operator and the result
   auto State = C.getState();
  const auto *LPos = getIteratorPosition(State, LVal);
  const auto *RPos = getIteratorPosition(State, RVal);
  const MemRegion *Cont = nullptr;
  if (LPos) {
    Cont = LPos->getContainer();
  } else if (RPos) {
    Cont = RPos->getContainer();
  }
  if (!Cont)
    return;

  // At least one of the iterators has recorded positions. If one of them does
  // not then create a new symbol for the offset.
  SymbolRef Sym;
  if (!LPos || !RPos) {
    auto &SymMgr = C.getSymbolManager();
    Sym = SymMgr.conjureSymbol(CE, C.getLocationContext(),
                               C.getASTContext().LongTy, C.blockCount());
    State = assumeNoOverflow(State, Sym, 4);
  }

  if (!LPos) {
    State = setIteratorPosition(State, LVal,
                                IteratorPosition::getPosition(Cont, Sym));
    LPos = getIteratorPosition(State, LVal);
  } else if (!RPos) {
    State = setIteratorPosition(State, RVal,
                                IteratorPosition::getPosition(Cont, Sym));
    RPos = getIteratorPosition(State, RVal);
  }

  // We cannot make assumptions on `UnknownVal`. Let us conjure a symbol
  // instead.
  if (RetVal.isUnknown()) {
    auto &SymMgr = C.getSymbolManager();
    auto *LCtx = C.getLocationContext();
    RetVal = nonloc::SymbolVal(SymMgr.conjureSymbol(
        CE, LCtx, C.getASTContext().BoolTy, C.blockCount()));
    State = State->BindExpr(CE, LCtx, RetVal);
  }

  processComparison(C, State, LPos->getOffset(), RPos->getOffset(), RetVal, Op);
}

void IteratorModeling::processComparison(CheckerContext &C,
                                         ProgramStateRef State, SymbolRef Sym1,
                                         SymbolRef Sym2, const SVal &RetVal,
                                         OverloadedOperatorKind Op) const {
  if (const auto TruthVal = RetVal.getAs<nonloc::ConcreteInt>()) {
    if ((State = relateSymbols(State, Sym1, Sym2,
                              (Op == OO_EqualEqual) ==
                               (TruthVal->getValue() != 0)))) {
      C.addTransition(State);
    } else {
      C.generateSink(State, C.getPredecessor());
    }
    return;
  }

  const auto ConditionVal = RetVal.getAs<DefinedSVal>();
  if (!ConditionVal)
    return;

  if (auto StateTrue = relateSymbols(State, Sym1, Sym2, Op == OO_EqualEqual)) {
    StateTrue = StateTrue->assume(*ConditionVal, true);
    C.addTransition(StateTrue);
  }

  if (auto StateFalse = relateSymbols(State, Sym1, Sym2, Op != OO_EqualEqual)) {
    StateFalse = StateFalse->assume(*ConditionVal, false);
    C.addTransition(StateFalse);
  }
}

void IteratorModeling::handleIncrement(CheckerContext &C, const SVal &RetVal,
                                       const SVal &Iter, bool Postfix) const {
  // Increment the symbolic expressions which represents the position of the
  // iterator
  auto State = C.getState();
  auto &BVF = C.getSymbolManager().getBasicVals();

  const auto *Pos = getIteratorPosition(State, Iter);
  if (!Pos)
    return;

  auto NewState =
    advancePosition(State, Iter, OO_Plus,
                    nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
  assert(NewState &&
         "Advancing position by concrete int should always be successful");

  const auto *NewPos = getIteratorPosition(NewState, Iter);
  assert(NewPos &&
         "Iterator should have position after successful advancement");

  State = setIteratorPosition(State, Iter, *NewPos);
  State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos);
  C.addTransition(State);
}

void IteratorModeling::handleDecrement(CheckerContext &C, const SVal &RetVal,
                                       const SVal &Iter, bool Postfix) const {
  // Decrement the symbolic expressions which represents the position of the
  // iterator
  auto State = C.getState();
  auto &BVF = C.getSymbolManager().getBasicVals();

  const auto *Pos = getIteratorPosition(State, Iter);
  if (!Pos)
    return;

  auto NewState =
    advancePosition(State, Iter, OO_Minus,
                    nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
  assert(NewState &&
         "Advancing position by concrete int should always be successful");

  const auto *NewPos = getIteratorPosition(NewState, Iter);
  assert(NewPos &&
         "Iterator should have position after successful advancement");

  State = setIteratorPosition(State, Iter, *NewPos);
  State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos);
  C.addTransition(State);
}

void IteratorModeling::handleRandomIncrOrDecr(CheckerContext &C,
                                              const Expr *CE,
                                              OverloadedOperatorKind Op,
                                              const SVal &RetVal,
                                              const SVal &LHS,
                                              const SVal &RHS) const {
  // Increment or decrement the symbolic expressions which represents the
  // position of the iterator
  auto State = C.getState();

  const auto *Pos = getIteratorPosition(State, LHS);
  if (!Pos)
    return;

  const auto *value = &RHS;
  SVal val;
  if (auto loc = RHS.getAs<Loc>()) {
    val = State->getRawSVal(*loc);
    value = &val;
  }

  auto &TgtVal = (Op == OO_PlusEqual || Op == OO_MinusEqual) ? LHS : RetVal;

  // `AdvancedState` is a state where the position of `LHS` is advanced. We
  // only need this state to retrieve the new position, but we do not want
  // to change the position of `LHS` (in every case).
  auto AdvancedState = advancePosition(State, LHS, Op, *value);
  if (AdvancedState) {
    const auto *NewPos = getIteratorPosition(AdvancedState, LHS);
    assert(NewPos &&
           "Iterator should have position after successful advancement");

    State = setIteratorPosition(State, TgtVal, *NewPos);
    C.addTransition(State);
  } else {
    assignToContainer(C, CE, TgtVal, Pos->getContainer());
  }
}

void IteratorModeling::handlePtrIncrOrDecr(CheckerContext &C,
                                           const Expr *Iterator,
                                           OverloadedOperatorKind OK,
                                           SVal Offset) const {
  QualType PtrType = Iterator->getType();
  if (!PtrType->isPointerType())
    return;
  QualType ElementType = PtrType->getPointeeType();

  ProgramStateRef State = C.getState();
  SVal OldVal = State->getSVal(Iterator, C.getLocationContext());

  const IteratorPosition *OldPos = getIteratorPosition(State, OldVal);
  if (!OldPos)
    return;

  SVal NewVal;
  if (OK == OO_Plus || OK == OO_PlusEqual)
    NewVal = State->getLValue(ElementType, Offset, OldVal);
  else {
    const llvm::APSInt &OffsetInt =
      Offset.castAs<nonloc::ConcreteInt>().getValue();
    auto &BVF = C.getSymbolManager().getBasicVals();
    SVal NegatedOffset = nonloc::ConcreteInt(BVF.getValue(-OffsetInt));
    NewVal = State->getLValue(ElementType, NegatedOffset, OldVal);
  }

  // `AdvancedState` is a state where the position of `Old` is advanced. We
  // only need this state to retrieve the new position, but we do not want
  // ever to change the position of `OldVal`.
  auto AdvancedState = advancePosition(State, OldVal, OK, Offset);
  if (AdvancedState) {
    const IteratorPosition *NewPos = getIteratorPosition(AdvancedState, OldVal);
    assert(NewPos &&
           "Iterator should have position after successful advancement");

    ProgramStateRef NewState = setIteratorPosition(State, NewVal, *NewPos);
    C.addTransition(NewState);
  } else {
    assignToContainer(C, Iterator, NewVal, OldPos->getContainer());
  }
}

void IteratorModeling::handleAdvance(CheckerContext &C, const Expr *CE,
                                     SVal RetVal, SVal Iter,
                                     SVal Amount) const {
  handleRandomIncrOrDecr(C, CE, OO_PlusEqual, RetVal, Iter, Amount);
}

void IteratorModeling::handlePrev(CheckerContext &C, const Expr *CE,
                                  SVal RetVal, SVal Iter, SVal Amount) const {
  handleRandomIncrOrDecr(C, CE, OO_Minus, RetVal, Iter, Amount);
}

void IteratorModeling::handleNext(CheckerContext &C, const Expr *CE,
                                  SVal RetVal, SVal Iter, SVal Amount) const {
  handleRandomIncrOrDecr(C, CE, OO_Plus, RetVal, Iter, Amount);
}

void IteratorModeling::assignToContainer(CheckerContext &C, const Expr *CE,
                                         const SVal &RetVal,
                                         const MemRegion *Cont) const {
  Cont = Cont->getMostDerivedObjectRegion();

  auto State = C.getState();
  const auto *LCtx = C.getLocationContext();
  State = createIteratorPosition(State, RetVal, Cont, CE, LCtx, C.blockCount());

  C.addTransition(State);
}

bool IteratorModeling::noChangeInAdvance(CheckerContext &C, SVal Iter,
                                         const Expr *CE) const {
  // Compare the iterator position before and after the call. (To be called
  // from `checkPostCall()`.)
  const auto StateAfter = C.getState();

  const auto *PosAfter = getIteratorPosition(StateAfter, Iter);
  // If we have no position after the call of `std::advance`, then we are not
  // interested. (Modeling of an inlined `std::advance()` should not remove the
  // position in any case.)
  if (!PosAfter)
    return false;

  const ExplodedNode *N = findCallEnter(C.getPredecessor(), CE);
  assert(N && "Any call should have a `CallEnter` node.");

  const auto StateBefore = N->getState();
  const auto *PosBefore = getIteratorPosition(StateBefore, Iter);

  assert(PosBefore && "`std::advance() should not create new iterator "
         "position but change existing ones");

  return PosBefore->getOffset() == PosAfter->getOffset();
}

void IteratorModeling::printState(raw_ostream &Out, ProgramStateRef State,
                                  const char *NL, const char *Sep) const {
  auto SymbolMap = State->get<IteratorSymbolMap>();
  auto RegionMap = State->get<IteratorRegionMap>();
  // Use a counter to add newlines before every line except the first one.
  unsigned Count = 0;

  if (!SymbolMap.isEmpty() || !RegionMap.isEmpty()) {
    Out << Sep << "Iterator Positions :" << NL;
    for (const auto &Sym : SymbolMap) {
      if (Count++)
        Out << NL;

      Sym.first->dumpToStream(Out);
      Out << " : ";
      const auto Pos = Sym.second;
      Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == ";
      Pos.getContainer()->dumpToStream(Out);
      Out<<" ; Offset == ";
      Pos.getOffset()->dumpToStream(Out);
    }

    for (const auto &Reg : RegionMap) {
      if (Count++)
        Out << NL;

      Reg.first->dumpToStream(Out);
      Out << " : ";
      const auto Pos = Reg.second;
      Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == ";
      Pos.getContainer()->dumpToStream(Out);
      Out<<" ; Offset == ";
      Pos.getOffset()->dumpToStream(Out);
    }
  }
}

namespace {

bool isSimpleComparisonOperator(OverloadedOperatorKind OK) {
  return OK == OO_EqualEqual || OK == OO_ExclaimEqual;
}

bool isSimpleComparisonOperator(BinaryOperatorKind OK) {
  return OK == BO_EQ || OK == BO_NE;
}

ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val) {
  if (auto Reg = Val.getAsRegion()) {
    Reg = Reg->getMostDerivedObjectRegion();
    return State->remove<IteratorRegionMap>(Reg);
  } else if (const auto Sym = Val.getAsSymbol()) {
    return State->remove<IteratorSymbolMap>(Sym);
  } else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
    return State->remove<IteratorRegionMap>(LCVal->getRegion());
  }
  return nullptr;
}

ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
                              SymbolRef Sym2, bool Equal) {
  auto &SVB = State->getStateManager().getSValBuilder();

  // FIXME: This code should be reworked as follows:
  // 1. Subtract the operands using evalBinOp().
  // 2. Assume that the result doesn't overflow.
  // 3. Compare the result to 0.
  // 4. Assume the result of the comparison.
  const auto comparison =
    SVB.evalBinOp(State, BO_EQ, nonloc::SymbolVal(Sym1),
                  nonloc::SymbolVal(Sym2), SVB.getConditionType());

  assert(comparison.getAs<DefinedSVal>() &&
    "Symbol comparison must be a `DefinedSVal`");

  auto NewState = State->assume(comparison.castAs<DefinedSVal>(), Equal);
  if (!NewState)
    return nullptr;

  if (const auto CompSym = comparison.getAsSymbol()) {
    assert(isa<SymIntExpr>(CompSym) &&
           "Symbol comparison must be a `SymIntExpr`");
    assert(BinaryOperator::isComparisonOp(
               cast<SymIntExpr>(CompSym)->getOpcode()) &&
           "Symbol comparison must be a comparison");
    return assumeNoOverflow(NewState, cast<SymIntExpr>(CompSym)->getLHS(), 2);
  }

  return NewState;
}

bool isBoundThroughLazyCompoundVal(const Environment &Env,
                                   const MemRegion *Reg) {
  for (const auto &Binding : Env) {
    if (const auto LCVal = Binding.second.getAs<nonloc::LazyCompoundVal>()) {
      if (LCVal->getRegion() == Reg)
        return true;
    }
  }

  return false;
}

const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call) {
  while (Node) {
    ProgramPoint PP = Node->getLocation();
    if (auto Enter = PP.getAs<CallEnter>()) {
      if (Enter->getCallExpr() == Call)
        break;
    }

    Node = Node->getFirstPred();
  }

  return Node;
}

} // namespace

void ento::registerIteratorModeling(CheckerManager &mgr) {
  mgr.registerChecker<IteratorModeling>();
}

bool ento::shouldRegisterIteratorModeling(const CheckerManager &mgr) {
  return true;
}